WO2013053318A1 - 一种多层复合三元材料及其前驱体以及它们的制备方法 - Google Patents

一种多层复合三元材料及其前驱体以及它们的制备方法 Download PDF

Info

Publication number
WO2013053318A1
WO2013053318A1 PCT/CN2012/082731 CN2012082731W WO2013053318A1 WO 2013053318 A1 WO2013053318 A1 WO 2013053318A1 CN 2012082731 W CN2012082731 W CN 2012082731W WO 2013053318 A1 WO2013053318 A1 WO 2013053318A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
nickel
ternary material
multilayer composite
cobalt
Prior art date
Application number
PCT/CN2012/082731
Other languages
English (en)
French (fr)
Inventor
张军
郭建
张联齐
杨瑞娟
侯配玉
Original Assignee
上海中兴派能能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中兴派能能源科技有限公司 filed Critical 上海中兴派能能源科技有限公司
Priority to DE112012004237.9T priority Critical patent/DE112012004237T5/de
Publication of WO2013053318A1 publication Critical patent/WO2013053318A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Multi-layer composite ternary material and precursor thereof and preparation method thereof Multi-layer composite ternary material and precursor thereof and preparation method thereof
  • the invention belongs to the technical field of cathode materials for lithium ion batteries, and particularly relates to a cathode material for a lithium ion battery and a precursor thereof, and a preparation method of the cathode material and a precursor thereof. Background technique
  • Lithium ion secondary batteries are an ideal power source for various portable electronic products because of their high specific energy, long cycle life and stable discharge performance.
  • the positive electrode material of nickel-cobalt-manganese ternary lithium ion battery combines the advantages of LiCo0 2 , LiM0 2 and LiMn0 2 , and its performance is better than LiCo0 Book 2 and LiM0 2 above .
  • Any single-component positive electrode material in LiMn0 2 has obvious ternary synergistic effect and becomes a positive electrode material which is considered to be widely used as a substitute for lithium cobalt oxide LiCo0 2 for use in small lithium ion batteries.
  • the ternary material for commercial application is a new material developed for the performance and cost improvement requirements of the existing lithium ion battery cathode material, which has a higher discharge specific capacity, conforms to the development direction of modern materials, and the cycle performance. With a small difference and low cost, it is a new type of cathode material with great market potential. Performance improvements for the properties of this material have become a hot topic in ternary materials research. Summary of the invention
  • the present invention provides a multilayer composite ternary material and a precursor thereof.
  • the materials are designed into a core-shell multi-layer composite structure to enrich the internal and external components separately. Therefore, the core and the shell realize functional compounding and complementation, thereby modulating a new functional material different from the performance of the core or the shell itself, and the novel functional material of the present invention has a discharge specific capacity compared to the existing ternary positive electrode material. , cycle stability, thermal stability and safety performance have been effectively improved.
  • Another object of the present invention is to provide a method for preparing the above-described multilayer conforming ternary material and its precursor.
  • the invention discloses a multilayer composite ternary material precursor for a cathode material of a lithium ion battery, which has the following molecular formula: NixCoyM yCOH , wherein 0.4 ⁇ x ⁇ 0.6, 0.1 ⁇ y ⁇ 0.3; using a core-shell multilayer composite structure , comprising a core portion and a plurality of shell portions which are sequentially coated on the outer layer of the core portion, and the core portion and the shell portion of the plurality of layers are respectively enriched with different components, thereby realizing functional compounding and complementation of the core portion and the shell portion of the plurality of layers;
  • the core portion has the formula: (Ni a Co b Mn 1-ab )(OH) 2 , wherein 0.6 ⁇ a ⁇ l; 0 ⁇ b ⁇ 0.2.
  • the core portion is a nickel-cobalt-manganese multi-material having a nickel content of more than 60%
  • the shell portion of each layer is a nickel-cobalt-manganese multi-material having a nickel content of less than 50%
  • each layer of nickel-cobalt-manganese multi-material The nickel content is different.
  • Benyi Mingyi uses the method of f-lithium to complete the preparation of the multi-composite three-dimensional w-Kelly body of the battery. The specific steps are as follows:
  • the molar ratio of nickel, cobalt, and manganese is m : n: 1-mn, wherein, 0 ⁇ m ⁇ 0.5; 0 ⁇ n ⁇ 0.5.
  • the invention provides a method for preparing a multilayer composite ternary material for a positive electrode material of a lithium ion battery, which is obtained by mixing and calcining a precursor obtained by the above precursor preparation method with a lithium source, and the specific steps are as follows: First, according to the claims The precursor preparation method of 4 obtains a multilayer composite ternary material precursor having a molecular formula of Ni x Co y M ni _ x _ y (OH) 2 , wherein 0.4 ⁇ x ⁇ 0.6, 0.1 ⁇ y ⁇ 0.3; The above precursor and lithium carbonate molar ratio 1: 1-1: 1.2 are uniformly mixed and then calcined in a muffle furnace in multiple stages, the calcination temperature is 300-1200 ° C, the baking time is 8-30 h, and the multi-stage roasting is cooled, broken, Screening to obtain a multilayer composite ternary material.
  • the preparation method of the positive electrode material precursor of the lithium ion battery provided by the invention changes the preparation process of the single salt solution in the past, and the high nickel material (nickel content is more than 60%) is taken as the core part of the ternary material precursor in the initial stage, and the structural design is adopted.
  • the outer layer is coated with a plurality of different proportions of nickel-cobalt-manganese multi-materials, and the multi-component material is a single-core multi-layer cladding composite material, and the precursor is prepared in stages by structural design, and the composite advantages of each component layer material are fully exerted.
  • a multilayer composite ternary material having a total molecular formula of NixCoyM yCOH, wherein 0.4 ⁇ x ⁇ 0.6, 0.1 ⁇ y ⁇ 0.3, is finally synthesized. Then, a multi-layer composite ternary material is synthesized by calcination with lithium. Through the design of this material, the capacity advantage of high nickel core can be better exerted, and at the same time, the high nickel content in the lithium-deficient state is caused by the increase of manganese content in the outer layer coating material and the composite action of nickel, cobalt and manganese.
  • the generated Ni 4+ is not easily contacted with the electrolyte to react and release a large amount of gas, and at the same time, due to the presence of the multilayer material, the irreversible deformation of the crystal lattice during charging and discharging is reduced, so that the discharge specific capacity is improved while being effective. Improves the cycle stability, thermal stability and safety of ternary materials.
  • the multi-layer composite ternary cathode material is manufactured to have higher discharge specific capacity and cycle stability, high temperature cycle stability and rate performance of the material. There are also The improvement is greatly improved, and the processing performance and safety performance of the material are also obviously improved, and the cost performance advantage is high.
  • the multi-layer composite ternary material of the invention has higher discharge specific capacity, better cycle stability and safety performance, and the rate performance of some materials is also improved, and the cost performance advantage is obvious, and is more suitable for the application of the power battery.
  • Figure 1 is an XRD chart of Example 1 and Comparative Example 1;
  • Figure 2 is a graph showing the first charge and discharge curves of Example 1 and Comparative Example
  • Figure 3 is a graph of 100 cycles of Example 1 and Comparative Example
  • Figure 4 is a DSC chart of Example 1 and Comparative Example at 4. 3V;
  • Fig. 5 is a graph showing the rate performance of Example 4 and Comparative Example. detailed description
  • a salt solution of 2 M in a concentration of 2 M was prepared using 2656 g of nickel sulfate, 1149 g of cobalt sulfate, and 1015 g of manganese sulfate.
  • the prepared solution was injected into the reaction vessel at a speed of 200 rps at a rate of 0.5 L/h, and a 6 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH between 10 and 11 until the salt solution was completely injected.
  • the precursor preparation reaction was completed.
  • the solid-liquid mixture after the completion of the reaction was separated by centrifugation, washed to neutrality, and dried at 100 ° C for 10 h.
  • the dried precursor is mixed with lithium carbonate molar ratio 1:1.05 and then calcined in a muffle furnace at 900 ° C for 10 h.
  • the calcined material is crushed and sieved to obtain uniform LiNi Q . 5 Co Q . 2 Mn Q. 3 0 2 ternary material.
  • the tap density, the specific discharge capacity, the capacity retention after the cycle, the decomposition temperature, the heat release rate, and the high temperature cycle retention rate of the ternary material were tested. The test results are listed in Table 2.
  • Example 1 Example 1:
  • the salt solution A was injected into the reaction vessel at a speed of 200 rps at a rate of 0.5 L/h, while injecting a 6 M NaOH solution, paying attention to adjusting the flow rate of the alkali solution, and maintaining the pH value between 10 and 11 by an on-line pH controller; After the salt solution A is completely injected into the reaction kettle, it is switched to the salt solution B and completely injected into the reaction tank at the same speed, and then the solution C is continuously injected;
  • the dried precursor is mixed with lithium carbonate molar ratio 1:1.05 and then calcined in a muffle furnace at 800 ° C for 10 h, and calcined at 900 ° C for 8 h.
  • the calcined material is crushed and sieved to obtain a multi-layer composite ternary.
  • Example 1 the product obtained in Example 1 and the comparative example has a sharp XRD line, two curves (Example 1 and comparison) Example) There were no other peaks in the comparison, indicating that the layered structure of the material in Example 1 was completed without impurity phase.
  • Example 1 and the comparative material made of a 2032 button battery 3. 0-4.
  • 3V 0. 2C first discharge specific capacity of 170. 26 mAh / g and 166.09 mAh / g, as shown in Figure 2; It can be seen that the capacity retention ratios of 3. 0-4.
  • Example 2 the multilayer composite ternary material of Example 1 has a large advantage in terms of first discharge specific capacity, cycle stability, and material thermal decomposition temperature as compared with a uniform material.
  • Example 2
  • the salt solution A was injected into the reaction vessel at a speed of 200 rps at a rate of 0.5 L/h, and a 6 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH value between 10 and 11, and the salt solution A was completely injected.
  • the solution C was continuously injected into the reactor at the same rate.
  • the solid-liquid mixture after completion of the reaction was separated by centrifugation, washed to neutrality, and dried at 100 ° C for 10 hours to prepare a multilayer composite ternary material precursor having a score of Nio.sCo ⁇ Mn COH.
  • the salt solution A was injected into the reaction vessel at a speed of 250 rps at a rate of 0.5 L/h, and a 6 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH value between 10 and 11, and the salt solution A was completely injected.
  • the solution C was continuously injected into the reactor at the same rate.
  • the solid-liquid mixture after completion of the reaction was separated by centrifugation, washed to neutrality, and dried at 120 ° C for 10 hours to prepare a multilayer composite ternary material precursor having a score of Nio.sCo ⁇ Mn COH.
  • the dried precursor was mixed with lithium carbonate molar ratio 1:1.05 and then calcined at 800 ° C for 10 h in a muffle furnace.
  • the calcined material at 950 ° C for 6 h was crushed and sieved to obtain a molecular formula of LiNi Q . 5 Co Q . 2 M nQ . 3 0 2 multilayer composite ternary material.
  • the test results are listed in Table 3.
  • the high temperature cycle performance of the embodiment 3 is relatively excellent and is placed at a high temperature.
  • the salt solution A was injected into the reaction vessel at a speed of 250 rps at a rate of 0.5 L/h, and a 6 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH value between 10 and 11, and the salt solution A was completely injected.
  • the solution C was continuously injected into the reactor at the same rate.
  • the dried precursor was mixed with lithium carbonate molar ratio 1:1.05 and then calcined at 800 ° C for 10 h in a muffle furnace.
  • the calcined material at 950 ° C for 8 h was crushed and sieved to obtain a molecular formula of LiNi Q . 5 Co Q . 2 M nQ . 3 0 2 multilayer composite ternary material.
  • Example 5 The DSC tests the tap density, the discharge specific capacity, the capacity retention after the cycle, and the decomposition temperature of the ternary material. The test results are listed in Table 3. It can be seen from Fig. 5 that the rate performance of Example 4 is significantly better than that of the comparative example. Example 5
  • the salt solution A was injected into the reaction vessel at a speed of 250 rps at a rate of 0.5 L/h, and a 6 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH value between 10 and 11, and the salt solution A was completely injected.
  • the solution C and the salt solution 0 were continuously injected after completely injecting the reactor at the same speed.
  • the dried precursor was mixed with lithium carbonate molar ratio 1:1.05, then calcined in a muffle furnace at 750 ° C for 8 h, and calcined at 950 ° C for 10 h.
  • the calcined material was crushed and sieved to obtain a molecular formula of LiNi Q . 5 Co Q . 2 M nQ . 3 0 2 multilayer composite ternary material.
  • 5M ⁇ C 5M ⁇ C
  • 80g of nickel sulfate with a concentration of each of the components specified in the following Table 1 is 0. 5M salt solution A, 3L concentration of 0. 5M salt solution B and 3L concentration of 0. 5M salt solution C; with 80g of nickel sulfate, 5 ⁇ E, Table 2 lists the above.
  • the salt solution E is prepared in an amount of 0.5 L.
  • the nickel content of the five salt solutions is prepared in an amount of 0.5 L.
  • the salt solution A was injected into the reaction vessel at a speed of 500 rps at a rate of 0.5 L/h, and a 10 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH between 11 and 12, and the salt solution A was completely injected.
  • the solid-liquid mixture after completion of the reaction was separated by centrifugation, washed to neutrality, and dried at 200 ° C for 10 hours to prepare a multilayer composite ternary material precursor having a score of Nio.sCo ⁇ Mn COH.
  • the dried precursor is mixed with lithium carbonate molar ratio 1:1 and then calcined at 350 ° C for 4 h in a muffle furnace, calcined at 500 ° C for 6 h, calcined at 800 ° C for 10 h, and calcined at 950 ° C for 6 h. After the material is crushed and sieved, the molecular formula is
  • the salt solution of the salt solution of 2. 7M is 2. 7M of the salt solution C, which is listed in Table 2, and the concentration of the components of the salt solution is 2. 7M.
  • the salt solution A was injected into the reaction vessel at a speed of lOOOrps at a rate of 0.5 L/h, and a 10 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH value between 10 and 11, and the salt solution A was completely injected.
  • the solution C was continuously injected into the reactor at the same rate.
  • the dried precursor is mixed with lithium carbonate molar ratio 1:1.2 and then calcined at 800 ° C for 10 h in a muffle furnace.
  • the calcined material at 960 ° C for 16 h is crushed and sieved to obtain a molecular formula of LiNi Q . 5 Co Q . 2 M nQ . 3 0 2 multilayer composite ternary material.
  • the salt solution of the salt solution B and the 2L concentration of 2. 7M is 2. 7M salt solution C; with 645 g of nickel sulfate, according to the content of each component specified in Table 1 below, 4L concentration of 2. 7M salt solution A, 2L concentration of 2. 7M salt solution B and 2L concentration of 2. 7M salt solution C; 155 g of cobalt sulfate and 411.8 g of manganese sulfate were prepared in 2 L of a salt solution D having a concentration of 2.7 M.
  • the nickel contents of the above four salt solutions are listed in Table 2.
  • the salt solution A was injected into the reaction vessel at a speed of 850 rps at a rate of 0.5 L/h, and a 2 M NaOH solution was injected at the same time, and the flow rate of the alkali solution was adjusted to maintain the pH value between 10 and 11, and the salt solution A was completely injected.
  • the solution C and the solution D were continuously injected after completely injecting the reactor at the same speed.
  • the dried precursor was mixed with lithium carbonate by molar ratio of 1:1 and then calcined in a muffle furnace at 750 ° C for 8 h.
  • the calcined material at 970 ° C for 16 h was crushed and sieved to obtain a molecular formula of LiNi Q . 5 Co Q . 2 M nQ . 3 0 2 multilayer composite ternary material.
  • Example 3 2. 47g 164. 7 96.33 301.6 92.04
  • Example 4 2. 43 165. 3 95.29 286.6
  • Example 6 2. 37 168. 7 97.33 297.6 90.05
  • Example 7 2. 68 166. 5 97.13 305.6 93.11
  • Example 8 2. 48 170. 8 96.59 297.4 92.55
  • the specific capacity of the discharge is 3. 0-4.
  • 3V 0. 2C first discharge specific capacity; after the cycle capacity retention rate is 3. 0-4.
  • 3V 1C 100 times Capacity retention after circulation; decomposition temperature refers to DSC decomposition temperature at 4.3V; high temperature cycle retention rate refers to 20 times high temperature cycle retention rate at 55 °C.
  • the "-" symbol in Table 3 indicates that the data is not determined.
  • the multilayer composite ternary material is one of the tap density, the discharge specific capacity, the cycle stability, the high temperature cycle performance, the rate performance, and the thermal stability compared to the homogeneous ternary material of the same composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种用于锂离子电池正极材料的多层复合三元材料前驱体,属于锂离子电池正极材料应用技术领域,其具有以下分子式组成:NixCoyMn1-x-y(OH)2,其中,0.4<x<0.6, 0.1<y<0.3;采用核壳多层复合结构,包括核心部分和多层依次包覆于核心部分外层的壳部分,核心部分和多层的壳部分分别富集不同成分,从而使核心部分与多层的壳部分实现功能复合与互补;所述核心部分具有的分子式为:(NiaCobMn1-a-b)(OH)2,其中,0.6≤a<1; 0≤b≤0.2。其三元材料为多级核壳结构三元材料。

Description

一种多层复合三元材料及其前驱体以及它们的制备方法 技术领域
本发明属于锂离子电池正极材料技术领域,特别涉及一种锂离子电池用正极材料及其 前驱体, 以及该正极材料及其前驱体的制备方法。 背景技术
锂离子二次电池具有比能量高、循说环寿命长和放电性能稳定等优点而成为各种便携式 电子产品的理想电源。 而层状结构的镍钴锰三元锂离子电池正极材料镍钴锰酸锂 Li (NiCoMn) 02,三元复合正极材料前驱体是以镍盐、 钴盐、 锰盐为原料,其中镍钴锰的比例 可以根据实际需要调整, 镍钴锰三元锂离子电池正极材料综合了 LiCo02、 LiM02、 LiMn02 三种层状结构材料的优点, 其性能优于以上 LiCo0书2、 LiM02、 LiMn02中任何单一组分正极 材料, 存在明显的三元协同效应, 成为一种被认为可以广泛替代钴酸锂 LiCo02应用于小 型锂离子电池上的正极材料。
目前商业应用的三元材料就是针对现有的锂离子电池正极材料的性能及成本改善需 求而研制出的一种新型材料, 其具有较高放电比容量, 符合了现代材料的发展方向, 循环 性能相差较小, 成本较低, 是一种极具市场潜力的新型正极材料。针对该材料的特性进行 的性能改进已经成为目前三元材料研究的一个热点方向。 发明内容
针对上述现有技术,本发明提供一种多层复合三元材料及其前驱体。针对市场上现有 的三元锂离子电池正极材料的性能改善需求,在不提高生产原料成本的基础上,通过把材 料设计成核壳多层复合结构,使其内部和外部分别富集不同成分,从而使核与壳实现功能 复合与互补, 以此调制出有别于核或壳本身性能的新型功能材料,本发明的新型功能材料 相比于现有的三元正极材料, 在放电比容量、循环稳定性、热稳定性及安全性能上均得到 有效提高。 本发明的另一个目的提供上述多层符合三元材料及其前驱体的制备方法。
为了解决上述技术问题, 本发明涉及到的技术方案如下:
本发明一种用于锂离子电池正极材料的多层复合三元材料前驱体,具有以下分子式组 成: NixCoyM yCOH ,其中, 0.4<x<0.6, 0.1<y<0.3; 采用核壳多层复合结构, 包括核心 部分和多层依次包覆于核心部分外层的壳部分,核心部分和多层的壳部分分别富集不同成 分,从而使核心部分与多层的壳部分实现功能复合与互补;所述核心部分具有的分子式为: (NiaCobMn1-a-b)(OH)2,其中, 0.6≤a<l ; 0≤b≤0.2。
在一个方面, 所述核心部分为镍含量大于 60%的镍钴锰多元材料, 而每层的壳部分均 为镍含量低于 50%的镍钴锰多元材料, 每层的镍钴锰多元材料的镍含量不同。 本犮明一柙用 f锂 于电池止极 w科的多 复合三兀 w科丽驱体的制备万法,具体歩 骤如下:
( 1 ) 以一定速率向反应釜中加入一定量的镍含量大于 60%的镍、 钴和锰的盐溶液, 优选为镍、 钴、 锰的硫酸盐、 氯化盐、 乙酸盐或硝酸盐中的一种; 通过一定浓度的氢氧化 钠溶液进行共沉淀反应得到前驱体核心部分的固液混合物, 沉淀固体分子式为
(NiaCobMm_a_b)(OH)2, 其中, 0.6≤a<l ; 0≤b≤0.2, 该沉淀固体即为前驱体的核心部分;
(2) 在一定速率下向上述得到的固液混合物中加入一定量的镍含低于 50%的镍、 钴 和锰的盐溶液; 同时滴加碱溶液保持反应体系的 pH值在 10-12之间;
(3 )更换 1-4次与前次所加入的镍含量不同的镍、钴和锰的盐溶液,重复上述步骤 (2), 使得最终所得固液混合物中 Ni: Co: Mn=c:d:l-c-d,其中, 0.4<c<0.6, 0.1<d<0.3 ;
(4) 将步骤 (3 ) 反应完成后的固液混合物通过离心过滤分离, 洗涤至中性后在 80-200 °C下烘干 4- 1 Oh, 得到分子式为 NixCoyM yCOH 的多层复合三元材料前驱体。
一方面, 上述前驱体制备方法法中, 所述镍含低于 50%的镍、钴和锰的盐溶液中,镍、 钴、 锰的摩尔比例为 m: n: 1-m-n, 其中, 0≤m<0.5 ; 0≤n≤0.5。 本发明一种用于锂离子电池正极材料的多层复合三元材料的制备方法,是将上述前驱 体制备方法得到的前驱体与锂源混合焙烧得到, 其具体步骤如下: 首先, 根据权利要求 4 的前驱体制备方法得到分子式为 NixCoyMni_x_y(OH)2的多层复合三元材料前驱体, 其中, 0.4<x<0.6, 0.1<y<0.3 ; 然后, 将上述前驱体与碳酸锂按摩尔比 1: 1-1: 1.2混合均匀后在 马弗炉中多段焙烧, 其焙烧温度 300-1200°C, 焙烧时间 8-30h, 多段焙烧后经冷却、 破碎、 过筛得到多层复合三元材料。
与现有技术相比, 本发明的有益效果是:
本发明提供的锂离子电池正极材料前驱体制备技术改变了过去单一盐溶液的制备工 艺, 在开始阶段以高镍材料 (镍含量大于 60%) 作为三元材料前驱体的核心部分, 通过结 构设计在外层包覆多种不同比例的镍钴锰多元材料,这种多元材料为单核心多层包覆复合 材料,通过结构设计使前驱体进行分阶段制备,充分发挥各组分层材料的复合优势来提高 材料的整体性能,最终合成出总分子式为 NixCoyM yCOH ,其中, 0.4<x<0.6, 0.1<y<0.3 的多层复合三元材料。 再通过混锂焙烧合成出多层复合三元材料。 通过这种材料的设计, 可以较好的发挥出高镍核的容量优势,同时由于外层多层包覆材料中锰含量的提高及镍钴 锰的复合作用使处于缺锂状态的高镍材料生成的 Ni4+不易与电解液发生接触而进行反应 放出大量气体, 同时由于多层材料的存在降低了材料在充放电过程中晶格的不可逆形变, 从而在放电比容量有一定提高的同时有效的提高了三元材料的循环稳定性、热稳定性及安 全性能。
与内部结构均一的三元材料相比,不但成本并未增加,制造出的多层复合三元正极材 料既发挥了较高的放电比容量同时材料的循环稳定性、高温循环稳定性和倍率性能也有较 大提高,而且又使材料的加工性能及安全性能也有了较为明显的改善,具有较高的性价比 优势。本发明的多层复合三元材料具有更高的放电比容量、更佳的循环稳定性及安全性能, 部分材料的倍率性能也有一定的提高, 性价比优势明显, 更适合于动力电池的应用。 附图说明
图 1是实施例 1与对比例 1的 XRD图;
图 2是实施例 1与对比例的首次充放电曲线图;
图 3是实施例 1与对比例的 100次循环曲线图;
图 4是实施例 1与对比例的 4. 3V下的 DSC图;
图 5是实施例 4与对比例的倍率性能图。 具体实施方式
以下通过实施例讲述本发明的详细过程,提供实施例是为了理解的方便, 绝不是限制 本发明。
对比例:
用 2656g硫酸镍、 1149g硫酸钴、 1015g硫酸锰配制浓度为 2M的盐溶液 10L。将配制好的 溶液以 0. 5L/h的速度注入转速为 200rps的反应釜中, 同时注入 6M的 NaOH溶液,注意调节碱 溶液流速, 保持 pH值在 10-11之间, 至盐溶液完全注入反应釜中, 前驱体制备反应完成。 将反应完成后的固液混合物通过离心分离,洗涤至中性后在 100°C下烘干 10h。将烘干后的 前驱体与碳酸锂按摩尔比 1 : 1.05混合均匀后在马弗炉中 900°C焙烧 10h, 焙烧后的材料经过 破碎过筛后得到均一 LiNiQ.5CoQ.2MnQ.302的三元材料。测试该三元材料的振实密度、放电比 容量、 循环后容量保持率、 分解温度、 放热量和高温循环保持率, 在表 2中列出了测试结 果。 实施例 1 :
按以下表 1中指定的各组分含量配制 3L浓度为 2M的盐溶液 A, 3L浓度为 2M的盐溶液 B和 4L浓度为 2M的盐溶液 C, 表 2中列出了上述三种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 200rps的反应釜中, 同时注入 6M的 NaOH溶液, 注意调节碱溶液流速,通过在线 pH值控制器保持 pH值在 10-11之间; 盐溶液 A完全注入反应 釜后切换成盐溶液 B以相同的速度完全注入反应釜后继续注入溶液 C;
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 100°C下烘干 10h,制得分 子式为 NiQ.5CoQ.2MnQ.3(OH)2的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1.05混合均匀后在马弗炉中 800°C焙烧 10h, 900°C焙烧 8h焙烧后的材料经过破碎过筛后得到多层复合三元材料 LiNiQ.5CoQ.2MnQ.302
从图 1中可以看到实施例 1与对比例所得产品 XRD线形锐利, 两条曲线(实施例 1和对比 例) 对比并无其他杂峰存在, 表明实施例 1中的材料的层状结构完成, 无杂相。 实施例 1 与对比例材料制成 2032扣式电池后 3. 0-4. 3V 0. 2C首次放电比容量分别为 170. 26 mAh/g和 166.09 mAh/g,如图 2所示; 图 3中可见 3. 0-4. 3V 1C 100次循环后容量保持率分别为 96.45% 和 92.8%; 4.3V下的 DSC分解温度为 295 °C禾 B291 °C, 放热量分别为 590.1J/g和 618.1J/g, 如 图 4所示。
从上述测试数据可以看出, 实施例 1中的多层复合三元材料与均一材料相比在首次放 电比容量、 循环稳定性及材料热分解温度方面都有较大优势。 实施例 2:
按以下表 1中指定的各组分含量配制 4L浓度为 2M的盐溶液 A, 2L浓度为 2M的盐溶液 B和 4L浓度为 2M的盐溶液 C, 表 2中列出了上述三种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 200rps的反应釜中, 同时注入 6M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 10-11之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续注入溶液 C。
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 100°C下烘干 10h,制得分 子式为 Nio.sCo^Mn COH 的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1.05混合均匀后在马弗炉中 750°C焙烧 10h, 900°C焙烧 4h焙烧后的材料经过破碎过筛后得到分子式为 LiNiQ.5C0Q.2MnQ.302的多层复合三 元材料。
DSC测试该三元材料的放电比容量、循环后容量保持率和分解温度,在表 3中列出了测 试结果。 实施例 3:
按以下表 1中指定的各组分含量配制 2L浓度为 2M的盐溶液 A, 4L浓度为 2M的盐溶液 B和 4L浓度为 2M的盐溶液 C, 表 2中列出了上述三种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 250rps的反应釜中, 同时注入 6M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 10-11之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续注入溶液 C。
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 120°C下烘干 10h,制得分 子式为 Nio.sCo^Mn COH 的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1.05混合均匀后在马弗炉中 800°C焙烧 10h, 950°C焙烧 6h焙烧后的材料经过破碎过筛后得到分子式为 LiNiQ.5CoQ.2MnQ.302的多层复合三 元材料。
DSC测试该三元材料的振实密度、 放电比容量、 循环后容量保持率、 分解温度和高温 循环保持率,在表 3中列出了测试结果。实施例 3的高温循环性能要较为优秀且高温下的放 实施例 4:
按以下表 1中指定的各组分含量配制 2L浓度为 2M的盐溶液 A, 3L浓度为 2M的盐溶液 B和 5L浓度为 2M的盐溶液 C, 表 2中列出了上述三种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 250rps的反应釜中, 同时注入 6M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 10-11之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续注入溶液 C。
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 120°C下烘干 10h,制得分 子式为 NiQ.5CoQ.2MnQ.3(OH)2的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1.05混合均匀后在马弗炉中 800°C焙烧 10h, 950°C焙烧 8h焙烧后的材料经过破碎过筛后得到分子式为 LiNiQ.5CoQ.2MnQ.302的多层复合三 元材料。
DSC测试该三元材料的振实密度、放电比容量、循环后容量保持率和分解温度, 在表 3 中列出了测试结果。 从图 5中可见实施例 4的倍率性能要明显好于对比例。 实施例 5:
按以下表 1中指定的各组分含量配制 4L浓度为 2M的盐溶液 A, 2L浓度为 2M的盐溶液 B和 2L浓度为 2M的盐溶液 C;用 478g硫酸镍、 115g硫酸钴和 305g硫酸配制 2L浓度为 2M的盐溶液 D, 表 2中列出了上述四种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 250rps的反应釜中, 同时注入 6M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 10-11之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续注入溶液 C和盐溶液0。
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 120°C下烘干 10h,制得分 子式为 NiQ.5CoQ.2MnQ.3(OH)2的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1.05混合均匀后在马弗炉中 750°C焙烧 8h, 950°C焙烧 10h焙烧后的材料经过破碎过筛后得到分子式为 LiNiQ.5CoQ.2MnQ.302的多层复合 三元材料。
DSC测试该三元材料的振实密度、 放电比容量、 循环后容量保持率、 分解温度和高温 循环保持率, 在表 3中列出了测试结果。 实施例 6:
按以下表 1中指定的各组分含量配制 2L浓度为 0. 5M的盐溶液 A, 3L浓度为 0. 5M的盐溶液 B和 3L浓度为 0. 5M的盐溶液 C; 用 80g硫酸镍、 19g硫酸钴和 51g硫酸锰配制 1L浓度为 0. 5M的 盐溶液 D; 用 62g硫酸镍、 61g硫酸钴和 25g硫酸锰配制 1L浓度为 0. 5M的盐溶液 E, 表 2中列出 了上述五种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 500rps的反应釜中, 同时注入 10M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 11-12之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续依次注入溶液(:、 溶液 D及溶液 E。
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 200°C下烘干 10h,制得分 子式为 Nio.sCo^Mn COH 的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1混合均匀后在马弗炉中 350°C焙烧 4h, 500 °C 焙烧 6h, 800°C焙烧 10h, 950°C焙烧 6h焙烧后的材料经过破碎过筛后得到分子式为
LiNio.5Coo.2Mno.3O2的多层复合三元材料。
DSC测试该三元材料的振实密度、 放电比容量、 循环后容量保持率、 分解温度和高温 循环保持率, 在表 3中列出了测试结果。 实施例 7:
按以下表 1中指定的各组分含量配制 2L浓度为 2. 7M的盐溶液 A, 4L浓度为 2. 7M的盐溶液 B和 4L浓度为 2. 7M的盐溶液 C, 表 2中列出了上述三种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 lOOOrps的反应釜中,同时注入 10M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 10-11之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续注入溶液 C。
将反应完成后的固液混合物通过离心分离,洗涤至中性后在 150°C下烘干 10h,制得分 子式为 NiQ.5CoQ.2MnQ.3(OH)2的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1.2混合均匀后在马弗炉中 800°C焙烧 10h, 960°C焙烧 16h焙烧后的材料经过破碎过筛后得到分子式为 LiNiQ.5CoQ.2MnQ.302的多层复合 三元材料。
DSC测试该三元材料的振实密度、 放电比容量、 循环后容量保持率、 分解温度和高温 循环保持率, 在表 3中列出了测试结果。 实施例 8:
按以下表 1中指定的各组分含量配制 4L浓度为 2. 7M的盐溶液 A, 2L浓度为 2. 7M的盐溶液 B和 2L浓度为 2. 7M的盐溶液 C; 用 645g硫酸镍、 155g硫酸钴和 411. 8g硫酸锰配制 2L浓度为 2. 7M的盐溶液 D, 表 2中列出了上述四种盐溶液的镍含量。
将盐溶液 A以 0. 5L/h的速度注入转速为 850rps的反应釜中, 同时注入 2M的 NaOH溶液, 注意调节碱溶液流速, 保持 pH值在 10-11之间, 盐溶液 A完全注入反应釜后切换成盐溶液 B 以相同的速度完全注入反应釜后继续注入溶液 C和溶液 D。
将反应完成后的固液混合物通过离心分离, 洗涤至中性后在 80°C下烘干 10h, 制得分 子式为 NiQ.5CoQ.2MnQ.3(OH)2的多层复合三元材料前驱体。
将烘干后的前驱体与碳酸锂按摩尔比 1 : 1混合均匀后在马弗炉中 750°C焙烧 8h, 970 °C 焙烧 16h焙烧后的材料经过破碎过筛后得到分子式为 LiNiQ.5CoQ.2MnQ.302的多层复合三元材 料。
DSC测试该三元材料的振实密度、 放电比容量、 循环后容量保持率、 分解温度和高温 循环保持率, 在表 3中列出了测试结果。 表 1.实施例中盐溶 A、 盐溶液 B、 盐溶液 C的组分含量 (单位: g )
Figure imgf000009_0001
表 2. 实施例中盐溶 A、 盐溶液 B、 盐溶液 C中的镍含量
Figure imgf000009_0002
表 3.对比例和实施例的测试结果
振实密度 放电比容 循环后容量 分解温度 放热量 高温循环保
( g/cm3 ) fi( mAh/g) 保持率 (%) ( °C ) ( J/g) 持率 (%) 对比例 2. 35 166.09 92.8 291 618.1 89.13 实施例 1 170. 26 96.45 295 590.1
实施例 2 172. 88 94.21 278
实施例 3 2. 47g 164. 7 96.33 301.6 92.04 实施例 4 2. 43 165. 3 95.29 286.6
实施例 5 2. 53 171. 4 97.09 293.4 92
实施例 6 2. 37 168. 7 97.33 297.6 90.05 实施例 7 2. 68 166. 5 97.13 305.6 93.11 实施例 8 2. 48 170. 8 96.59 297.4 92.55
表 3中: 放电比容量是指将材料制成 2032扣式电池后 3. 0-4. 3V 0. 2C首次放电比容量; 循环后容量保持率是指 3. 0-4. 3V 1C 100次循环后容量保持率; 分解温度是指 4.3V下的 DSC分解温度; 高温循环保持率是指 55 °C20次高温循环保持率。 表 3中的 " -"符号表示未 测定该项数据。 综上所述, 多层复合三元材料与相同成分的均一三元材料相比, 在振实密度、放电比 容量、循环稳定性、 高温循环性能、倍率性能及热稳定性方面的一个或者多个方面有较为 明显的性能改善, 可以满足当前不同用途类型的锂离子电池对正极材料性能的需要。 尽管上面结合图对本发明进行了描述, 但是本发明并不局限于上述的具体实施方式, 上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明 的启示下, 在不脱离本发明宗旨的情况下, 还可以作出很多变形, 这些均属于本发明的保 护之内。

Claims

权 利 要 求 书
1. 一种用于锂离子电池正极材料的多层复合三元材料前驱体, 其特征在于, 具有以 下分子式组成:
NixCoyMm_x_y(OH)2
其中, 0.4<x<0.6, 0.1<y<0.3 ;
采用核壳多层复合结构,包括核心部分和多层依次包覆于核心部分外层的壳部分,核 心部分和多层的壳部分分别富集不同成分,从而使核心部分与多层的壳部分实现功能复合 与互补;
所述核心部分具有的分子式为:
(NiaCobMm_a_b)(OH)2
其中, 0.6≤a<l ; 0≤b≤0.2。
2. 根据权利要求 1所述的前驱体, 其特征在于, 所述核心部分为镍含量大于 60%的镍 钴锰多元材料, 而每层的壳部分均为镍含量低于 50%的镍钴锰多元材料, 每层的镍钴锰多 元材料的镍含量不同。
3. 一种用于锂离子电池正极材料的多层复合三元材料前驱体的制备方法, 其特征在 于: 具体步骤如下:
( 1 ) 以一定速率向反应釜中加入一定量的镍含量大于 60%的镍、钴和锰的盐溶液, 通 过一定浓度的氢氧化钠溶液进行共沉淀反应得到前驱体核心部分的固液混合物, 沉淀固体 分子式为 (NiaCobM bX H , 其中, 0.6≤a<l ; 0≤b≤0.2, 该沉淀固体即为前驱体的核心部 分;
(2)在一定速率下向上述得到的固液混合物中加入一定量的镍含低于 50%的镍、钴和 锰的盐溶液; 同时滴加碱溶液保持反应体系的 pH值在 10-12之间;
(3 )更换 1-4次与前次所加入的镍含量不同的镍、钴和锰的盐溶液,重复上述步骤(2), 使得最终所得固液混合物中 Ni: Co: Mn=c:d:l-c-d,其中, 0.4<c<0.6, 0.1<d<0.3;
(4)将步骤(3 )反应完成后的固液混合物通过离心过滤分离,洗涤至中性后在 80-200°C 下烘干 4-10h, 得到分子式为 NixCoyM yCOH^的多层复合三元材料前驱体。
4. 根据权利要求 3所述的多层复合三元材料前驱体的制备方法, 其特征在于, 所述镍 含量低于 50%的镍、钴和锰的盐溶液中,镍、钴、锰的摩尔比例为 m: n: 1-m-n,其中, 0≤m<0.5 ; 0≤n≤0.5。
5. 一种用于锂离子电池正极材料的多层复合三元材料, 其特征在于, 具有如权利要 求 1所述的前驱体。
6. 一种用于锂离子电池正极材料的多层复合三元材料的制备方法, 其特征在于: 制 备如权利要求 5所述的多层复合三元材料是通过将权利要求 1所述的前驱体或根据权利要 3 的前驱体制备方法得到的前驱体与锂源混合焙烧得到。
7. 根据权利要求 7所述的多层复合三元材料的制备方法, 其特征在于: 具体步骤如下: 首先, 根据权利要求 3的前驱体制备方法得到分子式为 NixCoyMni_x_y(OH)2的多层复合 三元材料前驱体, 其中, 0.4<x<0.6, 0.1<y<0.3 ;
然后, 将上述前驱体与碳酸锂按摩尔比 1 : 1-1: 1.2混合均匀后在马弗炉中多段焙烧, 其焙烧温度 300-1200°C, 焙烧时间 8-30h, 多段焙烧后经冷却、 破碎、 过筛得到多层复合三 元材料。
8. 根据权利要求 7所述的多层复合三元材料的制备方法, 其特征在于: 多段焙烧为两 段焙烧时, 焙烧温度 750-970°C, 焙烧时间为 14-24h。
9. 根据权利要求 7所述的多层复合三元材料的制备方法, 其特征在于: 多段焙烧为四 段焙烧时, 焙烧温度 350-950 °C, 焙烧时间为 20-26h。
PCT/CN2012/082731 2011-10-11 2012-10-10 一种多层复合三元材料及其前驱体以及它们的制备方法 WO2013053318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012004237.9T DE112012004237T5 (de) 2011-10-11 2012-10-10 Ternärer Mehrschichtenverbundstoff, sein Vorläufer und Herstellungsverfahren davon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110306913.2A CN102347483B (zh) 2011-10-11 2011-10-11 一种多层复合三元材料及其前驱体以及它们的制备方法
CN201110306913.2 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013053318A1 true WO2013053318A1 (zh) 2013-04-18

Family

ID=45545902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082731 WO2013053318A1 (zh) 2011-10-11 2012-10-10 一种多层复合三元材料及其前驱体以及它们的制备方法

Country Status (3)

Country Link
CN (1) CN102347483B (zh)
DE (1) DE112012004237T5 (zh)
WO (1) WO2013053318A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083348A (zh) * 2017-12-27 2018-05-29 陕西煤业化工技术研究院有限责任公司 一种壳核结构的三元正极材料前驱体
CN113571695A (zh) * 2021-09-23 2021-10-29 长沙理工大学 一种具有包覆层的渐变式三元正极材料的制备方法
CN115403074A (zh) * 2022-09-26 2022-11-29 湘潭大学 一种高镍型镍钴锰酸锂前驱体及其制备方法
WO2024066809A1 (zh) * 2022-09-27 2024-04-04 天津巴莫科技有限责任公司 正极材料及其制备方法、正极极片、二次电池和电子设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347483B (zh) * 2011-10-11 2014-09-24 上海中兴派能能源科技有限公司 一种多层复合三元材料及其前驱体以及它们的制备方法
CN102631875A (zh) * 2012-03-19 2012-08-15 上海中兴派能能源科技有限公司 一种多级核壳结构多元材料及其前驱体及它们的制备方法
CN103359795A (zh) * 2012-04-06 2013-10-23 协鑫动力新材料(盐城)有限公司 钴包覆的锂离子电池正极材料前驱体及制备方法和应用
TWI549336B (zh) * 2012-06-01 2016-09-11 輔仁大學學校財團法人輔仁大學 鋰鎳鈷錳正極材料粉體
CN103178257A (zh) * 2012-12-10 2013-06-26 深圳市天骄科技开发有限公司 镍钴锰多元锂离子电池正极材料前驱体的制备方法
CN103035898A (zh) * 2012-12-21 2013-04-10 深圳市天骄科技开发有限公司 一种纳米片状锂离子电池正极材料及其制备方法
CN103474663B (zh) * 2013-09-15 2018-01-23 东莞新能源科技有限公司 锂离子电池、正极材料及其制备方法
CN103682271B (zh) * 2013-12-04 2016-03-23 天津巴莫科技股份有限公司 多层壳核结构锂离子电池材料的制备方法
CN103715412A (zh) * 2013-12-18 2014-04-09 江苏科捷锂电池有限公司 高电压锂电池正极材料镍钴锰酸锂的制备方法
CN104979528A (zh) * 2014-04-02 2015-10-14 张联齐 一种基于相图设计的核壳结构锂电正极材料及其设计方法
CN103928660B (zh) * 2014-04-30 2016-06-22 勤炫龙 一种具有多级结构的多元正极材料的制备方法
CN104966819B (zh) * 2015-05-06 2017-08-25 合肥国轩高科动力能源有限公司 一种高能量密度的锂离子电池正极材料及其制备方法
CN107293703A (zh) * 2016-04-12 2017-10-24 河南科隆新能源股份有限公司 一种改性三元正极材料及其制备方法
CN106395920B (zh) * 2016-08-29 2018-02-06 青海泰丰先行锂能科技有限公司 一种元素共掺杂改性三元锂离子电池正极材料及制备方法
CN107611384B (zh) * 2017-08-30 2021-03-23 中国科学院过程工程研究所 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
CN109065869A (zh) * 2018-08-08 2018-12-21 清远佳致新材料研究院有限公司 一种制备锂离子电池正极活性材料的方法
CN111193023B (zh) * 2020-01-08 2023-03-10 甘肃大象能源科技有限公司 一种纳米高镍三元锂正极陶瓷材料及其制备方法
CN112250091A (zh) * 2020-10-30 2021-01-22 浙江帕瓦新能源股份有限公司 一种高镍三元前驱体、正极材料以及制备方法
CN112607791B (zh) * 2020-11-19 2023-09-05 北京泰丰先行新能源科技有限公司 一种多层结构的锂离子电池用前驱体、正极材料及其制备方法
CN113603159A (zh) * 2021-08-25 2021-11-05 湖南杉杉能源科技有限公司 一种多层铝掺杂的镍钴锰前驱体及其制备方法
CN114644363B (zh) * 2022-03-02 2023-11-14 南通金通储能动力新材料有限公司 一种高镍三元前驱体、正极材料以及该前驱体的制备方法
CN115676914A (zh) * 2022-10-27 2023-02-03 荆门市格林美新材料有限公司 一种正极材料前驱体的生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067935A1 (ja) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN102092798A (zh) * 2010-12-01 2011-06-15 兰州金川新材料科技股份有限公司 一种锂离子电池正极材料前驱体的连续合成方法
CN102201573A (zh) * 2011-04-13 2011-09-28 北京工业大学 一种核壳结构锂离子电池富锂正极材料及其制备方法
CN102347483A (zh) * 2011-10-11 2012-02-08 上海中兴派能能源科技有限公司 一种多层复合三元材料及其前驱体以及它们的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110808B (zh) * 2009-12-23 2013-06-12 河南科隆集团有限公司 高性能的球形锂离子二次电池阴极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067935A1 (ja) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN102092798A (zh) * 2010-12-01 2011-06-15 兰州金川新材料科技股份有限公司 一种锂离子电池正极材料前驱体的连续合成方法
CN102201573A (zh) * 2011-04-13 2011-09-28 北京工业大学 一种核壳结构锂离子电池富锂正极材料及其制备方法
CN102347483A (zh) * 2011-10-11 2012-02-08 上海中兴派能能源科技有限公司 一种多层复合三元材料及其前驱体以及它们的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083348A (zh) * 2017-12-27 2018-05-29 陕西煤业化工技术研究院有限责任公司 一种壳核结构的三元正极材料前驱体
CN113571695A (zh) * 2021-09-23 2021-10-29 长沙理工大学 一种具有包覆层的渐变式三元正极材料的制备方法
CN113571695B (zh) * 2021-09-23 2022-01-04 长沙理工大学 一种具有包覆层的渐变式三元正极材料的制备方法
CN115403074A (zh) * 2022-09-26 2022-11-29 湘潭大学 一种高镍型镍钴锰酸锂前驱体及其制备方法
CN115403074B (zh) * 2022-09-26 2024-05-17 湘潭大学 一种高镍型镍钴锰酸锂前驱体及其制备方法
WO2024066809A1 (zh) * 2022-09-27 2024-04-04 天津巴莫科技有限责任公司 正极材料及其制备方法、正极极片、二次电池和电子设备

Also Published As

Publication number Publication date
CN102347483A (zh) 2012-02-08
CN102347483B (zh) 2014-09-24
DE112012004237T5 (de) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013053318A1 (zh) 一种多层复合三元材料及其前驱体以及它们的制备方法
US9847525B2 (en) Lithium nickel cobalt manganese oxide positive active material having concentration gradient of nickel, cobalt, and manganese and precursor thereof and preparation methods
CN109004198B (zh) 金属氧化物及其制备方法
WO2016180288A1 (zh) 制备具有铝元素梯度分布的镍钴铝前驱材料和正极材料的方法
US10074856B2 (en) Lithium-rich manganese-based positive electrode material and preparation method therefor
CN111509214B (zh) 一种高镍层状复合材料及其制备的锂离子电池正极材料
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
CN104393285B (zh) 镍钴铝三元正极材料及其制备方法
WO2023130779A1 (zh) 一种具有核壳结构的高电压三元正极材料及其制备方法
WO2016107237A1 (zh) 锂离子电池用梯度结构的多元材料、其制备方法、锂离子电池正极以及锂离子电池
CN104037404B (zh) 一种锂离子电池用镍钴铝锂和锰酸锂复合材料及其制备方法
CN106910887B (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
CN102891309B (zh) 一种浓度渐变的球形富锂正极材料的制备方法
CN107611384B (zh) 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
CN104979553B (zh) 一种核壳结构镍钴铝酸锂材料的制备方法
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
CN103325992B (zh) 锂离子电池正极材料前驱体镍钴锰氢氧化合物粉末及制造方法
CN103247780A (zh) 一种锂离子电池正极材料及其制备方法
CN101202343A (zh) 锂离子电池正极材料氧化镍钴锰锂及其制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN102969496A (zh) 锂离子电池正极材料盐溶液掺杂氧化物的制备方法
CN111900363A (zh) 一种正极活性物质及含有该正极活性物质的极片和锂离子电池
CN107069013B (zh) 一种改性富锂锰基正极材料及其制备方法
CN103325996A (zh) 锂离子电池正极材料包覆铝钛的制备方法
WO2023245880A1 (zh) 一种空间群为Cmca的T2型钴酸锂正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120042379

Country of ref document: DE

Ref document number: 112012004237

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840453

Country of ref document: EP

Kind code of ref document: A1