WO2013047804A1 - めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法 - Google Patents

めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法 Download PDF

Info

Publication number
WO2013047804A1
WO2013047804A1 PCT/JP2012/075189 JP2012075189W WO2013047804A1 WO 2013047804 A1 WO2013047804 A1 WO 2013047804A1 JP 2012075189 W JP2012075189 W JP 2012075189W WO 2013047804 A1 WO2013047804 A1 WO 2013047804A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
mass
less
layer
plating
Prior art date
Application number
PCT/JP2012/075189
Other languages
English (en)
French (fr)
Inventor
宗士 藤田
山中 晋太郎
佐藤 浩一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112014007509A priority Critical patent/BR112014007509A2/pt
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CA2848949A priority patent/CA2848949C/en
Priority to US14/346,618 priority patent/US9752221B2/en
Priority to EP12835446.1A priority patent/EP2762601B1/en
Priority to ES12835446.1T priority patent/ES2680649T3/es
Priority to JP2013514485A priority patent/JP5648741B2/ja
Priority to CN201280047145.6A priority patent/CN103827342B/zh
Priority to KR1020147006759A priority patent/KR101624810B1/ko
Priority to PL12835446T priority patent/PL2762601T3/pl
Priority to MX2014003789A priority patent/MX359228B/es
Priority to RU2014117496/02A priority patent/RU2584060C2/ru
Publication of WO2013047804A1 publication Critical patent/WO2013047804A1/ja
Priority to ZA2014/02254A priority patent/ZA201402254B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a hot-dip galvanized steel sheet and a method for producing the same, and more specifically, a hot-dip galvanized layer that is excellent in plating wettability and plating adhesion and can be applied as a member in the fields of automobiles, home appliances, and building materials.
  • the present invention relates to a steel plate provided and a method for manufacturing the steel plate.
  • a hot dip galvanized steel sheet is manufactured by the following method using a continuous hot dip galvanizing facility.
  • the atmosphere when performing recrystallization annealing is that the oxide of Fe inhibits the wettability between the plating layer and the base steel plate and the adhesion between the plating layer and the base steel plate during the subsequent plating treatment. Heat in a reducing atmosphere.
  • the hot dip galvanization is performed by continuously cooling the steel sheet to a temperature suitable for plating in a reducing atmosphere of Fe without being exposed to the air and immersing it in a hot dip zinc bath.
  • the types of furnaces that perform recrystallization annealing include DFF (direct flame type), NOF (non-oxidation type), all radiant tube type (total reduction type), or combinations thereof.
  • DFF direct flame type
  • NOF non-oxidation type
  • all radiant tube type total reduction type
  • All the inside of the furnace is made a reducing atmosphere of Fe
  • the mainstream is a furnace with an all-radiant tube type.
  • Roll pickup here means that oxides and foreign matter on the surface of the steel sheet adhere to the roll in the furnace when passing through the furnace, and the appearance and flaws occur on the steel sheet after adhesion, adversely affecting quality and productivity. .
  • the base steel sheet has been strengthened by adding elements such as Si and Mn.
  • the use of galvanized steel sheets is increasing.
  • Si and Mn are more easily oxidizable elements than Fe, Si and Mn are oxidized even in a reducing atmosphere of Fe when heated by recrystallization annealing in an all radiant tube type. Therefore, the Si and Mn-containing steel plates are oxidized by Si and Mn existing on the surface of the steel plate during the recrystallization annealing, and further, Si and Mn thermally diffused from the inside of the steel plate are oxidized on the steel plate surface, thereby gradually , Mn oxide is concentrated.
  • the wettability of the plating layer and the adhesion of the plating layer are reduced because the contact between the molten zinc and the steel sheet is hindered in the process of immersing the steel sheet in the molten zinc bath.
  • the wettability of the plating layer is reduced, non-plating defects occur, resulting in poor appearance and / or poor rust prevention.
  • the adhesiveness of plating is lowered, peeling of the plating occurs when the plated steel sheet is press-molded, resulting in a poor appearance and / or poor rust prevention property after molding, which is a serious problem.
  • Patent Document 1 discloses that after the oxidation is performed so that the thickness of the oxide film on the steel sheet surface becomes 400 to 10,000 mm. A method of plating by reducing Fe in an atmosphere in a furnace containing hydrogen is shown. Further, in Patent Document 2, after oxidizing the steel sheet surface, by controlling the oxygen potential in the reduction furnace, Fe is reduced and Si is internally oxidized to suppress Si oxide surface concentration. The method of plating is shown. However, in these techniques, if the reduction time is too long, Si surface concentration is caused.
  • the reduction time is too short, an Fe oxide film remains on the steel sheet surface, so that the oxide film on the steel sheet surface has a non-uniform thickness. In such a case, it is very difficult to adjust the reduction time, which is insufficient for eliminating the wettability of the plating layer and the adhesion of the plating layer. Furthermore, if the surface of the oxidized Fe oxide film becomes too thick when oxidized, a roll pickup is generated.
  • Patent Document 3 in the recrystallization annealing in the all radiant tube type for the purpose of eliminating the above-mentioned problems caused by oxidizing Fe once and suppressing the concentration of oxides of Si and Mn.
  • the oxygen potential (log (PH 2 O / PH 2 )) of the atmosphere is lowered to a value at which Fe, Si, and Mn are not oxidized (reduced), and then plated.
  • Patent Document 4 discloses a method of plating after raising the oxygen potential of the atmosphere until Si and Mn are internally oxidized in recrystallization annealing in the all radiant tube type.
  • Patent Documents 5 and 6 show a method of plating after controlling the surface concentration of both Fe oxide, Si, and Mn oxide by precisely controlling the means for raising the oxygen potential and the conditions thereof. Has been. However, when the oxygen potential is raised, Si and Mn are internally oxidized, but Fe is oxidized. On the other hand, when the oxygen potential is increased to such an extent that Fe is not oxidized, the internal oxidation of Si and Mn becomes insufficient. The oxide is concentrated.
  • the techniques for increasing or decreasing the oxygen potential of the atmosphere described in Patent Documents 4 to 6 have a problem that they are insufficient for eliminating the wettability of the plating layer and the adhesion of the plating layer.
  • Patent Documents 8 and 9 disclose a method in which pre-plating of Cr, Ni, Fe or the like is performed on a steel sheet surface before and after recrystallization annealing and then plated.
  • the pre-plated element diffuses into the steel sheet due to heating during annealing, which reduces the strength and elongation of the steel sheet, and diffuses on the steel sheet surface.
  • Fe, Si, or Mn is oxidized.
  • oxides are formed on the surface of the steel sheet, so that the pre-plating adheres unevenly to the steel sheet and it is difficult to cover the concentrated oxide. Has a point.
  • this method has the problem that the production cost increases due to the increased number of steps because the pre-plating raw material cost and the pre-plating equipment cost are generated in both cases where the pre-plating is performed before and after the recrystallization annealing. Have.
  • Patent Document 10 As a technique for suppressing the enrichment of the oxides of Si and Mn, it has been noted in Patent Document 10 that the oxygen potential is controlled in the hot rolling process as focusing on the internal oxidation in advance in the hot rolling process.
  • a technique for producing a hot dip galvanized steel sheet in a continuous hot dip galvanizing facility using a thin steel sheet in which Si is internally oxidized by is shown.
  • the thickness of the internal oxide layer is reduced during the rolling in the cold rolling process, etc., so that the thickness of the internal oxide layer is reduced and Si oxide is concentrated on the surface during the recrystallization annealing process. Therefore, there is a problem that it is insufficient for improving plating wettability and plating adhesion.
  • the Fe oxide formed simultaneously with the internal oxidation of Si in the hot rolling process has a problem that a roll pickup is generated.
  • Patent Document 11 the oxygen potential in the atmosphere in the heating furnace and the oxygen potential in the atmosphere in the uppermost part of the soaking furnace are controlled to be similarly high, and the oxygen potential in the upper part of the soaking furnace is the furnace.
  • a method is shown in which a high Si content steel plate is plated by controlling the oxygen potential at the inner and lower portions higher than a certain ratio. However, even with this method, the plating adhesion is not sufficient.
  • the present invention provides a hot dip galvanized steel sheet provided with a hot dip galvanized layer excellent in plating wettability and plating adhesion, using a steel sheet containing Si and Mn as easily oxidizable elements, and the production thereof. It is an object to provide a method.
  • the present inventors among the hot dip galvanized layer and the base steel plate in the hot dip galvanized steel plate, have the component content of the base steel plate immediately below the plating layer, the plating wettability and the plating adhesion. Focusing on the effect on the properties, and as a manufacturing method thereof, in the radiant tube type heating furnace, when the oxygen potential of the atmosphere is raised, both internal oxidation of Si and Mn and reduction of Fe are made compatible.
  • the gist of the present invention is as follows. (1) In mass%, C: 0.05% to 0.50%, Si: 0.1% to 3.0%, Mn 0.5% to 5.0%, P0.001% to 0.5%, S0.001% to 0.03%, Al 0.005% to 1.0%
  • a hot dip galvanized steel sheet having a hot dip galvanized layer A on the surface of the steel sheet, the balance being Fe and inevitable impurities, and having the following B layer directly under the steel sheet surface and in the steel sheet And hot dip galvanized steel sheet.
  • B layer the thickness is 0.001 ⁇ m to 0.5 ⁇ m, and based on the mass of the B layer, one or more oxides of Fe, Si, Mn, P, S, and Al are combined in a total of 50% by mass.
  • B layer thickness is 0.001 ⁇ m to 0.5 ⁇ m, and based on the mass of the B layer, Fe, Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V , W, B, Ca, REM oxide of one or two or more in total, less than 50% by mass, Non-oxide C, Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, REM, C 0.05% by mass or less, Si: less than 0.1% by mass, Mn: less than 0.5% by mass, P: less than 0.001% by mass, S: less than 0.001% by mass, Al: less than 0.005 mass%, One or more of Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, REM: each containing less than 0.0001% by mass, A layer containing 50% by mass or more of Fe which is not an oxide.
  • the steel of the component described in (1) or (2) is cast, hot-rolled, pickled, cold-rolled to form a cold-rolled steel sheet
  • a method for producing a hot-dip galvanized steel sheet comprising annealing the cold-rolled steel sheet in a continuous hot-dip galvanizing facility equipped with a heating furnace and a soaking furnace, and hot-dip galvanizing treatment, In the heating furnace and the soaking furnace that perform the annealing treatment, the cold-rolled steel sheet temperature in each furnace is within a temperature range of 500 ° C. to 950 ° C., and the cold-rolled steel sheet is passed under the following conditions.
  • a method for producing a hot dip galvanized steel sheet comprising annealing the cold-rolled steel sheet in a continuous hot-dip galvanizing facility equipped with a heating furnace and a soaking furnace, and hot-dip galvanizing treatment, In the heating furnace and the soaking furnace that perform the annealing treatment, the cold-rolled steel sheet temperature in each furnace is within a temperature range of 500 ° C
  • Heating furnace conditions An all radiant tube type heating furnace was used, and the water vapor partial pressure (PH 2 O) in the heating furnace was changed to a hydrogen partial pressure while the cold-rolled steel sheet was heated in the above temperature range and for 10 seconds to 1000 seconds.
  • (PH 2) logarithm log of the value obtained by dividing (PH 2 O / PH 2) is -2 to 2, the heating furnace of the hydrogen concentration of 1 vol% to 30 vol% of hydrogen, the atmosphere consisting of steam and nitrogen Have.
  • Soaking furnace conditions In the soaking furnace that follows the heating furnace, during the soaking of the cold-rolled steel sheet within the above temperature range and for 10 seconds to 1000 seconds, the steam partial pressure (PH 2 O) in the soaking furnace is changed.
  • the logarithm log (PH 2 O / PH 2 ) of the value divided by the hydrogen partial pressure (PH 2 ) is ⁇ 5 to ⁇ 2, and the soaking furnace has a hydrogen concentration of 1% by volume to 30% by volume of hydrogen, steam and It has an atmosphere consisting of nitrogen.
  • a hot-dip galvanized steel sheet excellent in plating wettability and plating adhesion can be obtained using a steel sheet containing Si or Mn as easily oxidizable elements as a base material.
  • a layer obtained from the results of Examples A1 to A72, B1 to B72, C1 to C72, D1 to D72, E1 to E72, F1 to F72, G1 to G72 and Comparative Examples H1 to H12 and H29 to H34 described later This is a result of plating wettability / plating adhesion determined by the relationship between the thickness of the B and the thickness of the B layer.
  • Fe content of B layer obtained from the results of Examples A1 to A72, B1 to B72, C1 to C72, D1 to D72, E1 to E72, F1 to F72, G1 to G72 and Comparative Examples H1 to H12 described later. And plating wettability / adhesion.
  • Oxygen potential log of the heating furnace obtained from the results of Examples A1 to A72, B1 to B72, C1 to C72, D1 to D72, E1 to E72, F1 to F72, G1 to G72 and Comparative Examples H1 to H12 which will be described later This is a result of plating wettability / plating adhesion determined by the relationship between (PH 2 O / PH 2 ) and the oxygen potential log (PH 2 O / PH 2 ) of the soaking furnace.
  • the hydrogen concentration in the heating furnace obtained from the results of Examples A1 to A72, B1 to B72, C1 to C72, D1 to D72, E1 to E72, F1 to F72, G1 to G72 and Comparative Examples H25 to H28, which will be described later, The relationship between plating wettability / plating adhesion.
  • the hydrogen concentration in the soaking furnace as can be seen from the results of Examples A1 to A72, B1 to B72, C1 to C72, D1 to D72, E1 to E72, F1 to F72, G1 to G72 and Comparative Examples H25 to H28 described later, It is the relationship between plating wettability / plating adhesion.
  • the steel component of the steel plate provided with the hot dip galvanized layer of the present invention as a premise is as follows.
  • “%” means “% by mass” unless otherwise specified.
  • C is an element that stabilizes the austenite phase, and is an element necessary for increasing the strength of the steel sheet. If the C content is less than 0.05%, the strength of the steel sheet is insufficient, and if it exceeds 0.50%, the workability decreases. For this reason, the amount of C is 0.05% or more and 0.5% or less, preferably 0.10% or more and 0.40% or less.
  • Si 0.1% to 3.0%> Si increases the strength of the steel sheet by concentrating the solid solution C in the ferrite phase in the austenite phase and increasing the temper softening resistance of the steel sheet. If the Si amount is less than 0.1%, the strength of the steel sheet is insufficient, and if it exceeds 3.0%, the workability is lowered, and the plating wettability and plating adhesion are not sufficiently improved. For this reason, Si amount is 0.1% or more and 3.0% or less, Preferably it is 0.5% or more and 2.0% or less.
  • Mn is an element useful for increasing the hardenability and increasing the strength of the steel sheet. If the amount of Mn is less than 0.5%, the strength of the steel sheet is insufficient, and if it exceeds 5.0%, the workability is lowered, and the plating wettability and plating adhesion are not sufficiently improved. For this reason, the amount of Mn is 0.5% or more and 5.0% or less, preferably 1.0% or more and less than 3.0%.
  • S is an impurity element that is inevitably contained, and since the plate-like inclusion MnS is formed after cold rolling, the workability is lowered. Accompanying increased desulfurization costs of the process. For this reason, the amount of S is 0.001% or more and 0.03% or less.
  • Al has a high affinity with N in the steel sheet, and has an effect of improving the workability by fixing the dissolved N as a precipitate.
  • excessive addition of Al adversely degrades workability.
  • the amount of Al is 0.005% or more and 1.0% or less.
  • the balance other than the above component composition is Fe and inevitable impurities.
  • the manufacturing method of the steel sheet is not particularly limited from casting to cold rolling.
  • a general casting, hot rolling, pickling, and cold rolling are performed to obtain a cold rolled steel sheet.
  • the plate thickness of the steel plate is preferably 0.1 mm or more and 3 mm or less.
  • the hot-dip galvanized steel sheet of the present invention has an A layer on the steel sheet surface and a B layer directly under the steel sheet surface.
  • the A layer is a hot dip galvanized layer and is formed on the surface of the steel sheet to ensure rust prevention.
  • B layer is a layer mainly composed of Fe in which the content of elements such as oxide, C, Si, and Mn is suppressed, and is formed in a steel sheet directly under the surface of the base steel sheet. Improves plating adhesion.
  • the hot dip galvanized layer which is the A layer, may contain elements other than zinc if 50% or more of the constituent components are zinc, and Fe-Zn by heating after the hot dip galvanizing treatment.
  • An alloyed hot-dip galvanized layer to be an alloy may be used.
  • the Fe content of the Fe—Zn alloy is preferably 20% by mass or less because if 20% by mass or more, the plating adhesion is lowered.
  • the Fe content of the Fe—Zn alloy in the alloyed hot-dip galvanized layer here is determined by cutting out a predetermined area from the hot-dip galvanized steel sheet and immersing it in hydrochloric acid to dissolve only the plated layer.
  • the ratio of Fe is calculated by measuring the Fe amount and the Zn amount with an emission spectroscopic analyzer.
  • the thickness of the A layer is preferably 2 ⁇ m or more and 100 ⁇ m or more as shown in FIG. If the thickness is less than 2 ⁇ m, in addition to insufficient rust prevention, there is a problem with plating wettability such that it is difficult to uniformly deposit the plating on the base steel plate and non-plating occurs. If it exceeds 100 micrometers, the effect of the corrosion resistance improvement by a plating layer will be saturated, and it is not economical. Moreover, since the residual stress in a plating layer increases, plating adhesiveness falls. For this reason, the thickness of the A layer is preferably 2 ⁇ m or more and 100 ⁇ m or more.
  • JIS H 8501 a microscope cross-sectional test method
  • the cross section of the sample is embedded and polished, and then etched with a corrosive liquid as necessary, and the polished surface is analyzed with an optical microscope, a scanning electron microscope (SEM), an electron beam microanalyzer (EPMA) or the like to obtain the thickness.
  • SEM scanning electron microscope
  • EPMA electron beam microanalyzer
  • it is embedded in a techno bit 4002 (manufactured by Marto Co., Ltd.), polished in order with # 240, # 320, # 400, # 600, # 800, # 1000 abrasive paper (JIS R 6001), and then the polished surface is formed. Line thickness was analyzed from the surface of the plated steel sheet with EPMA, and the thickness at which Zn was not detected was determined at any 10 positions separated from each other by 1 mm or more, and the value obtained was averaged as the thickness of layer A.
  • the reactivity of Fe and plating is promoted by reducing the oxide content of the base steel plate by the B layer in the steel plate immediately below the base steel plate surface, This is particularly preferable because the wettability of plating and the adhesion of plating are further improved.
  • the B layer which is a feature of the present invention, raises the oxygen potential of the atmosphere to oxidize Si and Mn internally, and in the soaking furnace, reduces the oxygen potential of the atmosphere to reduce Fe. It is the layer produced
  • Si and Mn are internally oxidized, and C is oxidized and desorbed as a gas on the surface of the steel sheet. Therefore, at a certain thickness below the surface of the steel sheet, Si and Mn that are not oxides immediately below the surface of the base steel sheet, and Although the concentration of C decreases, its thickness follows the thermal diffusion of Si, Mn, and C, and thus becomes thicker than the thickness of the internal oxide layer.
  • the B layer according to the present invention is a layer different from the “internal oxide layer” described in the prior art documents.
  • the B layer in the steel plate directly under the surface of the base steel plate has a thickness of 0.001 ⁇ m to 0.5 ⁇ m as shown in FIG. It is. If it is less than 0.001 ⁇ m, the abundance of the B layer will decrease, so that the wettability and adhesion of the plating will not be sufficiently improved, and if it exceeds 0.5 ⁇ m, the strength in the B layer will not be secured and cohesive failure By doing so, the plating adhesion decreases. More preferably, the B layer has a thickness of 0.01 ⁇ m or more and 0.4 ⁇ m or less. The thickness of B layer said here is calculated
  • a depth direction analysis is performed by an X-ray photoelectron spectrometer (XPS) while sputtering the surface of the hot dip galvanized steel sheet, and a depth at which Zn is not detected is defined as D1.
  • the amounts of C, Si, Mn, P, S, and Al in the B layer are respectively C: less than 0.05% by mass, Si: less than 0.1% by mass, Mn: less than 0.5% by mass, and P: 0. Less than 0.001% by mass, S: less than 0.001% by mass, Al: less than 0.005% by mass, C is detected at a depth of 0.05% or more, or Si is detected at 0.1% or more.
  • the percentages shown here are based on the XPS device display.
  • the measurement method is not limited, and in addition to the X-ray photoelectron spectrometer (XPS), glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF) Analytical means such as SIMS) or TEM may be used.
  • one or more oxides of Fe, Si, Mn, P, S, and Al are formed directly under the steel sheet surface.
  • the total amount of these oxides in layer B is less than 50%, preferably less than 25%.
  • the one or more oxides of Fe, Si, Mn, P, S, and Al mentioned here are not particularly limited to the following, but specific examples include FeO, Fe 2 O 3. , Fe 3 O 4 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , SiO 2 , P 2 O 5 , Al 2 O 3 , SO 2 single oxide and each non-stoichiometric composition alone And oxides, or composite oxides of FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 , AlMnO 3 , Fe 2 PO 3 , Mn 2 PO 3 and composite oxides of the respective non-stoichiometric compositions. It is done.
  • the total of the contained ratios is the depth at which Zn is not detected by analyzing the depth direction with an X-ray photoelectron spectrometer (XPS) while sputtering the surface of the hot-dip galvanized steel sheet, as in the measurement of the thickness of the B layer described above. From (D1), the depth at which C is detected 0.05% or more, the depth at which Si is detected 0.1% or more, the depth at which Mn is detected 0.5% or more, and P is 0.001 Measured up to the depth (D2) of the smallest value among the depths detected more than%, the depth detected more than 0.001%, and the depth detected more than 0.005% Al.
  • XPS X-ray photoelectron spectrometer
  • the sum of the average values of the mass concentrations of the cations of Fe, Si, Mn, P, S, and Al, and the sum of the average values of the mass concentrations of the anions of O, N 3
  • the average is obtained from the measurement results.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • the analysis means may be used.
  • the content of C, Si, Mn, P, S, and Al, which are not oxides, is also suppressed in order to improve plating wettability and plating adhesion. This is because if C, Si, Mn, P, S, and Al added to the base steel sheet are reduced just below the steel sheet surface to increase the Fe ratio, the reactivity between the steel sheet and the plating will increase, This is because it is easy to get wet and the adhesion between the plating and the base material increases.
  • C, Si, Mn, P, S, and Al, which are not oxides present on the surface of the base steel sheet are immersed in the plating bath and the plating layer is processed, the oxides present on the surface of the bath are the base.
  • the decrease in the wettability and adhesion of the plating is such that the C content of the B layer is 0.05% or more, or the Si content is 0.1% or more, the Mn content is 0.5% or more, Since the content was found to be 0.001% or more, the S content was 0.001% or more, and the Al content was 0.005% or more, the C content of the B layer was less than 0.05%, Si Is less than 0.1%, Mn is less than 0.5%, P is less than 0.001%, S is less than 0.001%, and Al is less than 0.001%. It is preferable to be less than 005%.
  • C, Si, Mn, P, S, and Al mentioned here are determined by analyzing the depth direction by XPS while sputtering the surface of the hot-dip galvanized steel sheet, and from the depth (D1) at which Zn is not detected. Is a depth at which 0.05% or more is detected, or a depth at which Si is detected at 0.1% or more, a depth at which Mn is detected at 0.5% or more, and a depth at which P is detected at 0.001% or more.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • GDS glow discharge emission analysis
  • SIMS secondary ion mass spectrometry
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • TEM TEM
  • the content of Fe that is not an oxide in the B layer is less than 50% as shown in FIG. 3, the wettability with the A layer, the adhesiveness, and the adhesiveness with the base steel sheet are lowered.
  • the content of Fe that is not an oxide is 50% or more, and preferably 70% or more.
  • the Fe content mentioned here is the depth at which C is detected by 0.05% or more from the depth (D1) at which Zn is not detected by analyzing the depth direction by XPS while sputtering the surface of the hot dip galvanized steel sheet.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • the analysis means may be used.
  • the B layer for the purpose of securing strength and improving workability, as an additional component, one or two selected from Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, REM This is the case where the above elements are contained in the steel sheet in an amount of 0.0001% to 1%, respectively.
  • the B layer between the A layer which is the hot dip galvanized layer and the base steel plate has a thickness of 0.001 ⁇ m or more and 0.5 ⁇ m or less as shown in FIG. Similarly, the layer has a thickness of 0.01 ⁇ m or more and 0.4 ⁇ m or less.
  • the preferable thickness of B layer said here is calculated
  • the depth at which Zn is not detected is detected at a depth where D1 and C are detected 0.05% or more, or Si is detected 0.1% or more Depth where Mn is detected 0.5% or more, depth where P is detected 0.001% or more, depth where S is detected 0.001% or more, Al is 0.005% Depth detected above, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, REM is obtained depth of 0.0001% or more, among those values, D2 is the depth of the smallest value.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • GDS glow discharge emission analysis
  • SIMS secondary ion mass spectrometry
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • TEM TEM
  • the total content contained in the B layer after hot dip galvanization of the present invention is less than 50% because the wettability of plating and the adhesion of plating decrease when it is 50% or more. , Preferably less than 25%.
  • the oxide is not particularly limited to the following, but specific examples include FeO, Fe 2 O 3 , Fe 3 O 4 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , SiO 2 , P 2 O 5 , Al 2 O 3 , SO 2 , TiO 2 , NbO, Cr 2 O 3 , MoO 2 , NiO, CuO, ZrO 2 , V 2 O 5 , WO 2 , B 2 O 5 , CaO
  • a single oxide and a single oxide of each non-stoichiometric composition or a composite oxide of FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 , AlMnO 3 , Fe 2 PO 3 , Mn 2 PO 3 , and Examples include composite
  • the total of the contained ratios is the depth at which Zn is not detected by analyzing the depth direction with an X-ray photoelectron spectrometer (XPS) while sputtering the surface of the hot-dip galvanized steel sheet, as in the measurement of the thickness of the B layer described above.
  • XPS X-ray photoelectron spectrometer
  • the depth at which C is detected 0.05% or more, the depth at which Si is detected 0.1% or more, the depth at which Mn is detected 0.5% or more, and P is 0.001 %, A depth where S is detected 0.001% or more, a depth where Al is detected 0.005% or more, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, Fe, Si, Mn, Al, P, S, W, B, Ca, REM measured up to the smallest depth (D2) among the depths where 0.0001% or more is detected.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • the analysis means may be used.
  • the contents of non-oxide C, Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM are suppressed. It is also important to improve the wettability of plating and the adhesion of plating. This is because C, Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM added to the base steel plate are directly below the steel plate surface. This is because the reactivity between the steel sheet and the plating increases and the plating easily wets and the adhesion between the plating and the base material increases.
  • non-oxide C, Si, Mn, P, S, Al, Ti, Nb, Cr, Mo This is because reducing Ni, Cu, Zr, V, W, B, Ca, and REM is effective in improving the wettability of plating and the adhesion of plating.
  • the decrease in the wettability and adhesion of the plating is such that the C content of the B layer is 0.05% or more, or the Si content is 0.1% or more, the Mn content is 0.5% or more, Content is 0.001% or more, S content is 0.001% or more, Al content is 0.005% or more, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B Since the Ca, REM content was found to be 0.0001% or more, the C content of the B layer was less than 0.05%, the Si content was less than 0.1%, and the Mn content was 0.00.
  • P content less than 0.001%, S content less than 0.001%, Al content less than 0.005%, Ti, Nb, Cr, Mo, Ni, Cu, Zr , V, W, B, Ca, REM content is preferably less than 0.0001%.
  • the contents of C, Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM referred to here are the surfaces of the hot-dip galvanized steel sheet.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • GDS glow discharge emission analysis
  • SIMS secondary ion mass spectrometry
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • TEM TEM
  • the content of Fe, which is not an oxide, in the B layer is less than 50%, the wettability with the A layer, the adhesiveness, and the adhesiveness with the base steel plate are lowered, as a result.
  • the content of Fe that is not an oxide is 50% or more, preferably 70% or more.
  • the Fe content mentioned here is the depth at which C is detected by 0.05% or more from the depth (D1) at which Zn is not detected by analyzing the depth direction by XPS while sputtering the surface of the hot dip galvanized steel sheet.
  • the measuring method is not particularly limited, and glow discharge emission analysis (GDS), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), TEM, etc., as necessary.
  • GDS glow discharge emission analysis
  • SIMS secondary ion mass spectrometry
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • TEM TEM
  • steel of a predetermined component is made into a cold-rolled steel sheet using a commonly used method, and then annealed in a continuous hot-dip galvanizing facility equipped with a heating furnace and a soaking furnace, and hot-dip galvanizing treatment
  • a heating furnace and a soaking furnace in which the annealing process is performed in the step of performing the cold rolling steel sheet temperature in the temperature range of 500 ° C. or more and 950 ° C. or less in each furnace, and under the following conditions It is important for producing the hot-dip galvanized steel sheet of the present invention to be characterized by passing through.
  • Heating furnace conditions An all radiant tube type heating furnace was used, and the water vapor partial pressure (PH 2 O) in the heating furnace was changed while the cold-rolled steel sheet was heated in the above temperature range for 10 seconds to 1000 seconds.
  • the logarithm log (PH 2 O / PH 2 ) of the value divided by the hydrogen partial pressure (PH 2 ) is ⁇ 2 or more and 2 or less, and the heating furnace has a hydrogen concentration of 1% by volume to 30% by volume of hydrogen, water vapor and It has an atmosphere consisting of nitrogen.
  • Soaking furnace conditions In the soaking furnace that follows the heating furnace, during the soaking of the cold-rolled steel sheet within the above temperature range for 10 seconds to 1000 seconds, the steam partial pressure (PH 2 The logarithm log (PH 2 O / PH 2 ) of the value obtained by dividing O) by the hydrogen partial pressure (PH 2 ) is ⁇ 5 or more and less than ⁇ 2, and the soaking furnace has a hydrogen concentration of 1 to 30% by volume.
  • annealing treatment and treatment for applying a plating layer are performed in a continuous hot dip galvanizing facility equipped with an all radiant tube type heating furnace.
  • the all radiant tube furnace is hard to pick up a roll and has good annealing productivity.
  • the atmospheric condition is that the cold-rolled steel sheet to be passed has a plate temperature of 500 ° C. or higher and 950 ° C. or lower. If it is less than 500 degreeC, since Si, Mn, and C contained just under the steel plate surface remain without being fully oxidized, the wettability and adhesiveness of plating will fall. Above 950 ° C, the economics of production decline and Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, REM in steel Diffusing rapidly and forming an oxide on the surface of the steel sheet, lowering the wettability and adhesion of the plating. More preferably, it is 600 degreeC or more and 850 degrees C or less.
  • the oxygen potential log (PH 2 O / PH 2 ) is increased to oxidize C, Si, Mn, P, S, and Al immediately below the steel sheet surface.
  • One or more elements selected from Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM are contained directly under the steel sheet surface. An oxide is formed, and the surface of the steel sheet is decarburized by releasing C from the steel sheet.
  • one or more elements selected from Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM are internal.
  • the oxide is not particularly limited to the following, but specific examples include FeO, Fe 2 O 3 , Fe 3 O 4 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , SiO 2 , P 2 O 5 , Al 2 O 3 , SO 2 , TiO 2 , NbO, Cr 2 O 3 , MoO 2 , NiO, CuO, ZrO 2 , V 2 O 5 , WO 2 , B 2 O 5 , CaO
  • the atmosphere within the plate temperature range of the heating furnace is a nitrogen atmosphere containing water and hydrogen, and log (PH 2 O / PH 2 ) is ⁇ 2 or more and 2 or less. This is preferable for the production of a hot dip galvanized steel sheet.
  • log (PH 2 O / PH 2 ) is less than ⁇ 2
  • the oxidation reaction of C does not proceed sufficiently, and Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V
  • the external oxide of one or more elements selected from W, B, Ca and REM is formed on the surface of the steel sheet, the wettability and adhesion of the plating are lowered.
  • the oxide is not particularly limited to the following, but specific examples include FeO, Fe 2 O 3 , Fe 3 O 4 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , SiO 2 , P 2 O 5 , Al 2 O 3 , SO 2 , TiO 2 , NbO, Cr 2 O 3 , MoO 2 , NiO, CuO, ZrO 2 , V 2 O 5 , WO 2 , B 2 O 5 , CaO
  • a single oxide and a single oxide of each non-stoichiometric composition or a composite oxide of FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 , AlMnO 3 , Fe 2 PO 3 , Mn 2 PO 3 , and Examples include those
  • the hydrogen concentration is 1% by volume or more and 30% by volume or less as shown in FIG. If the hydrogen concentration is less than 1% by volume, the ratio of nitrogen increases and a nitriding reaction takes place on the surface of the steel sheet, thus reducing the plating wettability and plating adhesion. If it exceeds 30% by volume, the annealing treatment is economically inferior, When hydrogen dissolves in the solution, hydrogen embrittlement occurs and plating adhesion is reduced.
  • the heating time within the plate temperature range of the heating furnace is preferably 10 seconds or more and 1000 seconds or less in terms of manufacturing the hot dip galvanized steel sheet of the present invention. If less than 10 seconds, the amount of oxidation of Si, Mn, and C is small, so that the wettability and adhesion of the plating decrease, and if it exceeds 1000 seconds, the productivity of annealing treatment decreases and the internal oxidation is excessively directly below the steel sheet surface. Since it proceeds, internal stress due to the internal oxide is generated, and the adhesion of the plating is lowered.
  • the time in the heating furnace referred to here is the time for the cold-rolled steel sheet to pass through within a temperature range of 500 ° C. or more and 950 ° C. or less.
  • the rate of temperature rise in the heating furnace is not particularly limited, but if it is too slow, the productivity deteriorates, and if it is too fast, heating equipment costs are required.
  • the initial plate temperature at the time of entering the heating furnace is not particularly limited, but if it is too high, the plating wettability and plating adhesion will oxidize and the cooling cost will increase if it is too low. The following is preferred.
  • the oxygen potential log (PH 2 O / PH 2 ) is lowered to lower the Fe-based oxide on the steel sheet surface, specifically FeO or Fe 2.
  • Fe 2 SiO 4 , FeSiO 3 , FeCr 2 O 4 which is a composite oxide of O 3 , Fe 3 O 4 or Fe and Si, and Fe and Cr is reduced. That is, the recrystallization annealing before the steel sheet surface, FeO of Fe oxide was naturally oxidized in the atmosphere, or Fe 2 O 3, Fe 3 O 4 is formed, also FeO in the heating step, or Fe 2 O 3.
  • Fe 2 SiO 4 , FeSiO 3 and FeCr 2 O 4 are formed because Si and Cr, which are easily oxidizable elements, are oxidized in addition to the increase in Fe 3 O 4 . Therefore, FeO, Fe 2 O 3 , Fe 3 O 4 , FeSiO 3 , Fe 2 SiO 4 , and FeCr 2 O 4 are present on the surface of the steel plate before the soaking step, which inhibits the wettability and plating adhesion of the plating. In the soaking process, these oxides are reduced in the soaking process to improve plating wettability and plating adhesion.
  • the atmosphere within the plate temperature range of the soaking furnace is a nitrogen atmosphere containing water and hydrogen
  • log (PH 2 O / PH 2 ) is ⁇ 5 or more and less than ⁇ 2
  • log (PH 2 O / PH 2 ) is less than ⁇ 5
  • Si, Mn, P, S, Al, Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM are reduced and plating wettability and adhesion are deteriorated.
  • the Fe-based oxide is not sufficiently reduced, so that the wettability and adhesion of the plating are lowered. More preferably, it is -4 or more and less than -2.
  • the hydrogen concentration is 1% by volume or more and 30% by volume or less as shown in FIG. If the hydrogen concentration is less than 1% by volume, the ratio of nitrogen increases and a nitriding reaction takes place on the surface of the steel sheet, thus reducing the plating wettability and plating adhesion. If it exceeds 30% by volume, the annealing treatment is economically inferior, When hydrogen dissolves in the solution, hydrogen embrittlement occurs and plating adhesion is reduced.
  • the heating time within the plate temperature range of the soaking furnace is preferably 10 seconds or more and 1000 seconds or less for the production of the hot dip galvanized steel sheet of the present invention. If it is less than 10 seconds, the Fe-based oxide is not sufficiently reduced, and if it exceeds 1000 seconds, the productivity of annealing treatment is reduced and the external oxides of Si and Mn are formed. Decreases. In the soaking furnace, even if the plate temperature is constant, the temperature may change as long as it is within a temperature range of 500 ° C. or higher and 950 ° C. or lower.
  • the atmospheric conditions are individually controlled in a heating furnace and a soaking furnace of a continuous hot-dip galvanizing facility.
  • the oxygen potential log (PH 2 O / PH 2 ) in the heating furnace needs to be higher than the oxygen potential log (PH 2 O / PH 2 ) in the soaking furnace. Therefore, when the gas flows from the heating furnace to the soaking furnace, an additional atmosphere with a higher hydrogen concentration or lower steam concentration than between the heating furnace and the soaking furnace is placed between the heating furnace and the soaking furnace. It may be introduced so as to flow toward.
  • an additional atmosphere with a lower hydrogen concentration or higher steam concentration than that in the soaking furnace is directed to the heating furnace between the heating furnace and the soaking furnace. It may be introduced so that it flows.
  • the steel plate After the steel plate has exited the heating furnace and soaking furnace, it can be subjected to a general normal process until it is immersed in a hot dip galvanizing bath.
  • a general normal process For example, the cooling process, the rapid cooling process, the overaging process, the second cooling process, the water quench process, the reheating process, or the like alone or a combination thereof may be used.
  • a general process After immersion in the hot dip galvanizing bath, a general process can be generally performed as well.
  • the steel sheet passes through a heating furnace and a soaking furnace, and is cooled and maintained at a temperature as necessary. After being immersed in a hot dip galvanizing bath and hot dip galvanized, it is subjected to an alloying treatment if necessary. May be.
  • a hot dip galvanizing bath containing a bath temperature of 440 ° C. or higher and lower than 550 ° C., a total Al concentration in the bath, and a cation concentration of Al of 0.08% or higher and 0.24% or lower, containing inevitable impurities. Can be used.
  • the molten zinc may be solidified in the bath, which is not suitable.
  • the bath temperature exceeds 550 ° C.
  • the molten zinc vaporizes vigorously on the bath surface, the operation cost increases, and vaporized zinc adheres to the furnace, which causes operational problems.
  • the alloying treatment is optimally performed at 440 ° C. or more and 600 ° C. or less. Below 440 ° C, the alloying progress is slow. Above 600 ° C., a hard and brittle Zn—Fe alloy layer is formed too much at the interface with the steel sheet due to overalloy, resulting in poor plating adhesion. If the temperature exceeds 600 ° C., the retained austenite phase of the steel sheet is decomposed, so that the balance between strength and ductility of the steel sheet is also deteriorated.
  • the 1 mm thick cold rolled sheet specimens 1 to 72 shown in Table 1 subjected to normal casting, hot rolling, pickling and cold rolling are heated with relatively high productivity, making roll picking difficult as described above.
  • An annealing treatment and a treatment for applying a plating layer were performed in a continuous hot dip galvanizing facility equipped with an all radiant tube type heating furnace. By using an all radiant tube type, as mentioned above, roll pick-up is difficult and productivity is good.
  • Nitrogen gas containing hydrogen and water vapor was introduced into the heating furnace and the soaking furnace, respectively.
  • Tables 2 to 7 show the conditions in the heating furnace and the soaking furnace, the logarithm log (PH 2 O / PH 2 ) of the ratio of the water vapor partial pressure and the hydrogen partial pressure in each furnace, and the hydrogen concentration.
  • a comparative example is shown in Table 8.
  • the hot dip galvanizing bath contained a plating bath temperature of 460 ° C. and 0.13% by mass of Al.
  • the plating thickness was adjusted to 8 ⁇ m per side by nitrogen gas wiping.
  • the alloying treatment was performed by heating at a steel plate temperature of 500 ° C. for 30 seconds in an alloying furnace.
  • the obtained hot-dip galvanized steel sheet was evaluated for plating wettability and plating adhesion. The results are shown in Tables 2 to 7, and the comparative example is shown in Table 8. In Tables 2 to 7, the presence / absence of the alloying treatment is described as “Yes” when the alloying treatment is performed and “No” when the alloying treatment is not performed.
  • Plating wettability is determined by performing EPMA mapping of arbitrary 200 ⁇ m ⁇ 200 ⁇ m Zn and Fe on the surface of the plated steel sheet of each test material. X), when the entire surface was covered with Zn and the exposed Fe area was not observed, it was evaluated as good wettability ( ⁇ ).
  • the plating adhesion was measured by a powdering test. When the peel width exceeded 2 mm, poor adhesion (x), 2 mm or less and 1 mm or more were evaluated as good adhesion ( ⁇ ), and 1 mm or less as very good adhesion ( ⁇ ).
  • the total thickness of the B layer and the single oxide or composite oxide content in the B layer, the Fe content that is not an oxide in the B layer, and the C, Si, and Mn that are not oxides in the B layer , P, S, Al, Ti, Cr, Mo, Ni, Cu, Zr, V, B, and Ca were determined by the measurement method using XPS (PHI5800, ULVAC-PHI Co., Ltd.) described above.
  • A1 to A72 and B1 to B72, B1 to B72, C1 to C72, and D1 of Tables 2 to 9 which are examples of the present invention -D72, E1-E72, F1-F72, and G1-G72 were found to be superior in plating wettability and plating adhesion as compared to the levels H1 to H34 in Table 9 as a comparative example.
  • the hot dip galvanized steel sheet produced by the method of the present invention is excellent in plating wettability and plating adhesion, it is expected to be applied mainly to members in the automotive field, the home appliance field, and the building material field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 易酸化性元素であるSiやMnを含む鋼板を母材として、めっき濡れ性、及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板及びその製造方法を提供する。 鋼板の表面に溶融亜鉛めっき層Aを有する溶融亜鉛めっき鋼板であって、該鋼板表面直下で且つ該鋼板内に下記B層を有することを特徴とする。 B層:厚みが0.001μm~0.5μmであり、該B層の質量基準で、Fe、Si、Mn、P、S、Alの酸化物の1種又は2種以上を合計で50質量%未満含有しており、酸化物ではないC、Si、Mn、P、S、Alを、C:0.05質量%未満、Si:0.1質量%未満、Mn:0.5質量%未満、P:0.001質量%未満、S:0.001質量%未満、Al:0.005質量%未満含有し、酸化物ではないFeを50質量%以上含有している層。

Description

めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法
 本発明は、溶融亜鉛めっき鋼板及びその製造方法に関するものであり、更に詳しくは、めっき濡れ性及びめっき密着性に優れ、自動車分野、家電分野、及び建材分野の部材として適用できる溶融亜鉛めっき層を備えた鋼板、並びにその製造方法に関するものである。
 自動車分野、家電分野、及び建材分野の部材において、防錆性を付与した表面処理鋼板が使用され、中でも安価に製造でき且つ防錆性に優れた溶融亜鉛めっき鋼板が使用されている。
 一般に溶融亜鉛めっき鋼板は、連続式溶融亜鉛めっき設備を用いて以下の方法で製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面の洗浄を目的として前処理工程にて脱脂及び/又は酸洗するか、あるいは前処理工程を省略して、予熱炉内で母材鋼板表面の油分を燃焼除去した後、加熱して、再結晶焼鈍を行う。再結晶焼鈍を行う際の雰囲気は、後のめっき処理する際にFeの酸化物がめっき層と母材鋼板との濡れ性やめっき層と母材鋼板との密着性を阻害するため、Feの還元性雰囲気中で加熱する。再結晶焼鈍の後は、大気に触れることなく連続的にFeの還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、溶融亜鉛浴に浸漬することで溶融亜鉛めっきする。
 連続式溶融亜鉛めっき設備において、再結晶焼鈍を行う加熱炉のタイプは、DFF(直火型)、NOF(無酸化型)、オールラジアントチューブ型(全還元型)、又はそれらの組合せ等があるが、操業のし易さ、加熱炉内のロールピックアップが発生しにくいこと、そしてより低コストで高品質なめっき鋼板を製造出来るといったこと等の理由から、炉内全てをFeの還元雰囲気とし、加熱炉をオールラジアントチューブ型としたものが主流となっている。ここで言うロールピックアップとは、炉内通板時に鋼板表面の酸化物や異物が炉内ロールに付着すること意味し、付着後は鋼板に外観疵が発生するため品質、生産性に悪影響を及ぼす。
 近年、特に自動車分野においては衝突時に乗員を保護するような機能と共に燃費向上を目的とした軽量化を両立させるために、Si、Mnといった元素を含有させることで母材鋼板を高強度化した溶融亜鉛めっき鋼板の使用が増加している。
 しかし、Si、MnはFeに比べ易酸化性な元素であるため、オールラジアントチューブ型での再結晶焼鈍の加熱時、Feの還元雰囲気であってもSi、Mnは酸化してしまう。そのため、Si、Mnを含有した鋼板は再結晶焼鈍の過程で鋼板表面に存在するSi、Mnは酸化し、更に鋼板内部から熱拡散したSi、Mnが鋼板表面で酸化することによって、徐々にSi、Mnの酸化物が濃化する。鋼板表面のところでSi、Mnの酸化物が濃化すると、鋼板を溶融亜鉛浴に浸漬する過程で、溶融亜鉛と鋼板との接触を妨げるため、めっき層の濡れ性やめっき層の密着性が低下する原因となる。めっき層の濡れ性が低下すると不めっき欠陥が発生し、外観不良及び/又は防錆性不良となる。めっきの密着性が低下すると、このめっき鋼板をプレス成型する際にめっきの剥離が発生し、成型後の外観不良及び/又は防錆性不良となるため、大いに問題である。
 前記Si、Mnの酸化物の濃化を抑制する技術としては、再結晶焼鈍過程に着目した技術として、特許文献1に、鋼板表面の酸化膜の厚みが400~10000Åになるように酸化した後、水素を含む炉内雰囲気中でFeを還元して、めっきする方法が示されている。また、特許文献2には、鋼板表面を酸化した後、還元炉内の酸素ポテンシャルを制御することによって、Feを還元すると共にSiを内部酸化させて、Si酸化物の表面濃化を抑制した後、めっきする方法が示されている。しかし、これら技術においては、還元時間が長過ぎればSiの表面濃化を引起し、短過ぎれば鋼板表面にFeの酸化膜が残存するため、鋼板表面の酸化膜が不均一な厚みとなる現実的な場合においては還元時間の調節は非常に困難であり、めっき層の濡れ性及びめっき層密着性の解消には不十分であるという問題点がある。さらに、酸化した際の表面のFe酸化膜が厚くなり過ぎると、ロールピックアップを発生させるといった問題点を有している。
 特許文献3には、Feを一度酸化させることに起因した上記問題点を解消し、且つ前記SiやMnの酸化物の濃化を抑制することを目的として、オールラジアントチューブ型における再結晶焼鈍において、雰囲気の酸素ポテンシャル(log(PH2O/PH2))をFe、及びSi、Mnが酸化しない(還元される)値まで下げ、その後めっきする方法が示されている。しかし、この技術においては、Si、Mnを還元するために、雰囲気の水蒸気濃度を極端に下げるか又は水素濃度を極端に上げる必要があるが、工業的な実現性に乏しいという問題点に加え、酸化せずに鋼板表面に残存するSi、Mnが、めっきと母材鋼板との反応を阻害し、更にめっき浴浸漬時には浴の表面上に浮遊した酸化物と反応してSi、Mnの酸化物を形成するため、めっき濡れ性及びめっき密着性が低下するという問題点を有している。
 特許文献4には、オールラジアントチューブ型における再結晶焼鈍において、雰囲気の酸素ポテンシャルをSi、Mnが内部酸化するまで上げた後、めっきする方法が示されている。また、特許文献5、6には、酸素ポテンシャルを上げる手段やその条件を緻密に制御して、Fe酸化物とSi、Mn酸化物の両者の表面濃化を抑制した後、めっきする方法が示されている。しかし酸素ポテンシャルを上げると、Si、Mnは内部酸化するけれどもFeが酸化し、一方でFeが酸化しない程度の酸素ポテンシャルの増加ではSiやMnの内部酸化が不十分となり、表面にSi、Mnの酸化物が濃化する。特許文献4~6に記載の雰囲気の酸素ポテンシャルを増減する技術では、めっき層の濡れ性やめっき層密着性の解消に不十分であるという問題点を有している。
 更に、Si、Mnの酸化物の濃化を抑制する技術としては、前記した一般的な連続式溶融亜鉛めっきの製造工程を増やした手段として、特許文献7に、焼鈍を2回行い、1回目の焼鈍後に表面に生成したSiの表面濃化物を酸洗除去することによって、2回目の焼鈍時に、表面濃化物の生成を抑制し、その後めっきする方法が示されている。しかしながら、Si濃度が高い場合には酸洗では表面濃化物が除去しきれないため、めっき濡れ性及びめっき密着性の改善は不十分である。また、Siの表面濃化物を除去するための2回焼鈍する設備や、酸洗設備が新たに必要なことから、設備コストや生産コストが増加するという問題点を有している。
 特許文献8及び9には、鋼板表面にCr、Ni、Fe等のプレめっきを再結晶焼鈍の前後に行った後、めっきする方法が示されている。しかし、この技術においては、再結晶焼鈍の前でプレめっきした場合、焼鈍時の加熱によってプレめっきした元素が鋼板中に拡散し、鋼板の強度や伸びを低下させるという問題点、鋼板表面に拡散するFe又はSi、Mnが酸化するという問題点を有する。また再結晶焼鈍の後でプレめっきした場合、鋼板表面に酸化物が形成しているため、プレめっきが鋼板に不均一に付着し、濃化した酸化物を被覆することが困難であるという問題点を有している。また、この方法は、プレめっきを再結晶焼鈍の前、後に行ういずれの場合においても、プレめっきの原料コストやプレめっき設備コストが発生するので、増工程によって生産コストが増加するという問題点を有している。
 更に、前記Si、Mnの酸化物の濃化を抑制する技術としては、熱延工程で事前に内部酸化させることに着目したものとして、特許文献10に、熱延工程で酸素ポテンシャルを制御することによってSiを内部酸化させた薄鋼板を用いて、連続式溶融亜鉛めっき設備で溶融亜鉛めっき鋼板を製造する技術が示されている。しかし、この技術においては、冷延工程等での圧延時に、内部酸化の層も一緒に圧延されてしまうため内部酸化層の厚みが小さくなり、再結晶焼鈍過程でSi酸化物が表面に濃化してしまうため、めっき濡れ性及びめっき密着性の改善には不十分であるという問題点を有する。また、熱延工程でSiを内部酸化させると同時に形成するFeの酸化物が、ロールピックアップを発生させるという問題点を有している。
 特許文献11には、加熱炉における雰囲気中の酸素ポテンシャルと、均熱炉の最上部における雰囲気中の酸素ポテンシャルとを同じように高めに制御し、均熱炉の炉内上部の酸素ポテンシャルが炉内下部の酸素ポテンシャルよりも一定割合以上高く制御して、高Si含有鋼板にめっきする方法が示されている。しかし、この方法によっても、めっき密着性は十分でない。
特開昭55-122865号公報 特開2001-323355号公報 特開2010-126757号公報 特開2008-7842号公報 特開2001-279412号公報 特開2009-209397号公報 特開2010-196083号公報 特開昭56-33463号公報 特開昭57-79160号公報 特開2000-309847号公報 特開2009-068041号公報
 本発明は、易酸化性元素であるSiやMnを含む鋼板を母材として、めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた溶融亜鉛めっき鋼板を提供すること、及びその製造方法を提供することを課題とする。
 上記課題を解決するために、本発明者らは、溶融亜鉛めっき鋼板における溶融亜鉛めっき層と母材鋼板のうち、特にめっき層直下における母材鋼板の成分含有率が、めっき濡れ性及びめっき密着性に及ぼす影響に着目し、更に、その製造方法として、ラジアントチューブ型の加熱炉において、雰囲気の酸素ポテンシャルを上げた場合にSiやMnを内部酸化させることと、Feを還元することを両立させるため、再結晶焼鈍を加熱工程、均熱工程のそれぞれで酸素ポテンシャルに制御することに着目し、種々の検討を鋭意進めた結果、オールラジアントチューブ型の加熱炉を備えた連続式溶融亜鉛めっき設備において増工程することなく、めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき鋼板を製造できることを見出し、本発明に至った。
 即ち、本発明の要旨とするところは、以下の通りである。
(1)質量%で、
C:0.05%~0.50%、
Si:0.1%~3.0%、
Mn0.5%~5.0%、
P0.001%~0.5%、
S0.001%~0.03%、
Al0.005%~1.0%
を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に溶融亜鉛めっき層Aを有する溶融亜鉛めっき鋼板であって、該鋼板表面直下で且つ該鋼板内に下記B層を有することを特徴とする、溶融亜鉛めっき鋼板。
B層:厚みが0.001μm~0.5μmであり、該B層の質量基準で、Fe、Si、Mn、P、S、Alの酸化物の1種又は2種以上を合計で50質量%未満含有しており、
酸化物ではないC、Si、Mn、P、S、Alを、
C:0.05質量%未満、
Si:0.1質量%未満、
Mn:0.5質量%未満、
P:0.001質量%未満、
S:0.001質量%未満、
Al:0.005質量%未満
含有し、
酸化物ではないFeを50質量%以上
含有している層。
(2)質量%で、
C:0.05%~0.50%、
Si:0.1%~3.0%、
Mn:0.5%~5.0%、
P:0.001%~0.5%、
S:0.001%~0.03%、
Al:0.005%~1.0%、
Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMのうち1種又は2種以上の元素、それぞれ0.0001%~1%
を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に溶融亜鉛めっき層Aを有する溶融亜鉛めっき鋼板であって、該鋼板表面直下で且つ該鋼板内に下記B層を有することを特徴とする、溶融亜鉛めっき鋼板。
B層:厚みが0.001μm~0.5μmであり、該B層の質量基準で、Fe、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの酸化物の1種又は2種以上を合計で50質量%未満含有しており、
酸化物ではないC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMを、
C0.05質量%未満、
Si:0.1質量%未満、
Mn:0.5質量%未満、
P:0.001質量%未満、
S:0.001質量%未満、
Al:0.005質量%未満、
Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの1種又は2種以上:それぞれ0.0001質量%未満
含有し、
酸化物ではないFeを50質量%以上
含有している層。
(3)前記溶融亜鉛めっき層Aの厚みが2μm~100μmである(1)又は(2)に記載の溶融亜鉛めっき鋼板。
(4)(1)または(2)に記載の成分の鋼を、鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板とし、
当該冷延鋼板を、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備において焼鈍処理し、そして溶融亜鉛めっき処理することを含む溶融亜鉛めっき鋼板の製造方法であって、
該焼鈍処理を行う当該加熱炉及び均熱炉において、それぞれの炉における当該冷延鋼板板温が500℃~950℃の温度範囲内であり、且つ下記条件で当該冷延鋼板を通板することを特徴とする、溶融亜鉛めっき鋼板の製造方法。
加熱炉条件:オールラジアントチューブ型の加熱炉を用い、前記冷延鋼板を上記温度範囲で且つ10秒~1000秒間加熱中に、該加熱炉内の水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-2~2であり、該加熱炉が水素濃度1体積%~30体積%の水素、水蒸気および窒素からなる雰囲気を有する。
均熱炉条件:前記加熱炉に引き続く均熱炉で、前記冷延鋼板を上記温度範囲内で且つ10秒~1000秒間均熱中に、該均熱炉内の水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-5~-2であり、該均熱炉が水素濃度1体積%~30体積%の水素、水蒸気および窒素からなる雰囲気を有する。
 本発明の製造方法によれば、易酸化性元素であるSiやMnを含む鋼板を母材として、めっき濡れ性、及びめっき密着性に優れた溶融亜鉛めっき鋼板が得られる。
後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H1~H12、H29~H34の結果から得られた、A層の厚みとB層の厚みとの関係で決まる、めっき濡れ性/めっき密着性の結果である。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H1~H12の結果から得られた、B層の酸化物の含有率とめっき濡れ性/密着性との関係である。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H1~H12の結果から得られた、B層のFe含有率とめっき濡れ性/密着性との関係である。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H1~H12の結果から得られた、加熱炉の酸素ポテンシャルlog(PH2O/PH2)と均熱炉の酸素ポテンシャルlog(PH2O/PH2)との関係で決まる、めっき濡れ性/めっき密着性の結果ある。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H25~H28の結果から得られた、加熱炉の水素濃度と、めっき濡れ性/めっき密着性との関係である。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H25~H28の結果から判る、均熱炉の水素濃度と、めっき濡れ性/めっき密着性との関係である。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H13~H18、H22~H24の結果から得られた、冷延鋼板の加熱炉での最高到達板温と500℃以上950℃以下の温度範囲にある時間との関係で決まる、めっき濡れ性/めっき密着性の結果である。 後述する実施例A1~A72、B1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72と比較例H13~H24の結果から得られた、均熱炉での最小、最大板温(板温範囲)と500℃以上950℃以下の温度範囲にある時間との関係で決まる、めっき濡れ性/めっき密着性の結果である。
 以下、本発明を詳細に説明する。
 まず、前提として本発明の溶融亜鉛めっき層を備える鋼板の鋼成分は下記の通りである。尚、以下明細書で説明する%は特別に説明が無い限り質量%とする。
 <C:0.05%以上0.50%以下>
 Cはオーステナイト相を安定化させる元素であり、鋼板の強度を上昇させるために必要な元素である。C量が0.05%未満では鋼板の強度が不足し、0.50%超では加工性が低下する。このため、C量は0.05%以上0.5%以下であり、好ましくは0.10%以上0.40%以下である。
 <Si:0.1%以上3.0%以下>
 Siは、フェライト相中の固溶Cをオーステナイト相中に濃化させ、鋼板の焼き戻し軟化抵抗を高めることにより、鋼板の強度を向上させる。Si量が0.1%未満では鋼板の強度が不足し、3.0%超では加工性が低下し、まためっき濡れ性やめっき密着性が十分に改善されない。このため、Si量は0.1%以上3.0%以下であり、好ましくは0.5%以上2.0%以下である。
 <Mn:0.5%以上5.0%以下>
 Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。Mn量が0.5%未満では鋼板の強度が不足し、5.0%超では加工性が低下し、まためっき濡れ性やめっき密着性が十分に改善されない。このため、Mn量は0.5%以上5.0%以下であり、好ましくは1.0%以上3.0%未満である。
 <P:0.001%以上0.5%以下>
 Pは強度の向上に寄与するため、必要とする強度レベルに応じてPを含有させることができる。但しP含有量が0.5%を超えて含有されると粒界偏析により材質が劣化するため、上限を0.5%とする。一方。P含有量を0.001%未満とするには製鋼段階での多大なコストアップが必要とされるため、0.001%を下限とする。
 <S:0.001%以上0.03%以下>
 Sは、不可避的に含有される不純物元素であり、冷間圧延後に板状の介在物MnSが生成することにより加工性を低下するため、S量は少ない方が望ましいが、過度の低減は製鋼工程の脱硫コストの増加を伴う。このため、S量は0.001%以上0.03%以下である。
 <Al:0.005%以上1.0%以下>
 Alは、鋼板中のNとの親和性が高く、固溶しているNを析出物として固定して、加工性を向上させる効果がある。しかし過剰なAlの添加は逆に加工性を劣化させる。このため、Al量は0.005%以上1.0%以下である。
 上記の成分組成以外の残部は、Fe及び不可避的不純物である。本発明では、強度確保や加工性向上などを目的として、必要に応じて、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素を、鋼板中にそれぞれ0.0001%以上1%以下で適宜含有してもよい。
 鋼板の製造方法は、鋳造から冷間圧延までは特に限定されるものでは無い。一般的な鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板とする。鋼板の板厚は好ましくは0.1mm以上3mm以下である。
 次に本発明で重要な、鋼板の溶融亜鉛めっき層(A層)及び鋼板中に生成される層(B層)について説明する。
 本発明の溶融亜鉛めっき鋼板は、鋼板表面上にA層、鋼板表面直下にB層を有する。A層は溶融亜鉛めっき層であり、防錆性確保のため鋼板表面上に形成される。B層は酸化物やC、Si、Mn等の元素の含有率が抑制された、Feを主体とする層であり、母材鋼板表面直下の鋼板内に形成されることにより、めっき濡れ性及びめっき密着性を向上させる。
 A層である溶融亜鉛めっき層は、構成成分の内50%以上が亜鉛であれば亜鉛以外の元素が層中に添加されていても良く、また溶融亜鉛めっき処理後に加熱することでFe-Zn合金となる合金化溶融亜鉛めっき層であっても良い。合金化溶融亜鉛めっき層の場合、Fe-Zn合金のFe含有量としては、20質量%超ではめっき密着性が低下するため20質量%以下が好ましい。
 ここで言う合金化溶融亜鉛めっき層のFe-Zn合金のFe含有量は、溶融亜鉛めっき鋼板から所定の面積を切り出し、塩酸に浸漬することでめっき層だけを溶解し、その溶解液をICP(発光分光分析装置)でFe量とZn量を測定することでFeの割合を算出することで求める。
 A層の厚みは図1に示すとおり、2μm以上100μm以上が好ましい。2μm未満であれば、防錆性が不足することに加え、めっきを母材鋼板に均一に付着させることが困難になり不めっきが発生するといっためっき濡れ性に関する問題が生じる。100μm超であれば、めっき層による耐食性向上の効果が飽和し経済的ではない。また、めっき層内の残留応力が増加するため、めっき密着性が低下する。このため、A層の厚みは2μm以上100μm以上であることが好ましい。ここで言うA層の厚みの測定方法については、種々の方法があるが、例えば顕微鏡断面試験法(JIS H 8501)が挙げられる。これは、試料の断面を埋め込み研磨した後、必要に応じて腐食液でエッチングし、研磨面を光学顕微鏡や走査型電子顕微鏡(SEM)、電子線マイクロアナライザー(EPMA)等で分析し厚みを求める方法である。本発明ではテクノビット4002(株式会社マルトー社製)に埋め込み、#240、#320、#400、#600、#800、#1000の研磨紙(JIS R 6001)で順に研磨した後、研磨面をEPMAでめっき鋼板の表面から線分析し、Znが検出されなくなる厚みを、互いに1mm以上離れた任意の10箇所の位置で求め、求めた値を平均した値をA層の厚みとした。
 合金化溶融亜鉛めっき層の場合は、母材鋼板表面直下の鋼板内のB層により、母材鋼板の酸化物の含有量が低減されていることでFeとめっきとの反応性が促進され、めっきの濡れ性及びめっきの密着性にさらに優れるために特に好ましい。
 本発明の特徴であるB層は、ラジアントチューブ型の加熱炉において、雰囲気の酸素ポテンシャルを上げてSiやMnを内部酸化させることと、均熱炉において、雰囲気の酸素ポテンシャルを下げてFeを還元することにより生成した層である。加熱炉において、SiやMnは内部酸化し、Cは酸化し気体として鋼板表面で脱離するため、鋼板表面下の一定の厚みでは、母材の鋼板表面直下の酸化物でないSiやMn、及びCの濃度は減少するが、その厚みはSiやMn、及びCの熱拡散に従うため、内部酸化層の厚みよりも厚くなる。雰囲気の酸素ポテンシャルを上げたままでは母材の鋼板表面にFeの酸化物が形成され、増加すると共に、例えばSiの内部酸化ではファイアライト(Fe2SiO4)といったFeとの複合酸化物の内部酸化物が形成し増加する。しかし、本発明の方法では均熱炉において、Feが還元されるため、母材の鋼板表面直下でFe酸化物を抑制することが出来る。したがって、本発明に係るB層は先行技術文献等に記載されている「内部酸化層」とは異なる層である。
 母材鋼板表面直下の鋼板内にあるB層は、図1に示すように厚み0.001μm以上0.5μm以下であることが、めっきの濡れ性及びめっき層の密着性を改善させるために重要である。0.001μm未満であると、B層の存在量が低下するためめっきの濡れ性及び密着性は十分に改善されず、0.5μm超であると、B層内の強度が確保されず凝集破壊することによってめっき密着性が低下する。より好ましくは、B層は、厚み0.01μm以上0.4μm以下である。ここで言うB層の厚みは、次のように求める。溶融亜鉛めっき鋼板の表面をスパッタリングしながらX線光電子分光装置(XPS)で深さ方向分析し、Znが検出されなくなる深さをD1とする。B層中のC、Si、Mn、P、S、Alの量はそれぞれ、C:0.05質量%未満、Si:0.1質量%未満、Mn:0.5質量%未満、P:0.001質量%未満、S:0.001質量%未満、Al:0.005質量%未満であるから、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さを求め、それらの値の内、最も小さな値の深さをD2とする。B層の厚みは、(D2-D1)をN=3で求めた平均値とする。ただし、ここで表すパーセンテージは、XPS装置の表示に基づく。測定方法は限定されるものでなく、X線光電子分光装置(XPS)以外にもグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 本発明の溶融亜鉛めっきが施される鋼板を再結晶焼鈍することによって、Fe、Si、Mn、P、S、Alの1種又は2種以上の酸化物が鋼板表面直下に形成される。図2に示すように本発明の溶融亜鉛めっき鋼板のB層内のこれらの含有率の合計が、50%以上になるとめっきの濡れ性及びめっきの密着性が低下する。したがってB層中のこれら酸化物の合計量は、50%未満であり、好ましくは25%未満である。
 ここで言うFe、Si、Mn、P、S、Alの1種又は2種以上の酸化物とは、特に以下に限定されるものではないが、具体的な例としてはFeO、Fe23、Fe34、MnO、MnO2、Mn23、Mn34、SiO2、P25、Al23、SO2の単独酸化物及びそれぞれの非化学量論組成の単独酸化物、又はFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4、AlMnO3、Fe2PO3、Mn2PO3の複合酸化物及びそれぞれの非化学量論組成の複合酸化物が挙げられる。その含有する率の合計は、上述したB層の厚み測定と同様、溶融亜鉛めっき鋼板の表面をスパッタリングしながらX線光電子分光装置(XPS)で深さ方向分析し、Znが検出されなくなる深さ(D1)から、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さの内、最も小さな値の深さ(D2)までの間に測定される、Fe、Si、Mn、P、S、Alの陽イオンのそれぞれの質量濃度の平均値を合計し、更にOの陰イオンの質量濃度の平均値を足し合わせた値を、N=3の測定結果で平均して求める。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 更に、B層では、酸化物ではないC、Si、Mn、P、S、Alの含有率が抑制されていることも、めっきの濡れ性及びめっきの密着性を改善するために重要である。これは、母材の鋼板に添加されているC、Si、Mn、P、S、Alを鋼板表面直下で低減してFeの比率を高めれば、鋼板とめっきとの反応性が高まり、めっきは濡れ易くめっきと母材との密着力も高まるからである。加えて母材の鋼板表面に存在する酸化物でないC、Si、Mn、P、S、Alは、めっき浴に浸漬しめっき層を処理する際に、浴の表面上に存在する酸化物が母材の鋼板に接触すると、Si、Mn、P、S、Alが酸化し、鋼板とめっきの反応性を低下させるため、酸化物でないC、Si、Mn、P、S、Alを低減させることがめっきの濡れ性及びめっきの密着性の改善に有効だからである。めっきの濡れ性や密着性の低下は、B層のCの含有率が0.05%以上、又はSiの含有率が0.1%以上、Mnの含有率が0.5%以上、Pの含有率が0.001%以上、Sの含有率が0.001%以上、Alの含有率が0.005%以上で認められたため、B層のCの含有率は0.05%未満、Siの含有率は0.1%未満、Mnの含有率は0.5%未満、Pの含有率は0.001%未満、Sの含有率は0.001%未満、Alの含有率は0.005%未満とすることが好ましい。ここで言うC、Si、Mn、P、S、Alの含有率は、溶融亜鉛めっき鋼板の表面をスパッタリングしながらXPSで深さ方向分析し、Znが検出されなくなる深さ(D1)から、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さの内、最も小さな値の深さ(D2)までの間に測定される、C、Si、Mn、P、S、Alそれぞれの質量濃度の平均値を、N=3の測定結果で平均して求める。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 B層における酸化物でないFeの含有率は、図3に示すように50%未満であるとA層との濡れ性、密着性及び母材鋼板との密着性が低下する。結果的にめっき濡れ性、めっき密着性を低下させるため、酸化物でないFeの含有率は、50%以上であり、好ましくは70%以上である。ここで言うFeの含有率は、溶融亜鉛めっき鋼板の表面をスパッタリングしながらXPSで深さ方向分析し、Znが検出されなくなる深さ(D1)から、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さの内、最も小さな値の深さ(D2)までの間に測定される、Feの質量濃度の平均値を、N=3の測定結果で平均して求める。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 更に好ましいB層の態様を次に説明する。この態様は、強度確保や加工性向上などを目的として、追加成分として、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素を、鋼板中にそれぞれ0.0001%以上1%以下含有している場合である。
 溶融亜鉛めっき層であるA層と母材鋼板との間にあるB層は、図1の示すように厚み0.001μm以上0.5μm以下が好ましいことは前述のとおりで、より好ましくは、B層は、厚み0.01μm以上0.4μm以下であることも同様である。ここで言う好ましいB層の厚みは、次のように求める。溶融亜鉛めっき鋼板の表面をスパッタリングしながらXPSで深さ方向分析し、Znが検出されなくなる深さをD1、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さ、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMが0.0001%以上検出される深さを求め、それらの値の内、最も小さな値の深さをD2する。B層の厚みは、(D2-D1)をN=3で求めた平均値とする。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 更に、本発明の溶融亜鉛めっきが施される鋼板を再結晶焼鈍することによって、Fe、Si、Mn、Al、P、S、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの1種又は2種以上の酸化物が鋼板表面直下に形成される。これが図2に示すように本発明の溶融亜鉛めっき後のB層内に含有する率の合計は、50%以上になるとめっきの濡れ性及びめっきの密着性が低下するため、50%未満であり、好ましくは25%未満である。
 ここで言うFe、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素の酸化物とは、特に以下に限定されるものではないが、具体的な例としてはFeO、Fe23、Fe34、MnO、MnO2、Mn23、Mn34、SiO2、P25、Al23、SO2、TiO2、NbO、Cr23、MoO2、NiO、CuO、ZrO2、V25、WO2、B25、CaOの単独酸化物及びそれぞれの非化学量論組成の単独酸化物、又はFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4、AlMnO3、Fe2PO3、Mn2PO3の複合酸化物及びそれぞれの非化学量論組成の複合酸化物が挙げられる。その含有する率の合計は、上述したB層の厚み測定と同様、溶融亜鉛めっき鋼板の表面をスパッタリングしながらX線光電子分光装置(XPS)で深さ方向分析し、Znが検出されなくなる深さ(D1)から、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さ、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMが0.0001%以上検出される深さの内、最も小さな値の深さ(D2)までの間に測定される、Fe、Si、Mn、Al、P、S、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの陽イオンのそれぞれの質量濃度の平均値を合計し、更にOイオンの質量濃度の平均値を足し合わせた値を、N=3の測定結果で平均して求める。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 更に、B層では、酸化物ではないC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの含有量が抑制されていることも、めっきの濡れ性及びめっきの密着性を改善するために重要である。これは母材の鋼板に添加されているC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMを鋼板表面直下で低減しFeの比率高めれば、鋼板とめっきとの反応性が高まり、めっきは濡れ易くめっきと母材との密着力も高まるからである。加えて母材の鋼板表面に存在する酸化物でないC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMは、めっき浴に浸漬しめっき層を処理する際に、浴の表面上に存在する酸化物が母材の鋼板に接触するとSi、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMが酸化し、鋼板とめっきの反応性を低下させるため、酸化物でないC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMを低減させることがめっきの濡れ性及びめっきの密着性の改善に有効だからである。めっきの濡れ性や密着性の低下は、B層のCの含有率が0.05%以上、又はSiの含有率が0.1%以上、Mnの含有率が0.5%以上、Pの含有率が0.001%以上、Sの含有率が0.001%以上、Alの含有率が0.005%以上、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの含有率が0.0001%以上で認められたため、B層のCの含有率は0.05%未満、Siの含有率は0.1%未満、Mnの含有率は0.5%未満、Pの含有率は0.001%未満、Sの含有率は0.001%未満、Alの含有率は0.005%未満、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの含有率は0.0001%未満とすることが好ましい。ここで言うC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの含有率は、溶融亜鉛めっき鋼板の表面をスパッタリングしながらXPSで深さ方向分析し、Znが検出されなくなる深さから、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さ、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMが0.0001%以上検出される深さの内、最も小さな値の深さ(D2)までの間に測定される、C、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMそれぞれの質量濃度の平均値を、N=3の測定結果で平均して求める。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 B層における酸化物でないFeの含有率は、前記同様、50%未満であるとA層との濡れ性、密着性及び母材鋼板との密着性が低下し、結果的にめっき濡れ性、めっき密着性を低下させるため、酸化物でないFeの含有率は、50%以上であり、好ましくは70%以上である。ここで言うFeの含有率は、溶融亜鉛めっき鋼板の表面をスパッタリングしながらXPSで深さ方向分析し、Znが検出されなくなる深さ(D1)から、Cが0.05%以上検出される深さ、又はSiが0.1%以上検出される深さ、Mnが0.5%以上検出される深さ、Pが0.001%以上検出される深さ、Sが0.001%以上検出される深さ、Alが0.005%以上検出される深さ、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMが0.0001%以上検出される深さの内、最も小さな値の深さ(D2)までの間に測定される、Feの質量濃度の平均値を、N=3の測定結果で平均して求める。特に測定方法は限定されるものでなく、必要に応じてグロー放電発光分析(GDS)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、TEM等の分析手段を用いても良い。
 次に、本発明のめっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき鋼板の製造方法について説明する。
 製造方法としては、所定の成分の鋼を、常用される方法を用いて冷延鋼板とした後、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備において焼鈍処理し、溶融亜鉛めっき処理を行う工程で、焼鈍処理を行う当該加熱炉および均熱炉において、それぞれの炉における当該冷延鋼板板温が500℃以上950℃以下の温度範囲内であり、且つ下記条件で当該冷延鋼板を通板することを特徴とすることが、本発明の溶融亜鉛めっき鋼板を製造するために重要である。
加熱炉条件:オールラジアントチューブ型の加熱炉を用い、前記冷延鋼板を上記温度範囲で且つ10秒以上1000秒以下の間加熱中に、該加熱炉内の水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-2以上2以下であり、該加熱炉が水素濃度1体積%以上30体積%以下の水素、水蒸気および窒素からなる雰囲気を有する。均熱炉条件:前記加熱炉に引き続く均熱炉で、前記冷延鋼板を上記温度範囲内で且つ10秒以上1000秒以下の間均熱中に、該均熱炉内の水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-5以上-2未満であり、該均熱炉が水素濃度1体積%以上30体積%以下の水素及び水蒸気を含む窒素雰囲気を有する。
 本発明の製造方法では、オールラジアントチューブ型加熱炉を備えた連続式溶融亜鉛めっき設備にて焼鈍処理、めっき層を施す処理を行う。オールラジアントチューブ型加熱炉はロールピックアップしにくく焼鈍処理の生産性が良い。
 前記雰囲気条件は、通板する冷延鋼板の板温が500℃以上950℃以下の場合であることが、本発明の溶融亜鉛めっき鋼板の製造上好ましい。500℃未満では、鋼板表面直下に含まれるSi、Mn、Cが十分に酸化せず残存するため、めっきの濡れ性や密着性が低下する。950℃超では製造の経済性が低下することと共に、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの鋼中の拡散が速くなり、鋼板表面に酸化物を形成するため、めっきの濡れ性や密着性が低下する。より好ましくは600℃以上850℃以下である。
 加熱炉の上記温度範囲内では、酸素ポテンシャルlog(PH2O/PH2)を高くすることで鋼板表面直下に含まれるC、Si、Mn、P、S、Alを酸化させる。Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素は鋼板表面直下に内部酸化物を形成し、Cは鋼板から放出されることで鋼板表面は脱炭される。ここで言う、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素は内部酸化物とは、特に以下に限定されるものではないが、具体的な例としてはFeO、Fe23、Fe34、MnO、MnO2、Mn23、Mn34、SiO2、P25、Al23、SO2、TiO2、NbO、Cr23、MoO2、NiO、CuO、ZrO2、V25、WO2、B25、CaOの単独酸化物及びそれぞれの非化学量論組成の単独酸化物、又はFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4、AlMnO3、Fe2PO3、Mn2PO3の複合酸化物及びそれぞれの非化学量論組成の複合酸化物が内部酸化したものも挙げられる。
 加熱炉の前記板温範囲内での雰囲気は、図4に示すように水と水素を含む窒素雰囲気中、log(PH2O/PH2)は-2以上2以下であることが、本発明の溶融亜鉛めっき鋼板の製造上好ましい。log(PH2O/PH2)が-2未満では、Cの酸化反応が十分進まず、またSi、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素の外部酸化物を鋼板表面に形成するためめっきの濡れ性や密着性が低下する。log(PH2O/PH2)が2超ではFeの酸化物が鋼板表面に過剰に形成するためめっきの濡れ性や密着性が低下することに加え、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの内部酸化が鋼板表面直下で過度に行われることによって、内部酸化物による鋼板の内部応力が増加し、めっき密着性が低下する。より好ましくは-2以上0.5以下である。
 ここで言う、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上の元素の外部酸化物とは、特に以下に限定されるものではないが、具体的な例としてはFeO、Fe23、Fe34、MnO、MnO2、Mn23、Mn34、SiO2、P25、Al23、SO2、TiO2、NbO、Cr23、MoO2、NiO、CuO、ZrO2、V25、WO2、B25、CaOの単独酸化物及びそれぞれの非化学量論組成の単独酸化物、又はFeSiO3、Fe2SiO4、MnSiO3、Mn2SiO4、AlMnO3、Fe2PO3、Mn2PO3の複合酸化物及びそれぞれの非化学量論組成の複合酸化物が外部酸化したものが挙げられる。
 また加熱炉の前記板温範囲内での雰囲気の内、水素濃度は図5に示すとおり1体積%以上30体積%以下である。水素濃度が1体積%未満では窒素の割合が増え鋼板表面で窒化反応が起こるためめっき濡れ性やめっき密着性を低下させ、30体積%超では焼鈍処理が経済的に劣ることに加え、鋼板内部に水素が固溶することで水素脆化が起こりめっき密着性を低下させる。
 また加熱炉の前記板温範囲内での加熱時間は、10秒以上1000秒以下が、本発明の溶融亜鉛めっき鋼板の製造上好ましい。10秒未満ではSi、Mn、Cの酸化する量が少ないため、めっきの濡れ性や密着性が低下し、1000秒超では焼鈍処理の生産性が低下すると共に内部酸化が鋼板表面直下で過剰に進行するため、内部酸化物による内部応力が発生し、めっきの密着性が低下する。ここで言う加熱炉での時間とは、冷延鋼板が板温500℃以上950℃以下の温度範囲内で通板する時間のことである。
 加熱炉における昇温の速度は特に限定しないが、遅過ぎれば生産性が悪化し、速過ぎれば加熱設備コストがかかるため、0.5℃/s以上20℃/s以下が好ましい。
 加熱炉内へ進入時の初期の板温は特に限定しないが、高過ぎれば鋼板が酸化するためっき濡れ性やめっき密着性が低下し、低過ぎれば冷却コストがかかるため、0℃以上200℃以下が好ましい。
 前記加熱炉の後、引き続き均熱炉の前記温度範囲内では、酸素ポテンシャルlog(PH2O/PH2)を低くすることで鋼板表面のFe系酸化物、具体的にはFeO、又はFe23、Fe34あるいはFeとSi、FeとCrの複合酸化物であるFe2SiO4、FeSiO3、FeCr24を還元させる。即ち、再結晶焼鈍前の鋼板表面には、大気中で自然酸化したFe酸化物のFeO、又はFe23、Fe34が形成されており、また加熱工程ではFeO、又はFe23、Fe34が増大することに加え易酸化性元素であるSi、Crが酸化するためFe2SiO4、FeSiO3、FeCr24が形成されている。そのため、均熱工程の前の鋼板表面には、めっきの濡れ性やめっき密着性を阻害するFeO、Fe23、Fe34、FeSiO3、Fe2SiO4、FeCr24が存在しおり、それら酸化物を均熱工程では還元させることでめっき濡れ性やめっき密着性を改善させる。
 均熱炉の前記板温範囲内での雰囲気は、図4に示すように水と水素を含む窒素雰囲気中、log(PH2O/PH2)は-5以上-2未満であることが、本発明の溶融亜鉛めっき鋼板の製造上好ましい。log(PH2O/PH2)が-5未満では焼鈍処理の経済性に劣るだけでなく、加熱工程で内部酸化した鋼板直下のSi、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMが還元されてしまいめっき濡れ性や密着性が低下する。log(PH2O/PH2)が-2以上では前記Fe系酸化物が十分に還元されないため、めっきの濡れ性や密着性が低下する。より好ましくは-4以上-2未満である。
 また均熱炉の前記板温範囲内での雰囲気の内、水素濃度は図6に示すとおり1体積%以上30体積%以下である。水素濃度が1体積%未満では窒素の割合が増え鋼板表面で窒化反応が起こるためめっき濡れ性やめっき密着性を低下させ、30体積%超では焼鈍処理が経済的に劣ることに加え、鋼板内部に水素が固溶することで水素脆化が起こりめっき密着性を低下させる。
 また均熱炉の前記板温範囲内での加熱時間は、10秒以上1000秒以下が、本発明の溶融亜鉛めっき鋼板の製造上好ましい。10秒未満では前記Fe系酸化物が十分に還元されず、また、1000秒超では焼鈍処理の生産性が低下すると共にSi及びMnの外部酸化物が形成するため、めっきの濡れ性や密着性が低下する。尚、均熱炉内では板温が一定温度であっても、500℃以上950℃以下の温度範囲内にあるならば温度が変化しても良い。
 連続式溶融亜鉛めっき設備の加熱炉、均熱炉にて、雰囲気条件をそれぞれ個別に制御することが、本発明の溶融亜鉛めっき鋼板の製造方法の特徴である。個別に制御するためには、炉それぞれに、窒素、水蒸気、水素の濃度を制御して投入する必要がある。更に加熱炉内の酸素ポテンシャルlog(PH2O/PH2)の方が、均熱炉内の酸素ポテンシャルlog(PH2O/PH2)より高いことが必要である。そのため、加熱炉から均熱炉に向かってガスが流れている場合では、加熱炉と均熱炉の間から、加熱炉内よりも高い水素濃度、又は低い水蒸気濃度の追加の雰囲気を均熱炉に向かって流れるように導入すれば良い。均熱炉から加熱炉に向かってガスが流れている場合では、加熱炉と均熱炉の間から、均熱炉内よりも低い水素濃度、又は高い水蒸気濃度の追加の雰囲気を加熱炉に向かって流れるように導入すれば良い。
 鋼板が、加熱炉、均熱炉を出た後は、溶融亜鉛めっき浴に浸漬されるまでは一般的な通常の工程を経ることができる。例えば除冷工程、急冷工程、過時効工程、第2冷却工程、ウオータークエンチ工程、再加熱工程等の単独、又はこれら組み合わせいずれを経ても良い。溶融亜鉛めっき浴浸漬後も同様に一般的に通常の工程を経ることができる。
 鋼板が、加熱炉、均熱炉を通過し、冷却および必要に応じて温度の保持を行なわれ、溶融亜鉛めっき浴に浸漬されて溶融亜鉛めっきされた後、必要に応じて合金化処理を施してもよい。
 溶融亜鉛めっき処理では浴温440℃以上550℃未満、浴中Al濃度、及びAlの陽イオン濃度の合計が0.08%以上0.24%以下、不可避的不純物を含有する溶融亜鉛めっき浴を用いることができる。
 浴温が440℃未満では、浴中で溶融亜鉛の凝固が起こる可能性があるため不適である。浴温が550℃を超えると浴表面で溶融亜鉛の蒸発が激しく、操業コスト高くなり、気化した亜鉛が炉内へ付着するため操業上問題がある。
 溶融亜鉛めっき鋼板をめっき処理するときに、浴中のAl濃度及びAlの陽イオン濃度の合計が0.08%未満になると、ζ層が多量に生成しめっき密着性が低下し、合計が0.24%超になると、浴中又は浴上で酸化したAlが増加し、めっき濡れ性が低下する。
 溶融亜鉛めっき処理した後に合金化処理を施す場合、合金化処理は440℃以上600℃以下で行うのが最適である。440℃未満では合金化進行が遅い。600℃超では過合金により鋼板との界面に硬くて脆いZn-Fe合金層が生成し過ぎてめっき密着性が劣化する。また600℃超では、鋼板の残留オーステナイト相が分解するため、鋼板の強度と延性のバランスも劣化する。
 以下、実施例により本発明を具体的に説明する。
 通常の鋳造、熱間圧延、酸洗、冷間圧延を施した表1に示す1mm厚の冷延板の供試材1~72を、前述の通りロールピックアップしにくく比較的生産性の高い加熱方法であるオールラジアントチューブ型加熱炉を備えた連続式溶融亜鉛めっき設備にて焼鈍処理、めっき層を施す処理を行った。オールラジアントチューブ型を利用することで前述の通りロールピックアップしにくく生産性も良い。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 加熱炉及び均熱炉にはそれぞれ、雰囲気として水素、水蒸気を含む窒素ガスを導入した。加熱炉、均熱炉での条件、及びそれぞれの炉での水蒸気分圧と水素分圧の比の対数log(PH2O/PH2)、水素濃度を表2~7に示す。比較例を表8に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 均熱炉の後は一般的な除冷、急冷、過時効、第2冷却工程を経て溶融亜鉛めっき浴に浸漬した。溶融亜鉛めっき浴はめっき浴温460℃、0.13質量%のAlを含有した。鋼板を溶融亜鉛めっき浴に浸漬した後、窒素ガスワイピングによりめっき厚みを片面当り8μmに調整した。その後いくつかの例では、合金化炉で、鋼板温度500℃で30秒加熱することで合金化処理をした。得られた溶融亜鉛めっき鋼板のめっき濡れ性、及びめっき密着性を評価した。結果を表2~7に、比較例を表8に示す。表2~7では前記合金化処理をした場合を「有」、しない場合を「無」として、合金化処理の有無を記載した。
 めっき濡れ性は、各供試材のめっき鋼板の表面上、任意の200μm×200μmのZnとFeをEPMAマッピングすることにより、Znが無く且つFeが露出した箇所がある場合には濡れ性不良(×)、Znで表面すべてが覆われてFeが露出した箇所が認められない場合には濡れ性良好(○)と評価した。
 めっき密着性は、パウダリング試験で測定した。剥離幅が2mm超となった場合を密着性不良(×)、2mm以下1mm超を密着性良好(○)、1mm以下を密着性非常に良好(◎)と評価した。パウダリング試験とは、溶融亜鉛めっき鋼板にセロテープ(登録商標)を貼り、テープ面を90°(R=1)曲げ、曲げ戻しをした後、テープを剥がした時のめっき層の剥離幅を測定する密着性検査方法である。
 尚、B層の厚み、及びB層中の単独酸化物又は複合酸化物の含有率の合計、B層中の酸化物ではないFe含有率、B層中の酸化物ではないC、Si、Mn、P、S、Al、Ti、Cr、Mo、Ni、Cu、Zr、V、B、Caそれぞれの含有率は前述したXPS(PHI5800、アルバック・ファイ株式会社製)による測定方法にて求めた。
 本発明の実施例(発明例)及び比較例のめっき濡れ性、めっき密着性試験の結果、本発明の実施例である表2~9のA1~A72、及びB1~B72、C1~C72、D1~D72、E1~E72、F1~F72、G1~G72は、比較例である表9の水準H1~H34に比べめっき濡れ性、めっき密着性に優れることが判った。
 本発明法で製造された溶融亜鉛めっき鋼板は、めっき濡れ性及びめっき密着性に優れるので、自動車分野、及び家電分野、建材分野の部材を中心としての適用が見込まれる。

Claims (4)

  1.  質量%で、
    C:0.05%~0.50%、
    Si:0.1%~3.0%、
    Mn0.5%~5.0%、
    P0.001%~0.5%、
    S0.001%~0.03%、
    Al0.005%~1.0%
    を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に溶融亜鉛めっき層Aを有する溶融亜鉛めっき鋼板であって、該鋼板表面直下で且つ該鋼板内に下記B層を有することを特徴とする、溶融亜鉛めっき鋼板。
    B層:厚みが0.001μm~0.5μmであり、該B層の質量基準で、Fe、Si、Mn、P、S、Alの酸化物の1種又は2種以上を合計で50質量%未満含有しており、
    酸化物ではないC、Si、Mn、P、S、Alを、
    C:0.05質量%未満、
    Si:0.1質量%未満、
    Mn:0.5質量%未満、
    P:0.001質量%未満、
    S:0.001質量%未満、
    Al:0.005質量%未満
    含有し、
    酸化物ではないFeを50質量%以上
    含有している層。
  2.  質量%で、
    C:0.05%~0.50%、
    Si:0.1%~3.0%、
    Mn:0.5%~5.0%、
    P:0.001%~0.5%、
    S:0.001%~0.03%、
    Al:0.005%~1.0%、
    Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMのうち1種又は2種以上の元素、それぞれ0.0001%~1%
    を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に溶融亜鉛めっき層Aを有する溶融亜鉛めっき鋼板であって、該鋼板表面直下で且つ該鋼板内に下記B層を有することを特徴とする、溶融亜鉛めっき鋼板。
    B層:厚みが0.001μm~0.5μmであり、該B層の質量基準で、Fe、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの酸化物の1種又は2種以上を合計で50質量%未満含有しており、
    酸化物ではないC、Si、Mn、P、S、Al、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMを、
    C0.05質量%未満、
    Si:0.1質量%未満、
    Mn:0.5質量%未満、
    P:0.001質量%未満、
    S:0.001質量%未満、
    Al:0.005質量%未満、
    Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMの1種又は2種以上:それぞれ0.0001質量%未満
    含有し、
    酸化物ではないFeを50質量%以上
    含有している層。
  3.  前記溶融亜鉛めっき層Aの厚みが2μm~100μmである請求項1又は2に記載の溶融亜鉛めっき鋼板。
  4.  請求項1または2に記載の成分の鋼を、鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板とし、
    当該冷延鋼板を、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備において焼鈍処理し、そして溶融亜鉛めっき処理することを含む溶融亜鉛めっき鋼板の製造方法であって、
    該焼鈍処理を行う当該加熱炉及び均熱炉において、それぞれの炉における当該冷延鋼板板温が500℃~950℃の温度範囲内であり、且つ下記条件で当該冷延鋼板を通板することを特徴とする、溶融亜鉛めっき鋼板の製造方法。
    加熱炉条件:オールラジアントチューブ型の加熱炉を用い、前記冷延鋼板を上記温度範囲で且つ10秒~1000秒間加熱中に、該加熱炉内の水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-2~2であり、該加熱炉が水素濃度1体積%~30体積%の水素、水蒸気および窒素からなる雰囲気を有する。
    均熱炉条件:前記加熱炉に引き続く均熱炉で、前記冷延鋼板を上記温度範囲内で且つ10秒~1000秒間均熱中に、該均熱炉内の水蒸気分圧(PH2O)を水素分圧(PH2)で除した値の対数log(PH2O/PH2)が-5~-2であり、該均熱炉が水素濃度1体積%~30体積%の水素、水蒸気および窒素からなる雰囲気を有する。
PCT/JP2012/075189 2011-09-30 2012-09-28 めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法 WO2013047804A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2013514485A JP5648741B2 (ja) 2011-09-30 2012-09-28 めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法
CA2848949A CA2848949C (en) 2011-09-30 2012-09-28 Steel sheet provided with hot dip galvanized layer excellent in plating wettability and plating adhesion and method of production of same
US14/346,618 US9752221B2 (en) 2011-09-30 2012-09-28 Steel sheet provided with hot dip galvanized layer excellent in plating wettability and plating adhesion and method of production of same
EP12835446.1A EP2762601B1 (en) 2011-09-30 2012-09-28 Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor
ES12835446.1T ES2680649T3 (es) 2011-09-30 2012-09-28 Lámina de acero con una capa galvanizada por inmersión en caliente y que muestra una humectabilidad de recubrimiento y adhesión de recubrimiento excelentes y su método de producción
BR112014007509A BR112014007509A2 (pt) 2011-09-30 2012-09-28 folha de aço fornecida com camada galvanizada por imersão a quente excelente em umectabilidade de galvanização e adesão de galvanização e método de produção da mesma
CN201280047145.6A CN103827342B (zh) 2011-09-30 2012-09-28 镀覆润湿性及镀覆密合性优良的具备热浸镀锌层的钢板及其制造方法
MX2014003789A MX359228B (es) 2011-09-30 2012-09-28 Planta de acero que tiene capa galvanizada por inmersión en caliente y que muestra humectabilidad por deposición y adhesión por deposición superior, y método de producción para la misma.
PL12835446T PL2762601T3 (pl) 2011-09-30 2012-09-28 Blacha stalowa cienka mająca warstwę cynkowaną ogniowo i wykazująca doskonalą zwilżalność powłoki galwanicznej i przyczepność powłoki galwanicznej oraz sposób jej wytwarzania
KR1020147006759A KR101624810B1 (ko) 2011-09-30 2012-09-28 도금 습윤성 및 도금 밀착성이 우수한 용융 아연 도금층을 구비한 강판과 그 제조 방법
RU2014117496/02A RU2584060C2 (ru) 2011-09-30 2012-09-28 Стальной лист, снабженный образованным горячей гальванизацией погружением слоем с превосходными смачивающей способностью плакирующего покрытия и адгезией слоя покрытия, и способ его получения
ZA2014/02254A ZA201402254B (en) 2011-09-30 2014-03-26 Steel sheet provided with hot dip galvanized layer excellent in plating wettability and plating adhesion and method of production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217144 2011-09-30
JP2011-217144 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047804A1 true WO2013047804A1 (ja) 2013-04-04

Family

ID=47995827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075189 WO2013047804A1 (ja) 2011-09-30 2012-09-28 めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法

Country Status (14)

Country Link
US (1) US9752221B2 (ja)
EP (1) EP2762601B1 (ja)
JP (2) JP5648741B2 (ja)
KR (1) KR101624810B1 (ja)
CN (1) CN103827342B (ja)
BR (1) BR112014007509A2 (ja)
CA (1) CA2848949C (ja)
ES (1) ES2680649T3 (ja)
MX (1) MX359228B (ja)
PL (1) PL2762601T3 (ja)
RU (1) RU2584060C2 (ja)
TW (1) TWI465581B (ja)
WO (1) WO2013047804A1 (ja)
ZA (1) ZA201402254B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036681A (ko) 2012-08-03 2015-04-07 신닛테츠스미킨 카부시키카이샤 용융 아연 도금 강판 및 그 제조 방법
WO2016031556A1 (ja) * 2014-08-29 2016-03-03 株式会社神戸製鋼所 溶融亜鉛めっき用または合金化溶融亜鉛めっき用原板、およびその製造方法、並びに溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板
KR20160027105A (ko) * 2013-07-04 2016-03-09 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 냉간 압연 강판, 제조 방법 및 차량
US20160222500A1 (en) * 2013-09-12 2016-08-04 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
US20160230259A1 (en) * 2013-09-12 2016-08-11 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
WO2017110054A1 (ja) * 2015-12-22 2017-06-29 Jfeスチール株式会社 Mn含有合金化溶融亜鉛めっき鋼板およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2773302T3 (es) * 2012-11-06 2020-07-10 Nippon Steel Corp Chapa de acero aleado y galvanizado por inmersión en caliente y método de fabricación de la misma
DE102014116929B3 (de) * 2014-11-19 2015-11-05 Thyssenkrupp Ag Verfahren zur Herstellung eines aufgestickten Verpackungsstahls, kaltgewalztes Stahlflachprodukt und Vorrichtung zum rekristallisierenden Glühen und Aufsticken eines Stahlflachprodukts
WO2017145322A1 (ja) * 2016-02-25 2017-08-31 新日鐵住金株式会社 鋼板の製造方法及び鋼板の連続焼鈍装置
RU2625194C1 (ru) * 2016-07-11 2017-07-12 Юлия Алексеевна Щепочкина Литой высокобористый сплав
JP6740973B2 (ja) * 2017-07-12 2020-08-19 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
JP6916129B2 (ja) * 2018-03-02 2021-08-11 株式会社神戸製鋼所 ホットスタンプ用亜鉛めっき鋼板およびその製造方法
CN110284064B (zh) * 2019-07-18 2021-08-31 西华大学 一种高强度含硼钢及其制备方法
KR102405223B1 (ko) * 2020-11-05 2022-06-02 주식회사 포스코 법랑용 강판 및 그 제조방법
KR102547364B1 (ko) * 2020-12-18 2023-06-22 주식회사 포스코 고강도강 용융아연도금강판 및 그 제조방법
CN115404426B (zh) * 2022-07-22 2023-12-22 江苏甬金金属科技有限公司 一种高强度热镀锌钢板及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122865A (en) 1979-03-12 1980-09-20 Nippon Steel Corp Molten zinc plating method for difficult plating steel sheet
JPS5633463A (en) 1979-07-16 1981-04-03 Nippon Parkerizing Co Ltd Hot dipping method
JPS5779160A (en) 1980-11-04 1982-05-18 Nippon Steel Corp Production of zinc-iron type alloy coated high tensile steel plate
JP2000309847A (ja) 1999-04-20 2000-11-07 Kawasaki Steel Corp 熱延鋼板、溶融めっき熱延鋼板およびそれらの製造方法
JP2001200352A (ja) * 2000-01-20 2001-07-24 Nkk Corp 耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP2001226742A (ja) * 2000-02-14 2001-08-21 Nippon Steel Corp 成形性の優れた溶融亜鉛メッキ高強度薄鋼板とその製造方法
JP2001279412A (ja) 2000-03-29 2001-10-10 Nippon Steel Corp 耐食性の良好なSi含有高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2001323355A (ja) 2000-05-11 2001-11-22 Nippon Steel Corp めっき密着性と塗装後耐食性の良好なSi含有高強度溶融亜鉛めっき鋼板と塗装鋼板およびその製造方法
JP2003171752A (ja) * 2001-07-12 2003-06-20 Nippon Steel Corp 疲労耐久性および耐食性に優れた高強度高延性溶融Znめっき鋼板及びその製造方法
JP2008007842A (ja) 2006-06-30 2008-01-17 Nippon Steel Corp 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2009020939A (ja) 2007-07-11 2009-01-29 Funai Electric Co Ltd 光ピックアップ
JP2009068041A (ja) 2007-09-11 2009-04-02 Jfe Steel Kk 溶融亜鉛めっき鋼板の製造方法
JP2010126757A (ja) 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010196083A (ja) 2009-02-23 2010-09-09 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970445B2 (ja) * 1994-12-14 1999-11-02 住友金属工業株式会社 Si添加高張力鋼材の溶融亜鉛めっき方法
JP3912014B2 (ja) * 2001-02-05 2007-05-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
CN100562601C (zh) 2001-06-06 2009-11-25 新日本制铁株式会社 具有抗疲劳性、耐腐蚀性、延展性和强变形后高镀层结合力的高强度热浸镀锌薄钢板和热浸镀锌层扩散处理的薄钢板及其制造方法
JP4275424B2 (ja) * 2002-02-12 2009-06-10 Jfeスチール株式会社 高張力溶融亜鉛めっき鋼板及びその製造方法、並びに高張力合金化溶融亜鉛めっき鋼板及びその製造方法
FR2844281B1 (fr) * 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
RU2312162C2 (ru) 2003-04-10 2007-12-10 Ниппон Стил Корпорейшн Высокопрочный стальной лист с покрытием из расплавленного цинка и способ его изготовления
JP4192051B2 (ja) * 2003-08-19 2008-12-03 新日本製鐵株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
EP1829983B1 (en) * 2004-12-21 2016-04-13 Kabushiki Kaisha Kobe Seiko Sho Method and facility for hot dip zinc plating
JP4912684B2 (ja) * 2006-01-18 2012-04-11 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008144264A (ja) * 2006-11-16 2008-06-26 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5315795B2 (ja) * 2008-05-30 2013-10-16 Jfeスチール株式会社 高加工時の耐めっき剥離性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびその製造方法
US8692152B2 (en) * 2008-07-09 2014-04-08 Suzuki Motor Corporation Laser lap welding method for galvanized steel sheets
JP5206705B2 (ja) * 2009-03-31 2013-06-12 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
DE102011051731B4 (de) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122865A (en) 1979-03-12 1980-09-20 Nippon Steel Corp Molten zinc plating method for difficult plating steel sheet
JPS5633463A (en) 1979-07-16 1981-04-03 Nippon Parkerizing Co Ltd Hot dipping method
JPS5779160A (en) 1980-11-04 1982-05-18 Nippon Steel Corp Production of zinc-iron type alloy coated high tensile steel plate
JP2000309847A (ja) 1999-04-20 2000-11-07 Kawasaki Steel Corp 熱延鋼板、溶融めっき熱延鋼板およびそれらの製造方法
JP2001200352A (ja) * 2000-01-20 2001-07-24 Nkk Corp 耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP2001226742A (ja) * 2000-02-14 2001-08-21 Nippon Steel Corp 成形性の優れた溶融亜鉛メッキ高強度薄鋼板とその製造方法
JP2001279412A (ja) 2000-03-29 2001-10-10 Nippon Steel Corp 耐食性の良好なSi含有高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2001323355A (ja) 2000-05-11 2001-11-22 Nippon Steel Corp めっき密着性と塗装後耐食性の良好なSi含有高強度溶融亜鉛めっき鋼板と塗装鋼板およびその製造方法
JP2003171752A (ja) * 2001-07-12 2003-06-20 Nippon Steel Corp 疲労耐久性および耐食性に優れた高強度高延性溶融Znめっき鋼板及びその製造方法
JP2008007842A (ja) 2006-06-30 2008-01-17 Nippon Steel Corp 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2009020939A (ja) 2007-07-11 2009-01-29 Funai Electric Co Ltd 光ピックアップ
JP2009068041A (ja) 2007-09-11 2009-04-02 Jfe Steel Kk 溶融亜鉛めっき鋼板の製造方法
JP2010126757A (ja) 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010196083A (ja) 2009-02-23 2010-09-09 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131981B2 (en) 2012-08-03 2018-11-20 Nippon Steel and Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method of the same
KR20150036681A (ko) 2012-08-03 2015-04-07 신닛테츠스미킨 카부시키카이샤 용융 아연 도금 강판 및 그 제조 방법
JP2016529392A (ja) * 2013-07-04 2016-09-23 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 冷間圧延鋼板、製造方法および車両
US10400315B2 (en) 2013-07-04 2019-09-03 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled steel sheet and vehicle
KR20160027105A (ko) * 2013-07-04 2016-03-09 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 냉간 압연 강판, 제조 방법 및 차량
KR101852277B1 (ko) 2013-07-04 2018-06-04 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 냉간 압연 강판, 제조 방법 및 차량
US20160222500A1 (en) * 2013-09-12 2016-08-04 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
US9873934B2 (en) * 2013-09-12 2018-01-23 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
KR101831173B1 (ko) 2013-09-12 2018-02-26 제이에프이 스틸 가부시키가이샤 외관성과 도금 밀착성이 우수한 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판 그리고 그들의 제조 방법
US9932659B2 (en) 2013-09-12 2018-04-03 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
US20160230259A1 (en) * 2013-09-12 2016-08-11 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
JP2016050356A (ja) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 溶融亜鉛めっき用または合金化溶融亜鉛めっき用原板、およびその製造方法、並びに溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板
WO2016031556A1 (ja) * 2014-08-29 2016-03-03 株式会社神戸製鋼所 溶融亜鉛めっき用または合金化溶融亜鉛めっき用原板、およびその製造方法、並びに溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板
US10597764B2 (en) 2014-08-29 2020-03-24 Kobe Steel, Ltd. Substrate for hot-dip galvanizing or hot-dip galvannealing, production method therefor, and hot-dip galvanized steel sheet or hot-dip galvannealed steel sheet
WO2017110054A1 (ja) * 2015-12-22 2017-06-29 Jfeスチール株式会社 Mn含有合金化溶融亜鉛めっき鋼板およびその製造方法
JP2017115189A (ja) * 2015-12-22 2017-06-29 Jfeスチール株式会社 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法
US11136641B2 (en) 2015-12-22 2021-10-05 Jfe Steel Corporation Mn-containing galvannealed steel sheet and method for producing the same

Also Published As

Publication number Publication date
ZA201402254B (en) 2015-08-26
KR20140053322A (ko) 2014-05-07
TW201319271A (zh) 2013-05-16
US9752221B2 (en) 2017-09-05
RU2014117496A (ru) 2015-11-10
EP2762601A4 (en) 2015-08-05
JP5907221B2 (ja) 2016-04-26
PL2762601T3 (pl) 2018-11-30
CA2848949A1 (en) 2013-04-04
US20140234656A1 (en) 2014-08-21
JPWO2013047804A1 (ja) 2015-03-30
MX2014003789A (es) 2014-07-10
RU2584060C2 (ru) 2016-05-20
MX359228B (es) 2018-09-20
CN103827342A (zh) 2014-05-28
ES2680649T3 (es) 2018-09-10
EP2762601B1 (en) 2018-05-30
CN103827342B (zh) 2016-06-22
BR112014007509A2 (pt) 2017-04-04
JP5648741B2 (ja) 2015-01-07
JP2015038245A (ja) 2015-02-26
CA2848949C (en) 2016-09-20
EP2762601A1 (en) 2014-08-06
KR101624810B1 (ko) 2016-05-26
TWI465581B (zh) 2014-12-21

Similar Documents

Publication Publication Date Title
JP5907221B2 (ja) めっき濡れ性及びめっき密着性に優れた合金化溶融亜鉛めっき層を備えた鋼板とその製造方法
JP6025867B2 (ja) メッキ表面品質及びメッキ密着性に優れた高強度溶融亜鉛メッキ鋼板及びその製造方法
JP5206705B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5676642B2 (ja) 表面特性に優れた熱間プレス用亜鉛めっき鋼板並びにこれを利用した熱間プレス成形部品及びその製造方法
JP5708884B2 (ja) 合金化溶融亜鉛めっき鋼板とその製造方法
KR101831173B1 (ko) 외관성과 도금 밀착성이 우수한 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판 그리고 그들의 제조 방법
JP5799819B2 (ja) めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
JP5417797B2 (ja) 高強度溶融亜鉛系めっき鋼板およびその製造方法
JP5513216B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
KR101789958B1 (ko) 합금화 용융 아연 도금 강판 및 그 제조 방법
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5444752B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度合金化溶融亜鉛めっき鋼板の製造方法
US20140342182A1 (en) Galvannealed steel sheet having high corrosion resistance after painting
KR101500282B1 (ko) 도금표면 품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 제조방법
JP2005200711A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP5115154B2 (ja) 高強度合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514485

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147006759

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2848949

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14346618

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/003789

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012835446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014117496

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014007509

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014007509

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140328