WO2013046945A1 - 米粉製造のための製粉前処理方法及びその装置 - Google Patents

米粉製造のための製粉前処理方法及びその装置 Download PDF

Info

Publication number
WO2013046945A1
WO2013046945A1 PCT/JP2012/070198 JP2012070198W WO2013046945A1 WO 2013046945 A1 WO2013046945 A1 WO 2013046945A1 JP 2012070198 W JP2012070198 W JP 2012070198W WO 2013046945 A1 WO2013046945 A1 WO 2013046945A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
water
moisture content
milling
grains
Prior art date
Application number
PCT/JP2012/070198
Other languages
English (en)
French (fr)
Inventor
武 福森
英則 水野
敬治 元岡
一信 梶原
勉 波光
洋二 柏谷
浩司 深水
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to KR1020147008022A priority Critical patent/KR20140072060A/ko
Priority to BR112014007463A priority patent/BR112014007463A2/pt
Priority to CN201280047455.8A priority patent/CN103842087B/zh
Priority to ES12837060T priority patent/ES2775195T3/es
Priority to IN3046CHN2014 priority patent/IN2014CN03046A/en
Priority to EP12837060.8A priority patent/EP2762232B1/en
Publication of WO2013046945A1 publication Critical patent/WO2013046945A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02BPREPARING GRAIN FOR MILLING; REFINING GRANULAR FRUIT TO COMMERCIAL PRODUCTS BY WORKING THE SURFACE
    • B02B5/00Grain treatment not otherwise provided for
    • B02B5/02Combined processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/115Cereal fibre products, e.g. bran, husk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02BPREPARING GRAIN FOR MILLING; REFINING GRANULAR FRUIT TO COMMERCIAL PRODUCTS BY WORKING THE SURFACE
    • B02B1/00Preparing grain for milling or like processes
    • B02B1/04Wet treatment, e.g. washing, wetting, softening
    • B02B1/06Devices with rotary parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02BPREPARING GRAIN FOR MILLING; REFINING GRANULAR FRUIT TO COMMERCIAL PRODUCTS BY WORKING THE SURFACE
    • B02B1/00Preparing grain for milling or like processes
    • B02B1/08Conditioning grain with respect to temperature or water content

Definitions

  • the present invention relates to a pre-milling method and apparatus for producing rice flour.
  • the long-time immersion treatment of the polished rice is performed in order to uniformize the moisture distribution in the rice grains and soften the rice grains.
  • the immersion treatment is performed only for a short time, the moisture distribution in the rice grains becomes non-uniform, and there are many places where water absorption is small.
  • the polished rice becomes a coarse powder at the time of milling at a location where water absorption in the rice grain is small, and becomes a rice powder having a particle size with a large proportion of the coarse powder. For this reason, each process of washing and soaking before milling has extremely important significance on the quality of rice flour (see, for example, Non-Patent Document 1).
  • wastewater used in the washing step and the soaking step before milling in the above production method is not allowed to be discharged as it is into rivers or sewers, for example, in wastewater treatment facilities such as aerobic biological treatment or anaerobic biological treatment. It was necessary to discharge to the outside after purifying. Conventionally, an enormous amount of money has been invested in the initial cost and running cost associated with this wastewater treatment.
  • the present invention has a technical problem to provide a pretreatment method and an apparatus for producing rice flour that do not cause drainage due to a washing step and a dipping step and that significantly reduce the hardness of rice. To do.
  • the present invention supplies low humidity wind to raw milled rice having a moisture content in the range of 13.0 to 16.0% (wb%).
  • the refined rice that has been passed through the water homogenization step is hydrated up to 20.0-45.0% (wb%) and promotes moisture absorption into the center of the polished rice after the addition.
  • Quality process It was set as the pre-processing method for rice flour manufacture provided with.
  • the paste powder layer portion is obtained by adding water to the polished rice whose water has been homogenized by the water homogenization step. It is characterized in that it has a degreasing step of degreasing the paste layer by softening and rubbing the polished rice grains.
  • the water content of polished rice as a raw material is known as 15.5% (wb%) (for example, the 5th supplementary food composition table 2006), but in fact it is 14.0 to 16.0 for new rice. % (Wb%), 13.0 to 15.0% (wb%) for old rice, and varies depending on freshness and storage conditions.
  • wb% for example, the 5th supplementary food composition table 2006
  • % (Wb%) 13.0 to 15.0% (wb%) for old rice, and varies depending on freshness and storage conditions.
  • low-humidity wind is fed to the raw milled rice having a water content in the range of 13.0 to 16.0% (wb%).
  • the moisture is almost homogenized by adjusting it to the range of 11.0 to 13.0% (wb%).
  • moisture content of substantially all polished rice is homogenized, and many fine cracks are formed in the surface of the rice grain of polished rice, and it is in the state which is easy to absorb a water
  • the tempering step water is added to the polished rice that has been passed through the water homogenization step until the water content becomes 20.0 to 45.0% (w.b.%).
  • the adhering water adhering to the surface of the rice grains penetrates into the starch layer from fine cracks.
  • water absorption to a starch double grain is performed with the osmotic pressure of a cell wall structure
  • the amount of strain of the cell wall tissue increases due to rapid swelling, the strong cell wall tissue is easily destroyed, and the hardness of the rice is reduced. Therefore, in the subsequent milling step, the cell wall tissue is easily broken and finely broken up to a single starch granule.
  • the paste powder layer portion is obtained by adding water to the polished rice whose water has been homogenized by the water homogenization step.
  • foreign long grain seeds eg Thai long grain seeds
  • FIG. 1 is a flowchart showing a pre-milling method for producing rice flour of the present invention
  • FIG. 2 is a flow diagram of a production apparatus embodying the pre-milling method for producing rice flour of the present invention.
  • the rice used as a raw material is not particularly limited as long as it is refined rice after milling, regardless of production area, variety, storage method, and milling method.
  • the degree of rice milling is not particularly limited as long as it is a normal rice milling method, and the rice milling ratio may be 94% or less.
  • the water content of the raw milled rice is preferably 13.0 to 16.0% (w.b.%).
  • the raw rice refined rice having a high water content tends to have a good taste value, and when considering the taste of rice flour, it is preferable to use a high water content.
  • ground rice, feed rice, old rice, etc. can be used as raw materials, but it is desirable to avoid those with extremely poor quality.
  • the temperature is 40-60 with respect to the raw polished rice having a water content in the range of 13.0 to 16.0% (wb%). Drying is performed by supplying low humidity air at 10 ° C. and a relative humidity of 10% or less for about 10 to 20 minutes. At this time, for example, the water content is adjusted to a range of 11.0 to 13.0% (w.b.%), so that the water distribution is almost homogenized.
  • the apparatus in the moisture homogenization step is not particularly limited, but for example, it is preferable to use a flow-down dryer indicated by reference numeral 10 in FIG. 2 from the viewpoint of economy and prevention of scorching.
  • the flow-down dryer 10 can appropriately set the temperature, the air volume, the drying time, etc. according to the desired finished moisture.
  • the moisture of almost all polished rice is homogenized, and many fine cracks are formed on the surface of the polished rice grains, making it easy to absorb moisture from the surface of the rice grains.
  • the refined rice is subjected to a dehulling process (step 2 in FIG. 1), and after the paste powder layer portion is softened by hydration, the rice grains are subjected to particle friction, and the rice paste paste layer portion is It is scraped and removed.
  • the dehulling step can be omitted.
  • the apparatus in the removal process is not particularly limited, but for example, it is preferable to use a humidifying rice mill 20 shown in FIG. 2 from the viewpoint of economy and efficiency.
  • the pressure of the wet-grinding machine 20 may be a normal pressure, and the amount of water added and the passage time can be appropriately set according to the desired finished moisture and whiteness.
  • the rice grain reaches the tempering process (step 3 in FIG. 1), and in the tempering process, the water of the rice grain is hydrated so as to become 20.0-45.0% (w.b.%).
  • the adhering water adhering to the surface of the rice grain penetrates into the starch layer from the fine cracks on the surface of the rice grain.
  • water absorption to a starch double grain comes to be performed by the osmotic pressure of a cell wall structure
  • tissue As a result, the amount of strain of the cell wall tissue increases due to rapid swelling, the strong cell wall tissue is easily destroyed, and the hardness of the rice is lowered.
  • the apparatus in the tempering process is not particularly limited, for example, it is preferable from the viewpoint of economy and efficiency to use a rotary drum type tempering machine 30 shown in FIG.
  • the amount of water added to the tempering machine can be appropriately set according to the desired finished moisture. Further, the tempering time after the addition of water can be set as appropriate according to the desired finished moisture.
  • Step 4 in FIG. 1 is a milling process, as long as the rice grains are pulverized into powder, and the method and particle size are not limited.
  • the pulverization method and particle size can be set according to the particle size of the rice flour.
  • Step 5 in FIG. 1 is a drying process in which rice flour is dried with an air current.
  • the drying time and the temperature of the air current are appropriately adjusted so as to be in the range of 8.0 to 14.0% (wb%).
  • the so-called soaking process or the rice grain pre-washing process in which the container is filled with water and the rice grains are immersed for a long time. Therefore, a large amount of water is not used, no waste water treatment facility is required, and the running cost can be greatly reduced.
  • the pre-milling apparatus 1 for producing rice flour is composed of a flow-down dryer 10, a humidified rice grinder 20, and a rotary drum type refining machine 30 as described above.
  • a raw material charging tank 2, a feed valve 3, and a transport device 4 are disposed in the front stage of the flow-down dryer 10, and a pipe 5 extending from the transport device 4 to the flow-down dryer 10 is disposed.
  • the raw rice can be fed into the flow-down dryer 10 by a predetermined amount.
  • the flow-down dryer 10 is the structure which accumulated the storage tank part 6 which stores rice grains, the drying part 7 which dries rice grains with the low humidity wind, and the discharge part 8 which discharges rice grains outside the machine.
  • the drying section 7 is provided with a pair of left and right rice grain flow channels 7b, 7b formed by the perforated plates 7a, 7a, and low humidity air is introduced into the space surrounded by the pair of rice grain flow channels 7b, 7b. , 7b for supplying air to the space surrounded by the rice grain flow down passages 7b, 7b and the machine frame of the drying unit 7, air passing through the rice grain flow down passages 7b, 7b is provided. Air exhaust passages 7d and 7d for exhausting air outside the machine are provided. An exhaust fan (not shown) is connected to the exhaust passages 7d and 7d, and the air passing through the rice grain flow down passages 7b and 7b is exhausted outside the apparatus by the operation of the exhaust fan. is there.
  • the discharge part 8 is gathered by rotary valves 8a, 8a arranged at the lower ends of the rice grain flow channels 7b, funnel parts 8b, 8b for collecting the rice grains fed from the rotary valves 8a, 8a, and the funnel parts 8b, 8b. It is comprised from the lower screw 8c which conveys the done rice grain out of the machine. In addition, it is good also as a structure which can provide the conveyance parts, such as an elevator, and can connect the discharge part 8 and the storage tank part 6, and can re-dry rice grains.
  • a transport device 11 is disposed at the subsequent stage of the flow-down dryer 10, and a pipe 12 extending from the transport device 11 to the humidified rice mill 20 is disposed.
  • the wet grinding machine 20 includes a storage tank unit 21 that temporarily stores rice grains, a cereal sending unit 22 that horizontally conveys rice grains from the storage tank unit 21, and the rice grains that are horizontally conveyed by the cerealing unit 22.
  • the cerealing part 22 has a structure in which a conveying spiral 22d is attached to one end side of a rotating shaft 22c rotatably supported by bearings 22b and 22b in a housing 22a, and grinds rice grains flowing down from the storage tank part 21. It is configured to be able to convey toward the rice part 23.
  • the polished rice section 23 has a configuration in which a milling trochanter 23b attached to the other end of the rotary shaft 22c is rotatably arranged in a horizontally disposed perforated whitening cylinder 23a.
  • a whitening chamber 23c is formed inside the cylinder 23a and a gap with the whitening trochanter 23b is formed, and an outer side of the delamination and whitening cylinder 23a is formed in a removal chamber 23d.
  • a collecting portion 25 for collecting the cocoons peeled by the polishing is formed on the lower side of the polishing rice portion 23 communicating with the removal chamber 23d.
  • the milling trochanter 23b is hollow, the rice draining part 24 side communicates with the hydration part 26, while the storage tank part 21 side is closed, and water is added such that water droplets are released in the area of the polishing rice part 23. Many holes 23e are formed.
  • the hydration unit 26 includes a water pipe, a control valve, and a water tank (all not shown). When rice grains are conveyed from the cerealing unit 22 toward the polished rice unit 23, the humidification unit 26, whitening is performed. The surface of the rice grains is instantaneously wet and softened by the addition of moisture via the hollow part of the trochanter 23b and the moisture addition hole 23e.
  • the grain friction of the rice grains is performed by the perforated wall whitening cylinder 23a and the whitening trochanter 23b. At this time, delamination is performed by peeling the thin layer on the surface of the rice grains, and the rice grains are discharged from the machined rice portion 24 to the outside of the machine.
  • a pipe 27 leading to the rotary drum type tempering machine 30 is arranged at the subsequent stage of the wet-grinding machine 20.
  • the rotary drum type tempering machine 30 is formed so as to be rotatable about the center of the cylindrical portion, and on the other hand, the rotary drum 31 in which the inclination angle in the longitudinal direction of the cylindrical portion can be changed, and the rotary drum 31 are placed.
  • the main part is composed of a flow-down basket 35 for discharging rice grains from the drum 31 and an endless belt conveyor 36 for refining the rice grains discharged from the rotating drum 31.
  • a fulcrum 37 that supports the intermediate portion in the longitudinal direction of the cylindrical portion of the rotating drum 31 and can change the inclination angle in the longitudinal direction.
  • a jack 38 capable of changing the inclination angle in the longitudinal direction by moving one end side of the rotary drum 31 up and down is provided. By driving the jack 38, the inclination angle of the rotary drum 31 can be changed from 0 ° (horizontal position) to 10 °, for example, with the fulcrum 37 as the center. Thereby, increase / decrease control of the retention amount or flow volume of the rice grain thrown into the rotating drum 31 is possible.
  • a gear motor 39 that rotates the rotating drum 31 about the axis is provided on the mount 32 of the rotating drum 31.
  • the cylindrical shape of the rotating drum 31 may be a cylindrical shape or a polygonal cylindrical shape, but the rice grains charged from the rice grain charging hopper 33 and the water supplied from the hydration unit 34 are mixed and stirred. Therefore, it is preferable to adopt a shape having a high stirring effect, that is, a polygonal cylinder shape. In addition, when a cylindrical shape having a weak stirring effect is employed, it is desirable to dispose a stirring member inside the cylinder.
  • the belt 36a of the endless belt conveyor 36 may be of any form such as a normal belt or a mesh belt suitable for draining water or ventilating.
  • a normal belt may be employed in consideration of cost and the like. That is, in this process, the amount of water added in the rotary drum 31 is limited to the extent that water adheres to the surface of the rice grains, and the belt 36a is running on the endless track for 10 to 30 minutes. In this case, water is transferred to the center of the rice grain and is not a large amount of water that causes excess water, so that a normal belt conveyor can be employed.
  • Reference numeral 40 denotes a gear motor for driving the endless belt conveyor 36.
  • Example 1 Even if a raw material changed, the confirmation test whether a difference in quality produced with the flour pre-treatment method of the present invention was performed.
  • test materials Japanese (Short Grain) Uruchi Rice Test 1, Japanese (short grain) broken rice test 2, Thai (long grain) Uruchi rice test 3, Thai (long grain) broken rice test 4, 4 types.
  • the four kinds of test materials were subjected to the milling pretreatment method of the present invention, and the obtained rice grains were milled under the same conditions, and the degree of damaged starch, the particle size distribution, and moisture were measured. The results are shown in Table 1.
  • Example 2 rice grains that are rich in ⁇ -aminobutyric acid (GABA), which is known as a kind of neurotransmitter, are used as raw materials, so-called soaking the rice grains for a long time by filling the container with water.
  • the soaking treatment method (conventional pre-milling pretreatment method) was compared with the pre-milling pretreatment method of the present invention, and it was verified whether the rice flour milled by any of the pretreatment methods contained more GABA.
  • the test method is shown in Table 2, the analysis method and analyzer for GABA content are shown in Table 3, and the measurement results of GABA content are shown in Table 4.
  • the milling pretreatment method of the present invention is a method that does not discharge the waste water from the washing step and the dipping step. Since GABA is a water-soluble substance, it is considered that GABA flows out to the outside in the dipping process in the conventional pre-milling method.
  • low-humidity wind is supplied to raw milled rice having a moisture content in the range of 13.0 to 16.0% (wb%), and the moisture content is 11.0 to 13
  • a moisture homogenization process in which the water content is adjusted to a range of 0.0% (wb%) and the milled rice that has passed through the moisture homogenization process has a moisture content of 20.0 to 45.0% (wb% )
  • Swelling increases the amount of strain in the cell wall tissue, which makes it easier for the strong cell wall tissue to be destroyed, resulting in a reduced rice hardness, and in the subsequent milling process, the cell wall tissue is easily broken down to a single starch granule. It will be finely crushed.
  • the cell wall tissue is easily broken and finely broken down to a single starch granule, so that power can be reduced in the milling process, and the generation of damaged starch can be prevented.
  • GABA ⁇ -aminobutyric acid
  • the pre-milling method for the production of rice flour according to the present invention does not require a wastewater treatment facility, reduces the construction cost when constructing a rice flour production plant, and is also known as a kind of neurotransmitter ⁇ -aminobutyric acid
  • GABA neurotransmitter ⁇ -aminobutyric acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Cereal-Derived Products (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

 水洗工程及び浸漬工程による排水を生じることなく、かつ、米の硬度を著しく低下させるような米粉製造の前処理方法及びその装置を提供する。 水分が13.0~16.0%(w.b.%)の範囲にある原料精白米に対して低湿度の風を送給し、水分を11.0~13.0%(w.b.%)の範囲に調整して水分を均質化する水分均質化工程と、該水分均質化工程を通過させた精白米に、水分が20.0~45.0%(w.b.%)までの加水及び該加水後の精白米の米粒中心部への水分吸収の促進を行う調質工程と、を備えた。

Description

米粉製造のための製粉前処理方法及びその装置
 本発明は、米粉製造のための製粉前処理方法及びその装置に関する。
 従来、米粉の製造方法として、精白米を水洗し、該水洗した精白米を、2時間以上24時間以内の浸漬処理を施して含水させた後、水挽きや気流製粉などで製粉することが古くから知られている。当該製造方法によれば、前記水洗した後の精白米に前記長時間の浸漬処理を施すことにより、粒度の細かい上質な米粉を製造することが可能となる。
 つまり、前記精白米の長時間の浸漬処理は、米粒内の水分分布を均一化するとともに、該米粒を軟質化するために行われる。一方で、精白米は、浸漬処理が短時間しか行われないと、米粒内の水分分布が不均一となり、吸水が少ない箇所が多く存在することになる。その場合、前記精白米は、米粒内における吸水が少ない箇所では製粉時に粗粉となり、粗粉の割合が多い粒度の米粉となる。このため、製粉前の水洗、浸漬の各工程が米粉の品質上、極めて重要な意義を持つことになる(例えば、非特許文献1参照)。
 しかしながら、上記製造方法における製粉前の水洗工程及び浸漬工程で使用した排水は、そのまま河川や下水道等に放流することは許されず、例えば、好気性生物処理や嫌気性生物処理などの排水処理設備で浄化させた後に外部に放出する必要があった。従来は、この排水処理に係るイニシャルコスト及びランニングコストに対して莫大な費用を投じていた。
倉澤文夫 著、「最新食品加工講座 米とその加工」、株式会社建帛社、昭和57年11月25日初版発行、P.221-223
 本発明は上記問題点にかんがみ、水洗工程及び浸漬工程による排水を生じることなく、かつ、米の硬度を著しく低下させるような米粉製造の前処理方法及びその装置を提供することを技術的課題とする。
 上記課題を解決するため本発明は、水分が13.0~16.0%(w.b.%)の範囲にある原料精白米に対して低湿度の風を送給し、水分を11.0~13.0%(w.b.%)の範囲に調整して水分を均質化する水分均質化工程と、
 該水分均質化工程を通過させた精白米に、水分が20.0~45.0%(w.b.%)までの加水及び該加水後の精白米の米粒中心部への水分吸収の促進を行う調質工程と、
を備える米粉製造のための前処理方法とした。
 請求項2記載の発明によれば、前記水分均質化工程と前記調質工程との間に、前記水分均質化工程により水分が均質化された精白米に、水分を添加して糊粉層部分を軟質化させ、この精白米を粒々摩擦することにより糊粉層部分の除糠を行う除糠工程を備えたことを特徴とする。
 一般的に原料となる精白米の水分は15.5%(w.b.%)として知られているが(例えば、五訂増補食品成分表2006)、実際には、新米なら14.0~16.0%(w.b.%)、古米なら13.0~15.0%(w.b.%)であり、鮮度や保管状態によってバラツキがある。このため、本発明では、まず、水分均質化工程において、水分が13.0~16.0%(w.b.%)の範囲にある原料精白米に対して低湿度の風を送給し、水分を11.0~13.0%(w.b.%)の範囲に調整して水分をほぼ均質化するのである。これにより、ほぼ全ての精白米の水分が均質化し、しかも精白米の米粒の表面には、微細な亀裂が多数形成され、米粒の表面から水分の吸収しやすい状態となっている。
 調質工程においては、前述の水分均質化工程を通過させた精白米に水分が20.0~45.0%(w.b.%)になるまで加水を行う。この調質工程において、米粒表面に付着した付着水が、微細な亀裂からデンプン層に浸透するようになる。そして、前記デンプン層では、細胞壁組織の浸透圧によってデンプン複粒への吸水が行われる。この結果、急速な膨潤により細胞壁組織のひずみ量が増加し、強固な細胞壁組織が破壊されやすくなっており、米の硬度が低下した状態にある。したがって、後工程の製粉工程では細胞壁組織が簡単に破壊され、デンプン単粒まで細かく破砕されることになる。
 以上のように、本発明の米粉製造のための製粉前処理では、容器内に水を満たして米粒を長時間浸漬するような、どぶ浸け処理や、米粒をあらかじめ洗米する処理が不要であるため、多量の水を使用することがなく、排水処理設備が不要となり、ランニングコストも大幅に削減することが可能となる。また、後工程の製粉工程では、細胞壁組織が簡単に破壊されデンプン単粒まで細かく破砕されるために、製粉工程における動力削減が可能となり、損傷デンプンの発生を防止することもできる。
 請求項2記載の発明によれば、前記水分均質化工程と前記調質工程との間に、前記水分均質化工程により水分が均質化された精白米に、水分を添加して糊粉層部分を軟質化させ、この精白米を粒々摩擦することにより糊粉層部分の除糠を行う除糠工程を備えているから、原料として米粒表面にわずかに糠が付着した精白米を使用する場合や、原料として外国産の長粒種(例えば、タイ国産の長粒種)を使用する場合に、米粒表面への加水により糊粉層部分を軟質化させた後、米粒同士の粒々摩擦を施して除糠を行うことができるものであり、米粉に粉砕した時の品質向上に寄与することができる。
本発明の米粉製造のための製粉前処理方法を示すフロー図である。 本発明の米粉製造のための製粉前処理方法を具体化した製造装置のフロー図である。
 以下、図面に基づき、本発明の好適な実施の形態について説明する。図1は本発明の米粉製造のための製粉前処理方法を示すフロー図であり、図2は本発明の米粉製造のための製粉前処理方法を具体化した製造装置のフロー図である。
 原料となる米は、搗精後の精白米であれば特に産地、品種、保存方法、搗精方法を問わない。米の搗精の程度は、通常の精米手段であれば特に限定されず、精米歩合が94%以下であればよい。原料精白米の水分は、13.0~16.0%(w.b.%)が好ましい。原料精白米の水分が高いものは、良食味値となる傾向が高く、米粉の食味を考慮する場合には水分の高いものを使用するのが好ましい。また、砕米、飼料米、古米なども原料として用いることができるが、著しく品質が悪いものは避けることが望ましい。
 本発明においては、最初の水分均質化工程(図1のステップ1)において、水分が13.0~16.0%(w.b.%)の範囲にある原料精白米に対して、温度が40~60℃、相対湿度10%以下の低湿度の風を約10~20分間送給して乾燥を行う。このとき、例えば、水分が11.0~13.0%(w.b.%)の範囲に調整されて、水分分布がほぼ均質化する。
 水分均質化工程における装置は特に限定されないが、例えば、図2の符号10に示す流下式乾燥機を用いるのが、経済性、焦げ防止の点から好ましい。流下式乾燥機10は、希望する仕上がり水分に応じて、温度、風量、乾燥時間等を適宜設定することができる。
 かくして得られた精白米は、ほぼ全ての精白米の水分が均質化し、しかも精白米の米粒の表面には、微細な亀裂が多数形成され、米粒の表面から水分の吸収しやすい状態となっている。次に、この精白米は、除糠工程に至り(図1のステップ2)、加水により糊粉層部分が軟質化された後、米粒同士の粒々摩擦が施され、米粒の糊粉層部分がこすり取られて除糠が行われるようになる。なお、原料として精白米表面の糠をあらかじめ除去した、いわゆる無洗米を用いる場合は、除糠工程を省略することも可能である。さらに、品質の悪い外国産米を用いる場合は、水分均質化工程の前段に除糠工程を配置するのが望ましい。
 除糠工程における装置は特に限定されないが、例えば、図2に示す加湿式研米機20を用いるのが、経済性、効率性の点から好ましい。加湿式研米機20の圧力は、通常の圧力でよく、加水量及び通過時間は、希望する仕上がり水分や白度に応じて、適宜設定することができる。
 次に、米粒は調質工程に至り(図1のステップ3)、該調質工程において米粒の水分が20.0~45.0%(w.b.%)となるように加水される。この調質工程においては、米粒表面に付着した付着水が、米粒表面の微細な亀裂からデンプン層に浸透するようになる。そして、該デンプン層では、細胞壁組織の浸透圧によってデンプン複粒への吸水が行われるようになる。この結果、急速な膨潤により細胞壁組織のひずみ量が増加し、強固な細胞壁組織が破壊されやすくなって、米の硬度が低下した状態になる。
 調質工程における装置は特に限定されないが、例えば、図2に示す回転ドラム式の調質機30を用いるのが、経済性、効率性の点から好ましい。調質機の加水量は、希望する仕上がり水分に応じて、適宜設定することができる。また、加水後のテンパリング時間も希望する仕上がり水分に応じて、適宜設定することができる。
 図1のステップ4は、製粉工程であり、米粒を粉砕して粉にできればよく、その方式、粒径に限定はない。米粉の粒径に合わせて粉砕方式や粒径を設定することができる。
 図1のステップ5は、米粉を気流で乾燥する乾燥工程であり、例えば、8.0~14.0%(w.b.%)の範囲となるように、乾燥時間や気流の温度を適宜調整することができる。以上のように、本発明の米粉製造のための製粉前処理方法であれば、容器内に水を満たして米粒を長時間浸漬するような、いわゆる、どぶ浸け処理や、米粒をあらかじめ洗米する処理が不要であるため、多量の水を使用することがなく、排水処理設備が不要となり、ランニングコストも大幅に削減することが可能となる。
 次に上記した米粉製造のための製粉前処理方法を具体的に実施するための装置について説明する。
 図2において、米粉製造のための製粉前処理装置1は、前述のように流下式乾燥機10、加湿式研米機20及び回転ドラム式調質機30から構成される。
 流下式乾燥機10の前段には、原料投入タンク2、繰出バルブ3及び搬送装置4が配置されており、搬送装置4からは流下式乾燥機10に至る配管5が配置されている。これらの構成により、原料米を所定量ずつ流下式乾燥機10に投入することができる。そして、流下式乾燥機10は、米粒を貯留する貯留タンク部6、米粒を低湿度の風により乾燥させる乾燥部7及び米粒を機外に排出する排出部8を重設した構成である。
 乾燥部7は、多孔板7a,7aにて形成される米粒流下路7b,7bを左右一対設け、この一対の米粒流下路7b,7bで囲まれる空間に、低湿度空気を前記米粒流下路7b,7bに向けて送給するための空気供給口7cが設けられ、米粒流下路7b,7bと乾燥部7の機枠とで囲まれる空間に、各米粒流下路7b,7bを通過した空気を機外に排風する排風路7d,7dがそれぞれ設けられている。該排風路7d,7dには排風ファン(図示せず)が接続してあり、該排風ファンの作動により米粒流下路7b,7bを通過した空気を機外に排風する構成にしてある。
 排出部8は、各米粒流下路7b下端に配置したロータリーバルブ8a,8aと、該ロータリーバルブ8a,8aから繰り出された米粒を集合させる漏斗部8b,8bと、該漏斗部8b,8bによって集合された米粒を機外に搬送する下部スクリュー8cとから構成されている。なお、別途昇降機などの搬送部を設けて排出部8と貯留タンク部6とを連絡し、米粒を再乾燥することができる構成としてもよい。
 流下式乾燥機10の後段には、搬送装置11が配置されており、搬送装置11からは加湿式研米機20に至る配管12が配置されている。これらの構成により、ほぼ全て水分が均質化した米粒を所定量ずつ湿式研米機20に投入することができる。なお、原料が、精白米表面の糠をあらかじめ除去した、いわゆる無洗米の場合は、湿式研米機20に至る配管12に代えて、回転ドラム式調質機30に至る配管13を選択し、除糠処理を省略することも可能である。
 そして、湿式研米機20は、米粒を一時貯留する貯留タンク部21と、該貯留タンク部21からの米粒を横搬送する送穀部22と、該送穀部22により横搬送された米粒を研米する研米部23と、該研米部23により研米された米粒を排出する排米部24と、前記研米部23での研米により剥離された糠を集糠する集糠部25と、前記研米部23内の米粒に加湿を行う加水部26とを備えた構成である。
 前記送穀部22は、ハウジング22a内で軸受22b,22bにより回転自在に支持された回転軸22cの一端側に搬送螺旋22dを取り付けた構成であり、貯留タンク部21から流下された米粒を研米部23に向けて搬送できる構成となっている。
 研米部23は、横設した多孔壁除糠精白筒23a内に、前記回転軸22cの他端側に取り付けた精白転子23bを回転可能に配置した構成であり、前記多孔壁除糠精白筒23aの内側にあって前記精白転子23bとの間隙を精白室23cとなし、前記除糠精白筒23aの外側を除糠室23dに形成してある。そして、前記除糠室23dと連通する前記研米部23の下方側に研米により剥離された糠を集糠する集糠部25が形成される。
 前記精白転子23bは中空状となし、排米部24側は加水部26と連通する一方、貯留タンク部21側は閉鎖され、研米部23の領域で水滴が放出されるような水分添加孔23eが多数形成されている。前記加水部26は、水管、調節弁及び水タンク(いずれも図示せず)より構成され、前記送穀部22から米粒が研米部23内に向けて搬送されると、加湿部26、精白転子23b中空部及び水分添加孔23eを経由した水分の添加によって瞬間的に米粒表面が湿潤軟質化される。そして、多孔壁除糠精白筒23a及び精白転子23bにより、米粒どうしの粒々摩擦が行われる。このとき、米粒表面の薄層を剥離することで除糠が行われ、米粒は排米部24から機外に排出されることになる。
 加湿式研米機20の後段には、回転ドラム式調質機30に至る配管27が配置されている。
 回転ドラム式調質機30は、筒部の中心を軸心として回転可能に形成する一方、筒部の長尺方向の傾斜角度を変更可能とした回転ドラム31と、該回転ドラム31を載置する架台32と、前記回転ドラム31内に米粒を投入するための米粒投入ホッパ33と、該米粒投入ホッパ33に連絡して回転ドラム31内に水を供給するための加水部34と、前記回転ドラム31からの米粒を排出するための流下樋35と、前記回転ドラム31から排出された米粒の調質を行う無端ベルトコンベア36と、から主要部が構成される。
 前記回転ドラム31を載置する架台32上には、回転ドラム31の筒部の長尺方向中間部を支持し、かつ、長尺方向の傾斜角度を変更することが可能な支点37を設けるとともに、前記回転ドラム31の一端側を上下動させて長尺方向の傾斜角度を変更することが可能なジャッキ38が設けられている。このジャッキ38の駆動により、支点37を中心にして、回転ドラム31の傾斜角度が例えば、0°(水平位置)から10°まで変更可能となる。これにより、回転ドラム31へ投入された米粒の滞留量又は流量を増減制御することができる。そして、回転ドラム31の架台32上には、回転ドラム31を軸心を中心に回転させるギアモータ39が設けられている。
 前記回転ドラム31の筒形状は、円筒形状であっても、多角筒形状であってもよいが、米粒投入ホッパ33から投入された米粒と加水部34から供給された水とを混合・撹拌させるため、撹拌効果の高い形状、すなわち、多角筒形状を採用するのが好ましい。また、撹拌効果の弱い円筒形状を採用する場合にあっては、円筒内部に撹拌部材を配設するのが望ましい。
 前記回転ドラム31からの米粒を排出するための流下樋35は、その内部に米粒のほぐし機(図示せず)を設けるのが望ましく、このほぐし機により加水が施された米粒をバラけさせて次工程の無端ベルトコンベア36のベルト36a上に供給することができる。
 前記無端ベルトコンベア36のベルト36aは、通常のベルトや、水切りや通風に適したメッシュベルトなどいずれの形態のものでも採用することができる。しかし、コスト等を考慮すれば通常のベルトを採用すればよい。すなわち、この工程にあっては、前記回転ドラム31での加水量を米粒表面に付着水が生じる程度に制限してあり、ベルト36aが無端軌道上を10~30分間かけて走行している間に米粒中心部へ水分移行させるものであり、余剰水が生じるような大量の加水ではないために、通常のベルトコンベアを採用することができるのである。符号40は無端ベルトコンベア36を走行駆動するためのギアモータである。以下、本発明の好適な実施例について説明する。
<実施例1>
 実施例1では、原料が変わった場合でも本発明の製粉前処理方法によって品質の違いが生じるか否かの確認試験を行った。
 供試原料としては、
日本産(短粒種)うるち米 テスト1、
日本産(短粒種)砕米   テスト2、
タイ産(長粒種)うるち米 テスト3、
タイ産(長粒種)砕米   テスト4、
の4種類とした。この4種の供試原料ついて本発明の製粉前処理方法を施し、得られた米粒を、同条件のもとで製粉を行い、損傷デンプンの程度、粒度分布及び水分を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、テスト1、テスト2、テスト3及びテスト4のように原料が変わったとしても、製粉前水分及び製粉後水分を検証した結果、品種間で大差は生じることがないことが分かった。また、粒度分布を検証した結果、粒径の累積50%を考察してみると、35.0μm(テスト2)~41.6μm(テスト3)~42.6μm(テスト4)~55.7μm(テスト1)といった分布で推移しており、品種間で大差が生じることがないことが分かった。
<実施例2>
 実施例2では、神経伝達物質の一種として知られるγ-アミノ酪酸(GABA)が豊富に含まれている米粒を原料として用い、容器内に水を満たして米粒を長時間浸漬するような、いわゆる、どぶ浸け処理法(従来の製粉前処理方法)と、本発明の製粉前処理方法とを比較し、どちらの処理方法で製粉した米粉により多くのGABAが含まれているかの検証を行った。試験方法については表2に示し、GABA含有量の分析手法及び分析装置は表3に示し、GABA含有量の測定結果は表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明の製粉前処理方法においては、精米処理後から製粉処理後に至るまでGABA含有量の大きな減少は見られなかった。一方で、従来の製粉前処理方法(どぶ浸け法)においては、浸漬処理以降でGABA含有量の著しい減少が見られた。すなわち、本発明の製粉前処理方法にあっては、水洗工程及び浸漬工程による排水を排出しない方式であるためと考えられる。GABAは水溶性物質であるために、従来の製粉前処理方法にあっては浸漬処理においてGABAが外部に流出したものと考えられる。
 以上のように本発明によれば、水分が13.0~16.0%(w.b.%)の範囲である原料精白米に対して低湿度の風を送給し、水分を11.0~13.0%(w.b.%)の範囲に調整して水分を均質化する水分均質化工程と、該水分均質化工程を通過させた精白米に、水分が20.0~45.0%(w.b.%)までの加水及び該加水後の精白米の米粒中心部への水分吸収の促進を行う調質工程と、を備えた米粉製造のための前処理方法としたので、調質工程での急速な膨潤により細胞壁組織のひずみ量が増加し、強固な細胞壁組織が破壊されやすくなって、米の硬度が低下した状態になり、後工程の製粉工程では細胞壁組織が簡単に破壊され、デンプン単粒まで細かく破砕されることになる。
 そして、従来の容器内に水を満たして米粒を長時間浸漬するような、どぶ浸け処理や、米粒をあらかじめ洗米する処理が不要であり、多量の水を使用することがなく、排水処理設備が不要となり、ランニングコストも大幅に削減することが可能となる。
 さらに、後工程の製粉工程では、細胞壁組織が簡単に破壊されデンプン単粒まで細かく破砕されるために、製粉工程における動力削減が可能となり、損傷デンプンの発生を防止することができる。
 加えて、神経伝達物質の一種として知られるγ-アミノ酪酸(GABA)が豊富に含まれている米粒を原料として用い、本発明の方法により前処理を行って製粉処理を行えば、水洗工程及び浸漬工程による排水を排出しないためにGABA成分が外部に流出せず、GABA含有量の高い米粉を容易に製造することができる。
 以上、本発明を実施するための最良の形態を説明したが、具体的な構成はこれに限定されることはなく、例えば、米についてのみ説明したが、さらに麦、そばなどの穀物についても適用できることは言うまでもない。そして、本発明の趣旨を逸脱しない範囲での変更は適宜可能である。
 本発明の米粉製造のための製粉前処理方法は、排水処理設備が不要であり、米粉製造プラントを建設するにあたり、建設コストを安価にし、さらに、神経伝達物質の一種として知られるγ-アミノ酪酸(GABA)など機能性成分が豊富に含まれている米粒を原料として用いる場合は、排水が生じないために機能性成分の外部への流出がなく、利用可能性が極めて高くなる。
 1  製粉前処理装置
 2  原料投入タンク
 3  繰出バルブ
 4  搬送装置
 5  配管
 6  貯留タンク部
 7  乾燥部
 7a  多孔板
 7b  米粒流下路
 7c  空気供給口
 7d  排風路
 8  排出部
 8a  ロータリーバルブ
 8b  漏斗部
 8c  下部スクリュー
 10 流下式乾燥機
 11 搬送装置
 12 配管
 13 配管
 20 湿式研米機
 21 貯留タンク部
 22 送穀部
 22a ハウジング
 22b 軸受
 22c 回転軸
 22d 搬送螺旋
 23 研米部
 23a 多孔壁除糠精白筒
 23b 精白転子
 23c 精白室
 23d 除糠室
 24 排米部
 25 集糠部
 26 加湿部
 27 配管
 30 回転ドラム式調質機
 31 回転ドラム
 32 架台
 33 米粒投入ホッパ
 34 加水部
 35 流下樋
 36 無端ベルトコンベア
 37 支点
 38 ジャッキ
 39 ギアモータ
 40 ギアモータ

Claims (5)

  1.  水分が13.0~16.0%(w.b.%)の範囲にある原料精白米に対して低湿度の風を送給し、水分を11.0~13.0%(w.b.%)の範囲に調整して水分を均質化する水分均質化工程と、
     該水分均質化工程を通過させた精白米に、水分が20.0~45.0%(w.b.%)までの加水及び該加水後の精白米の米粒中心部への水分吸収の促進を行う調質工程と、
    を備えたことを特徴とする米粉製造のための製粉前処理方法。
  2.  前記水分均質化工程と前記調質工程との間に、前記水分均質化工程により水分が均質化された精白米に、水分を添加して糊粉層部分を軟質化させ、この精白米を粒々摩擦することにより糊粉層部分の除糠を行う除糠工程を備えてなる請求項1記載の米粉製造のための製粉前処理方法。
  3.  貯留タンクから所定量ずつ米粒流下路に流下させながら温度が40~60℃、相対湿度10%以下の低湿度の風を約10~20分間送給し、水分が13.0~16.0%(w.b.%)の範囲にある米粒を水分11.0~13.0%(w.b.%)の範囲に均質化する流下式乾燥機と、
     水分11.0~13.0%(w.b.%)の範囲に均質化された米粒に水分20.0~45.0%(w.b.%)となるように加水した後、10~30分間のねかし処理を行う回転ドラム式調質機と、を備えたことを特徴とする米粉製造のための製粉前処理装置。
  4.  前記流下式乾燥機と前記回転ドラム式調質機との間に、加水により米粒表面の糊粉層部分を軟質化された後、米粒同士の粒々摩擦が施して除糠を行う加湿式研米機を配置してなる請求項3記載の米粉製造のための製粉前処理装置。
  5.  前記回転ドラム式調質機が、筒部の中心を軸心として回転可能に形成する一方、筒部の長尺方向の傾斜角度を変更可能とした回転ドラムと、該回転ドラム内に水を供給するための加水部と、前記回転ドラムから排出された米粒をベルト上に載置し、該ベルトが無端軌道上を10~30分間かけて走行している間に米粒表面に付着した付着水を米粒中心部へ水分移行させる形態の無端ベルトコンベアと、から構成されてなる請求項3又は4記載の米粉製造のための製粉前処理装置。
PCT/JP2012/070198 2011-09-29 2012-08-08 米粉製造のための製粉前処理方法及びその装置 WO2013046945A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147008022A KR20140072060A (ko) 2011-09-29 2012-08-08 미분 제조를 위한 제분 전처리 방법 및 그 장치
BR112014007463A BR112014007463A2 (pt) 2011-09-29 2012-08-08 método e aparelho de pré-tratamento por moagem de farinha para fabricação de farinha de arroz
CN201280047455.8A CN103842087B (zh) 2011-09-29 2012-08-08 用于制造米粉的制粉前处理方法及其装置
ES12837060T ES2775195T3 (es) 2011-09-29 2012-08-08 Método de pretratamiento de molienda para fabricación de harina de arroz y aparato para el mismo
IN3046CHN2014 IN2014CN03046A (ja) 2011-09-29 2012-08-08
EP12837060.8A EP2762232B1 (en) 2011-09-29 2012-08-08 Pre-milling treatment method for producing rice flour and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-213800 2011-09-29
JP2011213800A JP5828443B2 (ja) 2011-09-29 2011-09-29 米粉製造のための製粉前処理方法及びその装置

Publications (1)

Publication Number Publication Date
WO2013046945A1 true WO2013046945A1 (ja) 2013-04-04

Family

ID=47994997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070198 WO2013046945A1 (ja) 2011-09-29 2012-08-08 米粉製造のための製粉前処理方法及びその装置

Country Status (9)

Country Link
EP (1) EP2762232B1 (ja)
JP (1) JP5828443B2 (ja)
KR (1) KR20140072060A (ja)
CN (1) CN103842087B (ja)
BR (1) BR112014007463A2 (ja)
ES (1) ES2775195T3 (ja)
IN (1) IN2014CN03046A (ja)
TW (1) TWI537056B (ja)
WO (1) WO2013046945A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522458A (zh) * 2021-07-05 2021-10-22 安徽省东全米业股份有限公司 一种带有脱水功能的大米粉磨制设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979985B1 (en) 2013-03-29 2018-03-14 Yoshino Kogyosho Co., Ltd. Laminated bottle
JP6372093B2 (ja) * 2014-02-26 2018-08-15 株式会社サタケ 製粉前処理装置
WO2016204308A1 (ko) * 2015-06-15 2016-12-22 유미원 주식회사 기류식 분쇄장치
RU2614805C1 (ru) * 2015-12-12 2017-03-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Способ утилизации и рекуперации теплоты в мукомольном производстве с использованием парокомпрессионного теплового насоса

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495752A (ja) * 1972-04-21 1974-01-18
JPH0463555A (ja) * 1990-06-29 1992-02-28 Niigata Pref Gov 米粉の製造方法及びその利用食品
JPH04287652A (ja) * 1991-03-18 1992-10-13 Niigata Pref Gov 微細粒米粉並びにその製造方法並びに当該微細粒米粉を使用した加工食品
JP2004049036A (ja) * 2002-07-17 2004-02-19 Hayashibara Biochem Lab Inc 米粉の製造方法
JP2004097081A (ja) * 2002-09-09 2004-04-02 Kyoto Grain System Kk 白米粉の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228774A (en) * 1963-03-29 1966-01-11 Procter & Gamble Process for removing strong flavor components from roasted peanuts
JPH095752A (ja) * 1995-06-15 1997-01-10 Toshiba Corp 液晶素子
CN1167510C (zh) * 2000-03-15 2004-09-22 株式会社佐竹 一种加工无糠谷物的方法与设备
JP2002017276A (ja) * 2000-06-30 2002-01-22 Kubota Corp 既洗浸漬米の製造方法
CA2341827C (en) * 2001-03-22 2006-07-18 Ochi International Co., Ltd. Surface treating method of polished rice or the like
JP4409879B2 (ja) * 2003-08-04 2010-02-03 株式会社ファンケル γ−アミノ酪酸を富化させる方法及びその方法により得られる穀物
JP2007014330A (ja) * 2005-06-10 2007-01-25 Nishi:Kk 粳餅様食品の製造方法及びその供食方法並びに粳餅様食品
JP2007111044A (ja) * 2005-09-22 2007-05-10 Satake Corp 早炊き米の製造方法
JP5454886B2 (ja) * 2009-10-13 2014-03-26 株式会社サタケ インスタントライスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495752A (ja) * 1972-04-21 1974-01-18
JPH0463555A (ja) * 1990-06-29 1992-02-28 Niigata Pref Gov 米粉の製造方法及びその利用食品
JPH04287652A (ja) * 1991-03-18 1992-10-13 Niigata Pref Gov 微細粒米粉並びにその製造方法並びに当該微細粒米粉を使用した加工食品
JP2004049036A (ja) * 2002-07-17 2004-02-19 Hayashibara Biochem Lab Inc 米粉の製造方法
JP2004097081A (ja) * 2002-09-09 2004-04-02 Kyoto Grain System Kk 白米粉の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUMIO KURASAWA: "SAISHIN SHOKUHIN KAKO KOZA", 25 November 1982, KABUSHIKI KAISHA KENHAKU SHA, pages: 221 - 223

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522458A (zh) * 2021-07-05 2021-10-22 安徽省东全米业股份有限公司 一种带有脱水功能的大米粉磨制设备

Also Published As

Publication number Publication date
CN103842087A (zh) 2014-06-04
ES2775195T3 (es) 2020-07-24
TW201313320A (zh) 2013-04-01
TWI537056B (zh) 2016-06-11
EP2762232B1 (en) 2020-01-01
EP2762232A1 (en) 2014-08-06
BR112014007463A2 (pt) 2017-04-04
KR20140072060A (ko) 2014-06-12
IN2014CN03046A (ja) 2015-07-03
CN103842087B (zh) 2015-04-01
EP2762232A4 (en) 2015-06-03
JP2013071093A (ja) 2013-04-22
JP5828443B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
US5271570A (en) Method of and system for flour milling
WO2013046945A1 (ja) 米粉製造のための製粉前処理方法及びその装置
TW310284B (en) Method and apparatus for producing wheat flour
EP0810031B1 (en) Pretreatment process in flour milling method
JPH01317549A (ja) 製粉方法及びその装置
WO2012020551A1 (ja) 米粉の製造方法及び該方法により得られる米粉
ZA200504132B (en) Method and installation for cleaning cereal
JPH02241555A (ja) 製粉方法及びその装置
JP4392642B2 (ja) とうもろこしの胚芽除去装置
JP2005333955A (ja) 米粉パン用の米粉製造方法およびその米粉製造装置
JP2006512194A5 (ja)
CN210005514U (zh) 新材料成分分析装置
JPH0686943A (ja) 製粉方法及び装置
JP3180929B2 (ja) 小麦粉の生産方法
JPH07114974B2 (ja) 麦の製粉装置
JPH1071340A (ja) 製粉前処理方法
JP2005205318A (ja) 無洗粒状穀物製造装置
JPS6274458A (ja) 製粉前処理装置
JP2001259447A (ja) 無洗米の製造方法及びその装置
JPS63143948A (ja) 製粉装置
CN108311233A (zh) 一种酿酒原料破碎研磨一体机
JPH01139156A (ja) 麦粒製粉方法および装置
JPH02172541A (ja) 精麦粒のテンパリング方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12014500502

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20147008022

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012837060

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014007463

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014007463

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140327