WO2013035818A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013035818A1
WO2013035818A1 PCT/JP2012/072823 JP2012072823W WO2013035818A1 WO 2013035818 A1 WO2013035818 A1 WO 2013035818A1 JP 2012072823 W JP2012072823 W JP 2012072823W WO 2013035818 A1 WO2013035818 A1 WO 2013035818A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
conductivity type
trenches
region
semiconductor device
Prior art date
Application number
PCT/JP2012/072823
Other languages
English (en)
French (fr)
Inventor
尚子 倉田
聖自 百田
和 阿部
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP12829990.6A priority Critical patent/EP2725623B1/en
Priority to CN201280039888.9A priority patent/CN103733344B/zh
Priority to JP2013532654A priority patent/JP5900503B2/ja
Publication of WO2013035818A1 publication Critical patent/WO2013035818A1/ja
Priority to US14/176,610 priority patent/US9059238B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Definitions

  • the present invention relates to a power semiconductor device including a trench gate.
  • the power MOS type semiconductor device having this trench gate structure includes an IGBT (insulated gate bipolar transistor) and the like centering on a power MOSFET (insulated gate type field effect transistor).
  • bipolar semiconductor devices such as IGBTs
  • a trench gate structure for increasing the channel density but also a structure in which holes injected from the collector side are difficult to escape to the emitter electrode, that is, an emitter region that is conductively connected to the emitter electrode.
  • a structure that reduces the area ratio is adopted.
  • the bipolar semiconductor device employs a structure in which the area of the floating region formed in a different region within the same surface as the emitter region and insulated from the emitter electrode is relatively large. Since this structure also provides the effect of accumulating carriers on the emitter side of the drift layer, even if the layer structure is such that the on-voltage tends to increase due to the thick drift layer as in a general high voltage semiconductor device. There is an advantage that low on-state voltage and low steady loss can be achieved.
  • FIG. 3 is a cross-sectional view showing a structure of a main part of a conventional trench gate type IGBT.
  • FIG. 4 is a plan view showing a structure of a main part of a conventional trench gate type IGBT.
  • FIG. 4 is a plan view of a main part of a region extending from the active region 30 (part) and the edge termination structure region 40 (part) around the active region 30.
  • 3 is a cross-sectional view taken along the line B-B 'of FIG.
  • the aluminum electrode on the outermost surface and the silicon oxide film below it are not shown in order to make the surface structure pattern easier to see.
  • p is formed on the front surface side of the semiconductor substrate serving as the n ⁇ drift layer 1 (n ⁇ base layer).
  • Base layer 2 (p channel layer) and n + emitter region 8 are provided.
  • trenches 3 deeper than the depth of p base layer 2 from the surfaces of p base layer 2 and n + emitter region 8 are provided.
  • a plurality of trenches 3 are formed at a predetermined interval a along the surface of the n ⁇ drift layer 1 (the surface on the front surface side of the semiconductor substrate).
  • a doped polysilicon gate electrode 11 is buried in the trench 3 via a gate oxide film 10 to constitute a trench gate.
  • interlayer insulating film 4 is formed so as to cover the upper portion (exposed portion) of doped polysilicon gate electrode 11 in trench 3. Further, a metal film to be the emitter electrode 5 is laminated on the surface of the n ⁇ drift layer 1 with the interlayer insulating film 4 interposed therebetween. The metal film to be the emitter electrode 5 is deposited so as to be in common contact with the surfaces of the n + emitter region 8 and the p base layer 2.
  • a p + collector layer 13 is formed on the surface layer on the back surface of the semiconductor substrate to be the n ⁇ drift layer 1 (n ⁇ base layer). The collector electrode 6 is in ohmic contact with the surface of the p + collector layer 13.
  • the trench gate type IGBT includes a p + contact layer 9 inside the p base layer 2 in order to improve the latch-up resistance. Further, a structure having an n + buffer layer 14 between the n ⁇ drift layer 1 and the p + collector layer 13 is preferable because the thickness of the high resistance n ⁇ drift layer 1 can be reduced.
  • An emitter electrode contact hole 21 which is an opening portion of an oxide film for directly bringing 5 into contact with the silicon surface is provided.
  • the doped polysilicon gate electrode 11 for the gate runner is formed simultaneously with the doped polysilicon gate electrode 11 for the trench gate structure described above.
  • the doped polysilicon gate electrode 11 for the gate runner and the doped polysilicon gate electrode 11 for the trench gate are conductively connected to each other at a portion not shown. Furthermore, an aluminum gate electrode wiring 12 serving as a gate runner is in contact with the surface of the doped polysilicon gate electrode 11 for the gate runner through an opening provided in the oxide film. By this aluminum gate electrode wiring 12, a doped polysilicon gate electrode 11 for the trench gate structure is drawn out to the chip surface.
  • the edge termination structure region 40 is provided further outside the p-type extending region C located at the outer peripheral side end of the p base layer 2.
  • the edge termination structure region 40 has an annular p + guard ring having a predetermined distance from the p-type extension region C and the same depth as the depth of the p base layer 2 or deeper than the depth of the p base layer 2.
  • 15 and 16 are provided.
  • the p + guard rings 15 and 16 surround the active region 30 as part of the edge termination structure region 40.
  • Doped polysilicon field plates 18 and 19 are provided on the surfaces of the p + guard rings 15 and 16 via insulating films 17 formed simultaneously with the gate oxide film 10, respectively.
  • Doped polysilicon field plate 19 covers the p + guard rings 15, 16 surface, respectively, adjacent the n - is formed so as to cover the surface of the drift layer 1 - n over the surface of the drift layer 1 .
  • the p + guard rings 15 and 16 and the doped polysilicon field plates 18 and 19 are electrically connected to each other at an unillustrated portion by an aluminum field plate 20.
  • an isolation trench is further formed outside the final end trench among the trench gates in the active region, and the p base layer of the active region is extended further outside the isolation trench.
  • the emitter electrode connected to the surface of the active region is also connected to the end surface of the extended p base layer (see, for example, Patent Document 3 below).
  • the thickness of the n ⁇ drift layer is increased in advance by using a high-resistivity semiconductor substrate in consideration of the breakdown voltage drop caused by the concentration of the electric field at the bottom of the final end trench. Therefore, there is a problem that on-voltage, turn-off loss and the like are increased.
  • Patent Documents 1 and 2 a structure that simply narrows the interval between the additional trenches is sufficient to alleviate the electric field generated at the bottom of the additional trench provided outside the final end trench. It has been found that an electric field relaxation effect cannot be obtained. Further, as in Patent Document 3, in the structure in which the p base layer and the emitter electrode are connected on the chip outer peripheral side end surface of the p base layer extending from the active region to the outside of the final end trench, at the time of turn-off, Since holes are easily extracted from the connection portion of the p base layer with the emitter electrode, there is a possibility that an electric field concentrates on the connection portion, and that a breakdown due to current concentration easily occurs.
  • An object of the present invention is to provide a semiconductor device capable of suppressing a decrease in breakdown voltage and increasing a turn-off breakdown resistance in order to solve the above-described problems caused by the related art.
  • a semiconductor device has the following characteristics.
  • a first conductivity type drift layer made of a first conductivity type semiconductor substrate is provided.
  • a second conductivity type base layer is provided on one main surface side of the first conductivity type semiconductor substrate.
  • a first conductivity type semiconductor region is selectively provided inside the second conductivity type base layer.
  • the first conductivity type semiconductor substrate penetrates the first conductivity type semiconductor region and the second conductivity type base layer from one main surface to reach the first conductivity type drift layer, and is arranged at a predetermined first interval.
  • a plurality of trenches are provided.
  • a trench gate structure including a gate insulating film provided along the inner wall of the trench inside the trench and a gate electrode provided via the gate insulating film inside the trench is provided.
  • a metal electrode in contact with the second conductivity type base layer and the first conductivity type semiconductor region is provided.
  • a second conductivity type extending region is formed by extending the second conductivity type base layer from the outermost trench among the plurality of trenches.
  • An edge termination structure region surrounding the active region is provided.
  • a second interval between the outer peripheral annular trenches and the outermost outer trench or between the adjacent outer peripheral annular trenches when a plurality of the outer peripheral annular trenches are provided is smaller than the first interval.
  • the plurality of trenches are arranged in a stripe shape extending in a direction orthogonal to the direction in which the trenches are arranged on one main surface of the first conductivity type semiconductor substrate. It is preferred that Further, in the semiconductor device according to the present invention, in the above-described invention, when the second interval is b and the first interval is a, it is preferable to satisfy b / a ⁇ 0.8. It is preferable to satisfy b / a ⁇ 0.6.
  • the second conductivity type extending region is provided between the outer circumferential annular trench and the outermost trench or a plurality of the outer circumferential annular trenches. It is preferable that a surface of a portion sandwiched between adjacent outer peripheral annular trenches is electrically connected to the metal electrode.
  • the semiconductor device according to the present invention preferably includes two or more of the outer peripheral annular trenches in the above-described invention.
  • the semiconductor device further includes an insulating film covering the second conductivity type extending region in the above-described invention, wherein the insulating film is outside the outermost peripheral annular trench and on the outermost periphery. There is an opening that exposes the vicinity of the inside of the two-conductivity-type extension region.
  • the second conductivity type extending region is more preferably in conductive contact with the metal electrode through the opening.
  • the semiconductor device according to the present invention further includes an insulating film provided on one main surface of the first conductivity type semiconductor substrate, for insulating the metal electrode and the gate electrode. Then, on one main surface of the first conductivity type semiconductor substrate in the active region, portions where the metal electrode is in direct contact and portions where the metal electrode is in contact via the insulating film are alternately arranged. May be.
  • the semiconductor device according to the present invention may have a structure in which the ends of two adjacent trenches are connected to each other in the above-described invention.
  • the electric field concentration in the vicinity of the bottom of the trench gate can be suppressed by making the second interval smaller than the first interval. Further, by electrically connecting the p-type extension region and the emitter electrode at the surface of the p-type extension region on the outer peripheral trench side, it is possible to suppress electric field concentration in the p-type extension region during turn-off. .
  • the semiconductor device of the present invention it is possible to provide a semiconductor device capable of suppressing a decrease in breakdown voltage and increasing a turn-off breakdown resistance.
  • FIG. 1 is a cross-sectional view showing the structure of the main part of a trench gate type IGBT according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the structure of the main part of the trench gate type IGBT according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a structure of a main part of a conventional trench gate type IGBT.
  • FIG. 4 is a plan view showing a structure of a main part of a conventional trench gate type IGBT.
  • FIG. 5 is a plan view showing the structure of the main part of the trench gate type IGBT according to the embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing the relationship between the trench spacing ratio of the trench gate type IGBT according to the embodiment of the present invention and the pn junction breakdown voltage of the active region.
  • FIG. 1 is a cross-sectional view showing the structure of the main part of a trench gate type IGBT according to an embodiment of the present invention.
  • 2 and 5 are plan views showing the structure of the main part of the trench gate type IGBT according to the embodiment of the present invention.
  • FIG. 2 is a plan view of a main part of a region extending from the active region 30 (part) and the edge termination structure region 40 (part) around the active region 30.
  • FIG. 5 shows a plan view of a main part of a part different from the part shown in FIG. 2 of the active region 30 (part). Hatching indicates a portion where a doped polysilicon film is formed (the same applies to other drawings).
  • 1 is a cross-sectional view taken along the line AA ′ in FIG.
  • a plurality of trenches 3 are formed at a predetermined interval (hereinafter referred to as the first region) on the front surface of the semiconductor substrate that becomes the n ⁇ drift layer 1 (n ⁇ base layer). It is provided by a).
  • the plurality of trenches 3 are striped extending in a direction orthogonal to the direction in which the trenches 3 are arranged (the horizontal direction in FIG. 2, hereinafter referred to as the short direction) (the vertical direction in FIG. 2, hereinafter referred to as the longitudinal direction). Is arranged. Further, an outer peripheral annular trench 3a surrounding the whole of the plurality of trenches 3 is provided.
  • the outer peripheral annular trench 3a may be provided in double or more. A portion of the outer peripheral annular trench 3a adjacent to the trench 3 in the lateral direction of the trench 3 is parallel to the longitudinal direction of the trench 3 (FIG. 2). On the other hand, the portion of the outer peripheral annular trench 3a adjacent to the longitudinal end of the trench 3 in the longitudinal direction of the trench 3 is orthogonal to the trench 3 (FIG. 5). That is, FIG. 5 shows a trench plane pattern portion near the end in the longitudinal direction of the trench 3. FIG. 5 also shows a pattern example in which the longitudinal ends of two adjacent trenches 3 are connected to each other in a curved shape.
  • a gate oxide film 10 is provided along the inner wall of the trench 3.
  • a doped polysilicon gate electrode 11 is provided inside the gate oxide film 10 inside the trench 3 to constitute a trench gate structure.
  • a cylindrical trench gate in which a doped polysilicon gate electrode 11 is embedded via a gate oxide film 10 may be provided in the trench 3 formed in a cylindrical shape.
  • the arrangement of the trenches 3 may be a dot pattern arrangement regularly arranged on the vertices of the triangular lattice.
  • a donut-shaped trench gate in which the cylindrical n ⁇ drift layer 1 is provided via the gate oxide film 10 may be provided inside the doped polysilicon gate electrode 11 of the cylindrical trench gate.
  • the arrangement of the trenches 3 may be a ring dot pattern arrangement regularly arranged on the vertices of a triangular lattice. Good.
  • the equipotential lines are planar when a plurality of adjacent trenches 3 linearly extending in the longitudinal direction are distributed in parallel and regularly (striped). This is preferable.
  • the outermost aluminum electrode and the underlying silicon oxide film are not shown.
  • a region sandwiched between the trenches 3 that become a current path particularly in the ON state includes a p base layer 2 (p channel layer) and an n + emitter. Region 8 is provided.
  • the n + emitter region 8 is selectively provided inside the p base layer 2.
  • Trench 3 described above penetrates the p base layer 2 and the n + p base layer 2 and the n + emitter region 8 from the surface (the surface on the front surface side of the semiconductor substrate) of the emitter region 8, a p-base layer 2 Is also deeply provided.
  • n channel (not shown) is formed in a portion sandwiched between n ⁇ drift layer 1 and n + emitter region 8. Electrons injected from the emitter electrode 5 into the n + emitter region 8 are injected into the n ⁇ drift layer 1 through this n channel, whereby holes are injected from the collector electrode 6 into the n ⁇ drift layer 1. As a result, conductivity modulation occurs in the n ⁇ drift layer 1 and a current flows with a low on-voltage.
  • the trench gate type IGBT may be provided with the floating region 2a insulated from the emitter electrode 5 in the active region 30 for the purpose of reducing the on-voltage described above.
  • Floating region 2 a is insulated from emitter electrode 5 by interlayer insulating film 4.
  • N + emitter region 8 is not formed in floating region 2a.
  • n + emitter regions 8 are formed so that channel current flows, and floating regions 2 a are provided so that regions having no current path are alternately formed on the surface layer of the p base layer 2.
  • reference numeral 22 denotes a gate electrode contact hole. The configurations of the n ⁇ drift layer 1 surface (front surface side of the semiconductor substrate) and the edge termination structure region 40 will be described later.
  • the trench gate type IGBT according to the present invention has an edge termination structure from the trench 3 arranged closest to the edge termination structure region 40 in the lateral direction of the trench 3 in the trench 3.
  • the p base layer 2 is extended toward the region 40 side.
  • a portion of the p base layer 2 on the edge termination structure region 40 side from the trench 3 arranged closest to the edge termination structure region 40 in the lateral direction of the trench 3 is referred to as a p-type extension region C.
  • the trench gate type IGBT according to the present invention is characterized in that the p-type extension region C includes one or more outer peripheral trenches 3a surrounding all the trenches 3.
  • the shortest interval (hereinafter referred to as the first interval) among the interval in the lateral direction of the trench 3 between the outer peripheral annular trench 3a and the outermost trench 3 and the interval between adjacent outer peripheral annular trenches 3a when a plurality of outer peripheral annular trenches 3a are provided.
  • the second interval b is smaller than the first interval a between adjacent trenches 3 (b ⁇ a).
  • the ratio of the second interval b to the first interval a (hereinafter referred to as trench interval ratio b / a) is preferably set to b / a ⁇ 0.8, and preferably b / a ⁇
  • the second feature of the present invention is 0.6.
  • the trench gate type IGBT according to the present invention is a part of the p-type extension region C (p base layer 2) closer to the active region 30 than the outermost peripheral annular trench 3a, and the outer peripheral annular trench 3a.
  • a third feature is that the surface of the contact region 2b (hereinafter referred to as p base layer 2b) is electrically connected to the emitter electrode 5. That is, the p base layer 2b is sandwiched between the outer peripheral annular trench 3a in the case where a plurality of outer peripheral annular trenches 3a are provided, and the region sandwiched between the outer peripheral annular trench 3a and the trench 3 in the p-type extension region C. This area The operational effects of these feature points (first to third features) will be described in detail below.
  • FIG. 6 shows a result of simulation regarding the breakdown voltage of the active region 30.
  • FIG. 6 is a characteristic diagram showing the relationship between the trench spacing ratio b / a of the trench gate type IGBT according to the embodiment of the present invention and the pn junction breakdown voltage of the active region 30.
  • FIG. 6 shows the relationship between the trench interval ratio b / a and the breakdown voltage simulation value of the active region 30 having the outer annular trench 3a, with the number of outer peripheral annular trenches 3a adjacent at the second interval b as a parameter.
  • the breakdown voltage simulation value is expressed as a percentage (%) when the theoretical breakdown voltage of the pn junction between the p base layer 2 and the n ⁇ drift layer 1 in the active region 30 is 100%.
  • the trench spacing ratio b / a smaller than 0.6 (b / a ⁇ 0.6)
  • the rate of change in the breakdown voltage of the active region 30 with respect to the trench spacing ratio b / a is reduced, and the breakdown voltage is reduced. It is more preferable because it is stable (first and second features).
  • the breakdown voltage percentage when the second interval b and the first interval a were equal was as follows. It was confirmed that the breakdown voltage percentage of the structure in which the p base layer 2b and the emitter electrode 5 are insulated through the interlayer insulating film 4 is about 85% ("region 2b is floated" in FIG. 6). . On the other hand, the breakdown voltage percentage of the structure in which the p base layer 2b and the emitter electrode 5 are conductively connected through the emitter electrode contact hole 21 selectively provided in the interlayer insulating film 4 is 94% or more regardless of the trench spacing ratio. It was confirmed that the rate of withstand voltage reduction becomes extremely large (in FIG. 6, “region 2b is connected to the emitter electrode”). Therefore, as described above, it can be seen that the structure in which the p base layer 2b in contact with the outer peripheral annular trench 3a is electrically connected to the emitter electrode 5 is preferable (third feature).
  • Interlayer insulating film 4 is formed so as to cover the upper portion (exposed portion) of doped polysilicon gate electrode 11 in trench 3. Further, a metal film to be the emitter electrode 5 is laminated on the surface of the n ⁇ drift layer 1 with the interlayer insulating film 4 interposed therebetween. The metal film to be the emitter electrode 5 is deposited so as to be in common contact with the surfaces of the n + emitter region 8 and the p base layer 2.
  • a p + collector layer 13 is formed on the surface layer on the back surface of the semiconductor substrate to be the n ⁇ drift layer 1 (n ⁇ base layer).
  • the collector electrode 6 is in ohmic contact with the surface of the p + collector layer 13.
  • the p + contact layer 9 is provided inside the p base layer 2 in order to improve the latch-up resistance of the trench gate type IGBT.
  • a structure having an n + buffer layer 14 between the n ⁇ drift layer 1 and the p + collector layer 13 is preferable because the high resistance n ⁇ drift layer 1 can be made thin.
  • a doped polysilicon gate electrode 11 for a gate runner is laminated via a gate oxide film 10.
  • a region and an emitter electrode contact hole 21 which is an opening of an oxide film for bringing the emitter electrode 5 into direct contact with the silicon surface are provided.
  • This emitter electrode contact hole 21 is preferably provided on the outer peripheral annular trench 3a side of the p-type extension region C and in the vicinity of the outer periphery of the outer peripheral annular trench 3a.
  • the reason is that the lateral resistance from the outermost peripheral end of the p-type extension region C into the n ⁇ drift layer 1 works effectively, and the breakdown due to current concentration at turn-off can be suppressed.
  • the lateral direction is a direction parallel to the main surface of the semiconductor substrate that becomes the n ⁇ drift layer 1.
  • the doped polysilicon gate electrode 11 for the gate runner is formed at the same time as the doped polysilicon gate electrode 11 for the trench gate structure, is connected at a portion not shown in the figure, and is conductively connected to each other. . Furthermore, an aluminum gate electrode wiring 12 serving as a gate runner is in contact with the surface of the doped polysilicon gate electrode 11 for the gate runner through an opening provided in the silicon oxide film. By this aluminum gate electrode wiring 12, a doped polysilicon gate electrode 11 for the trench gate structure is drawn out to the chip surface.
  • the edge termination structure region 40 is provided further outside the p-type extending region C located at the outer peripheral side end of the p base layer 2.
  • the edge termination structure region 40 has an annular p + guard ring having a predetermined distance from the p-type extension region C and the same depth as the depth of the p base layer 2 or deeper than the depth of the p base layer 2.
  • 15 and 16 are provided.
  • the p + guard rings 15 and 16 surround the active region 30 as part of the edge termination structure region 40.
  • Doped polysilicon field plates 18 and 19 are provided on the surfaces of the p + guard rings 15 and 16 via insulating films 17 formed simultaneously with the gate oxide film 10, respectively.
  • Doped polysilicon field plate 19 covers the p + guard rings 15, 16 surface, respectively, adjacent the n - is formed so as to cover the surface of the drift layer 1 - n over the surface of the drift layer 1 .
  • the p + guard rings 15 and 16 and the doped polysilicon field plates 18 and 19 are electrically connected to each other at an unillustrated portion by an aluminum field plate 20.
  • the second interval between the outer peripheral annular trench and the outermost trench or between the adjacent outer peripheral annular trenches is adjacent to the trench gate structure.
  • the first interval between the matching trenches electric field concentration in the vicinity of the bottom of the trench gate can be suppressed.
  • electrically connecting the p-type extension region and the emitter electrode at the surface of the p-type extension region on the outer peripheral trench side it is possible to suppress electric field concentration in the p-type extension region during turn-off. . Thereby, it is possible to avoid the occurrence of avalanche breakdown at a low voltage, suppress the breakdown voltage reduction, avoid the breakdown due to the electric field concentration, and increase the turn-off breakdown resistance.
  • the first conductivity type is n-type and the second conductivity type is p-type in the present invention.
  • the semiconductor device according to the present invention is useful for a power semiconductor device used for a power conversion device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 活性領域(30)には、pベース層(2)、n+エミッタ領域(8)、トレンチ(3)、ゲート酸化膜(10)およびドープドポリシリコンゲート電極(11)からなるトレンチゲート構造が設けられている。複数のトレンチ(3)を取り巻く外周に、pベース層(2)をエッジ終端構造領域(40)側へ延在してなるp型延在領域(C)が設けられている。p型延在領域(C)には、複数のトレンチ(3)と同時に形成される1つ以上の外周環状トレンチ(3a)が設けられている。外周環状トレンチ(3a)は、全てのトレンチ(3)を取り囲む。外周環状トレンチ(3a)と最も外側のトレンチ(3)との間または隣り合う外周環状トレンチ(3a)間の第2間隔(b)は、隣り合うトレンチ(3)間の第1間隔(a)よりも小さい。これにより、耐圧低下を抑制するとともに、ターンオフ破壊耐量が高いトレンチゲート絶縁ゲート型半導体装置を提供することができる。

Description

半導体装置
 本発明は、トレンチゲートを備える電力用の半導体装置に関する。
 電力変換装置の低消費電力化が進む中、電力変換装置において中心的な役割を果たすパワー半導体装置(スイッチングデバイス)の低消費電力化に対する期待が大きい。そのような低消費電力化に大きく貢献することができる半導体装置として、近年、チャネル密度を飛躍的に向上させ得るトレンチゲート構造を有するパワー絶縁ゲート型(MOS型)半導体装置が実用化されている。このトレンチゲート構造を有するパワーMOS型半導体装置には、パワーMOSFET(絶縁ゲート型電界効果トランジスタ)を中心にIGBT(絶縁ゲート型バイポーラトランジスタ)などがある。
 IGBTなどのバイポーラ型半導体装置では、チャネル密度を高めるためのトレンチゲート構造だけでなく、さらに、コレクタ側から注入されたホールがエミッタ電極へ抜け難くする構造、すなわちエミッタ電極と導電接続されるエミッタ領域の面積比率を小さくする構造が採用される。言い換えると、バイポーラ型半導体装置には、エミッタ領域と同一表面内の異なる領域に形成され、かつエミッタ電極と絶縁されるフローティング領域の面積を相対的に大きくする構造が採用されている。この構造によりドリフト層のエミッタ側へのキャリアの蓄積効果も得られるようになるため、一般的な高耐圧半導体装置のようにドリフト層が厚いことでオン電圧が大きくなり易い層構成であっても、低オン電圧化、低定常損失化が図れるというメリットがある。
 このようなトレンチゲート型IGBTの構造について、図3,4を参照しながら説明する。図3は、従来のトレンチゲート型IGBTの要部の構造を示す断面図である。図4は、従来のトレンチゲート型IGBTの要部の構造を示す平面図である。図4には、活性領域30(一部)と、活性領域30の周辺のエッジ終端構造領域40(一部)にかけての領域の要部平面図を示す。図3は、図4のB-B’切断線における断面図である。図4の要部平面図では、表面構造パターンを見易くするために、最表面のアルミ電極とその下層のシリコン酸化膜を図示省略する。
 図3,4に示すように、活性領域30のうち、特に主電流の経路となる領域には、n-ドリフト層1(n-ベース層)となる半導体基板のおもて面側に、pベース層2(pチャネル層)およびn+エミッタ領域8が設けられている。さらに、pベース層2およびn+エミッタ領域8の表面からpベース層2の深さよりも深いトレンチ3が設けられている。トレンチ3は、n-ドリフト層1の表面(半導体基板のおもて面側の面)に沿って複数個、所定の間隔aで形成されている。このトレンチ3内にはゲート酸化膜10を介して、ドープドポリシリコンゲート電極11が埋設され、トレンチゲートを構成している。
 n-ドリフト層1の表面には、トレンチ3内のドープドポリシリコンゲート電極11の上部(露出部分)を覆うように層間絶縁膜4が形成されている。また、n-ドリフト層1の表面には、層間絶縁膜4を介してエミッタ電極5となる金属膜が積層されている。エミッタ電極5となる金属膜は、n+エミッタ領域8とpベース層2との表面にも共通に接触するように被着される。n-ドリフト層1(n-ベース層)となる半導体基板の裏面の表面層には、p+コレクタ層13が形成されている。p+コレクタ層13表面には、コレクタ電極6がオーミック接触している。
 多くの場合、トレンチゲート型IGBTは、ラッチアップ耐量の向上を図るために、pベース層2の内部にp+コンタクト層9を備える。さらに、n-ドリフト層1とp+コレクタ層13との間にn+バッファ層14を有する構造も、高抵抗のn-ドリフト層1の厚さを薄くすることができるので好ましい。活性領域30の外周端側には、pベース層2をエッジ終端構造領域40側へ延在させたp型延在領域Cを有している。p型延在領域Cには、トレンチ3は設けられていない。
 p型延在領域Cの表面(半導体基板のおもて面側の面)には、ゲート酸化膜10を介してゲートランナー用のドープドポリシリコンゲート電極11が積層される領域と、エミッタ電極5をシリコン表面に直接に接触させるための酸化膜の開口部であるエミッタ電極コンタクトホール21とが設けられている。ゲートランナー用のドープドポリシリコンゲート電極11は、前述のトレンチゲート構造用のドープドポリシリコンゲート電極11と同時に形成される。
 ゲートランナー用のドープドポリシリコンゲート電極11と、トレンチゲート用のドープドポリシリコンゲート電極11とは、図示省略する部分で相互に導電接続されている。さらに、ゲートランナー用のドープドポリシリコンゲート電極11の表面には、酸化膜に設けられた開口部を介してゲートランナーとなるアルミゲート電極配線12が接触している。このアルミゲート電極配線12によってトレンチゲート構造用のドープドポリシリコンゲート電極11がチップ表面に引き出される。
 エッジ終端構造領域40は、pベース層2の外周側端部に位置するp型延在領域Cのさらに外側に設けられている。エッジ終端構造領域40には、p型延在領域Cと所定の間隔をあけて、pベース層2の深さと同じ深さ、または、pベース層2の深さよりも深い環状のp+ガードリング15,16が設けられている。p+ガードリング15,16は、エッジ終端構造領域40の一部として活性領域30を取り巻いている。
 p+ガードリング15,16の表面には、それぞれ、ゲート酸化膜10と同時に形成された絶縁膜17を介してドープドポリシリコンフィールドプレート18,19が設けられている。ドープドポリシリコンフィールドプレート18,19は、それぞれp+ガードリング15、16表面を覆うとともに、隣接するn-ドリフト層1の表面上にわたってn-ドリフト層1の表面も覆うように形成されている。p+ガードリング15,16とドープドポリシリコンフィールドプレート18,19とは、それぞれ、アルミフィールドプレート20により図示省略する部分で相互に導電接続されている。
 このようなトレンチゲート型IGBTに関し、活性領域の最終端のトレンチ(以下、最終端トレンチとする)の、さらに外側のpベース層(図3のp型延在領域Cに相当)に、オフ状態時にpベース層とn-ドリフト層とのpn接合から空乏層が拡がる際の電界緩和のための追加トレンチを設ける構造が提案されている(例えば、下記特許文献1,2参照)。
 さらに、別のトレンチゲート型IGBTとして、活性領域内のトレンチゲートのうち、最終端トレンチの外側にさらに分離用トレンチを形成し、この分離用トレンチのさらに外側にまで活性領域のpベース層を延在させ、活性領域の表面に接続されているエミッタ電極をこの延在されたpベース層の端部表面にも接続させる構造が提案されている(例えば、下記特許文献3参照)。
特開平10-70271号公報 特開2008-103683号公報 特開2006-5248号公報
 しかしながら、前記特許文献3に示されるような従来のトレンチゲート型IGBTでは、オフ状態時にpベース層とn-ドリフト層とのpn接合から空乏層が拡がる際、活性領域内のトレンチの底部で空乏層の曲率半径が小さくなり易い。このような現象は、特に活性領域の最終端のトレンチ(最終端トレンチ)の底部で顕著にあらわれるため、最終端トレンチの底部には、活性領域の最終端以外のトレンチの底部よりも電界が高くなり易い。その結果、最終端トレンチの底部に電界集中が生じ易く、低い電圧でアバランシェ降伏が生じ、耐圧が低下する虞がある。実際の素子の構造設計では、最終端トレンチの底部に電界が集中することにより生じる耐圧低下分を考慮に入れて、予め高抵抗率な半導体基板を用いてn-ドリフト層の厚さを厚くしているため、オン電圧、ターンオフ損失などが高くなるという問題がある。
 また、前記特許文献1,2の記載のように、最終端トレンチの外側に設けた追加トレンチの底部に生じる電界を緩和するために、単に追加トレンチの間隔を狭くするだけの構造では、必要十分な電界緩和効果が得られないことが分かってきた。また、前記特許文献3のように、活性領域から最終端トレンチの外側にまで延在されたpベース層のチップ外周側端部表面でpベース層とエミッタ電極とを接続させる構造では、ターンオフ時にpベース層のエミッタ電極との接続部からホールが引き抜かれ易くなるため、この接続部に電界が集中し、電流集中による破壊がおき易くなるなどの問題が生じる虞がある。
 本発明は、上述した従来技術による問題点を解消するため、耐圧低下を抑制するとともに、ターンオフ破壊耐量を高くすることのできる半導体装置を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1導電型半導体基板からなる第1導電型ドリフト層が設けられている。活性領域において、前記第1導電型半導体基板の一方の主面側に、第2導電型ベース層が設けられている。前記第2導電型ベース層の内部に選択的に、第1導電型半導体領域が設けられている。前記第1導電型半導体基板の一方の主面から前記第1導電型半導体領域および前記第2導電型ベース層を貫通して前記第1導電型ドリフト層に達するとともに、所定の第1間隔で配列された複数のトレンチが設けられている。前記トレンチの内部に前記トレンチの内壁に沿って設けられたゲート絶縁膜、および、前記トレンチの内部に前記ゲート絶縁膜を介して設けられたゲート電極からなるトレンチゲート構造が設けられている。前記第2導電型ベース層および前記第1導電型半導体領域に接触する金属電極が設けられている。複数の前記トレンチのうち最も外側の前記トレンチから外側に前記第2導電型ベース層が延在されてなる第2導電型延在領域が設けられている。前記第1導電型半導体基板の一方の主面から前記第2導電型延在領域を貫通して前記第1導電型ドリフト層に達するとともに、すべての前記トレンチを取り囲む1つ以上の外周環状トレンチが設けられている。前記活性領域を取り巻くエッジ終端構造領域が設けられている。前記外周環状トレンチと最も外側の前記トレンチとの間、または、前記外周環状トレンチを複数備える場合の隣り合う前記外周環状トレンチ間の第2間隔は前記第1間隔より小さい。
 また、この発明にかかる半導体装置は、上述した発明において、複数の前記トレンチは、前記第1導電型半導体基板の一方の主面において、前記トレンチが並ぶ方向と直交する方向に延びるストライプ状に配列されることが好ましい。また、この発明にかかる半導体装置は、上述した発明において、前記第2間隔をbとし、前記第1間隔をaとした場合、b/a<0.8を満たすことが好ましく、好適には、b/a<0.6を満たすことがよい。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電型延在領域の、前記外周環状トレンチと最も外側の前記トレンチとの間、または、前記外周環状トレンチを複数備える場合の隣り合う前記外周環状トレンチ間に挟まれた部分の表面が前記金属電極と電気的に接続されていることが好ましい。また、この発明にかかる半導体装置は、上述した発明において、前記外周環状トレンチを2つ以上備えていることも好適である。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電型延在領域を覆う絶縁膜をさらに備え、前記絶縁膜は、最外周の前記外周環状トレンチの外側で、かつ前記第2導電型延在領域の内側近傍を露出させる開口部を有する。そして、前記第2導電型延在領域は、前記開口部を介して前記金属電極と導電接触することもより好ましい。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1導電型半導体基板の一方の主面に設けられた、前記金属電極と前記ゲート電極とを絶縁する絶縁膜をさらに備える。そして、前記活性領域における前記第1導電型半導体基板の一方の主面には、前記金属電極が直接接触する部分と、前記金属電極が前記絶縁膜を介して接触する部分と、が交互に配置されてもよい。また、この発明にかかる半導体装置は、上述した発明において、隣り合う2本の前記トレンチの端部どうしが相互に連結されている構造とすることもよい。
 上述した発明によれば、第2間隔を第1間隔よりも小さくすることで、トレンチゲート底部近傍での電界集中を抑制することができる。また、p型延在領域の外周環状トレンチ側端部表面でp型延在領域とエミッタ電極とを導電接続させることで、ターンオフ時におけるp型延在領域への電界集中を抑制することができる。
 本発明にかかる半導体装置によれば、耐圧低下を抑制するとともに、ターンオフ破壊耐量を高くすることのできる半導体装置を提供することができるという効果を奏する。
図1は、本発明の実施の形態にかかるトレンチゲート型IGBTの要部の構造を示す断面図である。 図2は、本発明の実施の形態にかかるトレンチゲート型IGBTの要部の構造を示す平面図である。 図3は、従来のトレンチゲート型IGBTの要部の構造を示す断面図である。 図4は、従来のトレンチゲート型IGBTの要部の構造を示す平面図である。 図5は、本発明の実施の形態にかかるトレンチゲート型IGBTの要部の構造を示す平面図である。 図6は、本発明の実施の形態にかかるトレンチゲート型IGBTのトレンチ間隔比と活性領域のpn接合耐圧との関係を示す特性図である。
 以下に添付図面を参照して、本発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本発明は、本発明の趣旨を逸脱しない範囲で種々変更可能であり、以下に説明する実施の形態に限定されるものではない。
(実施の形態)
 実施の形態にかかる半導体装置の構造について、図1,2,5を参照しながら説明する。図1は、本発明の実施の形態にかかるトレンチゲート型IGBTの要部の構造を示す断面図である。図2,5は、本発明の実施の形態にかかるトレンチゲート型IGBTの要部の構造を示す平面図である。図2には、活性領域30(一部)と、活性領域30の周辺のエッジ終端構造領域40(一部)にかけての領域の要部平面図を示す。図5には、活性領域30(一部)の図2に示す部分とは異なる部分の要部平面図を示す。ハッチングはドープドポリシリコン膜が形成されている箇所を示す(他の図も同様)。図1は、図2のA-A’切断線における断面図である。
 まず、実施の形態にかかるトレンチゲート型IGBTのトレンチゲート構造について説明する。図2,5に示すように、活性領域30において、n-ドリフト層1(n-ベース層)となる半導体基板のおもて面には、複数のトレンチ3が所定の間隔(以下、第1間隔とする)aで設けられている。複数のトレンチ3は、トレンチ3が並ぶ方向(図2では紙面横方向、以下、短手方向とする)と直交する方向(図2では紙面縦方向、以下、長手方向とする)に延びるストライプ状に配置されている。また、複数のトレンチ3の全体を取り囲む外周環状トレンチ3aが設けられている。
 外周環状トレンチ3aは、二重、あるいはそれ以上設けられていてもよい。外周環状トレンチ3aの、トレンチ3短手方向にトレンチ3と隣り合う部分は、トレンチ3の長手方向に平行である(図2)。一方、外周環状トレンチ3aの、トレンチ3長手方向にトレンチ3の長手方向端部と隣り合う部分は、トレンチ3と直交する(図5)。すなわち、図5は、トレンチ3の長手方向端部付近のトレンチ平面パターン部分を示している。また、図5は、隣り合う2本のトレンチ3の長手方向端部どうしが相互に曲線状に連結されているパターン例も示している。
 トレンチ3の内部には、トレンチ3の内壁に沿ってゲート酸化膜10が設けられている。また、トレンチ3の内部には、ゲート酸化膜10の内側にドープドポリシリコンゲート電極11が設けられ、トレンチゲート構造が構成されている。円柱状に形成されたトレンチ3の内部にゲート酸化膜10を介してドープドポリシリコンゲート電極11を埋め込んだ円柱状のトレンチゲートを設けてもよい。この場合、トレンチ3の配置は、三角格子の頂点上に規則的に配置したドットパターン状配置であってもよい。
 また、円柱状のトレンチゲートのドープドポリシリコンゲート電極11の内部に、ゲート酸化膜10を介して円柱状のn-ドリフト層1が設けられたドーナツ状のトレンチゲートを設けてもよい。ドーナツ状に形成したトレンチゲートを設ける場合においても円柱状のトレンチゲートを設ける場合と同様に、トレンチ3の配置は、三角格子の頂点上に規則的に配置したリングドットパターン状配置であってもよい。
 上述したトレンチ3の配置の中で、長手方向に直線的に延びる複数の隣り合うトレンチ3が互いに平行に且つ規則的に配置される分布(ストライプ状)である場合が、等電位線が平面的になりやすいので好ましい。図2,5に示す実施の形態にかかるトレンチゲート型IGBTの要部平面図では、それぞれ表面構造パターンを見易くするために、最表面のアルミ電極とその下層のシリコン酸化膜を図示省略する。
 次に、実施の形態にかかるトレンチゲート型IGBTのトレンチ3および外周環状トレンチ3a以外の構成部について説明する。図1,2,5に示すように、活性領域30中、特にオン状態のときに電流経路となるトレンチ3間に挟まれた領域には、pベース層2(pチャネル層)およびn+エミッタ領域8が設けられている。n+エミッタ領域8は、pベース層2の内部に選択的に設けられる。上述したトレンチ3は、pベース層2およびn+エミッタ領域8の表面(半導体基板のおもて面側の面)からpベース層2およびn+エミッタ領域8を貫通し、pベース層2よりも深く設けられている。
 このトレンチゲート構造を構成するドープドポリシリコンゲート電極11に、エミッタ電極5に対して閾値電圧以上の高い正電圧を加えることにより、トレンチ3側壁のゲート酸化膜10に対向するpベース層2の、n-ドリフト層1とn+エミッタ領域8とに挟まれた部分にnチャネル(図示せず)が形成される。エミッタ電極5からn+エミッタ領域8に注入された電子が、このnチャネルを通ってn-ドリフト層1に注入されることで、コレクタ電極6からn-ドリフト層1にホールが注入される。これにより、n-ドリフト層1内に伝導度変調が生じて低いオン電圧で電流が流れる。
 さらに、実施の形態にかかるトレンチゲート型IGBTは、前述した低オン電圧化を図る目的で、活性領域30内にエミッタ電極5と絶縁されるフローティング領域2aを設けてもよい。フローティング領域2aは、層間絶縁膜4によってエミッタ電極5と絶縁される。このフローティング領域2aには、n+エミッタ領域8は形成されない。複数のトレンチ3間には、n+エミッタ領域8が形成されチャネル電流が流れる領域と、フローティング領域2aが設けられることで電流経路のない領域とが例えば交互にpベース層2の表面層に形成されることが好ましい。図5において符号22はゲート電極コンタクトホールである。n-ドリフト層1表面(半導体基板のおもて面側の面)およびエッジ終端構造領域40の構成については後述する。
 また、本発明にかかるトレンチゲート型IGBTは、前述のトレンチ3のうち、トレンチ3の短手方向の最もエッジ終端構造領域40側に配置されたトレンチ3から、トレンチ3短手方向にエッジ終端構造領域40側へ向ってpベース層2を延在させている。以下、pベース層2の、トレンチ3短手方向の最もエッジ終端構造領域40側に配置されたトレンチ3からエッジ終端構造領域40側の部分をp型延在領域Cとする。さらに、本発明にかかるトレンチゲート型IGBTは、p型延在領域Cに、全てのトレンチ3を取り囲む外周環状トレンチ3aを1つ以上備えることを第1特徴としている。
 外周環状トレンチ3aと最も外側のトレンチ3とのトレンチ3短手方向の間隔、および、外周環状トレンチ3aを複数備える場合の隣り合う外周環状トレンチ3a間の間隔のうちの最短の間隔(以下、第2間隔とする)をbとした場合、この第2間隔bは、隣り合うトレンチ3間の第1間隔aよりも小さい(b<a)。具体的には、第2間隔bの第1間隔aに対する比(以下、トレンチ間隔比b/aとする)を、b/a<0.8とすることが好ましく、好適にはb/a<0.6とすることが本発明の第2特徴である。
 さらに、本発明にかかるトレンチゲート型IGBTは、p型延在領域C(pベース層2)のうち、最外周の外周環状トレンチ3aよりも活性領域30側の部分で、かつ外周環状トレンチ3aに接する領域2b(以下、pベース層2bとする)の表面をエミッタ電極5に電気的に接続させる構造とすることを第3特徴としている。すなわち、pベース層2bは、p型延在領域Cの、外周環状トレンチ3aとトレンチ3とに挟まれた領域、および、外周環状トレンチ3aを複数備える場合の隣り合う外周環状トレンチ3a間に挟まれた領域である。これらの特徴点(第1~3特徴)による作用効果について、以下、詳細に説明する。
 活性領域30の耐圧についてシミュレーションした結果を図6に示す。図6は、本発明の実施の形態にかかるトレンチゲート型IGBTのトレンチ間隔比b/aと活性領域30のpn接合耐圧との関係を示す特性図である。図6には、第2間隔bで隣り合う外周環状トレンチ3aの本数をパラメーターとして、トレンチ間隔比b/aと、外周環状トレンチ3aを有する活性領域30の耐圧シミュレーション値との関係を示す。耐圧シミュレーション値は、活性領域30内の、pベース層2とn-ドリフト層1とのpn接合の理論耐圧を100%としたときの百分率(%)であらわしている。
 図6に示すシミュレーション結果から、トレンチ間隔比b/aが0.8よりも小さい(b/a<0.8)場合、外周環状トレンチ3aの本数が1~5本で耐圧百分率が95%以上あり、外周環状トレンチ3aの本数が多くなるほど耐圧低下率が小さくなった。従って、トレンチ間隔比b/aが0.8よりも小さくなるように(b/a<0.8)、第2間隔bの外周環状トレンチ3aの本数を増やすことが好ましいことが確認された。さらに、トレンチ間隔比b/aを0.6よりも小さくすることにより(b/a<0.6)、トレンチ間隔比b/aに対する活性領域30の耐圧の変化の割合が小さくなり、耐圧が安定するので、一層好ましい(第1,2特徴)。
 また、第2間隔bと第1間隔aとを等しくした場合の耐圧百分率は、次のような結果となった。層間絶縁膜4を介してpベース層2bとエミッタ電極5とを絶縁状態にした構造の耐圧百分率は85%程度であることが確認された(図6には「領域2bをフロート」と示す)。一方、層間絶縁膜4に選択的に設けられたエミッタ電極コンタクトホール21を介してpベース層2bとエミッタ電極5とを導電接続させる構造の耐圧百分率は、トレンチ間隔比によらず94%以上となり、耐圧低下率が極めて大きくなることが確認された(図6には「領域2bをエミッタ電極に接続」と示す)。従って、前述のように外周環状トレンチ3aに接するpベース層2bをエミッタ電極5に電気的に接続させる構造が好ましいことが分かる(第3特徴)。
 次に、実施の形態にかかるトレンチゲート型IGBTのn-ドリフト層1表面(半導体基板のおもて面側の面)、半導体基板裏面およびエッジ終端構造領域40の構成について説明する。トレンチ3内のドープドポリシリコンゲート電極11の上部(露出部分)を覆うように層間絶縁膜4が形成されている。また、n-ドリフト層1の表面には、層間絶縁膜4を介してエミッタ電極5となる金属膜が積層されている。エミッタ電極5となる金属膜は、n+エミッタ領域8とpベース層2との表面にも共通に接触するように被着される。
 n-ドリフト層1(n-ベース層)となる半導体基板の裏面の表面層には、p+コレクタ層13が形成されている。p+コレクタ層13表面には、コレクタ電極6がオーミック接触している。また、多くの場合、トレンチゲート型IGBTのラッチアップ耐量の向上を図るために、pベース層2の内部にp+コンタクト層9を備える。さらに、n-ドリフト層1とp+コレクタ層13との間にn+バッファ層14を有する構造も、高抵抗のn-ドリフト層1を薄くすることができるので好ましい。
 pベース層2のp型延在領域Cの表面(半導体基板のおもて面側の面)には、ゲート酸化膜10を介してゲートランナー用のドープドポリシリコンゲート電極11が積層される領域と、エミッタ電極5をシリコン表面に直接に接触させるための酸化膜の開口部であるエミッタ電極コンタクトホール21とが設けられている。このエミッタ電極コンタクトホール21は、p型延在領域Cの外周環状トレンチ3a側で、かつ外周環状トレンチ3aの外側近傍に設けるのが好ましい。その理由は、p型延在領域Cの最外周端部からのn-ドリフト層1内への横方向抵抗が有効に働き、ターンオフ時の電流集中による破壊を抑制することができるからである。横方向とは、n-ドリフト層1となる半導体基板の主面に平行な方向である。
 また、エミッタ電極コンタクトホール21の開口幅を、外周環状トレンチ3aと最も外側のトレンチ3との間または隣り合う外周環状トレンチ3a間の第2間隔bより広くすることもターンオフ時の破壊の抑制に有効である。ゲートランナー用のドープドポリシリコンゲート電極11は、トレンチゲート構造用のドープドポリシリコンゲート電極11と同時形成されたものであり、図示省略する部分で繋がっており、相互に導電接続されている。さらに、ゲートランナー用のドープドポリシリコンゲート電極11の表面には、シリコン酸化膜に設けられた開口部を介してゲートランナーとなるアルミゲート電極配線12が接触している。このアルミゲート電極配線12によってトレンチゲート構造用のドープドポリシリコンゲート電極11がチップ表面に引き出される。
 エッジ終端構造領域40は、pベース層2の外周側端部に位置するp型延在領域Cのさらに外側に設けられている。エッジ終端構造領域40には、p型延在領域Cと所定の間隔をあけて、pベース層2の深さと同じ深さ、または、pベース層2の深さよりも深い環状のp+ガードリング15,16が設けられている。p+ガードリング15,16は、エッジ終端構造領域40の一部として活性領域30を取り巻いている。p+ガードリング15,16の表面には、それぞれ、ゲート酸化膜10と同時に形成された絶縁膜17を介してドープドポリシリコンフィールドプレート18,19が設けられている。
 ドープドポリシリコンフィールドプレート18,19は、それぞれp+ガードリング15、16表面を覆うとともに、隣接するn-ドリフト層1の表面上にわたってn-ドリフト層1の表面も覆うように形成されている。p+ガードリング15,16とドープドポリシリコンフィールドプレート18,19とは、それぞれ、アルミフィールドプレート20により図示省略する部分で相互に導電接続されている。
 以上、説明したように、実施の形態にかかるトレンチゲート型IGBTによれば、外周環状トレンチと最も外側のトレンチとの間または隣り合う外周環状トレンチ間の第2間隔を、トレンチゲート構造用の隣り合うトレンチ間の第1間隔よりも小さくすることで、トレンチゲート底部近傍での電界集中を抑制することができる。また、p型延在領域の外周環状トレンチ側端部表面でp型延在領域とエミッタ電極とを導電接続させることで、ターンオフ時におけるp型延在領域への電界集中を抑制することができる。これにより、低い電圧でアバランシェ降伏が生じることを回避し、耐圧低下を抑制するとともに、電界集中による破壊が生じることを回避し、ターンオフ破壊耐量を高くすることができる。
 以上において本発明では、第1導電型をn型とし、第2導電型をp型として説明しているが、第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置は、電力変換装置などに使用されるパワー半導体装置に有用である。
 1 n-ドリフト層
 2,2b pベース層
 2a フローティング領域
 3 トレンチ
 3a 外周環状トレンチ
 4 層間絶縁膜
 5 エミッタ電極
 6 コレクタ電極
 8 n+エミッタ領域
 9 p+コンタクト層
 10 ゲート酸化膜
 11 ドープドポリシリコンゲート電極
 12 アルミゲート電極配線
 13 p+コレクタ層
 14 n+バッファ層
 15,16 p+ガードリング
 17 絶縁膜
 18,19 ドープドポリシリコンフィールドプレート
 20 アルミフィールドプレート
 21 エミッタ電極コンタクトホール
 22 ゲート電極コンタクトホール
 30 活性領域
 40 エッジ終端構造領域
 C p型延在領域

Claims (9)

  1.  第1導電型半導体基板からなる第1導電型ドリフト層と、
     前記第1導電型半導体基板の一方の主面側に設けられた第2導電型ベース層と、
     前記第2導電型ベース層の内部に選択的に設けられた第1導電型半導体領域と、
     前記第1導電型半導体基板の一方の主面から前記第1導電型半導体領域および前記第2導電型ベース層を貫通して前記第1導電型ドリフト層に達するとともに、所定の第1間隔で配列された複数のトレンチと、
     前記トレンチの内部に前記トレンチの内壁に沿って設けられたゲート絶縁膜、および、前記トレンチの内部に前記ゲート絶縁膜を介して設けられたゲート電極からなるトレンチゲート構造と、前記第2導電型ベース層および前記第1導電型半導体領域に接触する金属電極と、
     複数の前記トレンチのうち最も外側の前記トレンチから外側に前記第2導電型ベース層が延在されてなる第2導電型延在領域と、
     前記第1導電型半導体基板の一方の主面から前記第2導電型延在領域を貫通して前記第1導電型ドリフト層に達するとともに、すべての前記トレンチを取り囲む1つ以上の外周環状トレンチと、を備える活性領域と、
     前記活性領域を取り巻くエッジ終端構造領域と、
     を備え、
     前記外周環状トレンチと最も外側の前記トレンチとの間、または、前記外周環状トレンチを複数備える場合の隣り合う前記外周環状トレンチ間の第2間隔は前記第1間隔より小さいことを特徴とする半導体装置。
  2.  複数の前記トレンチは、前記第1導電型半導体基板の一方の主面において、前記トレンチが並ぶ方向と直交する方向に延びるストライプ状に配列されることを特徴とする請求項1に記載の半導体装置。
  3.  前記第2間隔をbとし、前記第1間隔をaとした場合、b/a<0.8を満たすことを特徴とする請求項1に記載の半導体装置。
  4.  前記第2間隔をbとし、前記第1間隔をaとした場合、b/a<0.6を満たすことを特徴とする請求項1に記載の半導体装置。
  5.  前記第2導電型延在領域の、前記外周環状トレンチと最も外側の前記トレンチとの間、または、前記外周環状トレンチを複数備える場合の隣り合う前記外周環状トレンチ間に挟まれた部分の表面が前記金属電極と電気的に接続されていることを特徴とする請求項1に記載の半導体装置。
  6.  前記外周環状トレンチを2つ以上備えていることを特徴とする請求項1に記載の半導体装置。
  7.  前記第2導電型延在領域を覆う絶縁膜をさらに備え、
     前記絶縁膜は、最外周の前記外周環状トレンチの外側で、かつ前記第2導電型延在領域の内側近傍を露出させる開口部を有し、
     前記第2導電型延在領域は、前記開口部を介して前記金属電極と導電接触することを特徴とする請求項1に記載の半導体装置。
  8.  前記第1導電型半導体基板の一方の主面に設けられた、前記金属電極と前記ゲート電極とを絶縁する絶縁膜をさらに備え、
     前記活性領域における前記第1導電型半導体基板の一方の主面には、前記金属電極が直接接触する部分と、前記金属電極が前記絶縁膜を介して接触する部分と、が交互に配置されていることを特徴とする請求項1に記載の半導体装置。
  9.  隣り合う2本の前記トレンチの端部どうしが相互に連結されていることを特徴とする請求項1~8のいずれか一つに記載の半導体装置。
PCT/JP2012/072823 2011-09-08 2012-09-06 半導体装置 WO2013035818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12829990.6A EP2725623B1 (en) 2011-09-08 2012-09-06 Semiconductor device
CN201280039888.9A CN103733344B (zh) 2011-09-08 2012-09-06 半导体装置
JP2013532654A JP5900503B2 (ja) 2011-09-08 2012-09-06 半導体装置
US14/176,610 US9059238B2 (en) 2011-09-08 2014-02-10 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-195970 2011-09-08
JP2011195970 2011-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/176,610 Continuation US9059238B2 (en) 2011-09-08 2014-02-10 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2013035818A1 true WO2013035818A1 (ja) 2013-03-14

Family

ID=47832258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072823 WO2013035818A1 (ja) 2011-09-08 2012-09-06 半導体装置

Country Status (5)

Country Link
US (1) US9059238B2 (ja)
EP (1) EP2725623B1 (ja)
JP (1) JP5900503B2 (ja)
CN (1) CN103733344B (ja)
WO (1) WO2013035818A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745758A (zh) * 2013-11-29 2016-07-06 Abb 技术有限公司 绝缘栅双极晶体管
CN106024854A (zh) * 2015-03-25 2016-10-12 瑞萨电子株式会社 半导体装置及其制造方法
JPWO2016098409A1 (ja) * 2014-12-19 2017-04-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2018152522A (ja) * 2017-03-14 2018-09-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2019012840A (ja) * 2018-09-14 2019-01-24 三菱電機株式会社 電力用半導体装置
JP2019012838A (ja) * 2018-09-14 2019-01-24 三菱電機株式会社 電力用半導体装置
JP2019087730A (ja) * 2017-11-08 2019-06-06 富士電機株式会社 半導体装置
US10600897B2 (en) 2017-11-08 2020-03-24 Fuji Electric Co., Ltd. Semiconductor device
US11282925B2 (en) 2017-12-15 2022-03-22 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
US11600692B2 (en) 2020-09-18 2023-03-07 Kabushiki Kaisha Toshiba Semiconductor device
TWI805273B (zh) * 2021-06-21 2023-06-11 台灣積體電路製造股份有限公司 積體電路裝置及其形成方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973730B2 (ja) * 2012-01-05 2016-08-23 ルネサスエレクトロニクス株式会社 Ie型トレンチゲートigbt
DE112014001529T5 (de) * 2013-03-21 2015-12-24 Fuji Electric Co., Ltd. Halbleitervorrichtung
JP6253769B2 (ja) * 2014-04-21 2017-12-27 三菱電機株式会社 電力用半導体装置
CN105679667A (zh) * 2016-03-09 2016-06-15 上海道之科技有限公司 一种沟槽igbt器件的终端结构制造方法
JP6639365B2 (ja) 2016-09-16 2020-02-05 株式会社東芝 半導体装置
WO2018225600A1 (ja) * 2017-06-06 2018-12-13 三菱電機株式会社 半導体装置および電力変換装置
JP6996461B2 (ja) * 2018-09-11 2022-01-17 株式会社デンソー 半導体装置
JP7304827B2 (ja) * 2020-01-20 2023-07-07 三菱電機株式会社 半導体装置およびクラック検出方法
CN112786683B (zh) * 2020-12-29 2022-07-15 浙江清华长三角研究院 一种功率器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070271A (ja) 1996-06-13 1998-03-10 Plessey Semiconductors Ltd 半導体デバイスの改良
JP2005019734A (ja) * 2003-06-26 2005-01-20 Renesas Technology Corp 半導体装置およびその製造方法
JP2006005248A (ja) 2004-06-18 2006-01-05 Toshiba Corp 絶縁ゲート型半導体装置
JP2006128507A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 絶縁ゲート型半導体装置およびその製造方法
JP2007165635A (ja) * 2005-12-14 2007-06-28 Sanken Electric Co Ltd トレンチ構造半導体装置
JP2008103683A (ja) 2006-08-03 2008-05-01 Infineon Technologies Austria Ag 省スペース型のエッジ構造を有する半導体素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042665A1 (de) * 1999-01-11 2000-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mos-leistungsbauelement und verfahren zum herstellen desselben
JP4432332B2 (ja) * 2003-03-06 2010-03-17 サンケン電気株式会社 半導体素子及びその製造方法
TW587338B (en) * 2003-05-06 2004-05-11 Mosel Vitelic Inc Stop structure of trench type DMOS device and its formation method
JP3906181B2 (ja) * 2003-05-26 2007-04-18 株式会社東芝 電力用半導体装置
DE10350684B4 (de) * 2003-10-30 2008-08-28 Infineon Technologies Ag Verfahren zur Herstellung einer Leistungstransistoranordnung und mit diesem Verfahren hergestellte Leistungstransistoranordnung
DE102006046853B4 (de) * 2006-10-02 2010-01-07 Infineon Technologies Austria Ag Randkonstruktion für ein Halbleiterbauelement und Verfahren zur Herstellung derselben
JP5285874B2 (ja) * 2007-07-03 2013-09-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
DE102007037858B4 (de) * 2007-08-10 2012-04-19 Infineon Technologies Ag Halbleiterbauelement mit verbessertem dynamischen Verhalten
JP5359182B2 (ja) * 2008-01-28 2013-12-04 富士電機株式会社 半導体装置
US7816229B2 (en) * 2008-09-30 2010-10-19 Infineon Technologies Austria Ag Semiconductor device with channel stop trench and method
US8174067B2 (en) * 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8304829B2 (en) * 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
JP4905559B2 (ja) * 2009-01-27 2012-03-28 株式会社デンソー 半導体装置
JP2011124464A (ja) * 2009-12-14 2011-06-23 Toshiba Corp 半導体装置及びその製造方法
US8802529B2 (en) * 2011-07-19 2014-08-12 Alpha And Omega Semiconductor Incorporated Semiconductor device with field threshold MOSFET for high voltage termination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070271A (ja) 1996-06-13 1998-03-10 Plessey Semiconductors Ltd 半導体デバイスの改良
JP2005019734A (ja) * 2003-06-26 2005-01-20 Renesas Technology Corp 半導体装置およびその製造方法
JP2006005248A (ja) 2004-06-18 2006-01-05 Toshiba Corp 絶縁ゲート型半導体装置
JP2006128507A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 絶縁ゲート型半導体装置およびその製造方法
JP2007165635A (ja) * 2005-12-14 2007-06-28 Sanken Electric Co Ltd トレンチ構造半導体装置
JP2008103683A (ja) 2006-08-03 2008-05-01 Infineon Technologies Austria Ag 省スペース型のエッジ構造を有する半導体素子

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745758A (zh) * 2013-11-29 2016-07-06 Abb 技术有限公司 绝缘栅双极晶体管
JPWO2016098409A1 (ja) * 2014-12-19 2017-04-27 富士電機株式会社 半導体装置および半導体装置の製造方法
CN106024854A (zh) * 2015-03-25 2016-10-12 瑞萨电子株式会社 半导体装置及其制造方法
CN106024854B (zh) * 2015-03-25 2021-01-19 瑞萨电子株式会社 半导体装置及其制造方法
JP2018152522A (ja) * 2017-03-14 2018-09-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2019087730A (ja) * 2017-11-08 2019-06-06 富士電機株式会社 半導体装置
US10600897B2 (en) 2017-11-08 2020-03-24 Fuji Electric Co., Ltd. Semiconductor device
JP7028093B2 (ja) 2017-11-08 2022-03-02 富士電機株式会社 半導体装置
US11282925B2 (en) 2017-12-15 2022-03-22 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
JP2019012838A (ja) * 2018-09-14 2019-01-24 三菱電機株式会社 電力用半導体装置
JP2019012840A (ja) * 2018-09-14 2019-01-24 三菱電機株式会社 電力用半導体装置
US11600692B2 (en) 2020-09-18 2023-03-07 Kabushiki Kaisha Toshiba Semiconductor device
TWI805273B (zh) * 2021-06-21 2023-06-11 台灣積體電路製造股份有限公司 積體電路裝置及其形成方法

Also Published As

Publication number Publication date
JP5900503B2 (ja) 2016-04-06
EP2725623A1 (en) 2014-04-30
CN103733344A (zh) 2014-04-16
JPWO2013035818A1 (ja) 2015-03-23
US9059238B2 (en) 2015-06-16
CN103733344B (zh) 2018-05-18
EP2725623A4 (en) 2015-01-28
EP2725623B1 (en) 2019-10-30
US20140159107A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
JP5900503B2 (ja) 半導体装置
JP3751463B2 (ja) 高耐圧半導体素子
JP6260515B2 (ja) 半導体装置
US8957502B2 (en) Semiconductor device
JP5787853B2 (ja) 電力用半導体装置
JP4857566B2 (ja) 絶縁ゲート型半導体装置とその製造方法
US10109725B2 (en) Reverse-conducting semiconductor device
WO2013136898A1 (ja) 半導体装置
JP7272775B2 (ja) 絶縁ゲートバイポーラトランジスタ
JP5619758B2 (ja) 逆伝導半導体装置
JP5720805B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
US10600897B2 (en) Semiconductor device
JP5711646B2 (ja) ダイオード
JP6561611B2 (ja) 半導体装置
JP6356803B2 (ja) 絶縁ゲートバイポーラトランジスタ
JPWO2014061619A1 (ja) 半導体装置
JP2007324539A (ja) トレンチ型絶縁ゲート半導体装置
JP2010232335A (ja) 絶縁ゲートバイポーラトランジスタ
JP5726898B2 (ja) パワー半導体デバイス
JP2012033802A (ja) 半導体装置
JP2014130896A (ja) 半導体装置
JP2019087730A (ja) 半導体装置
US20150171198A1 (en) Power semiconductor device
JP2012182391A (ja) 半導体装置
JP2018006648A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE