WO2013027999A9 - 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산 - Google Patents

열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산 Download PDF

Info

Publication number
WO2013027999A9
WO2013027999A9 PCT/KR2012/006637 KR2012006637W WO2013027999A9 WO 2013027999 A9 WO2013027999 A9 WO 2013027999A9 KR 2012006637 W KR2012006637 W KR 2012006637W WO 2013027999 A9 WO2013027999 A9 WO 2013027999A9
Authority
WO
WIPO (PCT)
Prior art keywords
epimerase
enzyme
amino acid
variant
cysteine
Prior art date
Application number
PCT/KR2012/006637
Other languages
English (en)
French (fr)
Other versions
WO2013027999A3 (ko
WO2013027999A2 (ko
Inventor
김양희
김진하
이영미
홍영호
김민회
김성보
박승원
오승현
오덕근
최진근
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI201230996T priority Critical patent/SI2749645T1/sl
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to JP2014527066A priority patent/JP6043354B2/ja
Priority to US14/240,647 priority patent/US9217166B2/en
Priority to IN1614CHN2014 priority patent/IN2014CN01614A/en
Priority to CN201280052112.0A priority patent/CN104160023B/zh
Priority to EP12826072.6A priority patent/EP2749645B1/en
Priority to RS20170604A priority patent/RS56088B1/sr
Priority to DK12826072.6T priority patent/DK2749645T3/en
Priority to ES12826072.6T priority patent/ES2626501T3/es
Publication of WO2013027999A2 publication Critical patent/WO2013027999A2/ko
Publication of WO2013027999A3 publication Critical patent/WO2013027999A3/ko
Publication of WO2013027999A9 publication Critical patent/WO2013027999A9/ko
Priority to HRP20170813TT priority patent/HRP20170813T1/hr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)

Definitions

  • the present invention relates to a cosmos epimerase enzyme variant derived from Agrobacterium tumefaciens and a method of producing psychocos using the same, which have improved thermal stability.
  • D-psicose is a monosaccharide known as rare sugar because it is rarely present in natural substances or is present only in small amounts. It is widely used as.
  • Cycos is a fructose epimer, and its intensity and type are very similar to those of fructose, but unlike fructose, it is hardly metabolized in the body, so the calories are close to zero and the abdomen is inhibited by the enzymes involved in lipid synthesis. Because it has the effect of reducing obesity can be usefully used as an active ingredient in diet foods.
  • sugar alcohols such as xylitol, which are widely used as sugar substitute sweeteners, cause side effects such as diarrhea when ingested in a predetermined amount or more, whereas psychocos has little side effects (Matsue, T., Y). Baba, M. Hashiguchi, K. Takeshita, K. Izumori, and H. Suzuki. 2001.
  • Dietary D-psicose a C-3 epimer of D-fructose, suppresses the activity of hepatic lipogenic enzymes in rats.Asia Pac. J. Clin. Nutr. 10: 233-237 .; Matsuo, T., and K. Izumori. 2004. D-psicose, a rare sugar that provides no energy and additionally beneficial effects for clinical nutrition.Asia Pac. J. Clin Nutr. 13: S127).
  • Corynebacterium sp. Strains are industrial microorganisms that produce chemicals with various uses in the fields of feed, pharmaceuticals and foods including L-lysine, L-threonine and various nucleic acids. These strains of the genus Corynebacterium are GRAS (Generally Recognized As Safe) strains, and have strain characteristics that are easy for genetic manipulation and mass culture. In addition, the strain has a high stability under a variety of process conditions and has a relatively rigid cell membrane structure compared to other bacteria, thereby having the biological properties that the cells remain stable even under high osmotic pressure due to high sugar concentration.
  • GRAS Generally Recognized As Safe
  • the present inventors realized a problem of agrobacterium tumerfaciens-derived cosmos epimerase, which has high activity but very low thermal stability, and thus can industrially mass-produce high-interest psychose as an important food material today.
  • the inventors have invented a cosmos epimerase mutant having improved thermal stability and invented a method for the continuous production of psycos using the same.
  • an object of the present invention is to provide a cosmos epimerase enzyme variant having improved thermal stability by substituting an amino acid having a specific sequence number.
  • an aspect of the present invention is to provide a recombinant expression vector comprising the gene of the above-mentioned cosmos epimerase enzyme and a recombinant strain transformed with the recombinant expression vector.
  • an object of the present invention is to provide an immobilization reactor prepared using the enzyme variant or recombinant strain and a method of continuously producing a psychose using the immobilization reactor.
  • the present invention provides a cosmos epimerase variant that improves thermal stability by substituting an amino acid of a specific sequence number.
  • the present invention provides a recombinant expression vector comprising the gene of the above cosmos epimerase enzyme and a recombinant strain transformed with the recombinant expression vector.
  • the present invention provides an immobilization reactor prepared using the enzyme variant or recombinant strain and a method of continuously producing a psychose using the immobilization reactor.
  • a variant of the wild type cyclic epimerization enzyme derived from Agrobacterium tumefaciens Agrobacterium tumefaciens
  • the amino acid sequence number hereinafter referred to as' SEQ ID NO: 33
  • isoleucine In Ile
  • an amino acid sequence substituted with cysteine at Serine (sere) Having a thermostable improved cycos epimerase enzyme variant.
  • a variant of Agrobacterium tumerfaciens-derived wild type cyclic epimerase SEQ ID NO: 33 in isoleucine, one amino acid selected from the group consisting of leucine, cysteine and valine And an amino acid sequence of SEQ ID NO: 213 having a serine-to-cysteine-substituted amino acid sequence with improved thermal stability.
  • a recombinant expression vector comprising a gene encoding the cyclic epimerase enzyme variant.
  • Corynebacterium glutamicum pFIS-1-ATPE-2 transformed with the recombinant expression vector is provided.
  • an immobilization reactor for producing a psychose including a column filled with a carrier immobilized with the cosmos epimerase variant.
  • a method of producing a psychocos by supplying a fructose solution to the immobilization reactor.
  • the present invention relates to a cosmos epimerase mutant substituted with an amino acid having a specific sequence number.
  • the cosmos epimerase mutant has a property of remarkably improved thermal stability without degrading enzyme activity, and thus is an important food material. This has the advantage of allowing mass production of more efficient Psychos.
  • the enzyme variant of the present invention has a much longer half-life at the general enzymatic reaction temperature than wild-type cosmos epimerase, it is possible to use the psychic epimerase once made in the production of psychoses for a longer period of time. It has the advantage of increasing the production efficiency by reducing the production time and cost.
  • the present invention provides a recombinant vector and Corynebacterium glutamicum pFIS-1-ATPE-2 which is a recombinant vector transformed with the recombinant vector and the recombinant vector to express the cosmos epimerase enzyme variant,
  • a recombinant vector and Corynebacterium glutamicum pFIS-1-ATPE-2 which is a recombinant vector transformed with the recombinant vector and the recombinant vector to express the cosmos epimerase enzyme variant
  • Figure 1 shows a recombinant expression vector comprising a gene of a cosmos epimerase enzyme derived from Agrobacterium tumerfaciens.
  • FIG. 2 is a graph showing the apparent fusion profile of wild type and variants (S213C, I33L, and I33L-S213C) of agrobacterium tumerfaciens-derived cosmos epimerase using DSC (differential scanning calorimeter). The peak portion of this graph represents the apparent melting temperature of the enzyme.
  • FIG. 3 is This figure shows the results of molecular modeling of wild type and variants (S213C, I33L, and I33L-S213C) of Pycos epimerase derived from Agrobacterium tumerfaciens.
  • A) and (B) show the secondary structure of the wild type and I33L-S213C variants, respectively
  • S213C variants show putative hydrogen bonding around cysteine
  • e and (bar) show interactions between aromatic groups of wild type and I33L variants, respectively.
  • FIG. 4 is a graph showing the operating stability at a reaction temperature of 50 ° C. of an immobilized reactor using a variant in the method according to an aspect of the present invention.
  • the present invention provides a cosmos epimerase variant that improves thermal stability by substituting an amino acid of a specific sequence number.
  • the present invention provides a recombinant expression vector comprising the gene of the above cosmos epimerase enzyme and a recombinant strain transformed with the recombinant expression vector.
  • the present invention provides an immobilization reactor prepared using the enzyme variant or recombinant strain and a method of continuously producing a psychose using the immobilization reactor.
  • amino acid sequence number (hereinafter referred to as 'SEQ ID NO') No. 33 in isoleucine (Ile)
  • An amino acid sequence substituted with one amino acid selected from the group consisting of leucine (Leu), cysteine (Cys) and valine (Val), or SEQ ID NO: 213 has an amino acid sequence substituted with cysteine in Serine (Ser)
  • Serine Serine
  • the Agrobacterium tumefaciens ( Agrobacterium tumefaciens ) is a known strain, Agrobacterium tumefaciens ATCC 33970 can be used.
  • the Agrobacterium tumerfaciens-derived wild-type cosmos epimerase may have the amino acid sequence of SEQ ID NO: 1 of Korean Patent Publication (A) No. 10-2011-0035805 or may be a functional fragment thereof.
  • the term "functional fragment” refers to a fragment having an activity of converting fructose into a psychose, including a mutation by substitution, insertion or deletion of some amino acids in the amino acid sequence of SEQ ID NO: 1.
  • the said cyclic epimerase enzyme variant means the enzyme which has the amino acid sequence by which the amino acid of the specific sequence number was substituted among the amino acid sequences of the said agrobacterium tumerfaciens wild-type cosmos epimerase.
  • the cosmos epimerase mutant may be one wherein SEQ ID NO: 33 is substituted with leucine in isoleucine.
  • the variant of the cosmos epimerase, SEQ ID NO: 33 is substituted with one amino acid selected from the group consisting of isoleucine, leucine, cysteine and valine, SEQ ID NO: 213
  • a thermostable pycos epimerase variant having an amino acid sequence substituted with cysteine in this serine.
  • the cosmos epimerase mutant may be one wherein SEQ ID NO: 33 is substituted with leucine in isoleucine, and SEQ ID NO: 213 is substituted with cysteine in serine.
  • a recombinant expression vector comprising the gene of the Pseudomonas epimerase enzyme variant (FIG. 1).
  • Corynebacterium glutamicum pFIS-1-ATPE-2 characterized in that transformed with the recombinant expression vector.
  • the recombined strain Corynebacterium glutamicum pFIS-1-ATPE-2 was submitted to the Korean Culture Center of Microorganisms (KCCM) located in Hongje 1-dong, Seodaemun-gu, Seoul in accordance with the Budapest Treaty. It was deposited with accession number KCCM11204P.
  • a method for producing a psychose from fructose by using the cosmos epimerase enzyme variant or the recombinant Corynebacterium glutamicum pFIS-1-ATPE-2.
  • the method comprises a column filled with a carrier immobilized with the cosmos epimerase variant or the recombinant Corynebacterium glutamicum pFIS-1-ATPE-2.
  • a carrier immobilized with the cosmos epimerase variant or the recombinant Corynebacterium glutamicum pFIS-1-ATPE-2 Provided is an immobilization reactor for the production of psycos.
  • immobilization reactor refers to a reactor in which a reaction for producing a psychose occurs by a strain or enzyme immobilized on a carrier or through a column packed with a strain or enzyme immobilized on a carrier.
  • immobilization means that a substance which provides a biological activity, in this case, a psychos epimerase or a strain comprising the same, is immobilized on a carrier.
  • the carrier for immobilizing the enzyme variant or recombinant strain may be used as long as the carrier can be used for immobilization of the enzyme or strain in the technical field or similar field of the present invention, and preferably sodium alginate
  • Sodium alginate is a natural colloidal polysaccharide that is abundant in the algae cell wall. It consists of ⁇ -D-mannuronic acid and gluronic acid. It is advantageous because it is formed by forming four bonds so that cells or enzymes can be stably immobilized.
  • a method of producing a psychocos by supplying a fructose solution to the immobilization reactor.
  • half-life means a period of time until the relative activity is 50 when the relative activity of the initial stage of the enzyme reaction of the enzyme or enzyme variant is 100.
  • operation stability means that the reactor can be operated while maintaining a suitable level of productivity relative to the initial activity in order to continuously produce the desired product (herein the psychos), and usually the duration of operation (in hours) Etc.).
  • the activity of the psychos epimerase was measured using fructose as a substrate.
  • 50 mM piperazine-N, N'-bis (2-ethanesulfonic acid) buffer solution containing 20 mM substrate, pH 8.0 was added to the enzyme or a sample containing the enzyme and reacted for 10 minutes at 50 °C The reaction was stopped by adding hydrochloric acid to a final concentration of 200 mM.
  • Fructose and psychocos concentrations were measured by HPLC equipped with a RI (Refractive Index) detector. HPLC analysis was performed under the condition of injecting a sample into a column set at 80 ° C.
  • Enzyme units were defined as the amount of producing 1 micromole of psychocos per minute at pH 8.0 and 50 ° C. conditions.
  • Error-pron polymerization with a cyclic epimerization enzyme from Agrobacteriumtumefaciens ATCC 33970 (same as amino acid sequence of SEQ ID NO: 1 of Korean Patent Application Publication No. 10-2011-0035805) as a template
  • Variant libraries of Psychos epimerase were constructed through error-prone PCR.
  • a general PCR mutagenesis kit was used, which allowed 2-3 mutations per 1000 base pairs.
  • a gene library encoding a variant of the cosmos epimerase was constructed. E.coli Inserted into BL21.
  • E. coli BL21 carrying the pTrc99A plasmid containing the mutant gene of the cosmos epimerase was inoculated into an LB medium containing 50 ⁇ g / ml of ampicillin and incubated at 37 ° C. for 6 hours. This was partially taken and transferred to a medium containing 50 ⁇ g / ml of ampicillin and 0.1 mM of IPTG and incubated at 37 ° C. for 6 hours to induce the expression of the enzyme. Heat the culture solution at 60 ° C. for 5 minutes, add fructose to a final concentration of 1 to 5 mM, and react for 30 minutes at 50 ° C., and then measure the amount of fructose remaining using a common fructose assay kit. Out of a total of 5000 mutants, 150 mutants were selected that showed about 1.2-fold activity compared to wild-type enzymes.
  • the 150 mutants were selected to induce the expression of the enzyme in the same manner as above. Cultured cells were disrupted by sonication, and the cell lysate was centrifuged to obtain a supernatant containing cyclic epimerase, followed by the above-described "method of measuring activity of cyclic epimerase". Its enzyme activity was measured. As a result of the measurement, 23 variants having high half-life at the reaction temperature of 55 ° C were reselected.
  • Reselected 23 mutant genes were transferred from pTrc99A to pET-24a (+) and used to transform E. coli BL21.
  • the recombinant strain E. coli BL21 was cultured at 37 ° C. using an LB medium containing 50 ⁇ g / ml kanamycin, and IPTG (Isopropyl-beta-thiogalactopyranoside) was added so that its final concentration was 0.1 mM when the OD 600 reached 0.6. Injected and incubated at 16 ° C. for 16 hours.
  • the cells were collected by centrifugation and the cells were resuspended in 50 mM phosphate buffer containing 300 mM KCl and 10 mM imidazole, and the suspension was subjected to sonication to disrupt cells.
  • the cell lysate was centrifuged to obtain a supernatant containing Pseudomonas epimerase and purified using metal ion affinity chromatography.
  • the imidazole in the purified enzyme was removed using a desalting cartridge.
  • the half-life at 55 ° C of the 23 reselected variants was measured, and five of them were selected with the highest half-life.
  • the relative activities and half-lives at 55 ° C. of the five selected variants and wild type are shown in Table 1 below.
  • I33L is used as an example to describe the names of enzyme variants used in the present specification, and the number 33 means that the 33rd amino acid of the amino acid sequence has been substituted based on the cyclic epimerase wild type, and the letters I and L beside the numbers Each of these means an acronym for each amino acid, and when combined, I33L means that the 33rd amino acid is replaced with leucine (Leu) in isoleucine (Ile).
  • Example 1 S213C and I33L were selected as variants in which thermal stability was increased and activity was not significantly reduced. Based on this, site-directed mutagenesis was performed at amino acid sequences 33 and 213.
  • Serine No. 213 which is polar and does not have a charge (Ser), threonine (Thr), cysteine (Cys), methionine (Met), which is a polar and charge-free amino acid; Proline, a nonpolar amino acid (Pro); Glutamic acid (Glu), a negatively charged residue; And lysine (Lys), which is a positively charged residue, respectively.
  • Isoleucine at 33 is a nonpolar residue, is a cysteine which is a polar, uncharged residue; Nonpolar residues of valine, leucine, proline; Glutamic acid, a negatively charged residue; Each was substituted with lysine, a positively charged residue.
  • I33L, I33C, I33V and S213C were obtained as variants with increased thermal stability without significantly affecting enzyme activity.
  • Table 2 shows the relative activity of the wild type of Agrobacterium tumerfaciens-derived cosmos epimerase, variant substituted for amino acids 33 or 213 and variant I33L-S213C substituted for both amino acids 33 and 213. Half-life at 55 ° C is shown.
  • the apparent melting temperature increased in the order of wild type ⁇ S213C ⁇ I33L ⁇ I33L-S213C (Fig. 2). Specifically, compared with the wild type, the apparent melting temperature of about 3.1 o C for S213C, about 4.3 o C for I33L, and about 7.6 ° C. for I33L-S213C was increased.
  • I33L-S213C As a result of measuring the dynamic parameter values of each enzyme, wild type and variants I33L and S213C showed similar values, while I33L-S213C showed an enzyme catalytic efficiency (k cat / K m ) approximately 1.4 times higher than this. The reason for this is that I33L-S213C forms additional hydrogen bonds compared to other variants or wild-types and forms new stacking interactions between aromatic groups that were not found in wild-types, resulting in a tighter, more dense structure. It is considered that the affinity with the substrate is increased (FIG. 3).
  • the wild type in the molecular model does not appear to have an interaction between the aromatic groups, while in the variant I33L it was confirmed that the stacking interaction between the aromatic groups (Fig. 3 (e), (bar)).
  • the stacking interaction between aromatic groups is also considered to increase thermal stability.
  • the recombinant expression vector may be introduced by transformation into Corynebacterium glutamicum ATCC13032 using electroporation to express a gene encoding a cosmos epimerase derived from Agrobacterium tumerfaciens. Recombinant strains were prepared.
  • the recombinant strain was named Corynebacterium glutamicum pFIS-1-ATPE-2, and was deposited with the Korean Culture Center of Microorganisms (KCCM) on August 18, 2011 under accession number KCCM 11204P. .
  • the cells were recovered by centrifugation of the culture solution, and suspended in 50 mM EPPS buffer solution (pH 8.0) to 20% recovered cells.
  • the cells of the suspended recombinant strain were added to an aqueous solution of 2% (v / v) sodium alginate, and the mixed solution was dropped into a 100 mM CaCl 2 solution using a syringe pump and a vacuum pump.
  • the cell-alginate conjugates collected in the beads were produced.
  • Said recombinant strain immobilized on sodium alginate was continuously packed into a packed-bed column to form a psychose through an immobilization reactor.
  • the reaction temperature was fixed at 50 ° C. and the cyclic course was produced for two months through each reactor. Activity was measured. At this time, the concentration of fructose was 480 g / L and the flow rate was 850 ml / h.
  • the immobilization reactor using a variant having improved thermal stability and enzyme activity compared to the wild type immobilization reactor maintains a high operating stability for more than two months.
  • the immobilization reactor using the wild type had a half life of about 30 days, but the immobilization reactor using the I33L-S213C variant was found to have a half life of about 77 days (FIG. 4).
  • the enzyme can be used for a longer period of time, thereby reducing the production cost of the psychos.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 특정한 서열번호의 아미노산을 치환시킴으로써, 열 안정성을 향상시킨 사이코스 에피머화 효소 변이체에 관한 것이다. 또한, 본 발명은 상기의 사이코스 에피머화 효소 변이체의 유전자를 포함하는 재조합 벡터 및 상기 재조합 벡터로 형질 전환된 재조합 균주에 관한 것이다. 또한, 본 발명은 상기 효소 변이체 또는 재조합 균주를 이용하여 제조된 고정화 반응기 및 상기 고정화 반응기를 이용하여 사이코스를 생산하는 방법에 관한 것이다.

Description

열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
본 발명은 열 안정성을 향상시킨, 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens) 유래의 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 생산 방법에 관한 것이다.
D-사이코스(D-psicose)는 천연 물질 내에 거의 존재하지 않거나 또는 소량으로만 존재하기 때문에 희소당(rare sugar) 으로 알려져 있는 단당류로서, 초저열량이면서도 설탕과 유사한 정도의 단맛을 가지고 있어 기능성 감미료로 널리 이용되고 있다.
사이코스는 과당(fructose)의 에피머로, 감미의 강도와 종류는 과당과 매우 유사하나, 과당과 달리 체내에서 거의 대사되지 않기 때문에 열량이 제로에 가깝고 지질합성에 관여하는 효소의 활성을 억제하여 복부 비만을 감소시키는 효능을 갖기 때문에 다이어트 식품의 유효 성분으로 유용하게 사용될 수 있다. 또한, 설탕 대체 감미료로 널리 이용되고 있는 자일리톨 등과 같은 당 알코올류의 경우 일정량 이상 섭취 시 설사를 유발하는 등의 부작용을 일으키는 반면, 사이코스는 부작용이 거의 없는 것으로 알려져 있다(Matsue, T., Y. Baba, M. Hashiguchi, K. Takeshita, K. Izumori, 및 H. Suzuki. 2001. Dietary D-psicose, a C-3 epimer of D-fructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac. J. Clin. Nutr. 10:233-237.; Matsuo, T., 및 K. Izumori. 2004. D-psicose, a rare sugar that provides no energy and additionally beneficial effects for clinical nutrition. Asia Pac. J. Clin. Nutr. 13:S127).
이와 같은 이유로 사이코스는 다이어트 감미료로서 각광받고 있어 식품 산업 분야에 있어서 사이코스를 효율적으로 생산할 수 있는 방법에 대한 개발의 필요성이 높아지고 있다. 이처럼 사이코스 개발의 필요성이 대두됨에 따라, 종래 생물학적인 방법을 이용하여 과당으로부터 사이코스를 생산하는 다양한 연구가 진행되어 왔다. 과당을 사이코스로 전환시킬 수 있는 효소로는 아그로박테리움 투머파시엔스 유래의 사이코스 에피머화 효소(D-psicose 3-epimerase) 및 슈도모나스 치코리이(Pseudomonas cichorii) 또는 로도박터 스페로이데스(Rhodobacter sphaeroides) 유래의 타가토스 에피머화 효소가 알려져 있으며, 사이코스 에피머화 효소가 타가토스 에피머화 효소에 비해 높은 활성을 보이는 것으로 알려져 있다.
코리네박테리움(Corynebacterium) 속 균주는 L-라이신, L-트레오닌 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는 산업용 미생물이다. 이러한 코리네박테리움 속 균주는 GRAS(Generally Recognized As Safe) 균주이고, 유전자 조작 및 대량 배양에 용이한 균주 특성을 가지고 있다. 뿐만 아니라 다양한 공정 조건에서 높은 안정성을 가지는 균주이며 다른 세균에 비하여 상대적으로 단단한 세포막 구조를 가지고 있어, 이로 인해 높은 당 농도 등에 의한 높은 삼투압 하에서도 균체가 안정적인 상태로 존재하는 생물학적 특성을 가지고 있다.
[선행기술문헌]
1) 대한민국등록특허공보 B1 제10-0744479호 (2007.08.01.공고)
2) 대한민국공개특허공보 A 제10-2011-0035805호 (2011.04.06.공개)
본 발명자는 활성은 높으나 열 안정성이 매우 낮아 활용도가 떨어지는, 아그로 박테리움 투머파시엔스 유래의 사이코스 에피머화 효소의 문제점을 깨닫고, 이에 오늘날 중요한 식품 소재로 관심도가 높은 사이코스를 산업적으로 대량 생산할 수 있도록, 열 안정성을 향상시킨 사이코스 에피머화 효소 변이체를 발명하고 이를 이용한 사이코스의 연속적 생산 방법을 발명하기에 이르렀다.
구체적으로, 본 발명은 특정한 서열번호의 아미노산을 치환시킴으로써, 열 안정성을 향상시킨 사이코스 에피머화 효소 변이체를 제공하는 것을 목적으로 한다.
또한, 본 발명의 일 양태는 상기의 사이코스 에피머화 효소 변이체의 유전자를 포함하는 재조합 발현 벡터 및 상기 재조합 발현 벡터로 형질 전환된 재조합 균주를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 효소 변이체 또는 재조합 균주를 이용하여 제조된 고정화 반응기 및 상기 고정화 반응기를 이용하여 사이코스를 연속적으로 생산하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 특정한 서열번호의 아미노산을 치환시킴으로써, 열 안정성을 향상시킨 사이코스 에피머화 효소 변이체를 제공한다. 또한, 본 발명은 상기의 사이코스 에피머화 효소 변이체의 유전자를 포함하는 재조합 발현 벡터 및 상기 재조합 발현 벡터로 형질 전환된 재조합 균주를 제공한다. 또한, 본 발명은 상기 효소 변이체 또는 재조합 균주를 이용하여 제조된 고정화 반응기 및 상기 고정화 반응기를 이용하여 사이코스를 연속적으로 생산하는 방법을 제공한다.
보다 구체적으로, 본원 발명의 일 양태는, 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens) 유래의 야생형 사이코스 에피머화 효소의 변이체로서, 아미노산 서열번호(이하, '서열번호') 33번이 이소루신(Ile)에서, 류신(Leu), 시스테인(Cys) 및 발린(Val)으로 이루어진 군으로부터 선택된 하나의 아미노산으로 치환된 아미노산 서열, 또는 서열번호 213번이 세린(Ser)에서 시스테인으로 치환된 아미노산 서열을 갖는, 열 안정성이 향상된 사이코스 에피머화 효소 변이체를 제공한다.
본 발명의 또 다른 일 양태에 따르면, 아그로박테리움 투머파시엔스 유래의 야생형 사이코스 에피머화 효소의 변이체로서, 서열번호 33번이 이소루신에서, 류신, 시스테인 및 발린으로 이루어진 군으로부터 선택된 하나의 아미노산으로 치환되고, 서열번호 213번이 세린에서 시스테인으로 치환된 아미노산 서열을 갖는, 열 안정성이 향상된 사이코스 에피머화 효소 변이체를 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 사이코스 에피머화 효소 변이체를 암호화하는 유전자를 포함하는 재조합 발현 벡터를 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 재조합 발현 벡터로 형질 전환된 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) pFIS-1-ATPE-2를 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 사이코스 에피머화 효소 변이체를 이용하여 과당으로부터 사이코스를 생산하는 방법을 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 재조합된 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2를 이용하여 과당으로부터 사이코스를 생산하는 방법을 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 사이코스 에피머화 효소 변이체를 고정화시킨 담체로 충진한 컬럼을 포함하는, 사이코스 생산용 고정화 반응기를 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 고정화 반응기에 과당 용액을 공급하여 사이코스를 생산하는 방법을 제공한다.
본 발명은 특정한 서열번호의 아미노산을 치환시킨 사이코스 에피머화 효소 변이체에 관한 것으로, 상기 사이코스 에피머화 효소 변이체는 효소 활성이 저하되지 않으면서도 열 안정성이 현저히 향상된 특성을 가지고 있어, 오늘날 중요한 식품 소재로 각광받고 있는 사이코스를 보다 효율적으로 대량 생산해 낼 수 있도록 하는 이점을 갖는다.
구체적으로, 본 발명의 상기 효소 변이체는 야생형 사이코스 에피머화 효소에 비해 일반적인 효소 반응 온도에서 훨씬 연장된 반감기를 갖기 때문에, 사이코스를 생산함에 있어서 한번 만들진 사이코스 에피머화 효소를 보다 오랜 기간 동안 사용할 수 있도록 하여 생산 시간 및 비용의 절감으로 생산 효율을 높여주는 이점을 갖는다.
또한, 본 발명은 상기 사이코스 에피머화 효소 변이체를 발현할 수 있도록 재조합된 재조합 벡터 및 상기 재조합 벡터로 형질전환 된 재조합 균주인 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2를 제공하고, 상기 효소 변이체 또는 상기 재조합 균주를 이용하여 고정화 반응기를 형성하여 사이코스를 연속적으로 대량 생산할 수 있는 방법을 제공하는 이점을 갖는다.
도 1은 아그로박테리움 투머파시엔스 유래의 사이코스 에피머화 효소 변이체의 유전자를 포함하는 재조합 발현 벡터를 나타낸 것이다.
도 2는 DSC(differential scanning calorimeter)를 이용한 아그로박테리움 투머파시엔스 유래의 사이코스 에피머화 효소의 야생형 및 변이체(S213C, I33L, 및 I33L-S213C)의 겉보기 융해 프로파일을 나타낸 그래프이다. 이 그래프의 피크 부분은 효소의 겉보기 융해온도를 나타낸다.
도 3은 아그로박테리움 투머파시엔스 유래의 사이코스 에피머화 효소의 야생형 및 변이체(S213C, I33L, 및 I33L-S213C)의 분자 모델링 결과를 나타내는 그림이다. (가) 및 (나)는 각각 야생형 및 I33L-S213C 변이체의 이차 구조를 나타낸 것이고, (다) 및 (라)는 각각 야생형 및 S213C 변이체의 아미노산 서열 213번째의 아미노산(야생형의 경우 세린(Ser), S213C 변이체의 경우 시스테인(Cys)) 주변의 추정상의 수소 결합을 나타낸 것이며, (마) 및 (바)는 각각 야생형 및 I33L 변이체의 방향족 그룹간의 상호 작용을 나타낸 것이다.
도 4는 본 발명의 일 양태에 따른 방법에 있어서, 변이체를 이용한 고정화 반응기의 반응 온도 50℃에서의 운전 안정성을 나타낸 그래프이다.
본 발명은 특정한 서열번호의 아미노산을 치환시킴으로써, 열 안정성을 향상시킨 사이코스 에피머화 효소 변이체를 제공한다. 또한, 본 발명은 상기의 사이코스 에피머화 효소 변이체의 유전자를 포함하는 재조합 발현 벡터 및 상기 재조합 발현 벡터로 형질 전환된 재조합 균주를 제공한다. 또한, 본 발명은 상기 효소 변이체 또는 재조합 균주를 이용하여 제조된 고정화 반응기 및 상기 고정화 반응기를 이용하여 사이코스를 연속적으로 생산하는 방법을 제공한다.
이하, 본원 발명에 대하여 보다 상세히 설명한다. 본원 명세서에 기재되지 않은 내용은 본원 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.
본 발명의 일 양태에 따르면, 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens) 유래의 야생형 사이코스 에피머화 효소의 변이체로서, 아미노산 서열번호(이하, '서열번호') 33번이 이소루신(Ile)에서, 류신(Leu), 시스테인(Cys) 및 발린(Val)으로 이루어진 군으로부터 선택된 하나의 아미노산으로 치환된 아미노산 서열, 또는 서열번호 213번이 세린(Ser)에서 시스테인으로 치환된 아미노산 서열을 갖는 것을 특징으로 하는, 열 안정성이 향상된 사이코스 에피머화 효소 변이체를 제공한다.
상기 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens)는 공지의 균주로서, 아그로박테리움 투머파시엔스 ATCC 33970을 사용할 수 있다.
상기 아그로박테리움 투머파시엔스 유래의 야생형 사이코스 에피머화 효소는 대한민국공개특허공보(A) 제10-2011-0035805호의 서열목록 1의 아미노산 서열을 갖거나 또는 그의 기능성 단편일 수 있다. 상기 "기능성 단편" 이란, 서열목록번호 1의 아미노산 서열에 일부 아미노산의 치환, 삽입 또는 결실 등에 의한 변이를 포함하며, 과당을 사이코스로 전환시키는 활성을 갖는 단편을 의미한다.
상기 사이코스 에피머화 효소 변이체는 상기의 아그로박테리움 투머파시엔스 유래의 야생형 사이코스 에피머화 효소의 아미노산 서열 중, 특정 서열 번호의 아미노산이 치환된 아미노산 서열을 갖는 효소를 의미한다.
상기 사이코스 에피머화 효소 변이체는 보다 바람직하게는 서열번호 33번이 이소루신에서 류신으로 치환된 것일 수 있다.
본 발명의 또 다른 일 양태에 따르면, 상기 사이코스 에피머화 효소의 변이체는, 서열번호 33번이 이소루신에서, 류신, 시스테인 및 발린으로 이루어진 군으로부터 선택된 하나의 아미노산으로 치환되고, 서열번호 213번이 세린에서 시스테인으로 치환된 아미노산 서열을 갖는 것을 특징으로 하는, 열 안정성이 향상된 사이코스 에피머화 효소 변이체를 제공한다.
상기 사이코스 에피머화 효소 변이체는 보다 바람직하게는 서열번호 33번이 이소루신에서 류신으로 치환되고, 서열번호 213번이 세린에서 시스테인으로 치환된 것일 수 있다.
본 발명의 또 다른 일 양태에 따르면, 사이코스 에피머화 효소 변이체의 유전자를 포함하는 재조합 발현 벡터를 제공한다(도 1).
본 발명의 또 다른 일 양태에 따르면, 상기 재조합 발현 벡터로 형질 전환된 것을 특징으로 하는, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) pFIS-1-ATPE-2를 제공한다.
상기 재조합된 균주 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2는 부다페스트 조약에 따라 서울 서대문구 홍제1동 소재의 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2011년 8월 18일자로 수탁번호 KCCM11204P로 기탁하였다.
본 발명의 또 다른 일 양태에 따르면, 상기 사이코스 에피머화 효소 변이체 또는 상기 재조합된 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2를 이용하여 과당으로부터 사이코스를 생산하는 방법을 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 사이코스 에피머화 효소 변이체 또는 상기 재조합된 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2를 고정화시킨 담체로 충진한 컬럼을 포함하는 것을 특징으로 하는, 사이코스 생산용 고정화 반응기를 제공한다.
상기 "고정화 반응기"란, 사이코스를 생산하기 위한 반응이, 담체에 고정화된 균주 또는 효소에 의해, 또는 담체에 고정화된 균주 또는 효소가 충진된 컬럼을 통해 일어나는 반응기를 의미한다. 즉, 고정화는 생물학적 활성을 제공하는 물질, 이 경우, 사이코스 에피머화 효소 또는 이를 포함하는 균주가 담체에 고정화되었다는 것을 의미한다.
상기 효소 변이체 또는 재조합 균주를 고정화시키는 담체는, 본 발명의 기술 분야 또는 유사 분야에서 효소 또는 균주의 고정화 용도로 사용할 수 있는 담체라면 어느 것이든 사용할 수 있으며, 바람직하게는 알긴산나트륨(sodium alginate)를
사용할 수 있다.
알긴산나트륨은 해조류의 세포벽에 풍부하게 존재하는 천연 콜로이드성 다당류로, 만누론산(β-D-mannuronic acid) 및 글루론산(α-L-gluronic acid)으로 구성되며 함량면에서는 무작위로 베타-1,4 결합을 이루어 형성되어 균체나 효소가 안정적으로 고정화될 수 있어 유리하다.
본 발명의 또 다른 일 양태에 따르면, 상기 고정화 반응기에 과당 용액을 공급하여 사이코스를 생산하는 방법을 제공한다.
본 명세서에서 사용된 용어 "반감기"는 효소 또는 효소 변이체의 효소 반응 초기의 상대적 활성을 100으로 하였을 때, 상기 상대적 활성이 50이 되기까지 걸리는 기간을 의미한다.
본 명세서에서 사용된 용어 "운전 안정성"은 목적 산물(본원에서는 사이코스)을 연속적으로 생산하기 위하여 반응기를 초기 활성 대비 적합한 수준의 생산성을 유지하면서 운전할 수 있는 것을 의미하며, 보통 운전 기간(시간 단위 등)으로 표시된다.
이하, 실시예 및 비교 시험예를 기술함으로써 본원 발명을 보다 상세히 설명한다. 다만, 하기의 실시예 및 비교 시험예는 본원 발명의 일 예시에 불과하며, 본원 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니 된다.
사이코스 에피머화 효소 및 포도당 이성화 효소의 활성 측정 방법
사이코스 에피머화 효소의 활성은 과당을 기질로 이용하여 측정하였다. 20 mM 기질이 함유된 50 mM PIPES(piperazine-N,N'-bis(2-ethanesulfonic acid)) 완충용액 pH 8.0 중에 상기 효소 또는 상기 효소를 포함하는 시료를 첨가하고 50℃에서 10분간 반응시킨 후, 상기 반응액에 최종 농도가 200 mM이 되도록 염산을 첨가하여 반응을 중단시켰다. 과당과 사이코스의 농도는 RI(Refractive Index) 검출기가 장착된 HPLC로 측정하였다. HPLC 분석은 80℃로 설정된 컬럼(BP-100 Ca2+carbohydrate column)에 시료를 주입한 후 이동상 용매로 증류수를 0.5 ml/min의 속도로 통과시키는 조건에서 수행하였다. 효소 단위(unit)는 pH 8.0 및 50℃ 조건에서 분당 1 마이크로몰(μmole)의 사이코스를 생산하는 양으로 정의하였다.
실시예 1
무작위적인 변이를 일으키는 방법(random mutagenesis)에 의한, 열 안정성이 향상된 사이코스 에피머화 효소 변이체의 제조
아그로박테리움 투머파시엔스(Agrobacteriumtumefaciens) ATCC 33970 유래의 사이코스 에피머화 효소(대한민국공개특허공보(A) 제10-2011-0035805호의 서열목록 1의 아미노산 서열과 동일)를 주형으로 하여 에러-프론 중합효소연쇄반응법(error-prone PCR)을 통하여 사이코스 에피머화 효소의 변이체 라이브러리를 구성하였다.
구체적으로, 1000개의 염기쌍 당 2 내지 3개의 변이가 일어나게 하는, 일반적인 PCR 돌연변이 유발 키트(PCR mutagenesis kit)를 이용하였다. NcoI 및 PstI 제한 효소 인식 부위의 서열이 도입된 올리고뉴클레오티드를 프라이머로 사용하고 중합효소연쇄반응을 수행하여 사이코스 에피머화 효소의 변이체를 코딩하는 유전자 라이브러리를 구성한 다음, 이를 E.coli BL21에 삽입하였다.
상기 사이코스 에피머화 효소의 변이체 유전자를 포함하고 있는 pTrc99A 플라스미드를 가지고 있는 E.coli BL21을, 50 μg/ml의 앰피실린을 함유하고 있는 LB배지에 접종하고 37℃에서 6시간 동안 배양한 다음, 이를 일부 취하여 50 μg/ml의 앰피실린 및 0.1 mM의 IPTG를 포함하고 있는 배지로 옮겨 37℃에서 6시간 동안 배양하여 효소의 발현을 유도하였다. 배양액을 60℃에서 5분간 열처리를 하고 최종 농도가 1 5mM이 되도록 과당을 넣어 50℃에서 30분간 반응시킨 다음, 일반적인 과당 분석 키트(fructose assay kit)를 이용하여 남아있는 과당의 양을 측정하여, 총 5000개의 변이주 중에서 야생형 효소와 비교할 때 약 1.2배의 활성을 보이는 변이주 150개를 선별하였다.
상기 선별된 150개의 변이주를 다시 상기와 같은 방법으로 효소의 발현을 유도하였다. 배양된 세포는 초음파 처리를 수행하여 파쇄하였고, 상기 세포 파쇄액을 원심분리하여 사이코스 에피머화 효소를 포함하는 상등액을 수득한 다음, 앞서 기술한 "사이코스 에피머화 효소의 활성 측정 방법"을 이용하여 이의 효소 활성을 측정하였다. 측정 결과, 55℃의 반응 온도에서 높은 반감기를 보이는 23종의 변이체를 재선별하였다.
재선별된 23종의 변이체의 유전자를 pTrc99A로부터 pET-24a(+)로 옮기고 이를 이용하여 E.coli BL21를 형질전환시켰다. 상기 재조합 균주 E.coli BL21를 50 μg/ml의 카나마이신을 포함하는 LB배지를 이용하여 37℃에서 배양하였으며, OD600이 0.6이 되었을 때 최종농도 0.1 mM이 되도록 IPTG(Isopropyl-beta-thiogalactopyranoside)를 주입하여 16℃에서 16시간 배양하였다. 배양액을 원심분리하여 균체를 수거한 후 300 mM의 KCl 및 10mM 이미다졸을 포함하고 있는 50 mM 인산염 완충용액에 재현탁하고, 상기 현탁액에 초음파 처리를 수행하여 세포를 파쇄시켰다. 세포 파쇄액을 원심분리하여 사이코스 에피머화 효소를 포함하는 상등액을 수득하고 금속이온 친화성 크로마토그래피(metal ion affinity chromatography)를 이용하여 정제하였다. 상기 정제된 효소 내의 이미다졸은 탈염 카트리지(desalting cartridge)를 이용하여 제거되었다.
재선별된 23종 변이체의 55℃에서의 반감기를 측정하여, 그 중 반감기가 가장 높은 변이체 5종을 선별하였다. 상기 선별된 5종의 변이체 및 야생형의, 상대 활성 및 55℃에서의 반감기는 하기 표 1에 나타낸다.
표 1
사이코스 에피머화 효소 상대 활성(%) 반감기(분)
야생형 100±0.5 10±2.3
S8T 29±0.5 15±0.3
I33L 88±3.3 64±0.2
G67C 8±0.0 132±0.4
V96A 51±0.5 18±0.2
S213C 103±0.4 28±0.7
반감기의 측정 결과, G67C > I33L > S213C > V96A > S8T의 순서로 높은 반감기를 보였으며, 이 중 효소의 활성까지 함께 고려할 때, I33L 및 S213C 두 종의 변이체를 가장 바람직한 변이체로 선정하였다.
여기서 I33L을 예로 들어 본원 명세서에서 사용된 효소 변이체의 명칭을 설명하면, 숫자 33은 사이코스 에피머화 효소 야생형을 기준으로 아미노산 서열의 33번째 아미노산이 치환되었다는 의미이고 숫자 양 옆의 알파벳 I, L은 각각 아미노산의 머리글자를 의미하는 것으로 이를 종합하면 I33L은 33번째 아미노산이 이소루신(Ile)에서 류신(Leu)으로 치환되었음을 의미하는 것이다.
실시예 2
경험적 설계 방법(rational design)에 의한, 열 안정성이 향상된 사이코스 에피머화 효소 변이체의 제조
상기 실시예 1에 따라, 열 안정성이 증가됨과 동시에 활성이 크게 저하되지 않은 변이체로 S213C와 I33L을 선정하였다. 이를 바탕으로 하여 아미노산 서열 33번과 213번에 부위 특이적 변이(site-directed mutagenesis)를 수행하였다.
구체적으로, 극성이면서 전하를 가지지 않는 213번 세린(Ser)을, 극성이면서 전하를 가지지 않는 아미노산인 트레오닌(Thr), 시스테인(Cys), 메티오닌(Met); 비극성 아미노산인 프롤린(Pro); 음전하를 띠는 잔기인 글루탐산(Glu); 및 양전하를 띠는 잔기인 라이신(Lys)으로 각각 치환하였다.
비극성 잔기인 33번 이소루신은 극성이면서 전하를 가지지 않는 잔기인 시스테인; 비극성 잔기인 발린(Val), 류신, 프롤린; 음전하를 띠는 잔기인 글루탐산; 양전하를 띠는 잔기인 라이신으로 각각 치환하였다.
상기 치환된 각각의 변이체 및 야생형의 상대적 활성 및 55℃에서의 반감기를 측정하였다.
그 결과 효소의 활성에 크게 영향을 주지 않으면서 열 안정성이 증가된 변이체로 I33L, I33C, I33V 및 S213C를 얻었다. 또한, S213C 및, 효소의 활성 및 열 안정성을 종합하여 볼 때 서열번호 33번의 치환 중 가장 바람직한 I33L을 조합한 변이체를 제작하여 활성도 뛰어나면서 열 안정성이 현저히 증가된 사이코스 에피머화 효소 변이체(I33L-S213C)를 얻었다.
하기의 표 2는 아그로박테리움 투머파시엔스 유래의 사이코스 에피머화 효소의 야생형, 33번 또는 213번 아미노산이 치환된 변이체 및 33번과 213번 아미노산이 모두 치환된 변이체 I33L-S213C의 상대 활성 및 55℃에서의 반감기를 나타낸 것이다.
표 2
사이코스 에피머화 효소 상대 활성(%) 반감기(분)
야생형 100±0.5 10±2.3
I33L 88±3.3 63±0.2
I33C 83±2.0 24±0.6
I33V 92±2.2 12±0.4
I33E ND ND
I33K ND ND
I33P ND ND
S213C 103±0.4 28±0.7
S213P 95±0.9 6±0.2
S213T 68±0.3 5±0.1
S213M 22±1.9 3±0.3
S213E 19±0.0 3±0.1
S213K ND ND
I33L-S213C 74±1.1 265±2.3
비교 시험예 1
사이코스 에피머화 효소 야생형 및 실시예 2에 따른 사이코스 에피머화 효소 변이체의 겉보기 융해 온도의 비교
사이코스 에피머화 효소 야생형과 실시예 2에 따른 사이코스 에피머화 효소 변이체인 I33L, S213C 및 I33L-S213C의 열 안정성을 판단하기 위해, 각각의 효소(또는 변이체)의 겉보기 융해 온도(apparent melting temperature(Tm))를 측정하였다.
측정 결과, 야생형 < S213C < I33L < I33L-S213C의 순서로 겉보기 융해 온도가 증가함을 확인할 수 있었다(도 2). 구체적으로, 야생형과 비교하여, S213C의 경우 약 3.1oC, I33L의 경우 약 4.3oC, I33L-S213C의 경우 약 7.6℃ 증가된 겉보기 융해 온도를 보였다.
비교 시험예 2
사이코스 에피머화 효소 야생형 및 실시예 2에 따른 사이코스 에피머화 효소 변이체의 효소 반응 속도의 비교
사이코스 에피머화 효소 야생형 및 실시예 2에 따른 사이코스 에피머화 효소 변이체인 I33L, S213C 및 I33L-S213C의 효소 반응 속도를 측정하기 위하여, 각각의 효소(또는 변이체)를 반응 온도 50℃에서 효소의 동적 매개변수(kinetic parameters) 값을 계산하였다.
그 측정 결과를 하기의 표 3에 나타내었다.
표 3
사이코스 에피머화 효소 Km(mM) kcat(min-1) kcat/Km
야생형 44±0.4 4338±6 99±0.9
S213C 42±1.0 4194±63 101±3.0
I33L 40±0.7 4240±65 105±2.5
I33L-S213C 31±0.1 4135±99 134±3.2
각 효소의 동적 매개 변수 값을 측정한 결과, 야생형 및 변이체 I33L, S213C는 유사한 값을 보인 반면, I33L-S213C는 이보다 약 1.4배 증가된 효소 촉매 효율(kcat/Km)을 보였다. 그 이유는 I33L-S213C가 다른 변이체나 야생형에 비해 추가적인 수소 결합을 형성하고, 야생형에서는 발견할 수 없었던 방향족 그룹간의 새로운 쌓임 상호작용을 형성하기 때문에, 이로 인하여 더욱 단단하고 조밀한 구조가 형성된 결과, 기질과의 친화도가 증가하게 되기 때문이라고 판단된다(도 3).
보다 구체적으로 설명하자면, 분자 모델링 결과에 비추어 볼 때 효소의 활성부위가 아닌 표면에 위치하고 있는 아미노산 잔기인 213번 세린 및 33번 이소루신을 가진 야생형과 달리, I33L-S213C에서는 213번 시스테인(Cys)과 33번 류신(Leu)이 코일드-코일(coiled-coil) 상호 작용을 형성하고 있음을 알 수 있었다(도 3의 (가), (나)). 이와 같은 코일드-코일 상호 작용은 단백질의 구조를 안정하게 만든다고 알려져 있다.
또한, 야생형에서 213번 세린은 두 개의 추정상의 수소 결합(putative hydrogen bond)을 형성하나, 이를 시스테인으로 치환시킨 S213C의 경우, 추정상의 수소 결합이 여섯 개로 증가함을 알 수 있었다(도 3의 (다), (라)). 이 역시 단백질의 구조를 더욱 조밀하게 만들어 열 안정성을 증가시킬 수 있게 도와주는 역할을 한다고 판단된다.
또한, 분자 모델에서 야생형은 방향족 그룹간의 상호 작용을 가지고 있지 않는 것으로 보이는 반면, 변이체 I33L에서는 방향족 그룹간의 쌓임 상호 작용이 나타남을 확인할 수 있었다(도 3의 (마), (바)). 이러한 방향족 그룹간의 쌓임 상호작용 또한 열 안정성을 증가시킨 요인으로 판단된다.
실시예 3
실시예 2에 따른 I33L-S213C 변이체의 유전자를 포함하는 재조합 벡터로 형질 전환된 재조합 균주의 제조 및 배양
(1) 재조합 균주의 제조
상기 실시예 2에 따른 I33L-S213C 변이체의 DNA를 주형으로 하고, 각각 PstI과 XbaI 제한 효소 인식 부위의 서열이 도입된 올리고뉴클레오티드를 프라이머로 사용하여 중합연쇄반응을 통해 사이코스 에피머화 효소를 코딩하는 유전자를 증폭시켰다. 상기 증폭된 유전자가 코딩하고 있는 사이코스 에피머화 효소를 대량 발현하기 위하여, 코리네박테리움(Corynebacterium) 속 박테리아에서 유래된 셔틀벡터pCJ-1(2004년 11월 6일자로 국제기탁기관인 한국미생물보존센터에 기탁, 수탁번호 KCCM-10611)에 제한 효소 PstI과 XbaI으로 절단된 상기 증폭된 PCR 산물을 삽입하여 재조합 발현 벡터 pFIS-1-ATPE-2(도 1)를 제작하였다.
상기 재조합 발현 벡터를 전기천공을 이용하여 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)ATCC13032에 형질전환에 의해 도입하여 아그로박테리움 투머파시엔스 유래의 사이코스 에피머화 효소를 코딩하는 유전자를 발현할 수 있는 재조합 균주를 제조하였다.
상기 재조합 균주를 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2라 명하고, 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2011년 8월 18일자로 수탁번호 KCCM 11204P로 기탁하였다.
(2) 재조합 균주의 배양
상기 (1)에서 얻어진 재조합 균주를 각각 10 ㎍/ml 농도의 카나마이신을 포함한 MB 배지(Bacto-trypton 10 g/L, Bacto-yeast extract 5 g/L, NaCl 5 g/L, Soytone 5 g/L)에 초기 농도 OD600 = 0.1로 접종하고, 30℃에서 24시간 동안 배양하여 사이코스 에피머화 효소 변이체의 발현을 유도하였다. 상기에서 수득된 배양액을 10 ㎍/ml 농도의 카나마이신을 함유한 변이 배지(포도당 8 g/L, 소이톤(soytone) 20 g/L, (NH4)2SO4 10 g/L, KH2PO4 1.2 g/L, MgSO4 1.4 g/L)를 담은 발효기에 OD600 = 0.6으로 접종하고 30℃에서 20시간 동안 배양하였다.
실시예 4
실시예 3에 따른 재조합 균주의 고정화 및 고정화 반응기를 통한 사이코스의 연속적 제조
상기 실시예 3에 따라 재조합 균주를 배양한 후, 상기 배양액의 원심분리에 의해 균체를 회수하고, 회수된 세포가 20%가 되도록 50 mM EPPS 완충 용액(pH 8.0)에 현탁시켰다. 상기 현탁된 재조합 균주의 균체를 2%(v/v)의 알긴산나트륨(sodium alginate) 수용액에 첨가하고, 상기 혼합액을 주사기 펌프와 진공 펌프를 이용하여 100 mM CaCl2 용액에 떨어뜨려 균체가 알긴산나트륨의 비드에 포집된 균체-알기네이트 결합체를 생성시켰다. 알긴산나트륨에 고정화된 상기 재조합 균주를 충진상 컬럼(packed-bed column) 에 충진하여 형성된 고정화 반응기를 통하여 사이코스를 연속적으로 제조하였다.
비교 시험예 3
사이코스 에피머화 효소 야생형을 사용한 고정화 반응기 및 실시예 4에 따른 고정화 반응기의 운전 안전성 비교
사이코스 에피머화 효소 야생형을 사용한 고정화 반응기 및 실시예 4에 따른 고정화 반응기의 운전 안전성을 측정하기 위하여, 반응 온도를 50℃로 고정하고 각각의 반응기를 통해 두 달간 연속적으로 사이코스 생산을 실시하여 그 활성을 측정하였다. 이 때 과당의 농도는 480 g/L이며 유속은 850 ml/h 였다.
측정 결과, 야생형을 사용한 고정화 반응기에 비해, 열 안정성 및 효소 활성이 향상된 변이체를 사용한 고정화 반응기의 경우 두 달 이상 높은 운전 안정성을 유지하는 것으로 확인되었다. 구체적으로, 야생형을 사용한 고정화 반응기의 경우 약 30일의 반감기를 가지나, I33L-S213C 변이체를 사용한 고정화 반응기의 경우에는 약 77일의 반감기를 가지는 것으로 나타났다(도 4).
이로써 본 발명에 의할 경우 효소를 보다 장기간 사용할 수 있게 되어 사이코스의 생산 비용을 절감시키는 효과를 가져올 것으로 기대된다.
Figure PCTKR2012006637-appb-I000001

Claims (8)

  1. 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens) 유래의 야생형 사이코스 에피머화 효소의 변이체로서, 아미노산 서열번호(이하, '서열번호') 33번이 이소루신(Ile)에서, 류신(Leu), 시스테인(Cys) 및 발린(Val)으로 이루어진 군으로부터 선택된 하나의 아미노산으로 치환된 아미노산 서열, 또는 서열번호 213번이 세린(Ser)에서 시스테인으로 치환된 아미노산 서열을 갖는, 열 안정성이 향상된 사이코스 에피머화 효소 변이체.
  2. 아그로박테리움 투머파시엔스 유래의 야생형 사이코스 에피머화 효소의 변이체로서, 서열번호 33번이 이소루신에서, 류신, 시스테인 및 발린으로 이루어진 군으로부터 선택된 하나의 아미노산으로 치환되고, 서열번호 213번이 세린에서 시스테인으로 치환된 아미노산 서열을 갖는, 열 안정성이 향상된 사이코스 에피머화 효소 변이체.
  3. 제1항 또는 제2항에 따른 사이코스 에피머화 효소 변이체를 암호화하는 유전자를 포함하는 재조합 발현 벡터.
  4. 제3항에 따른 재조합 발현 벡터로 형질 전환된 것을 특징으로 하는, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) pFIS-1-ATPE-2.
  5. 제1항 또는 제2항에 따른 사이코스 에피머화 효소 변이체를 이용하여 과당으로부터 사이코스를 생산하는 방법.
  6. 제4항에 따른 재조합된 코리네박테리움 글루타미쿰 pFIS-1-ATPE-2를 이용하여 과당으로부터 사이코스를 생산하는 방법.
  7. 제1항 또는 제2항에 따른 상기 사이코스 에피머화 효소 변이체를 고정화시킨 담체로 충진한 컬럼을 포함하는 것을 특징으로 하는, 사이코스 생산용 고정화 반응기.
  8. 제7항에 따른 상기 고정화 반응기에 과당 용액을 공급하여 사이코스를 생산하는 방법.
PCT/KR2012/006637 2011-08-24 2012-08-21 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산 WO2013027999A2 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP12826072.6A EP2749645B1 (en) 2011-08-24 2012-08-21 D-psicose 3-epimerase mutant with improved thermal stability, and continuous production of d-psicose using same
JP2014527066A JP6043354B2 (ja) 2011-08-24 2012-08-21 熱安定性が向上したサイコースエピマー化酵素変異体及びこれを用いたサイコースの連続的生産
US14/240,647 US9217166B2 (en) 2011-08-24 2012-08-21 D-psicose 3-epimerase mutant with improved thermal stability, and continuous production of D-psicose using same
IN1614CHN2014 IN2014CN01614A (ko) 2011-08-24 2012-08-21
CN201280052112.0A CN104160023B (zh) 2011-08-24 2012-08-21 热稳定性得到改善的d‑阿洛酮糖3‑差向异构酶突变体和使用其的d‑阿洛酮糖的连续制备
SI201230996T SI2749645T1 (sl) 2011-08-24 2012-08-21 Mutant D-psikoza-3-epimeraze z izboljšano toplotno stabilnostjo in kontinuirno proizvajanje D-psikoze z uporabo le-tega
RS20170604A RS56088B1 (sr) 2011-08-24 2012-08-21 Mutant d-psikoza 3-epimeraze sa poboljšanom termalnom stabilnošću i serijska proizvodnja d-psikoze upotrebom istog
DK12826072.6T DK2749645T3 (en) 2011-08-24 2012-08-21 D-psicosis 3-epimerase mutant with improved thermal stability and continuous production of D-psychosis
ES12826072.6T ES2626501T3 (es) 2011-08-24 2012-08-21 D-psicosa 3-epimerasa mutante con estabilidad térmica mejorada, y producción continua de D-psicosa utilizando la misma
HRP20170813TT HRP20170813T1 (hr) 2011-08-24 2017-05-30 Mutant d-psikoza-3-epimeraze s povećanom toplinskom stabilnošću i kontinuirana proizvodnja d-psikoze uz upotrebu iste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110084712A KR101203856B1 (ko) 2011-08-24 2011-08-24 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
KR10-2011-0084712 2011-08-24

Publications (3)

Publication Number Publication Date
WO2013027999A2 WO2013027999A2 (ko) 2013-02-28
WO2013027999A3 WO2013027999A3 (ko) 2013-05-10
WO2013027999A9 true WO2013027999A9 (ko) 2013-07-11

Family

ID=47565145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006637 WO2013027999A2 (ko) 2011-08-24 2012-08-21 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산

Country Status (15)

Country Link
US (1) US9217166B2 (ko)
EP (2) EP3192867A1 (ko)
JP (1) JP6043354B2 (ko)
KR (1) KR101203856B1 (ko)
CN (1) CN104160023B (ko)
DK (1) DK2749645T3 (ko)
ES (1) ES2626501T3 (ko)
HR (1) HRP20170813T1 (ko)
HU (1) HUE035316T2 (ko)
IN (1) IN2014CN01614A (ko)
PL (1) PL2749645T3 (ko)
PT (1) PT2749645T (ko)
RS (1) RS56088B1 (ko)
SI (1) SI2749645T1 (ko)
WO (1) WO2013027999A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938515B2 (en) 2013-04-23 2018-04-10 Cj Cheiljedang Corporation Psicose epimerase mutant and method for preparing psicose by using same

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318422B1 (ko) * 2013-04-09 2013-10-15 주식회사 삼양제넥스 D-사이코스 에피머화 효소, 및 이를 이용하는 사이코스 생산방법
KR101455624B1 (ko) 2013-04-12 2014-10-28 주식회사한국야쿠르트 기능성 희귀당 사이코스의 생산능을 지닌 신규 클로스트리디움 볼티에 유래의 사이코스-3-에피머화 효소 및 이를 이용한 사이코스 생산방법
JP6774875B2 (ja) 2013-09-03 2020-10-28 ロケット フレールRoquette Freres D−プシコース 3−エピメラーゼの改良された変異体およびその使用
EP2843044A1 (en) * 2013-09-03 2015-03-04 Roquette Frères Improved variant of D-psicose 3-epimerase and uses thereof
KR101539097B1 (ko) * 2013-12-26 2015-07-23 주식회사 삼양제넥스 사이코스 에피머화 효소를 암호화 하는 폴리뉴클레오타이드, 및 이를 이용하는 사이코스 생산방법
KR101473918B1 (ko) 2014-05-28 2014-12-17 대상 주식회사 사이코스 에피머화 효소, 이의 제조방법 및 이를 이용한 사이코스의 제조방법
KR101577147B1 (ko) * 2014-10-01 2015-12-11 경상대학교산학협력단 사이코스의 생산 방법
KR101607633B1 (ko) 2014-10-21 2016-04-11 주식회사 삼양사 코리네박테리움속 균주를 이용한 사이코스 생산방법
US10240140B2 (en) * 2014-10-30 2019-03-26 Samyang Corporation Expression system for psicose epimerase and production for psicose using the same
KR101754060B1 (ko) 2014-11-06 2017-07-05 경상대학교산학협력단 사이코스의 제조 방법
KR102044957B1 (ko) * 2014-12-31 2019-11-14 주식회사 삼양사 사이코스의 제조방법
KR101677368B1 (ko) * 2015-04-02 2016-11-18 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
KR102087396B1 (ko) * 2015-11-16 2020-03-10 주식회사 삼양사 과당-함유 기질로부터 사이코스를 생산하는 방법
JP6507318B2 (ja) 2015-12-23 2019-04-24 シージェイ チェイルジェダン コーポレーションCj Cheiljedang Corporation D−プシコース3−エピメラーゼ及びその塩を含むd−プシコースを製造するための組成物、並びにこれを用いたd−プシコースの製造方法
KR101723007B1 (ko) 2016-02-29 2017-04-04 씨제이제일제당(주) 고순도 d-사이코스를 제조하는 방법
CN105821027B (zh) * 2016-04-01 2023-11-21 南京朗奈生物技术有限公司 一种3-差向异构酶的用途
KR101955103B1 (ko) * 2016-07-29 2019-03-06 씨제이제일제당 (주) D-타가토스 전환 활성이 향상된 헥수론산 c4-에피머화 효소 변이체 및 이를 이용한 d-타가토스의 제조 방법
CN106148311B (zh) * 2016-09-12 2019-06-21 上海立足生物科技有限公司 一种d-阿洛酮糖-3-差向异构酶的突变体及其应用
RU2727903C1 (ru) * 2016-11-16 2020-07-24 СиДжей ЧеилДжеданг Корпорейшн Новая d-псикозо-3-эпимераза и способ получения d-псикозы с ее использованием
CN108239633B (zh) * 2016-12-26 2023-05-05 上海立足生物科技有限公司 一种催化活性得到提高的d-阿洛酮糖-3-差向异构酶的突变体及其应用
KR20190100386A (ko) 2017-01-06 2019-08-28 그린라이트 바이오사이언시스, 아이엔씨. 당의 무세포 생산
KR102319955B1 (ko) 2018-01-24 2021-10-29 마쓰다니가가꾸고오교가부시끼가이샤 열안정성이 향상된 케토스 3-에피머라제
KR102439295B1 (ko) 2018-11-30 2022-09-02 씨제이제일제당 주식회사 D-사이코스 결정 및 이의 제조 방법
CN110396513B (zh) * 2019-07-19 2022-01-11 天津科技大学 一种d-阿洛酮糖-3-差向异构酶的突变体及其应用
CN110684762B (zh) * 2019-11-12 2021-03-19 南京工业大学 一种d-阿洛酮糖-3-差向异构酶突变体及其编码基因、重组载体、重组菌株和应用
CN111019928B (zh) * 2019-12-11 2022-08-16 吉林中粮生化有限公司 D-阿洛酮糖3-差向异构酶的编码基因、载体、重组细胞以及它们的应用
KR102254411B1 (ko) 2019-12-19 2021-05-24 대상 주식회사 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
WO2021199445A1 (en) * 2020-04-03 2021-10-07 Rensselaer Polytechnic Institute Method for producing sulfated polysaccharide and method for producing paps
KR102448351B1 (ko) 2020-04-27 2022-09-28 대상 주식회사 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
JP7348457B2 (ja) 2020-06-03 2023-09-21 ティアンゴン バイオテクノロジー(ティアンジン)カンパニー,リミテッド プシコース3-エピメラーゼミュータント、それを発現するための遺伝子工学菌、その固定化酵素及び固定化方法
CN111793616B (zh) * 2020-08-07 2022-04-12 天津科技大学 一种差向异构酶的突变体及其应用
KR20230073739A (ko) 2021-11-19 2023-05-26 대상 주식회사 열 안정성이 우수한 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744479B1 (ko) * 2005-06-01 2007-08-01 씨제이 주식회사 사이코스 에피머화 효소에 의한 사이코스의 생산 방법
GB0512150D0 (en) * 2005-06-15 2005-07-20 Scottish Crop Res Inst Production of L-ascorbic acid
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938515B2 (en) 2013-04-23 2018-04-10 Cj Cheiljedang Corporation Psicose epimerase mutant and method for preparing psicose by using same

Also Published As

Publication number Publication date
HUE035316T2 (en) 2018-05-02
CN104160023B (zh) 2017-03-29
US20140199732A1 (en) 2014-07-17
EP2749645A4 (en) 2015-06-10
EP2749645B1 (en) 2017-04-26
HRP20170813T1 (hr) 2017-08-11
US9217166B2 (en) 2015-12-22
SI2749645T1 (sl) 2017-08-31
IN2014CN01614A (ko) 2015-05-08
EP3192867A1 (en) 2017-07-19
DK2749645T3 (en) 2017-08-21
PT2749645T (pt) 2017-07-28
PL2749645T3 (pl) 2017-09-29
CN104160023A (zh) 2014-11-19
WO2013027999A3 (ko) 2013-05-10
JP6043354B2 (ja) 2016-12-14
KR101203856B1 (ko) 2012-11-21
JP2014525244A (ja) 2014-09-29
RS56088B1 (sr) 2017-10-31
ES2626501T3 (es) 2017-07-25
WO2013027999A2 (ko) 2013-02-28
EP2749645A2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2013027999A9 (ko) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
WO2011040708A2 (en) Immobilization of psicose-epimerase and a method of producing d-psicose using the same
WO2014175655A1 (ko) 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 제조 방법
WO2019027267A2 (ko) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
US8802393B2 (en) Arabinose isomerase expressed from Corynebacterium genus and tagatose manufacturing method by using it
WO2015016544A1 (ko) 알돌레이즈, 알돌레이즈 돌연변이체 및 이를 이용한 타가토스 생산 방법과 생산용 조성물
JP2020528280A (ja) シアリルトランスフェラーゼ及びシアリル化オリゴ糖の生産におけるその使用
JP3997631B2 (ja) 発酵法によるl−セリンの製造法
WO2016053035A1 (ko) 사이코스의 생산 방법
WO2022148008A1 (zh) 产塔格糖的枯草芽孢杆菌基因工程菌及制备塔格糖的方法
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2014193052A1 (ko) 사이코스 3-에피머라제 효소를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 및 이를 이용한 사이코스의 생산 방법
WO2020032590A1 (en) Nucleic acid molecules comprising a variant rpoc coding sequence
WO2019098723A1 (ko) 신규한 d-사이코스 3-에피머화 효소 및 이를 이용한 d-사이코스의 제조 방법
US7214521B2 (en) Inulin synthase and process for producing inulin by using the same
US8137946B2 (en) Recombinant GRAS strains expressing thermophilic arabinose isomerase as an active form and method of preparing food grade tagatose by using the same
WO2017065529A1 (ko) O-아세틸호모세린 설피드릴라제 변이체 및 이를 이용한 l-메치오닌 제조 방법
WO2018230953A1 (ko) 글루코실글리세롤 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 글루코실글리세롤 제조방법
KR100449456B1 (ko) 신규한 d-입체특이적 아미노산 아미다아제, 그의 유전자, 그의 제조방법, 이를 이용한 d-아미노산의 제조방법
WO2023128004A1 (ko) 항시발현용 신규 프로모터 변이체 및 이의 용도
WO2018230952A1 (ko) 투라노스 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 투라노스 제조방법
KR101722984B1 (ko) 바륨-알지네이트 담체를 이용한 라이신 디카르복실라아제 과발현 재조합 대장균의 고정화를 통한 고농도 카다베린 생산방법
WO2022139523A1 (ko) L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법
CN115572704A (zh) 重组微生物及其构建方法和应用
Mei et al. New Gene Cluster from Thermophile Bacillus fordii MH602 for Conversion of DL-5-Substituted Hydantoins to L-Amino Acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826072

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014527066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14240647

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012826072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012826072

Country of ref document: EP