WO2016053035A1 - 사이코스의 생산 방법 - Google Patents

사이코스의 생산 방법 Download PDF

Info

Publication number
WO2016053035A1
WO2016053035A1 PCT/KR2015/010407 KR2015010407W WO2016053035A1 WO 2016053035 A1 WO2016053035 A1 WO 2016053035A1 KR 2015010407 W KR2015010407 W KR 2015010407W WO 2016053035 A1 WO2016053035 A1 WO 2016053035A1
Authority
WO
WIPO (PCT)
Prior art keywords
epimerase
fructose
microorganism
psychos
seq
Prior art date
Application number
PCT/KR2015/010407
Other languages
English (en)
French (fr)
Inventor
김선원
최민진
정성희
이대윤
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to CN201580054171.5A priority Critical patent/CN107109451A/zh
Priority to US15/516,342 priority patent/US20170298400A1/en
Publication of WO2016053035A1 publication Critical patent/WO2016053035A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing a psychocos using microorganisms.
  • D-psicose is an epimer of carbon number 3 of fructose (D-fructose), which is sweet like ordinary sugars, but is not metabolized in the human body. It is a functional sugar that can be used as a sugar substitute functional sweetener. In addition, it has the function of reducing the abdominal obesity by inhibiting the enzyme activity involved in lipid synthesis in the liver, and is a sugar currently being studied as a therapeutic agent for diabetes and atherosclerosis.
  • Ken Izumori et al Used galacitol, D-tagatose or D-talitol by utilizing microbial cell reactions. It has been shown that it is possible to produce psychocos from. However, these substrates also have the disadvantage that they are relatively rare in nature and have a high cost.
  • D-tagatose-3-epimerase of isolated microorganism Pseudomonas cichorii ST-24 is produced and purified from recombinant E. coli.
  • Korean Laid-Open Patent Publication No. 2006-125971 discloses a method for producing a psychos by a psychos epimerase.
  • An object of the present invention is to provide a method for producing a psychos, which can significantly improve the yield and the production speed of the psychos.
  • One aspect provides a method of producing psychocos comprising reacting a substrate fructose and its epimerase in a microorganism at a temperature of 40 ° C. or higher.
  • the inventors of the present invention remarkably increase the yield and production rate of the psychos when the reaction between the fructose, which is a substrate, and the epimerase at a temperature of 40 ° C. or higher, and the increase and production rate of the psychos as the temperature increases. And the present invention was conceived.
  • enzymes such as epimerase are generally thermally denatured at a high temperature of 40 ° C. or higher, and thus lose activity.
  • the present invention is protected from the outside as compared to the case of exposure to the outside in an enzymatic state. Therefore, the reaction can be carried out at high temperatures without denaturation.
  • the reaction temperature is not particularly limited as long as the reaction temperature is 40 ° C. or higher and the microorganisms are not damaged by heat or the protein or sugar is denatured.
  • the reaction temperature is 40 ° C. or higher and the microorganisms are not damaged by heat or the protein or sugar is denatured.
  • the lower limit may be 50 ° C. or more
  • the upper limit may be 90
  • microorganism may be a cell that can be cultured in a liquid medium.
  • the microorganism may be to express the epimerase intrinsically or by transformation.
  • epimerase may be produced in the microorganism so that the production of the psychos by the reaction in the microorganism of the fructose and the epimerase may be continuously performed.
  • the gene encoding the epimerase is a cycose-derived from Agrobacterium tumefaciens of SEQ ID NO: 1 It may be a gene encoding 3-epimerase, or a gene encoding a cyclic cos-3-epimerase derived from Anaerostipes caccae of SEQ ID NO: 2.
  • Agrobacterium tumefaciens-derived psychos-3-epimerase may have an amino acid sequence of SEQ ID NO: 3, and the wife rostipes carcae-derived psychos-3-epimerase may have the amino acid sequence of SEQ ID NO: 4 Can have
  • the gene encoding the epimerase may be a gene encoding the amino acid sequence of the cyclic cos-3-epimerase of SEQ ID NO: 5 in that the epimerase has better high temperature stability.
  • the amino acid sequence of SEQ ID NO: 5 is a sequence in which amino acid number 33 is replaced with leucine and amino acid number 213 with cysteine in the amino acid sequence of Agrobacterium tumefaciens-derived cosmos-3-epimerase. It is known that the thermal stability is excellent.
  • the inventors of the present invention confirmed that the cyclos-3-epimerase derived from the genus Clostridium has excellent thermal stability.
  • the cyclos-3-epimer derived from the genus Clostridium was high in thermal stability. In the case of one, it was confirmed that one amino acid had a corresponding sequence or both.
  • amino acid sequence may be a sequence in which the 32nd amino acid is substituted with leucine in the amino acid sequence of SEQ ID NO: 6, or the 196th amino acid is substituted with cysteine.
  • SEQ ID NO: 6 lists the sequence indicated by the box in FIG. 7 and is used in the present invention Agrobacterium tumefaciens, wife Rostifescaca, Clostridium boltea, Clostridium hilemo derived from psychos-3- Epimerase amino acid sequences (SEQ ID NOs: 3, 4, 9, 10). Therefore, the microorganism may be substituted with a gene encoding the amino acid sequence, but is not limited thereto.
  • the epimerase may be a cosmos-3-epimerase derived from the genus Clostridium, and the gene encoding the same may be Clostridium boltheea of SEQ ID NO.
  • Clostridium bolteae may be a gene encoding a cosmos-3-epimerase, or a gene encoding a Clostridium hylemonae (Clostridium hylemonae) derived cosmos-3-epimerase.
  • the gene may be a gene encoding a cosmos-3-epimerase derived from Clostridium hilemo.
  • Clostridium bolteae-derived cosmos-3-epimerase may have an amino acid sequence of SEQ ID NO: 9
  • clostridium hilemo derived cycos-3-epimerase may have an amino acid sequence of SEQ ID NO: 10 have.
  • the cos-3-epyrase derived from wife rostitis caca the 32nd amino acid is substituted with leucine or the 196th amino acid is substituted with cysteine in the amino acid sequence of SEQ ID NO: 6
  • Cycos-3-epimerases having the sequence shown above, Cycos-3-epimerases from Clostridium bolteae and Cycos-3-epimerases from Clostridium hylemonae Has a pH lower than 7 indicating optimal activity.
  • the microorganism may be cultured in a liquid medium as prokaryotic or eukaryotic cells, and may be cultured at the aforementioned high temperature.
  • the microorganism may be, for example, a bacterium, fungus, or a combination thereof.
  • the bacterium may be a gram positive bacterium, a gram negative bacterium, or a combination thereof, and may be preferably a gram positive bacterium in terms of increasing psychocosal productivity.
  • Gram-negative bacteria can be of the genus Escherichia.
  • Gram-positive bacteria can be of the genus Bacillus, Corynebacterium, Genus Actinomyces, Lactobacillus or combinations thereof.
  • the fungus may be yeast, genus Cleveromyces, or a combination thereof.
  • thermophiles having high thermal stability are preferable as the microorganism.
  • it may be of the genus Corynebacterium, Actinomyces, more preferably coding for the above-mentioned epimerase in Corynebacterium glutamicum, most preferably Corynebacterium glutamicum ATCC 13032.
  • the gene may be introduced.
  • the microorganism of the genus Escherichia may be Escherichia coli, and specifically, genes encoding epimerase may be introduced into DH5 ⁇ , MG1655, BL21 (DE), S17-1, XL1-Blue, BW25113, or a combination thereof.
  • E. coli may be inactivated one region consisting of the gene encoding the endogenous 6-phosphoplactokinase and allose metabolic operon.
  • 6-phosphoplactokinase may be, for example, one having a nucleotide sequence of SEQ ID NO: 11, and 6-phosphoplactokinase may be one having an amino acid sequence of SEQ ID NO: 12.
  • Genes constituting the allose metabolic operon are rpiB, alsR, alsB, alsA, alsC, alsE and alsK, one or more of these genes may be inactivated.
  • the rpiB, alsR, alsB, alsA, alsC, alsE, and alsK genes may be, for example, each having a nucleotide sequence of SEQ ID NO: 13, 14, 15, 16, 17, 18, and 19.
  • the rpiB, alsR, alsB, alsA, alsC, alsE, and alsK genes may be encoding the amino acid sequences of SEQ ID NOs: 20, 21, 22, 23, 24, 25, and 26, respectively.
  • activation means that the expression of the gene is reduced or not expressed.
  • the “inactivation” can be made by methods known in the art. For example, it may be inactivated by homologuous recombination. The homologous recombination may be mediated by, for example, transposon mutagenesis or P1 transduction.
  • the microorganism of the genus Corynebacterium may be Corynebacterium glutamicum, specifically, a gene encoding epimerase may be introduced into Corynebacterium glutamicum ATCC 13032.
  • the microorganism of the genus Corynebacterium is the ptsF (EII Fru , fruA, NCgl1861, GI: 19553141, EC 2.7.1.69) gene, a PTS transport system that converts endogenous di-fractose into di-fractose 1-phosphate and transports it into cells. May be missing or inactivated.
  • ptsF EII Fru , fruA, NCgl1861, GI: 19553141, EC 2.7.1.69
  • the ptsF gene may have a nucleotide sequence of SEQ ID NO: 27 and may encode an amino acid sequence of SEQ ID NO: 28.
  • Psychoses are generated from D-fructose, so depletion or inactivation of the gene can inhibit the phosphorylation of fructose, which can significantly improve the production efficiency of psychos.
  • microorganism of the genus Corynebacterium may be a deletion or inactivation of the mtlD (NCgl0108, GI: 19551360, EC 1.1.1.67) gene encoding mannitol 2-dehydrogenase.
  • the mtlD gene may have a nucleotide sequence of SEQ ID NO: 29, or may encode an amino acid sequence of SEQ ID NO: 30.
  • the reaction of the fructose and its epimerase is carried out in a microorganism, the microorganism can be cultured in a medium containing fructose.
  • the medium may be a nutrient medium containing yeast extract and nitrogen sources, such as 2YT medium, LB medium, TB medium.
  • the fructose concentration contained in the medium is not particularly limited, and may be included, for example, at a concentration of 1% (w / v) to 80% (w / v), and, for example, 1% (w / v) within the above range.
  • 1% (w / v) 1% (w / v) within the above range.
  • 10% (w / v) to 80% (w / v) 20% (w / v) to 80% (w / v), 30% (w / v) to 80 % (w / v), 40% (w / v) to 80% (w / v) and the like.
  • carbon sources including glucose, glycerol and the like
  • Nitrogen sources including ammonia, urea, and the like
  • Essential metal ions such as sodium, potassium, calcium, magnesium, manganese and cobalt
  • It may be a life medium (defined medium) commonly used in the art including vitamins and the like.
  • the culture can be continuous, semi-continuous, or batch type culture.
  • the microorganism has a turbidity of cells (measured at 600 nm absorbance, OD 600 ) in a medium containing fructose in a range of 0.01 to 300, for example, 1 to 300, 10 to 300, 20 to 300, 5 to 300, or 40 to 40. It may be inoculated at a concentration of 300.
  • a cell containing a high concentration of the enzyme it is possible to efficiently convert fructose to a psychos in a medium containing fructose at a high concentration in the medium.
  • the culturing may be performed by further adding a substance for inducing the expression of a gene encoding epimerase.
  • the material for inducing the expression of the gene is not particularly limited and may be a material commonly used in the art.
  • the reaction of fructose and epimerase in the method for producing a psychose of the present invention may be carried out in a medium containing only inorganic salts for the supply of fructose as a substrate and cofactors.
  • the inorganic salt may be, for example, manganese salt or cobalt salt. Cobalt salt is preferable in view of showing a more improved production rate of psychos, and manganese salt is preferable in terms of safely utilizing the produced psychos as a food.
  • the medium containing only fructose and inorganic salt may be a liquid medium in which fructose and inorganic salt are dissolved in a solvent.
  • the solvent may be water, for example.
  • metabolites such as organic acids of microorganisms, etc.
  • the medium in addition to psychose, so that the medium may be gradually acidified.
  • the medium containing only fructose and inorganic salts according to the present invention does not contain a buffer solution, in such a case, it is more preferable to use a cycos-3-epimerase having a low optimum active pH (for example, below pH 7). Do.
  • the culture of the microorganism includes a psychos
  • the method of recovering the psychos is not particularly limited and may be by a method known in the art, for example, centrifugation, filtration, crystallization, ion exchange chromatography, etc. The method can be mentioned.
  • the culture may be carried out by centrifugation to separate the culture from the microorganism, and by separating the psychosis from the culture by the recovery method.
  • the method of producing the psychos of the present invention may further include inducing the microorganisms to have dormant cells by culturing the microorganisms in a medium not containing the fructose before the reaction between the fructose and the epimerase.
  • Induction to have the dormant cells can be carried out by culturing the microorganism to a stationary phase in a medium that does not contain fructose.
  • a resting cell refers to a cultured cell which is no longer proliferating.
  • the stationary phase stops the division and proliferation of cells after the exponential phase when the cells are cultured, and does not show an increase in cell population, and the synthesis and decomposition of cellular components are balanced. Means status.
  • the dormant cells according to the present invention refers to a cell in which growth is completed and the expression of epimerase in the cell is sufficiently performed.
  • the expression amount of epimerase is maximum. It is possible to maximize the production of psychocos.
  • the medium not containing fructose may be the same medium as the above-mentioned medium containing fructose, except that no fructose is included.
  • the present invention may further include the step of recovering the microorganism after the reaction of the fructose and its epimerase and reusing it for conversion of the other substrate to the psychos.
  • the reaction between fructose and its epimerase is carried out in a microorganism, and even when exposed to high temperature, the epimerase is protected by the microorganism and still exhibits enzymatic activity.
  • the microorganisms can be recovered and reused for the conversion of another substrate to psychos.
  • the number of reuse is not limited, and hundreds of times or thousands of times can be reused.
  • thermophiles having high thermal stability in terms of high enzymatic activity upon reuse.
  • it may be of the genus Corynebacterium, Actinomyces, more preferably Corynebacterium glutamicum, and most preferably Corynebacterium glutamicum ATCC 13032
  • the gene encoding epimerase may be introduced.
  • the yield and speed of production of the psychos are significantly improved.
  • the microorganisms can be recovered and reused repeatedly for the conversion of fructose to psychos, thereby significantly improving the process yield.
  • 1 is a substrate according to the reaction temperature of the dormant cell transformation reaction (the production reaction of the psychos to react fructose and epimerase) from the Corynebacterium glutamicum transformants introduced with the cosmos-3-epimerase Pseudophas production from fructose is measured.
  • Figure 2 shows the measurement of the production of psychos from the fructose as a substrate according to the reaction temperature of the dormant cell transformation reaction from E. coli MG1655 transformant introduced with cyclose-3-epimerase.
  • FIG. 3 shows the recovery of the cells after the Pseudomonas-producing dormant cell transformation reaction at 60 ° C. for 3 hours using the Corynebacterium glutamicum and Escherichia coli MG1655 transformants incorporating cyclose-3-epimerase. It is shown by measuring the yield of the psychos obtained by the reaction under the same reaction conditions.
  • Figure 4 shows the production of psychos from fructose according to the composition change of the psychos production reaction medium used for the dormant cell transformation reaction of the Corynebacterium glutamicum transformants introduced with the Psyco-3- epimerase will be.
  • Figure 5 shows the composition derived from the Pseudomonas cycos-3-epimerase and the composition of the Pseudomonas cyclic medium during the dormant cell transformation reaction of the Corynebacterium glutamicum transformants introduced with the Psycho-3-Epimerase It shows the output of the psychos according.
  • FIG. 6 is a diagram showing the derivation of Pseudo-3-Epimerase-derived strain and Pseudomonas spp. During the dormant cell transformation of the Corynebacterium glutamicum transformants incorporating Psycho-3-Epimerase. The output is shown.
  • Figure 7 compares the amino acid sequence of cyclose-3-epimerase from various strains.
  • Figure 8 shows the production of psychos according to the number of reuse of Corynebacterium glutamicum incorporating cycos-3-epimerase from the genus Clostridium.
  • PCES208 J. Microbiol. Biotechnol., 18: 639-647, 2008
  • E. coli-Corynebacterium shuttle vector was modified and used to construct a pSGT208 shuttle vector in which a terminator and a lac promoter were inserted.
  • Psycho-3-epimerase is a dpe gene of Agrobacterium tumefaciens str. C58; taxid: 176299; GenBank NID: NC_003062, ATCC33970 for the production of psychoses in Corynebacterium glutamicum. (AGR_L_260, GI: 15890243, SEQ ID NO: 1) was introduced into the pSGT208 shuttle vector thus prepared and used.
  • amplification of the dpe gene from the Agrobacterium tumefaciens genome using primers 1 of SEQ ID NO: 31 and primer 2 of SEQ ID NO: 32 was carried out by restriction enzymes KpnI and BamHI and inserted into the same site of pSGT208 shuttle vector.
  • PS208-dpe recombinant shuttle vector containing the cyclic cosine epimerase was prepared.
  • lac promoter was replaced with the trc promoter derived from pTrc99a in pS208-dpe in order to increase the expression level of Pycos-3-epimerase in Corynebacterium glutamicum. It was named pS208cT-dpe. .
  • the recombinant vectors pS208-dpe, pS208cT-dpe and pSGT208 vector, which are negative controls, were introduced into the wild type Corynebacterium glutamicum ATCC 13032 and transformed. It was used for the production of psychocos from fructose. Transformation followed the method specified in the Handbook of Corynebacterium glutamicum (Lothar Eggeling et al., ISBN 0-8493-1821-1, 2005 by CRC press).
  • Corynebacterium glutamicum transformants prepared above were inoculated in 5 ml of LB medium (Difco) containing 20 ⁇ g / ml kanamycin to ensure high concentration of cells and cultured at 30 ° C. and 250 rpm.
  • the main culture was incubated in a 500 mL Erlenmeyer flask with 100 mL volume for 12 hours at 30 ° C. and 180 rpm to induce sufficient cell mass and sufficient expression of protein.
  • the obtained culture solution was centrifuged to remove the supernatant, and the cells were recovered, and the cell concentration was resuspended to 40 OD 600 in the same medium containing 40% (w / v) fructose as a substrate. , 37, 50, 60 or 70 °C, the dormant cell conversion reaction at 180rpm conditions.
  • the concentrations of fructose and psycose were measured using high performance liquid chromatography (HPLC).
  • HPLC was used SCL-10A (Shimadzu, Japan) equipped with a Kromasil 5 NH 2 column (4.6 mm x 250 mm), and the mobile phase was separated at 40 ° C. while flowing at 1.5 mL / min using 75% acetonitrile and then RI. Analysis was performed using a Reflective Index detector. Under the above conditions, the retention time of fructose was 5.5 minutes, and the psychocos was 4.6 minutes.
  • FIG. 1 The measurement result is shown in FIG. Referring to Figure 1, the Corynebacterium glutamicum ATCC13032 strain with the pSGT208cT-dpe shuttle vector was transformed in a medium containing 40% fructose, and as a result, the production rate of the psychos was remarkably increased. It seems to be faster and production increases. Particularly, in the experimental group reacted at 50, 60 and 70 ° C., the reaction equilibrium of the cosmos-3-epimerase enzyme was reached within approximately 3 hours to produce about 120 g / L of psychose, which is the psyche-3-epi. It can be seen that the conversion rate and yield of cycos from fructose of merase are temperature dependent.
  • the yield increased sharply from 50 ° C, which is significantly higher than the temperature required for the normal enzymatic reaction, and it is believed that the reaction between the enzyme and the substrate changed at that temperature.
  • E. coli MG1655 which lacks the pfkA (SEQ ID NO: 11) and als2 (SEQ ID NOs: 14, 15, 16, 17, 18, and 19) genes, was used to block the Pseudolysis pathway.
  • E. coli MG1655 transformant prepared above was inoculated in 5 ml of LB medium (Difco) containing 100 ⁇ g / ml of empicillin to incubate at 37 ° C. and 250 rpm to obtain high concentration of cells.
  • the culture was inoculated in 2YT medium containing / L glucose and 100 ⁇ g / ml of empicillin.
  • the main culture was incubated in a 500 mL Erlenmeyer flask with 100 mL volume for 12 hours at 37 ° C. and 180 rpm to induce sufficient cell mass and sufficient expression of protein.
  • the obtained supernatant was centrifuged to remove the supernatant and the cells were recovered, and E. coli minimal medium M9 medium containing 11.3 g M9 minimal salts (Difco), 0.1 mL 1 M, containing 40% (w / v) fructose as a substrate.
  • the cell concentration was resuspended in CaCl 2 , 2mL 1M MgSO 4 , 1mL 100mM MnSO 4 5H 2 O) at 40 OD 600 , and the dormant cell conversion reaction was performed at 37, 60 or 70 ° C. and 180 rpm, respectively.
  • the concentrations of fructose and psycose were analyzed according to the method described in Example 1 above. The measurement results are shown in FIG. 2.
  • the E. coli MG1655 ( ⁇ pfkA, als2) strain which introduced the pTPE vector, was also subjected to a conversion reaction in a medium containing 40% fructose. Seems to do. Particularly, in the experimental group reacted at 60 and 70 ° C., the reaction equilibrium of psychocos-3-epimerase was reached in about 2 hours as in the experiment with Corynebacterium, and produced about 120 g / L of psychos.
  • dormant cells for 3 hours in the presence of fructose in order to determine how long the activity of the fructose to convert the fructose to the psychos remain 3 hours after reaching the reaction equilibrium that maximizes the production of psychos.
  • the cells used for the production of the psychos were recovered and reused for the dorsal cell conversion reaction produced by the psychos.
  • the cell reuse dormant cell conversion reaction was repeated three times at 60 °C temperature.
  • the first dormant cell conversion reaction is R0
  • the first time dormant cell conversion reaction from which cells are recovered from the previous reaction solution is R1
  • the second reused dormant cell conversion reaction is R2
  • the third reused dormant cell conversion reaction is R3. Marked as. Culture conditions and analysis methods were performed in the same manner as in Example 1. The results are shown in FIG.
  • Example 1 in the conversion reaction of producing fructose from fructose in Corynebacterium glutamicum, the minimum medium containing 40% Fructose (1 g K 2 HPO 4 , 10 g (NH 4 ) 2 SO 4 , 0.4 g MgSO 4 7H 2 O, 20 mg FeSO 4 7H 2 O, 20 mg MnSO 4 5H 2 O, 50 mg NaCl, 2 g urea, 0.1 mg biotin, 0.1 mg thiamine). The components of the medium used for this conversion reaction were minimized to prepare a more economical and convenient medium, and the comparison of the cyclic productivity with the medium used in Example 1 was performed.
  • the components of the medium used for the Pseudomonas-producing dormant cell transformation reaction need only MnSO 4 , which is a cofactor of fructose and Pseudo- 3- Epimerase.
  • the whole gene of Anaerostipes caccae DSM 14662; taxid: 411490 was purchased from the poisonous DSMZ company.
  • Primers of SEQ ID NOs: 33 and 34 containing the entire sequence of the purchased genome as a template to include the cosmos-3-epamerase presumed gene (AP endonuclease; Sequence ID: gb
  • the first PCR was performed using the pair as a primer.
  • a second PCR was performed using primer pairs of SEQ ID NOs: 35 and 36, which specifically bind to the Pycos-3-epimerase gene, using the amplified PCR product as a template.
  • the obtained PCR product was inserted into the same enzyme site of pS208cT-dpe (vector described in Example 1 of Korean Patent Application No. 10-2013-0060703) using restriction enzymes BamHI and XbaI to prepare a recombinant vector pS208cT-AcDPE.
  • the prepared pS208cT-AcDPE vector was transformed by introducing into wild-type Corynebacterium glutamicum ATCC 13032, which was used for the production of cycos from fructose. Transformation followed the method specified in the Handbook of Corynebacterium glutamicum (Lothar Eggeling et al., ISBN 0-8493-1821-1, 2005 by CRC press).
  • the obtained recombinant Corynebacterium glutamicum strain was stored at -80 ° C and used for culturing.
  • Plasmid was obtained from Yakult Korea. PCR was carried out using primer pairs of SEQ ID NOs: 37 and 38 that specifically bind to the Pseudo-3-Epimerase gene.
  • the obtained PCR product was inserted into the same enzyme site of pS208cT-dpe (vector described in Example 1 of Korean Patent Application No. 10-2013-0060703) using restriction enzymes KpnI and XbaI to prepare a recombinant vector pS208cT-CbDPE.
  • the recombinant vector pS208cT-CbDPE vector thus produced was introduced and transformed into wild-type Corynebacterium glutamicum ATCC 13032 in the same manner as above, and was used for the production of cycos from fructose.
  • the obtained recombinant Corynebacterium glutamicum strain was stored at -80 ° C and used for culturing.
  • the entire gene of Clostridium hylemonae DSM 15053; taxid: 553973 was purchased from DSMZ, Germany.
  • SEQ ID NOs: 39 and 40 using the entire genome as a template, to include a polico-3-epimerase putative gene (dolichol monophosphate mannose synthase; Sequence ID: ref
  • the first PCR was performed using primer pairs of as primers.
  • the second PCR was performed using primer pairs of SEQ ID NOs: 41 and 42 which specifically bind to the cosmos-3-epimerase gene using the amplified PCR product as a template.
  • the obtained PCR product was inserted into the same enzyme site of pS208cT-dpe (vector described in Example 1 of Korean Patent Application No. 10-2013-0060703) using restriction enzymes BamHI and XbaI to prepare a recombinant vector pS208cT-ChDPE.
  • the prepared pS208cT-ChDPE vector was introduced into the wild-type Corynebacterium glutamicum ATCC 13032 and transformed in the same manner as above, and was used for the production of psychocos from fructose.
  • the obtained recombinant Corynebacterium glutamicum strain was stored at -80 ° C and used for culturing.
  • the transformants were inoculated in 2YT medium containing 20 ⁇ g / ml of kanamycin and cultured at 30 ° C and 250rpm, and then the transformants were inoculated in 2YT medium containing 20 ⁇ g / ml of kanamycin. .
  • the main culture was incubated in a slotted 300 ml Erlenmeyer flask at 60 ° C. for 7 hours at 30 ° C. and 180 rpm to induce sufficient cell mass and expression of proteins.
  • the cells obtained by the method of Example 1 were suspended in 2YT and continuously heated at 60 ° C. for 0, 3, 6, 9, 12, and 24 hours using a shake incubator. After each hour of heating, the cells were recovered, suspended in a simple conversion reaction medium containing only 20 ⁇ g / ml kanamycin, 0.1 mM manganese, and 40% (w / v) fructose. The reaction proceeded. Concentrations of fructose and psycose were measured in the same manner as described in Example 1. The results are shown in FIG.
  • a recombinant corynebacterium glutamicum incorporating previously used cyclose-3-epimerase derived from agrobacterium and cyclose-3-epimerase derived from wife rostipes is After 3 hours of heat at 60 ° C, it seems that they rarely produce Psychos.
  • recombinant Corynebacterium glutamicum which introduced cyclose-3-epimerase from the genus Clostridium, appears to maintain psychose production even after 24 hours of heat, producing psychose in high temperature processes. It is believed to be advantageous over Cycos-3-epimerase from Agrobacterium.
  • FIG. 1 A comparison between the amino acid sequence of Agrobacterium tumefaciens-derived psychos-3-epimerase and the amino acid sequence of cyclos-3-epimerase from Clostridium genus is shown in FIG. In the case of the high thermal stability of cyclos-3-epimerase from the genus Clostridium, one amino acid had a corresponding sequence or both.
  • Example 7 it was confirmed that the cyclose-3-epimerase derived from the genus Clostridium has high stability against high temperature, and among the recombinant strains incorporating the cosmos-3-epimerases derived from the two Clostridium spp.
  • Recombinant Corynebacterium glutamicum cells incorporating cyclose-3-epimerase in Clostridium hilemo typically showed the effect of fungal reuse after dormant cell conversion at high temperature.
  • Example 3 After the cells obtained in the same manner as described in Example 3 were subjected to dormant cell conversion for 3 hours at 60 ° C., the cells were recovered and subjected to the same dormant cell conversion reaction and the cells were reused three times in total ( Experiment on the same conditions as in Example 3).
  • the first dormant cell conversion reaction is R0
  • the first time dormant cell conversion reaction from which cells are recovered from the previous reaction solution is R1
  • the second reused dormant cell conversion reaction is R2
  • the third reused dormant cell conversion reaction is R3. Marked as. The results are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 사이코스의 생산 방법에 관한 것으로, 보다 상세하게는 기질인 과당과 그 에피머라제를 미생물 내에서 40℃ 이상의 온도로 반응시키는 단계를 포함함으로써, 사이코스의 생산량 및 생산 속도를 현저히 개선할 수 있는 사이코스의 생산 방법에 관한 것이다.

Description

사이코스의 생산 방법
본 발명은 미생물을 이용하여 사이코스를 생산하는 방법에 관한 것이다.
사이코스 (D-psicose)는 과당 (D-fructose)의 3번 탄소의 에피머 (epimer)로써 일반 당류들처럼 감미를 가지지만 인체 내에서 대사가 되지 않아서 거의 칼로리는 제로에 가까워 당뇨 및 비만환자에게 설탕 대체 기능성 감미료로 사용될 수 있는 기능성 당이다. 또한 간에서의 지질합성에 관여하는 효소 활성을 억제해서 복부비만을 감소시키는 기능을 가지고 있고 당뇨병과 동맥경화 치료제로 현재 연구 중에 있는 당이다.
이처럼 사이코스는 감미료로 각광받으면서 식품 산업 분야에 있어 사이코스를 효율적으로 생산할 수 있는 방법에 대한 개발의 필요성이 점점 높아지고 있다. 사이코스는 천연물질 내에는 당밀 처리 과정 또는 포도당 이성화 반응과정 중에 매우 소량 존재하기에 기존의 사이코스 생산은 주로 화학적 과정을 거쳐 이루어졌다. 빌릭 (Bilik)등은 몰리브딕산(molybdic acid) 이온의 촉매작용을 활용하여 과당으로부터 사이코스를 생산하는 기술을 개발하였다. 맥도날드 (McDonald)는 1,2:4,5-디-o-이소프로필리덴-베타-D-프락토피라노즈 (1,2:4,5-di-o-isppropylidene-bata-D-fructopyranose)로부터 3단계의 화학적 처리과정으로 사이코스를 생산하였다. 또한, 도너 (Doner)는 에탄올과 트리에틸아민과 함께 과당을 가열하는 방법으로 사이코스를 생산하였다. 그러나, 이들 화학적 방법에 의한 사이코스 생산은 비용이 많이 소모되는 반면 그 생산효율은 낮고 또한 부산물의 과량 발생한다는 문제점이 있다.
생물학적 방법에 의한 사이코스 생산방법으로 이즈모리 (Ken Izumori)등은 미생물 세포반응을 활용하여 갈락시톨 (galacitol), 디-타가토스 (D-tagatose) 또는 디-탈리톨 (D-talitol) 등으로부터 사이코스를 생산할 수 있다는 것을 보였다. 그러나, 이 기질들 또한 자연계에서 비교적 희귀한 당 또는 당알코올로 그 원가가 높다는 단점이 있다.
효소 전환방법으로는 분리미생물 슈도모나스 치코리 ST-24 (Pseudomonas cichorii ST-24)의 디-타가토스-3-에피머화 효소 (D-tagatose-3-epimerase)를 재조합 대장균에서 생산하고 정제하여 과당을 사이코스로 효소 전환하는 방법이 있으며, 이즈모리 등은 디-타가토스-3-에피머화 효소를 고정화시킨 반응시스템으로 약 25%의 전환율로 사이코스를 생산한 바 있다.
이러한 종래 기술에 의하면, 과당으로부터 사이코스를 생산하기 위해서 효소를 정제하고 그 정제된 효소를 고정화하여 사이코스 생산성을 높이는 방향으로 연구되어왔다. 이처럼 효소를 정제하는 과정에는 시간 및 비용이 많이 요구되는 것이 현실이다.
따라서, 효소 정제의 과정을 생략하여 제조원가가 낮고 사이코스를 높은 효율로 생산할 수 있는 균주 및 이를 이용하여 사이코스를 생산하는 방법이 요구되고 있다.
한국공개특허 제2006-125971호에는 사이코스 에피머화 효소에 의한 사이코스의 생산 방법이 개시되어 있다.
[선행기술문헌]
[특허문헌]
한국공개특허 제2006-125971호
[비특허문헌]
Choi JG, Ju YH, Yeom SJ and Oh DK (2011), Improvement in the Thermostability of D-Psicose 3-Epimerase from Agrobacterium tumefaciens by Random and Site-Directed Mutagenesis, Appl Environ Microbiol 77(20):7316-20
본 발명은 사이코스의 생산량 및 생산 속도를 현저히 개선할 수 있는 사이코스의 생산 방법을 제공하는 것을 목적으로 한다.
일 양상은 기질인 과당과 그 에피머라제를 미생물 내에서 40℃ 이상의 온도로 반응시키는 단계를 포함하는 사이코스의 생산 방법을 제공한다.
본 발명의 발명자들은 기질인 과당과 그 에피머라제와의 반응을 40℃ 이상의 온도로 수행하는 경우 사이코스의 생산량 및 생산 속도가 현저히 증가하고, 온도가 증가함에 따라 사이코스 생산량 및 생산 속도가 증가함을 발견하여 본 발명을 착안하였다.
한편, 에피머라제 등의 효소는 일반적으로 40℃ 이상의 고온에서는 열 변성되어 활성을 잃게 되나, 본 발명은 상기 반응을 미생물 내에서 수행함으로써, 효소 상태로 외부에 노출된 경우에 비해 외부로부터 보호됨에 따라 고온에서도 변성 없이 상기 반응을 수행할 수 있다.
반응 온도가 증가함에 따라 사이코스 생산능이 더 증가하므로, 반응 온도는 40℃ 이상이면서 미생물이 열에 의해 손상되거나 단백질이나 당이 변성되지 않는 범위 내라면 특별히 한정되지 않는다. 예를 들면, 40 내지 50℃, 40 내지 60℃, 40 내지 70℃, 40 내지 80℃, 40 내지 90℃, 45 내지 60℃, 45 내지 70℃, 45 내지 80℃, 45 내지 90℃, 50 내지 70℃, 50 내지 80℃, 50 내지 90℃, 55 내지 60℃, 55 내지 70℃, 55 내지 80℃, 55 내지 90℃, 60 내지 70℃, 60 내지 80℃, 60 내지 90℃, 70 내지 80℃, 70 내지 90℃ 등일 수 있다. 상기 사이코스 생산능을 극대화한다는 측면에서 바람직하게는 하한은 50℃ 이상일 수 있고, 열 손상 및 변성의 억제 측면에서 바람직하게는 상한은 90℃ 이하 일 수 있다.
본 명세서에서 용어 "미생물"은 액체 배지 중에서 배양될 수 있는 세포일 수 있다.
상기 미생물은 상기 에피머라제를 내재적으로 또는 형질전환에 의해 발현시키는 것일 수 있다. 그러한 경우, 미생물 내에서 에피머라제가 생성되어 상기 과당과 에피머라제의 미생물 내에서의 반응에 의한 사이코스의 생산이 연속적으로 수행될 수 있다.
상기 미생물이 에피머라제를 코딩하는 유전자로 형질전환되어 에피머라제를 발현시키는 경우, 상기 에피머라제를 코딩하는 유전자는 서열번호 1의 아그로박테리움 튜메패시엔스(Agrobacterium tumefaciens) 유래 사이코스-3-에피머라제를 코딩하는 유전자, 또는 서열번호 2의 아내로스티페스 카캐(Anaerostipes caccae) 유래 사이코스-3-에피머라제를 코딩하는 유전자일 수 있다.
아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제는 서열번호 3의 아미노산 서열을 가질 수 있고, 아내로스티페스 카캐 유래 사이코스-3-에피머라제는 서열번호 4의 아미노산 서열을 가질 수 있다.
에피머라제가 보다 우수한 고온 안정성을 갖는다는 측면에서 바람직하게는 에피머라제를 코딩하는 유전자는 서열번호 5의 사이코스-3-에피머라제의 아미노산 서열을 코딩하는 유전자일 수 있다.
상기 서열번호 5의 아미노산 서열은 아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제의 아미노산 서열에서 33번 아미노산이 류신으로, 213번 아미노산이 시스테인으로 교체된 서열로, 참고문헌 1에 의해 열 안정성이 우수하다고 알려져 있다.
본 발명의 발명자들은 클로스트리디움 속 유래의 사이코스-3-에피머라제가 열 안정성이 우수함을 확인하였는데, 도 7을 참조해보면, 열 안정성이 높았던 클로스트리디움 속 유래의 사이코스-3-에피머라제의 경우 한 개의 아미노산이 이에 상응하는 서열을 가지고 있거나 혹은 두 개 모두를 가지고 있음을 확인하였다.
이에, 아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제 뿐만이 아니라, 다른 균주로부터 유래한 사이코스-3-에피머라제라도 상기 아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제의 아미노산 서열의 33번, 213번 아미노산에 대응되는 아미노산 서열이 열 안정성 증대에 중요한 서열임을 확인하였다.
이러한 아미노산 서열의 구체적인 예를 들자면, 서열번호 6의 아미노산 서열에서 32번째 아미노산이 류신으로 치환되거나, 196번째 아미노산이 시스테인으로 치환된 서열일 수 있다. 서열번호 6은 도 7의 박스로 표시한 서열을 나열한 것으로 본 발명에서 사용한 아그로박테리움 튜메패시엔스, 아내로스티페스 카캐, 클로스트리디움 볼테애, 클로스트리디움 힐레모내 유래 사이코스-3-에피머라제 아미노산 서열들(서열번호 3번, 4번, 9번, 10번)의 공통 염기 서열이다. 따라서 상기 미생물은 상기 아미노산 서열을 코딩하는 유전자로 치환된 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 마찬가지로 우수한 고온 안정성, 그리고 사이코스 생산능의 측면에서 에피머라제는 클로스트리디움 속 유래 사이코스-3-에피머라제일 수 있고, 이를 코딩하는 유전자는 서열번호 7의 클로스트리디움 볼테애(Clostridium bolteae) 유래 사이코스-3-에피머라제를 코딩하는 유전자, 또는 서열번호 8의 클로스트리디움 힐레모내(Clostridium hylemonae) 유래 사이코스-3-에피머라제를 코딩하는 유전자일 수 있다. 고온 안정성을 극대화하는 측면에서 바람직하게는 서열번호 8의 클로스트리디움 힐레모내 유래 사이코스-3-에피머라제를 코딩하는 유전자일 수 있다.
클로스트리디움 볼테애 유래 사이코스-3-에피머라제는 서열번호 9의 아미노산 서열을 가질 수 있고, 클로스트리디움 힐레모내 유래 사이코스-3-에피머라제는 서열번호 10의 아미노산 서열을 가질 수 있다.
상기 예시한 사이코스-3-에피머라제 중 아내로스티페스 카캐 유래 사이코스-3-에피머라제, 서열번호 6의 아미노산 서열에서 32번째 아미노산이 류신으로 치환되거나, 196번째 아미노산이 시스테인으로 치환된 서열을 갖는 사이코스-3-에피머라제, 클로스트리디움 볼테애(Clostridium bolteae) 유래 사이코스-3-에피머라제 및 클로스트리디움 힐레모내(Clostridium hylemonae) 유래 사이코스-3-에피머라제는 최적 활성을 나타내는 pH가 7 이하로 낮다.
상기 미생물은 원핵 세포 또는 진핵 세포로 액체 배지에서 배양될 수 있으면서, 전술한 고온의 온도에서 배양이 가능한 것일 수 있다. 상기 미생물은 예를 들면, 박테리아, 곰팡이, 또는 이들의 조합일 수 있다. 박테리아는 그람 양성 박테리아, 그람 음성 박테리아, 또는 이들의 조합일 수 있으며, 사이코스 생산성 증가의 측면에서 바람직하게는 그람 양성 박테리아일 수 있다. 그람 음성 박테리아는 에세리키아 (Escherichia) 속일 수 있다. 그람 양성 박테리아는 바실러스 속, 코리네박테리움 속, 액티노마이세스 속, 유산균 또는 이들의 조합일 수 있다. 곰팡이는 효모, 클루베로마이세스 속, 또는 이들의 조합일 수 있다.
본 발명의 사이코스의 생산 방법에서 과당과 에피머라제의 반응은 40℃ 이상의 온도로 수행되므로 미생물로는 열 안정성이 높은 고온성 미생물(thermophiles)이 바람직하다. 예를 들면 코리네박테리움 속, 액티노마이세스 속일 수 있고, 보다 바람직하게는 코리네박테리움 글루타미쿰, 가장 바람직하게는 코리네박테리움 글루타미쿰 ATCC 13032에 전술한 에피머라제를 코딩하는 유전자가 도입된 것일 수 있다.
에세리키아 속 미생물은 대장균일 수 있고, 구체적으로 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합에 에피머라제를 코딩하는 유전자가 도입된 것일 수 있다.
또한, 상기 대장균은 내재적 6-포스포프락토키나제를 코딩하는 유전자 및 알로즈 대사 오페론 (allose metabolic operon)으로 이루어진 하나의 영역이 불활성화된 것일 수 있다.
상기 6-포스포프락토키나제를 코딩하는 유전자는 예를 들면, 서열번호 11의 뉴클레오티드 서열을 갖는 것일 수 있고, 6-포스포프락토키나제는 서열번호 12의 아미노산 서열을 갖는 것일 수 있다.
상기 알로즈 대사 오페론을 구성하는 유전자는 rpiB, alsR, alsB, alsA, alsC, alsE 및 alsK로서, 이들 중 하나 이상의 유전자가 불활성화된 것일 수 있다.
상기 rpiB, alsR, alsB,alsA, alsC, alsE, 및 alsK 유전자는 예를 들면, 서열번호 13, 14, 15, 16, 17, 18 및 19의 뉴클레오티드 서열을 각각 갖는 것일 수 있다.
상기 rpiB, alsR, alsB,alsA, alsC, alsE, 및 alsK 유전자는 서열번호 20, 21, 22, 23, 24, 25 및 26의 아미노산 서열을 각각 코딩하는 것일 수 있다.
용어 "불활성화"란 상기 유전자의 발현이 감소되거나 발현이 이루어지지 않는 것을 의미한다. 상기 "불활성화"는 당업계에 알려진 방법에 의하여 이루어질 수 있다. 예를 들면, 상동 재조합 (homologuous recombination)에 의 하여 불활성화된 것일 수 있다. 상기 상동 재조합은 예를 들면, 전이인자 돌연변이 (transposon mutagenesis) 또는 P1 형질도입 (P1 transduction)에 의하여 매개된 것일 수 있다.
코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰일 수 있고, 구체적으로 코리네박테리움 글루타미쿰 ATCC 13032에 에피머라제를 코딩하는 유전자가 도입된 것일 수 있다.
코리네박테리움 속 미생물은 내재적 디-프락토오스를 디-프락토오스 1-포스페이트로 전환하면서 균체 내로 수송하는 PTS 수송 시스템인 ptsF(EIIFru, fruA, NCgl1861, GI:19553141, EC 2.7.1.69) 유전자를 결손 또는 불활성화시킨 것일 수 있다.
ptsF 유전자는 서열번호 27의 뉴클레오티드 서열을 갖는 것일 수 있고, 서열번호 28의 아미노산 서열을 코딩하는 것일 수 있다.
사이코스는 D-프락토오스(D-fructose)로부터 생성되므로, 상기 유전자를 결손 또는 불활성화시키면 프락토오스의 인산화를 억제할 수 있으므로, 사이코스의 생성 효율을 현저히 개선할 수 있다.
또한, 코리네박테리움 속 미생물은 만니톨 2-디하이드로게나아제(mannitol 2-dehydrogenase)를 코딩하는 mtlD (NCgl0108, GI:19551360, EC 1.1.1.67) 유전자를 결손 또는 불활성화시킨 것일 수 있다.
mtlD 유전자는 서열번호 29의 뉴클레오티드 서열을 갖는 것일 수 있고, 서열번호 30의 아미노산 서열을 코딩하는 것일 수 있다.
상기 과당과 그 에피머라제의 반응은 미생물 내에서 수행되는 것인바, 미생물을 과당을 포함하는 배지 중에서 배양할 수 있다.
상기 배지는 2YT 배지, LB 배지, TB 배지 등의 효모추출물과 질소원을 포함하는 영양배지일 수 있다.
배지에 포함되는 과당 농도는 특별히 한정되지 않으며, 예를 들면 1%(w/v) 내지 80%(w/v)의 농도로 포함될 수 있고, 상기 범위 내에서 예컨대, 1%(w/v) 내지 35%(w/v), 10%(w/v) 내지 80%(w/v), 20%(w/v) 내지 80%(w/v), 30%(w/v) 내지 80%(w/v), 40 %(w/v) 내지 80 %(w/v) 등 일 수 있다. 바람직하게는 1%(w/v) 내지 50%(w/v)일 수 있다.
또한, 포도당, 글리세롤 등을 포함하는 탄소원; 암모니아, 우레아(urea) 등을 포함하는 질소원; 나트륨, 칼륨, 칼슘, 마그네슘, 망간, 코발트 등의 필수 금속이온; 비타민 등을 포함하는 당 분야에서 통상적으로 사용되는 구명배지(defined 배지)일 수 있다.
상기 배양은 연속, 반연속, 또는 배치 (batch) 형식 배양일 수 있다.
상기 미생물은 과당을 포함하는 배지에서 균체의 탁도(600nm 흡광도에서의 측정치, 이하 OD600)가 0.01 내지 300, 예를 들면 1 내지 300, 10 내지 300, 20 내지 300, 5 내지 300, 또는 40 내지 300이 되도록 하는 농도로 접종될 수 있다. 이렇게 고농도의 상기 효소를 포함하는 균체를 사용함으로써, 배지 중에서 고농도로 과당이 포함된 배지에서 효율적으로 과당을 사이코스로 전환할 수 있다.
상기 배양은 에피머라제를 코딩하는 유전자의 발현을 유도하는 물질을 더 첨가하여 수행될 수 있다.
유전자의 발현을 유도하는 물질은 특별히 한정되지 않으며, 당 분야에서 통상적으로 사용되는 물질일 수 있다.
본 발명의 사이코스의 생산 방법에서 과당과 에피머라제의 반응은 기질인 과당과 보조인자의 공급을 위한 무기염만을 포함하는 배지 중에서 수행될 수 있다. 상기 무기염은 예를 들면 망간염 또는 코발트염일 수 있다. 보다 개선된 사이코스의 생산 속도를 나타낸다는 측면에서는 코발트염이 바람직하고, 생산된 사이코스를 식품 등으로 안전하게 활용할 수 있다는 측면에서는 망간염이 바람직하다.
과당과 무기염만을 포함하는 배지는 과당과 무기염이 용매에 용해된 액체 배지일 수 있다. 용매는 예를 들면 물일 수 있다.
미생물을 이용한 사이코스의 생산시에 배지에는 사이코스 외에도 미생물의 유기산 등의 대사물 등이 생성되므로, 배지는 점차 산성화될 수 있다. 본 발명에 따른 과당과 무기염만을 포함하는 배지는 완충 용액을 포함하지 않으므로, 그러한 경우에 최적 활성 pH가 낮은 (예를 들면 pH 7 이하) 사이코스-3-에피머라제를 사용하는 것이 보다 바람직하다.
상기 미생물의 배양물은 사이코스를 포함하는데, 사이코스를 회수하는 방법은 특별히 한정되지 않고 당 분야에 공지된 방법에 의할 수 있으며, 예를 들면 원심분리, 여과, 결정화, 이온교환 크로마토그래피 등의 방법을 들 수 있다.
구체적으로. 배양물을 원심분리하여 배양액을 미생물로부터 분리하고, 상기 회수 방법에 의하여 사이코스를 배양액으로부터 분리함으로써 수행될 수 있다.
본 발명의 사이코스의 생산 방법은 상기 과당과 에피머라제의 반응 이전에, 상기 미생물을 상기 과당이 포함되지 않은 배지에서 배양하여 상기 미생물이 휴면 세포를 갖도록 유도하는 단계를 더 포함할 수 있다.
상기 휴면 세포를 갖도록 하는 유도는 상기 미생물은 과당을 포함하지 않는 배지 중에서 정지기(stationary phase)까지 배양함으로써 수행될 수 있다.
본 명세서에서 휴면세포(resting cell)는 더 이상 증식하지 않는 상태의 배양 세포를 의미한다. 본 명세서에서 정지기(stationary phase)는 세포를 배양하는 경우 대수기(exponential phase)를 지나 세포의 분열 및 증식이 정지하여 세포 개체 수의 증가가 나타나지 않으며, 세포 성분의 합성과 분해가 균형을 이룬 상태를 의미한다.
따라서, 본 발명에 따른 휴면 세포는 성장이 완료되고, 세포 내에서 에피머라제의 발현이 충분히 이루어진 상태의 세포를 의미하는 것으로서, 미생물이 휴면 세포를 갖도록 유도되는 경우 에피머라제의 발현량이 최대치를 나타내는 바, 사이코스의 생산을 극대화할 수 있다.
과당을 포함하지 않은 배지는, 과당을 포함하지 않은 것을 제외하고는 전술한 과당을 포함한 배지와 동일한 배지일 수 있다.
또한, 본 발명은 상기 과당과 그 에피머라제의 반응 이후에, 상기 미생물을 회수하여 다른 기질의 사이코스로의 전환에 재사용하는 단계를 더 포함할 수 있다.
본 발명은 과당과 그 에피머라제의 반응을 미생물 내에서 수행하는 바, 고온에 노출되어도 미생물에 의해 에피머라제가 보호되어 여전히 효소 활성을 나타내는 바, 재사용이 가능하다.
즉, 상기 반응 이후에 상기 미생물을 회수하여 또 다른 기질을 사이코스로의 전환에 재사용할 수 있다.
분리된 미생물의 생육이 유지되는 환경 중에서 반응을 수행한다면 재사용 회수는 한정되지 않고, 수백회 이상, 수천회 이상도 재사용이 가능하다.
미생물을 재사용하는 단계를 더 포함하는 경우 미생물이 고온에 복수회 노출되므로, 열 안정성이 높은 고온성 미생물(thermophiles)을 사용하는 것이 재사용시에 효소 활성이 높다는 점에서 바람직하다.
전술한 예시 중에서는 바람직하게는 코리네박테리움 속, 액티노마이세스 속일 수 있고, 보다 바람직하게는 코리네박테리움 글루타미쿰, 가장 바람직하게는 코리네박테리움 글루타미쿰 ATCC 13032에 전술한 에피머라제를 코딩하는 유전자가 도입된 것일 수 있다.
본 발명의 방법에 의하면 사이코스의 생산량 및 생산 속도가 현저히 개선된다.
본 발명의 방법에 의하면 미생물을 회수하여 과당의 사이코스로의 전환에 반복적으로 재사용이 가능하여, 공정 수율을 현저히 개선할 수 있다.
도 1은 사이코스-3-에피머라제를 도입한 코리네박테리움 글루타미쿰 형질전환체로부터 휴면세포전환반응(과당과 에피머라제를 반응시키는 사이코스의 생산 반응)의 반응 온도에 따른 기질인 과당으로부터의 사이코스 생산량을 측정하여 나타낸 것이다.
도 2는 사이코스-3-에피머라제를 도입한 대장균 MG1655 형질전환체로부터 휴면세포전환반응의 반응 온도에 따른 기질인 과당으로부터의 사이코스 생산량을 측정하여 나타낸 것이다.
도 3은 사이코스-3-에피머라제를 도입한 코리네박테리움 글루타미쿰과 대장균 MG1655 형질전환체를 이용해서 60℃에서 3시간 동안 사이코스 생산 휴면세포전환반응을 한 후에 균체를 다시 회수하여 동일 반응 조건 하에서 반응을 시켜서 얻은 사이코스 생산량을 측정하여 나타낸 것이다.
도 4는 사이코스-3-에피머라제를 도입한 코리네박테리움 글루타미쿰 형질전환체의 휴면세포전환반응에 사용되는 사이코스 생산반응 배지의 조성 변화에 따른 과당으로부터 사이코스의 생산량을 나타낸 것이다.
도 5는 사이코스-3-에피머라제를 도입한 코리네박테리움 글루타미쿰 형질전환체의 휴면세포전환반응시에 사이코스-3-에피머라제의 유래 균주 및 사이코스 생산반응 배지 조성에 따른 사이코스의 생산량을 나타낸 것이다.
도 6은 사이코스-3-에피머라제를 도입한 코리네박테리움 글루타미쿰 형질전환체의 휴면세포전환반응시에 사이코스-3-에피머라제의 유래 균주 및 가열 시간에 따른 사이코스의 생산량을 나타낸 것이다.
도 7은 다양한 균주 유래의 사이코스-3-에피머라제의 아미노산 서열을 비교한 것이다.
도 8은 클로스트리디움 속 유래의 사이코스-3-에피머라제를 도입한 코리네박테리움 글루타미쿰의 재사용 횟수에 따른 사이코스의 생산량을 나타낸 것이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
실시예
1. 코리네박테리움 글루타미쿰 균주를 이용한 과당으로부터 사이코스를 생산하는 과정에서 온도에 따른 사이코스 생산속도 및 생산량 변화
(1) 재조합 균주의 제조
대장균-코리네박테리움 셔틀벡터인 pCES208 (J. Microbiol. Biotechnol., 18:639-647, 2008)를 변형하여 종결자(terminator)와 lac 프로모터가 삽입된 pSGT208 셔틀벡터를 제작하여 사용하였다.
코리네박테리움 글루타미쿰에서 사이코스를 생산하기 위하여 사이코스-3-에피머라제는 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens str. C58; taxid:176299; GenBank NID: NC_003062, ATCC33970)의 dpe 유전자(AGR_L_260, GI:15890243, 서열번호 1)를 상기 제작한 pSGT208 셔틀벡터에 도입하여 사용하였다.
상세히 설명하면 서열번호 31의 프라이머 1과 서열번호 32의 프라이머 2를 이용하여 아그로박테리움 투메파시엔스 게놈으로부터 dpe 유전자를 증폭하고, 이를 제한효소 KpnI와 BamHI로 절단하여 pSGT208 셔틀벡터의 동일 부위로 삽입하여 사이코스-3-에피머라제를 포함하는 pS208-dpe 재조합 셔틀벡터를 제작하였다.
이후에, 코리네박테리움 글루타미쿰에서 사이코스-3-에피머라제의 발현량을 증대시키기 위하여 pS208-dpe에서 lac 프로모터를 pTrc99a에서 유래한 trc 프로모터로 교체하였으며, 이를 pS208cT-dpe로 명명하였다.
상기 제작한 사이코스-3-에피머라제를 포함하는 재조합 벡터 pS208-dpe, pS208cT-dpe와 이에 대한 음성 대조군인 pSGT208 벡터를 야생형 코리네박테리움 글루타미쿰 ATCC 13032에 도입하여 형질전환시키고, 이를 과당으로부터 사이코스 생산에 이용하였다. 형질전환법은 Handbook of Corynebacterium glutamicum (Lothar Eggeling 등, ISBN 0-8493-1821-1, 2005 by CRC press)에 명시된 방법을 따랐다.
(2) 재조합 균주의 배양 및 이를 이용한 사이코스의 생산
고농도의 균체를 확보하기 위해 상기 위에서 제조된 코리네박테리움 글루타미쿰 형질전환체를 20㎍/㎖의 카나마이신을 포함하는 5 ㎖의 LB 배지(Difco)에 접종하여 30℃, 250rpm 조건으로 종배양한 후, 10g/L 포도당 및 20㎍/㎖의 카나마이신이 있는 최소 배지(1리터 당 1g K2HPO4, 10g (NH4)2SO4, 0.4g MgSO47H2O, 20mg FeSO47H2O, 20mg MnSO45H2O, 50mg NaCl, 2g urea, 0.1mg biotin, 0.1mg thiamine)에 접종하여 본배양하였다. 본배양은 홈이 파인 500 ㎖ 삼각플라스크에 100㎖ 부피로 30℃, 180 rpm 조건에서 12 시간 배양하여 충분한 균체량과 단백질의 충분한 발현을 유도하였다.
얻어진 상기 배양액을 원심분리하여 상층액을 제거하고 균체를 회수하여, 기질인 40%(w/v) 과당을 함유하는 상기와 동일한 최소배지에 균체농도를 40 OD600로 재현탁한 뒤, 25, 30, 37, 50, 60 또는 70℃, 180rpm 조건에서 휴면세포전환반응을 하였다.
과당 및 사이코스의 농도는 고성능액체크로마토그래피(HPLC)를 이용하여 측정하였다. HPLC는 Kromasil 5NH2 칼럼(4.6 mm X 250 mm)을 장착한 SCL-10A(Shimadzu, 일본)를 사용하였으며, 이동상은 75% 아세토니트릴을 이용하여 1.5 mL/분으로 흘리면서 40℃에서 분리한 후 RI (Reflective Index) 검출기를 이용하여 분석하였다. 상기의 조건에서 과당의 머무름시간 (retention time)은 5.5분, 사이코스는 4.6분이었다.
측정 결과는 도 1에 나타내었다. 도 1을 참조하면, pSGT208cT-dpe 셔틀벡터를 도입한 코리네박테리움 글루타미쿰 ATCC13032 균주를 40% 과당을 함유하는 배지에서 전환반응을 시킨 결과, 반응 온도가 높아질수록 사이코스의 생산 속도가 현저히 빨라지고 생산량도 증가하는 것으로 보인다. 특히 50, 60, 70℃에서 반응시킨 실험군의 경우 대략 3시간 안에 사이코스-3-에피머라제 효소의 반응평형에 도달하여 약 120g/L의 사이코스를 생산했으며, 이는 사이코스-3-에피머라제의 과당으로부터 사이코스의 전환속도 및 생산량은 온도에 의존적임을 나타내는 결과로 볼 수 있다.
50℃를 기점으로 생산량이 급격히 증가하였는데, 이는 통상의 효소 반응에 요구되는 온도보다 현저히 높은 온도로서, 해당 온도에서 효소와 기질간의 반응의 양상이 달라진 것으로 판단된다.
2. 대장균을 이용한 과당으로부터 사이코스를 생산하는 과정에서 온도에 따른 사이코스 생산속도 및 생산량 변화
대한민국 특허등록번호 제 10-1106253호의 실시예 1에 기재된 방법에 따라, pTrc99A 벡터에 아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제를 도입한 pTPE 플라스미드로 형질전환된 E. coli MG1655(ΔpfkA, als2) 균주를 제조하였다.
사이코스 분해경로를 차단하기 위해 pfkA(서열번호 11)와 als2(서열번호 14, 15, 16, 17, 18 및 19) 유전자가 결손된 대장균 MG1655를 이용하였다.
고농도의 균체를 확보하기 위해 상기 위에서 제조된 대장균 MG1655 형질전환체를 100㎍/㎖의 엠피실린을 포함하는 5 ㎖의 LB 배지(Difco)에 접종하여 37℃, 250rpm 조건으로 종배양한 후, 10g/L 포도당 및 100㎍/㎖의 엠피실린이 있는 2YT 배지에 접종하여 본배양 하였다. 본배양은 홈이 파인 500 ㎖ 삼각플라스크에 100㎖ 부피로 37℃, 180 rpm 조건에서 12 시간 배양하여 충분한 균체량과 단백질의 충분한 발현을 유도하였다.
얻어진 상기 배양액을 원심분리하여 상층액을 제거하고 균체를 회수하여, 기질인 40%(w/v) 과당을 함유하는 대장균 최소배지 M9 배지(1리터당 11.3g M9 minimal salts(Difco), 0.1mL 1M CaCl2, 2mL 1M MgSO4, 1mL 100mM MnSO45H2O)에 균체농도를 40 OD600로 재현탁한 뒤, 각각 37, 60 또는 70℃, 180rpm 조건에서 휴면세포전환반응을 하였다. 과당 및 사이코스의 농도는 상기의 실시예 1에 기술된 방법에 따라서 분석하였다. 측정 결과는 도 2에 나타내었다.
도 2를 참조하면, pTPE 벡터를 도입한 대장균 MG1655 (ΔpfkA, als2) 균주도 역시 40% 과당을 함유하는 배지에서 전환반응을 시킨 결과, 반응 온도가 높아질수록 사이코스의 생산속도가 빨라지고 생산량도 증가하는 것으로 보인다. 특히 60, 70℃에서 반응시킨 실험군의 경우 코리네박테리움에서의 실험과 마찬가지로 약 2시간 안에 사이코스-3-에피머라제의 반응평형에 도달하여 약 120g/L의 사이코스를 생산했다.
이는 사이코스-3-에피머라제의 과당으로부터 사이코스의 전환속도 및 생산량은 온도에 의존적임을 나타내는 결과로 다시 확인되었다.
대표적인 그람양성 세균인 코리네박테리움과 대표적인 그람음성세균인 대장균을 대상으로 고온에서 휴면세포전환반응 실험을 해 본 결과, 당 전환 효소인 사이코스-3-에피머라제가 세포 안에서 극한 외부환경으로부터 보호받기 때문에 순수한 효소 상태에서 보다는 고온에서 열변성이 되지 않고 더 빠른 속도로 사이코스를 생산하는 것을 알 수 있었다. 이런 세포전환반응의 이점은 대부분의 미생물에도 적용이 될 것으로 보인다.
3. 코리네박테리움 글루타미쿰 형질전환 균체의 휴면세포전환반응에서의 균체 회수 및 재사용을 통한 과당으로부터 사이코스의 연속생산
상기 실시예 1, 2의 결과에서 사이코스-3-에피머라제를 코리네박테리움과 대장균 형질전환체 내에 도입하여 50℃ 이상의 고온의 조건으로 전환반응하였을 때, 3시간 이내에 사이코스 생산량의 최대치에 도달한 이후에 더 이상 증가하지 않았다.
즉 사이코스 생산이 최대가 되는 반응평형에 도달한 3시간 이후에도 사이코스-3-에피머라제가 과당을 사이코스로 전환하는 활성이 얼마나 잔존하는 가를 확인하기 위하여, 과당의 존재 하에서 3시간 동안 휴면세포전환반응을 통해서 사이코스 생산에 이용된 균체를 회수하여, 다시 사이코스 생산 휴면세포전환반응에 재사용하였다.
상기의 균체 재사용 휴면세포전환반응은 60℃ 온도에서 3회 반복하였다. 최초의 휴면세포전환반응은 R0, 앞의 반응액에서 균체를 회수해서 1차 재사용한 휴면세포전환반응은 R1, 2차 재사용한 휴면세포전환반응은 R2, 3차 재사용한 휴면세포전환반응은 R3로 표시하였다. 배양 조건 및 분석 방법은 실시예 1과 동일하게 수행하였다. 결과는 도 3에 나타내었다.
도 3을 참조하면, 60℃ 고온의 당 전환 반응 시에도 균체의 재사용이 가능하다. 하지만 균체를 재사용할수록 효소 활성이 일정부분 감소하는 것으로 보인다. 또한 고온에서 균체를 재사용함에 있어서 그람양성균인 코리네박테리움 글루타미쿰 균주가 그람음성균인 대장균 MG1655 균주보다 잔존 효소 활성이 더 높은 것을 알 수 있다.
4. 다양한 휴면세포전환반응 배지에서의 과당으로부터 사이코스의 생산
상기 실시예 1에서 코리네박테리움 글루타미쿰에서 과당으로부터 사이코스를 생산하는 전환반응에 있어 40% Fructose를 포함한 최소 배지(1리터 당 1g K2HPO4, 10g (NH4)2SO4, 0.4g MgSO47H2O, 20mg FeSO47H2O, 20mg MnSO45H2O, 50mg NaCl, 2g urea, 0.1mg biotin, 0.1mg thiamine)를 이용하였다. 이 전환반응에 사용되는 배지의 구성성분들을 최소화해서 보다 경제적이고 간편한 배지를 조제하고 실시예 1에 사용한 배지와의 사이코스 생산성 비교를 수행하였다.
도 4를 참조하면 40% Fructose와 0.1mM MnSO4를 포함한 phosphate buffer (pH 7) 배지, 더 간편하게는 오직 40% Fructose와 0.1mM MnSO4 만을 포함한 배지를 사용하여도 최종적으로 생산되는 사이코스 생산량에는 별다른 차이가 없었다. 상기의 양상은 반응 온도 30℃와 60℃에서 모두 동일하게 관찰되었다. 0.1mM MnSO4는 사이코스-3-에피머레이즈의 보조인자로 첨가하지 않은 경우에는 생산량의 감소하는 결과를 얻었다.
상기 실시예에서 사이코스 생산 휴면세포전환반응에 사용하는 배지의 성분은 기질인 과당과 사이코스-3-에피머레이즈의 보조인자인 MnSO4만 있으면 된다는 것을 알 수 있었다.
5. 다양한 균주 유래의 사이코스 -3- 에피머라제 아미노산 서열을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 코리네박테리움 글루타미쿰의 제조
아내로스티페스 카캐(Anaerostipes caccae DSM 14662; taxid: 411490)의 전제 유전자를 독인 DSMZ사에서 구입하였다. 구입한 전체 게놈을 주형으로 하여 사이코스-3-에피머라제 추정 유전자(AP endonuclease; Sequence ID: gb|EDR98778.1|; GI: 167654649; 서열번호 4)를 포함하도록 서열번호 33 및 34의 프라이머 쌍을 프라이머로 하여 첫 번째 PCR을 수행하였다. 증폭된 PCR 산물을 주형으로 하여 사이코스-3-에피머라제 유전자에 특이적으로 결합하는 서열번호 35 및 36의 프라이머 쌍을 프라이머로 사용하여 두 번째 PCR을 수행하였다.
얻어진 PCR 산물을 제한 효소 BamHⅠ과 XbaⅠ을 사용하여 pS208cT-dpe(대한민국 특허출원번호 10-2013-0060703의 실시예 1에서 기술한 벡터)의 동일한 효소 부위에 삽입하여 재조합 벡터 pS208cT-AcDPE를 제조하였다.
제작한 pS208cT-AcDPE 벡터를 야생형 코리네박테리움 글루타미쿰 ATCC 13032에 도입하여 형질전환시키고, 이를 과당으로부터 사이코스 생산에 이용하였다. 형질전환법은 Handbook of Corynebacterium glutamicum (Lothar Eggeling 등, ISBN 0-8493-1821-1, 2005 by CRC press)에 명시된 방법을 따랐다.
얻어진 재조합 코리네박테리움 글루타미쿰 균주는 -80℃에 보관한 후 배양에 사용하였다.
클로스트리디움 볼테애(Clostridium bolteae ATCC BAA-613; taxid:411902)의 사이코스-3-에피머라제 추정 유전자(hypothetical protein CLOBOL_00069; Sequence ID: gb|EDP19602.1|; GI:15844190; 서열번호 9)를 포함한 플라스미드를 ㈜한국야쿠르트로부터 얻었다. 사이코스-3-에피머라제 유전자에 특이적으로 결합하는 서열번호 37 및 38의 프라이머 쌍을 프라이머로 사용하여 PCR을 수행하였다.
얻어진 PCR 산물을 제한 효소 KpnⅠ과 XbaⅠ을 사용하여 pS208cT-dpe(대한민국 특허출원번호 10-2013-0060703의 실시예 1에서 기술한 벡터)의 동일한 효소 부위에 삽입하여 재조합 벡터 pS208cT-CbDPE를 제조하였다.
제작한 재조합 벡터 pS208cT-CbDPE 벡터를 야생형 코리네박테리움 글루타미쿰 ATCC 13032에 위와 같은 방법으로 도입, 형질전환시키고, 이를 과당으로부터 사이코스 생산에 이용하였다. 얻어진 재조합 코리네박테리움 글루타미쿰 균주는 -80℃에 보관한 후 배양에 사용하였다
클로스트리디움 힐레모내(Clostridium hylemonae DSM 15053; taxid:553973)의 전체 유전자를 독일 DSMZ사에서 구입하였다. 구입한 전체 게놈을 주형으로 하여 사이코스-3-에피머라제 추정 유전자(dolichol monophosphate mannose synthase; Sequence ID:ref|WP_006442985.1|; GI:225161759; 서열번호 10)를 포함하도록 서열번호 39 및 40의 프라이머 쌍을 프라이머로 사용하여 첫 번째 PCR을 수행하였다. 증폭된 PCR 산물을 주형으로 하여 사이코스-3-에피머라제 유전자에 특이적으로 결합하는 서열번호 41 및 42의 프라이머 쌍을 프라이머로 사용하여 두 번째 PCR을 수행하였다.
얻어진 PCR 산물을 제한 효소 BamHⅠ과 XbaⅠ을 사용하여 pS208cT-dpe(대한민국 특허출원번호 10-2013-0060703의 실시예 1에서 기술한 벡터)의 동일한 효소 부위에 삽입하여 재조합 벡터 pS208cT-ChDPE를 제조하였다.
제작한 pS208cT-ChDPE 벡터를 야생형 코리네박테리움 글루타미쿰 ATCC 13032에 위와 같은 방법으로 도입, 형질전환시키고, 이를 과당으로부터 사이코스 생산에 이용하였다. 얻어진 재조합 코리네박테리움 글루타미쿰 균주는 -80℃에 보관한 후 배양에 사용하였다.
6. 다양한 균주 유래의 사이코스 -3- 에피머라제를 도입한 재조합 코리네박 테리움 글루타미쿰 균주를 이용한 과당으로부터 사이코스 생산
상기 실시예 5에서 제작된 코리네박테리움 글루타미쿰 형질전환체를 이용하여 고농도의 과당으로부터 사이코스 생산을 확인하였다.
상기의 형질전환체를 카나마이신 20㎍/㎖을 포함하는 2YT배지에 접종하여 30℃, 250rpm으로 종배양한 후, 다시 형질전환체를 카나마이신 20㎍/㎖을 포함하는 2YT 배지에 접종하여 본배양하였다. 본배양은 홈이 파인 300 ㎖ 삼각플라스크에 60㎖ 부피로 30℃, 180 rpm 조건에서 7시간 배양하여 충분한 균체량과 단백질의 발현을 유도하였다.
얻어진 상기 배양액을 원심분리하여 상층액을 제거하고 균체를 회수하여, 20㎍/㎖ 카나마이신, 기질인 40%(w/v) 과당과 사이코스-3-에피머라제의 주 보조인자로 알려진 망간 또는 코발트를 0.1mM 농도로 가지는 간단한 전환반응 배지를 사용하여 55℃에서 휴면세포전환반응을 진행하였다. 과당과 사이코스의 농도는 상기 실시예 1의 기술방법과 동일하게 측정하였다. 그 결과를 도 5에 나타내었다. (AtDPE는 기존 사용중인 아그로박테리움 투메패시엔스의 사이코스-3-에피머라제를 말한다.)
도 5를 참조하면, 모든 다양한 사이코스-3-에피머라제를 도입한 재조합 균주에서 망간보다 코발트를 보조인자로 하였을 때, 사이코스의 생산속도가 조금 더 빨라지는 것으로 보인다.
아내로스티페스와 아그로박테리움 유래의 사이코스-3-에피머라제를 도입한 재조합 코리네박테리움 글루타미쿰의 사이코스 생산량은 6시간에 평형에 도달하는 것으로 보이지만, 클로스트리디움 유래의 사이코스-3-에피머라제를 도입한 재조합 코리네박테리움 글루타미쿰의 사이코스 생산량은 망간을 보조인자로 사용하였을 때에도 3시간에 평형에 도달한 것으로 보인다.
이로써 클로스트리디움 유래의 사이코스-3-에피머라제의 과당으로부터 사이코스 생산을 확인할 수 있을 뿐 아니라, 아그로박테리움 유래의 사이코스-3-에피머라제보다 사이코스 생산 속도가 더 빠른 것을 알 수 있다.
7. 다양한 균주 유래의 사이코스-3-에피머라제를 도입한 재조합 코리네박테리움 글루타미쿰 균주의 고온에서의 지속적인 사이코스 생산 활성 유지
상기 실시예 1, 2의 결과에서 50℃ 이상의 고온 조건으로 전환 반응을 하였을 때, 3시간 이내에 모든 사이코스 생산이 이루어짐을 확인하였다. 이처럼 고온의 조건에서, 과당으로부터 사이코스의 생산이 빠르기 때문에 균체를 재 사용할 시에 오랜 시간 고온에서도 안정적인 사이코스-3-에피머라제가 필요하다. 따라서 다양한 균주 유래의 사이코스-3-에피머라제가 고온에서 어느 정도나 활성을 유지하는지 확인하였다.
상기 실시예 1의 기술방법으로 얻은 균체를 2YT에 부유시켜 진탕배양기를 이용해 0, 3, 6, 9, 12, 24시간 동안 60℃의 열을 지속적으로 주었다. 각 시간별로 열을 준 후, 균체를 회수하여 20㎍/㎖ 카나마이신과 0.1mM 망간과 40%(w/v) 과당만을 포함하는 간단한 전환반응 배지에 부유시켜 다시 60℃에서 3시간 동안 휴면세포전환반응을 진행하였다. 과당과 사이코스의 농도는 상기 실시예 1의 기술방법과 동일하게 측정하였다. 결과는 도 6에 나타내었다.
도 6을 참조해보면, 기존에 사용하던 아그로박테리움 유래의 사이코스-3-에피머라제와 아내로스티페스 유래의 사이코스-3-에피머라제를 도입한 재조합 코리네박테리움 글루타미쿰은 60℃의 열을 3시간 받은 후에는 사이코스 생산을 거의 하지 못하는 것으로 보인다. 그에 반해 클로스트리디움 속 유래의 사이코스-3-에피머라제를 도입한 재조합 코리네박테리움 글루타미쿰은 24시간의 열을 받은 후에도 사이코스 생산을 유지하는 것으로 보여 고온 공정에서의 사이코스 생산에서 아그로박테리움 유래의 사이코스-3-에피머라제보다 유리한 것으로 생각된다.
아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제의 열안정성에 중요한 서열(참고문헌 1) 중 33번 또는 213번 아미노산이 각각 루신, 시스테인으로 교체되었을 때, 50℃에서 효소의 반 수명이 각각 3.3배, 7.2배 또는 두 개 모두 교체되었을 때 29.9배 증가한다고 알려져 있다.
아그로박테리움 튜메패시엔스 유래 사이코스-3-에피머라제의 아미노산 서열과 클로스트리디움 속 유래의 사이코스-3-에피머라제의 아미노산 서열간의 비교는 도 7에 나타내었는데, 이를 참조하면, 열 안정성이 높았던 클로스트리디움 속 유래의 사이코스-3-에피머라제의 경우 한 개의 아미노산이 이에 상응하는 서열을 가지고 있거나 혹은 두 개 모두를 가지고 있었다.
8. 클로스트리디움 속 유래의 사이코스-3-에피머라제 도입한 재조합 코리네박테리움 글루타미쿰 균체의 휴면세포전환반응에서의 균체 회수 및 재사용을 통한 과당으로부터 사이코스의 생산
상기 실시예 7에서 클로스트리디움 속 유래의 사이코스-3-에피머라제가 고온에 대한 안정성이 높다는 것을 확인하였으므로, 두 클로스트리디움 속 유래의 사이코스-3-에피머라제를 도입한 재조합 균주 중 대표적으로 클로스트리디움 힐레모내의 사이코스-3-에피머라제를 도입한 재조합 코리네박테리움 글루타미쿰 균체의 고온에서의 휴면세포전환반응 후 균제 재사용 효과를 확인하였다.
상기 실시예 3에 기술한 방법과 동일하게 얻은 균체를 60℃에서 3시간 동안 휴면세포전환반응을 시킨 후, 균체를 다시 회수하여 동일하게 휴면세포전환반응을 실시하였고 균체는 총 3번 재사용하였다(상기 실시 예 3과 동일한 조건으로 실험 진행). 최초의 휴면세포전환반응은 R0, 앞의 반응액에서 균체를 회수해서 1차 재사용한 휴면세포전환반응은 R1, 2차 재사용한 휴면세포전환반응은 R2, 3차 재사용한 휴면세포전환반응은 R3로 표시하였다. 결과는 도 8에 나타내었다.
도 8을 참조해보면, 고온에서 균체를 여러 번 재사용 함에 있어서 클로스트리디움 속의 사이코스-3-에피머라제를 도입한 재조한 균체는 어떠한 사이코스 생산량 감소도 없이 일정량 유지됨을 알 수 있다. 상기 실시예 7에서의 결과와 함께 보았을 때, 효소 자체의 열 안정성이 고온에서의 지속적인 당 전환반응뿐만 아니라 균체의 재사용에 있어서도 매우 유리함을 확인할 수 있다.

Claims (14)

  1. 기질인 과당과 그 에피머라제를 미생물 내에서 40℃ 이상의 온도로 반응시키는 단계를 포함하는 사이코스의 생산 방법.
  2. 청구항 1에 있어서, 상기 미생물은 상기 에피머라제를 내재적으로 또는 형질전환에 의해 발현시키는 것인, 사이코스의 생산 방법.
  3. 청구항 1에 있어서, 상기 반응 이전에, 상기 미생물을 상기 과당이 포함되지 않은 배지에서 배양하여 상기 미생물이 휴면 세포를 갖도록 유도하는 단계를 더 포함하는, 사이코스의 생산 방법.
  4. 청구항 1에 있어서, 상기 반응 이후에, 상기 미생물을 회수하여 과당의 사이코스로의 전환에 재사용하는 단계를 더 포함하는, 사이코스의 생산 방법.
  5. 청구항 4에 있어서, 상기 미생물은 그람 양성 박테리아인, 사이코스의 생산 방법.
  6. 청구항 1에 있어서, 상기 과당은 무기염과 과당만 포함된 배지로부터 제공되는 것인, 사이코스의 생산 방법.
  7. 청구항 6에 있어서, 상기 무기염은 망간염 또는 코발트염인, 사이코스의 생산 방법.
  8. 청구항 1에 있어서, 상기 반응 온도는 40℃ 내지 90℃인, 사이코스의 생산 방법.
  9. 청구항 1에 있어서, 상기 미생물은 에세리키아 속, 바실러스 속, 코리네박테리움 속, 액티노마이세스 속, 효모, 클루베로마이세스 또는 이들의 조합인, 사이코스의 생산 방법.
  10. 청구항 1에 있어서, 상기 미생물은 서열번호 1의 아그로박테리움 튜메패시엔스(Agrobacterium tumefaciens) 유래 사이코스-3-에피머라제를 코딩하는 유전자, 또는 서열번호 2의 아내로스티페스 카캐(Anaerostipes caccae) 유래 사이코스-3-에피머라제를 코딩하는 유전자로 형질 전환된 것인, 사이코스의 생산 방법.
  11. 청구항 1에 있어서, 상기 미생물은 서열번호 5의 아미노산 서열을 코딩하는 유전자로 형질 전환된 것인, 사이코스의 생산 방법.
  12. 청구항 1에 있어서, 상기 미생물은 서열번호 6의 아미노산 서열에서 32번째 아미노산이 류신으로 치환되거나, 196번째 아미노산이 시스테인으로 치환된 아미노산 서열을 코딩하는 유전자로 형질 전환된 것인, 사이코스의 생산 방법.
  13. 청구항 1에 있어서, 상기 미생물은 클로스트리디움속 유래 사이코스-3-에피머라제를 코딩하는 유전자로 형질전환된 것인, 사이코스의 생산 방법.
  14. 청구항 13에 있어서, 상기 유전자는 서열번호 7의 클로스트리디움 볼테애(Clostridium bolteae) 유래 사이코스-3-에피머라제를 코딩하는 유전자, 또는 서열번호 8의 클로스트리디움 힐레모내(Clostridium hylemonae) 유래 사이코스-3-에피머라제를 코딩하는 유전자로 형질 전환된 것인, 사이코스의 생산 방법.
PCT/KR2015/010407 2014-10-01 2015-10-01 사이코스의 생산 방법 WO2016053035A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580054171.5A CN107109451A (zh) 2014-10-01 2015-10-01 阿洛酮糖的生产方法
US15/516,342 US20170298400A1 (en) 2014-10-01 2015-10-01 Method for producing psicose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140132350A KR101577147B1 (ko) 2014-10-01 2014-10-01 사이코스의 생산 방법
KR10-2014-0132350 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016053035A1 true WO2016053035A1 (ko) 2016-04-07

Family

ID=55020800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010407 WO2016053035A1 (ko) 2014-10-01 2015-10-01 사이코스의 생산 방법

Country Status (4)

Country Link
US (1) US20170298400A1 (ko)
KR (1) KR101577147B1 (ko)
CN (1) CN107109451A (ko)
WO (1) WO2016053035A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392737A (zh) * 2016-12-30 2019-10-29 株式会社三养社 用产阿洛酮糖差向异构酶微生物生产阿洛酮糖的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700346B1 (ko) * 2015-12-22 2017-01-26 대상 주식회사 세포내 효소에 대한 기질의 세포 투과성 향상 방법 및 기질로부터 세포내 효소 반응 생성물을 제조하는 방법
AR124613A1 (es) * 2017-12-08 2023-04-19 Cj Cheiljedang Corp Nueva psicosa-6-fosfato fosfatasa, composición para producir psicosa incluyendo la fosfatasa y método para producir psicosa usando la fosfatasa
BR112021002184A2 (pt) 2018-08-08 2021-05-04 Archer Daniels Midland Company ácido nucleico, microrganismo, proteína, matriz sólida, coluna, método de produção de uma proteína e método de produção de alulose
KR102138862B1 (ko) * 2019-03-08 2020-07-30 씨제이제일제당 주식회사 알룰로스를 생산하는 스태필로코커스 속 미생물 및 이를 이용한 알룰로스 제조방법
CN114891626B (zh) * 2022-04-21 2023-06-30 河南飞天生物科技股份有限公司 一种提高稀有糖转化酶活性用除氧装置及除氧方法
CN115074376B (zh) * 2022-04-28 2023-11-14 福州大学 一种利用重组大肠杆菌发酵高效合成d-阿洛酮糖的方法
WO2024054921A2 (en) * 2022-09-09 2024-03-14 The Regents Of The University Of California Microorganisms for the production of low-calorie sugars
CN116875626A (zh) * 2023-06-07 2023-10-13 山东福洋生物科技股份有限公司 一种一步法生产d-阿洛酮糖的基因工程菌的构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
KR20110041910A (ko) * 2009-10-16 2011-04-22 경상대학교산학협력단 사이코스 3-에피머라제 효소를 코딩하는 폴리뉴클레오티드를 포함하는 대장균 및 그를 이용하여 사이코스를 생산하는 방법
KR101203856B1 (ko) * 2011-08-24 2012-11-21 씨제이제일제당 (주) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
KR101318422B1 (ko) * 2013-04-09 2013-10-15 주식회사 삼양제넥스 D-사이코스 에피머화 효소, 및 이를 이용하는 사이코스 생산방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744479B1 (ko) * 2005-06-01 2007-08-01 씨제이 주식회사 사이코스 에피머화 효소에 의한 사이코스의 생산 방법
GB2583417B (en) * 2012-09-27 2021-03-31 Tate & Lyle Ingredients Americas Llc A protein
CN103849613A (zh) * 2014-01-03 2014-06-11 江南大学 一种热稳定性提高的d-阿洛酮糖 3-差向异构酶的突变体酶及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
KR20110041910A (ko) * 2009-10-16 2011-04-22 경상대학교산학협력단 사이코스 3-에피머라제 효소를 코딩하는 폴리뉴클레오티드를 포함하는 대장균 및 그를 이용하여 사이코스를 생산하는 방법
KR101203856B1 (ko) * 2011-08-24 2012-11-21 씨제이제일제당 (주) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
KR101318422B1 (ko) * 2013-04-09 2013-10-15 주식회사 삼양제넥스 D-사이코스 에피머화 효소, 및 이를 이용하는 사이코스 생산방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE Genbank [O] 30 January 2014 (2014-01-30), retrieved from NCBI Database accession no. AE007870.2 *
DATABASE GenPept [O] 12 May 2013 (2013-05-12), retrieved from NCBI Database accession no. WP_003521637.1 *
DATABASE GenPept [O] 18 July 2013 (2013-07-18), retrieved from NCBI Database accession no. WP_010974125.1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392737A (zh) * 2016-12-30 2019-10-29 株式会社三养社 用产阿洛酮糖差向异构酶微生物生产阿洛酮糖的方法
EP3564383A4 (en) * 2016-12-30 2020-08-26 Samyang Corporation METHOD OF MANUFACTURING PSICOSE USING PSICOSE-EPIMERASE-PRODUCING MICRO-ORGANISM
CN110392737B (zh) * 2016-12-30 2023-05-05 株式会社三养社 用产阿洛酮糖差向异构酶微生物生产阿洛酮糖的方法

Also Published As

Publication number Publication date
CN107109451A (zh) 2017-08-29
KR101577147B1 (ko) 2015-12-11
US20170298400A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016053035A1 (ko) 사이코스의 생산 방법
WO2014193052A1 (ko) 사이코스 3-에피머라제 효소를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 및 이를 이용한 사이코스의 생산 방법
WO2011040708A2 (en) Immobilization of psicose-epimerase and a method of producing d-psicose using the same
KR101754060B1 (ko) 사이코스의 제조 방법
WO2013027999A9 (ko) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
WO2010093182A2 (ko) L-아미노산 생산용 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
WO2013103268A2 (ko) L-아미노산을 생산할 수 있는 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
WO2016129812A1 (ko) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2018182355A1 (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
WO2019098723A1 (ko) 신규한 d-사이코스 3-에피머화 효소 및 이를 이용한 d-사이코스의 제조 방법
Park et al. Production of l‐DOPA (3, 4‐dihydroxyphenyl‐l‐alanine) from benzene by using a hybrid pathway
WO2015199406A1 (ko) L-트립토판 생산능을 갖는 에스케리키아속 미생물 및 이를 이용한 l-트립토판의 제조 방법
WO2015133678A1 (ko) 향상된 전환 활성을 가지는 l-아라비노스 이성화효소 변이체 및 이를 이용한 d-타가토스의 생산 방법
US11859228B2 (en) Epimerase enzymes and their use
WO2019112368A1 (ko) 신규한 사이코스-6-인산 탈인산효소, 상기 효소를 포함하는 사이코스 생산용 조성물, 상기 효소를 이용하여 사이코스를 제조하는 방법
WO2016072800A1 (ko) 사이코스의 제조 방법
WO2014137148A1 (ko) 향상된 전환 활성을 가지는 l-아라비노스 이성화효소 변이체 및 이를 이용한 d-타가토스의 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
US8137946B2 (en) Recombinant GRAS strains expressing thermophilic arabinose isomerase as an active form and method of preparing food grade tagatose by using the same
Rambhatla et al. Molecular cloning and characterization of mannitol-1-phosphate dehydrogenase from Vibrio cholerae
WO2015046978A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2022211288A1 (ko) 과당 제조용 조성물 및 제조 방법
WO2018117773A2 (ko) 변형된 당 대사 경로를 갖는 재조합 균주 및 이를 이용한 당이성화 효소의 스크리닝 방법
WO2018230953A1 (ko) 글루코실글리세롤 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 글루코실글리세롤 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846441

Country of ref document: EP

Kind code of ref document: A1