WO2015046978A1 - 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법 - Google Patents

2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법 Download PDF

Info

Publication number
WO2015046978A1
WO2015046978A1 PCT/KR2014/009067 KR2014009067W WO2015046978A1 WO 2015046978 A1 WO2015046978 A1 WO 2015046978A1 KR 2014009067 W KR2014009067 W KR 2014009067W WO 2015046978 A1 WO2015046978 A1 WO 2015046978A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanediol
recombinant
seq
gene
acetoin
Prior art date
Application number
PCT/KR2014/009067
Other languages
English (en)
French (fr)
Inventor
양택호
송효학
박종명
라트나싱첼라두랄
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Priority to CN201480053587.0A priority Critical patent/CN105593368B/zh
Priority to US15/025,521 priority patent/US10006008B2/en
Publication of WO2015046978A1 publication Critical patent/WO2015046978A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a recombinant microorganism having enhanced production capacity of 2,3-butanediol and a method for producing 2,3-butanediol using the same.
  • 2,3-butanediol one of the alcohols having four carbons and two hydroxy groups (-OH) (CH 3 CHOHCHOHCH 3 ), is a raw material for synthetic rubber manufacturing, 1,3-butadiene (1,3-Butadiene ) And methyl ethyl ketone (MEK), which is used as fuel additive and solvent, can be converted chemically (Ji et al., Biotechnol. Adv., 29: 351, 2011). Also, 2,3-butanediol is an industrially important intermediate because it can be mixed with gasoline and applied as an octane booster (Celinska et al., Biotechnol. Adv., 27: 715, 2009).
  • 2,3-butanediol can be produced through chemical synthesis and microbial fermentation.
  • production of 2,3-butanediol on a commercial scale has not been achieved because the production price of 2,3-butanediol through the process is very high.
  • bio-based 2,3-butanediol through microbial fermentation due to the rapid increase in the price of fossil raw materials and tightening regulations on international environmental pollution The interest in production and the importance of research and development are increasing.
  • Bio-based 2,3-butanediol production research through microbial fermentation process is divided into fermentation process optimization (temperature, pH, dissolved oxygen, etc.) and microbial development (microbial discovery, physiological characterization, mutation, genetic manipulation, etc.) have.
  • fermentation process optimization various conditions such as temperature, pH, and dissolved oxygen concentration to efficiently produce 2,3-butanediol have been identified (Ji et al., Bioresour. Technol., 100: 3410, 2009; Nakashimada et al. , J. Biosci. Bioeng., 90: 661, 2000; Nakashimada et al., Biotechnol. Lett., 20: 1133, 1998).
  • the inventors of the present invention have identified a gene having a conversion ability of 2,3-butanediol, and 2,3-butanediol production ability of the recombinant microorganism that inhibited the activity of the gene is increased, and the consumption of the produced 2,3-butanediol is inhibited. It confirmed and completed this invention.
  • An object of the present invention is to provide a recombinant microorganism having enhanced production capacity of 2,3-butanediol and a method for producing 2,3-butanediol using the same.
  • An enzyme having a conversion activity between acetoin and 2,3-butanediol is provided, and a gene having a nucleotide sequence of SEQ ID NO: 12 is provided.
  • the present invention provides a recombinant vector comprising the gene.
  • the present invention also provides a protein encoded by the gene.
  • the present invention provides a recombinant microorganism, characterized in that the activity of the protein is inhibited.
  • the present invention also provides a recombinant microorganism having an increased ability to produce 2,3-butanediol in a microorganism having 2,3-butanediol and a lactate biosynthetic pathway, wherein the activity of the protein is suppressed.
  • Recombinant microorganisms having a conversion activity between acetoin and 2,3-butanediol and having increased production capacity of 2,3-butanediol, in which an enzyme having a higher conversion activity to acetoin than the conversion to 2,3-butanediol was suppressed to provide.
  • It provides a method for producing 2,3-butanediol comprising recovering 2,3-butanediol from the culture.
  • the ability to produce 2,3-butanediol is increased, and the consumption rate of previously produced 2,3-butanediol is reduced.
  • the acetoin accumulation rate according to the culture of recombinant microorganisms is low.
  • Figure 1 shows the biosynthetic pathway (A) and consumption pathways (B and C) of 2,3-butanediol in 2,3-butanediol producing strains.
  • Figure 2 illustrates the 2,3-butanediol synthesis related gene operon present in Klebsiella oxytoca.
  • Figure 3 is a schematic diagram of the production of E. coli JM109 expression recombinant vector to confirm the intracellular function of 2,3-butanediol synthesis related genes present in Klebsiella oxytoca.
  • Figure 4 shows the production of 2,3-butanediol during batch fermentation of recombinant E. coli
  • Figure 5 shows acetoin production capacity ( ⁇ : pBRbudRAB / E. coli JM109, ⁇ : pBRbudRABC / E. coli JM109, ⁇ : pBRbudRABD / E. coli JM109).
  • FIG. 6 is a result of growing a recombinant Klebsiella strain using 2,3-butanediol as the only carbon source in M9 minimal medium
  • FIG. 7 is the concentration of residual 2,3-butanediol ( ⁇ : KO ⁇ ldhA, ⁇ : KO ⁇ dhA ⁇ budC, ⁇ : KO ⁇ ldhA ⁇ dar. ⁇ : KO ⁇ ldhA ⁇ budC ⁇ dar.)
  • FIG. 8 to 11 show the results of batch fermentation of recombinant Klebsiella strains to produce 2,3-butanediol (FIG. 8: KO ⁇ ldhA, FIG. 9: KO ⁇ ldhA ⁇ budC, FIG. 10: KO ⁇ ldhA ⁇ dar 11: KO ⁇ ldhA ⁇ budC ⁇ dar).
  • the present invention codes for an enzyme having a conversion activity between acetoin and 2,3-butanediol, and relates to a gene having a nucleotide sequence of SEQ ID NO: 12.
  • the present invention also relates to a recombinant vector comprising the gene.
  • the present invention also relates to a protein encoded by the gene.
  • the present invention also relates to a recombinant microorganism characterized in that the activity of the protein is inhibited.
  • the present invention also relates to a recombinant microorganism having an increased ability to produce 2,3-butanediol in a microorganism having 2,3-butanediol and a lactate biosynthetic pathway, wherein the activity of the protein is suppressed.
  • Recombinant microorganisms having a conversion activity between acetoin and 2,3-butanediol and having an increased ability to produce 2,3-butanediol, in which an enzyme having a higher conversion activity to acetoin than a conversion activity to 2,3-butanediol is suppressed It is about.
  • It relates to a method for producing 2,3-butanediol comprising recovering 2,3-butanediol from the culture.
  • the recombinant microorganism of the present invention has the ability to produce 2,3-butanediol.
  • 2,3-butanediol is produced via acetoin, and 2,3-butanediol is also converted to acetoin. This is called the conversion activity, particularly interconversion activity, between acetoin and 2,3-butanediol.
  • FIG. 1 (A) The biosynthetic pathway of 2,3-butanediol in this regard is described in FIG. 1 (A).
  • most of the 2,3-butanediol producing strains can use 2,3-butanediol as the only carbon source, wherein 2,3-butanediol is consumed using acetoin as an intermediate, and the following two routes are known.
  • Path 2 converts 2 molecules of 2,3-butanediol into 1 molecule of 2,3-butanediol and 2 molecules of acetic acid through the “2,3-butanediol cycle”.
  • the present invention codes for an enzyme having a conversion activity between acetoin and 2,3-butanediol, and relates to a gene having a nucleotide sequence of SEQ ID NO: 12.
  • the present invention also relates to a recombinant vector comprising the gene.
  • the vector may be a vector generally used in the art such as a plasmid, and the kind thereof is not particularly limited.
  • the present invention also relates to a protein encoded by the gene.
  • the protein may include the amino acid sequence of SEQ ID NO: 11 or an amino acid sequence having 90% or more homology therewith.
  • the recombinant microorganism of the present invention has a conversion activity between acetoin and 2,3-butanediol in a microorganism having a 2,3-butanediol and lactate biosynthetic pathway, and converts to acetoin rather than a conversion activity to 2,3-butanediol It is a recombinant microorganism with an increased production capacity of 2,3-butanediol, in which an enzyme having high conversion activity is suppressed.
  • the recombinant microorganism of the present invention is a recombinant microorganism in which the activity of the protein encoded by the gene of SEQ ID NO: 12 is suppressed in microorganisms having 2,3-butanediol and lactate biosynthesis pathways.
  • the protein encoded by the gene of SEQ ID NO: 12 is a protein having an amino acid sequence of SEQ ID NO: 11, a protein having an amino acid sequence having at least 90% homology with SEQ ID NO: 11, an AR2 protein, or an enzyme activity with 90% of AR2. The same may be the same protein.
  • the activity of the protein can be inhibited by inhibition of expression of the protein, inhibition of enzyme activity and the like.
  • the activity of the protein may result in the deletion of a gene encoding a protein, such as a dar gene, a gene of SEQ ID NO: 12, or a gene having at least 90% homology thereto, or a mutation (mutation, substitution or deletion of some bases) to the gene. Mutation, such as inhibiting the expression of a normal gene by introducing some bases), or by controlling the expression of a gene during transcription or translation, a person skilled in the art can select an appropriate method to inhibit the activity of the protein.
  • the recombinant microorganism of the present invention may further inhibit the pathway for converting pyruvate to lactate.
  • Lactate dehydrogenase regulates the conversion of pyruvate to lactate.
  • the pathway to convert pyruvate to lactate can be inhibited.
  • Inhibition of the lactate dehydrogenase may be achieved by inhibiting the expression of lactate dehydrogenase, inhibiting the enzyme activity of the lactate dehydrogenase, and the like.
  • lactate dehydrogenase it may be possible to delete ldhA, a gene encoding lactate dehydrogenase, or to cause mutations (mutations such as mutation, substitution or deletion of some bases or introduction of some bases to suppress the expression of normal genes).
  • mutations mutations such as mutation, substitution or deletion of some bases or introduction of some bases to suppress the expression of normal genes.
  • one of ordinary skill in the art such as controlling gene expression during transcription or translation, may choose appropriate methods to inhibit lactate dehydrogenase.
  • 2,3-butanediol converting enzyme is involved in the production and consumption of 2,3-butanediol
  • the recombinant microorganism of the present invention is suppressed dar gene with high double consuming activity, while maintaining the production of 2,3-butanediol,
  • the consumption of the produced 2,3-butanediol is reduced. Therefore, productivity of the 2,3-butanediol, i.e., production capacity, is increased.
  • the accumulation of acetoin, one of the representative by-products in the production of 2,3-butanediol may also be reduced, thereby reducing the cost of the separation / purification process.
  • the recombinant microorganism is a microorganism having a production capacity of 2,3-butanediol.
  • the recombinant microorganism may be selected from the group consisting of the genus Klebsiella, the genus Bacillus, and the genus Enterobacter, preferably the genus Klebsiella.
  • the present invention relates to a method for producing 2,3-butanediol comprising culturing the recombinant microorganism of the present invention; and recovering 2,3-butanediol from the culture solution.
  • the culturing is carried out in aerobic conditions, preferably in a microaerobic condition.
  • the culturing is carried out while supplying oxygen, that is, air at the time of culturing, and as a specific example, this may be performed through stirring, but is not limited thereto.
  • Klebsiella oxytoca KCTC 12133BP ⁇ ldhA (KO ⁇ ldhA) strains lacking lactic acid dehydrogenase were prepared by the following method.
  • homologous region 1 (SEQ ID NO: 2) of ldhA (SEQ ID NO: 1) was amplified by PCR using primers of SEQ ID NOs: 3 and 4 It was.
  • Homologous region 2 (SEQ ID NO: 5) was also amplified by PCR using primers of SEQ ID NOs: 6 and 7.
  • homologous regions 1 and 2 were simultaneously amplified by PCR to complete DNA fragments (SEQ ID NO: 8) in which homologous regions 1 and 2 were conjugated.
  • the completed DNA fragment may include an antibiotic resistance gene, and the like, and may include a sacB gene encoding a levansukraase enzyme to remove the antibiotic resistance gene recombined in the chromosome. .
  • the prepared DNA fragments were delivered to Klebsiella oxytoca wild type using electroporation (25 uF, 200 ⁇ , 18 kV / cm), and the target gene was used by homologous recombination mechanisms owned by the microorganism. Will be removed.
  • the amino acid sequence of AR1 is described in SEQ ID NO: 9, and the base sequence of budC, which is a gene encoding the same, is SEQ ID NO: 10.
  • the amino acid sequence of AR2 is described in SEQ ID NO: 11, the nucleotide sequence of dar that is the gene encoding it is SEQ ID NO: 12 (Table 2).
  • 2,3-butanediol producing microorganisms including Klebsiella spp. Microorganisms, have been known to have one 2,3-butanediol converting enzyme.
  • the 2,3-butanediol converting enzyme belongs to the short chain dehydrogenase / reductase (SDR) group among enzyme groups, and the characteristics of SDR have an amino acid sequence of about 250 to 350.
  • SDR short chain dehydrogenase / reductase
  • the 2,3-butanediol converting enzyme has a coenzyme NADH site at the N-terminal part (glycine-rich TGXXXGXG and NNAG motifs).
  • the 2,3-butanediol converting enzyme has a catalytic tetrad and an active site (YXXXK) of the Asn-Ser-Tyr-Lys amino acid sequence.
  • pBRbudRAB contains an active transcription factor (TA), acetolactate synthase (ALS), and acetoin decarboxylase (ALDC), which is expected to allow only acetoin synthesis.
  • pBRbudRABC contains all of the active transcription factor (TA), acetolactate synthase (ALS), acetoin dicarboxylase (ALDC), and 2,3-butanediol converting enzyme (AR1), so that 2,3-butanediol can be produced. It was expected.
  • pBRbudRAD which is the subject of the experiment, has an active transcription factor (TA), acetolactate synthase (ALS), acetoin decarboxylase (ALDC), and 2,3-butanediol converting enzyme (AR2). The production of 2,3-butanediol is thus determined.
  • TA active transcription factor
  • ALS acetolactate synthase
  • ADC acetoin decarboxylase
  • AR2 2,3-butanediol converting enzyme
  • the produced plasmid was transformed into E. coli JM109 to prepare recombinant E. coli. Fermentation was performed using the recombinant Escherichia coli, and chloramphenicol was included at a concentration of 30 ⁇ g / ml to maintain the recombinant vector introduced in all culture processes. The fermentation was carried out by inoculating the recombinant E.
  • coli JM109 produced 2.0 g / L of 2,3-butanediol and 30.0 g / L of acetoin
  • pBRbudRABC / E. coli JM109 produced 34.0 g / L of 2,3-butanediol and 4.7 g / L of acetoin.
  • PBRbudRABD / E the subject of the experiment.
  • coli JM109 produced 12.6 g / L of 2,3-butanediol and 13.0 g / L of acetoin (FIG. 4: 2,3-butanediol production capacity and FIG. 5: acetoin production capacity.
  • ⁇ : pBRbudRAB / E. coli JM109 ⁇ : pBRbudRABC / E. Coli JM109, ⁇ : pBRbudRABD / E. Coli JM109).
  • AR1 coded by budC gene
  • AR2 coded by dar gene
  • the gene encoding the respective enzyme was deleted from the Klebsiella oxytoca genome.
  • the homologous recombination mechanism of the microorganisms was used.
  • Recombinant DNA fragments that inactivate the target gene of Klebsiella oxytoca include homologous regions of the gene to be removed and remove antibiotic resistance genes, such as antibiotic resistance genes and the like, that are recombined in the chromosome to increase the probability of recombination. It may include the sacB gene encoding the Levansukraase enzyme for.
  • the target gene is removed by recombination mechanism by recombinase between the homologous region of the gene in the DNA fragment and the gene in the microbial genome.
  • Recombinant plasmids for deletion of AR1 (budC) and AR2 (dar) of Klebsiella oxytoca were prepared by the following method.
  • homologous region 1 (SEQ ID NO: 13) of the target gene budC (SEQ ID NO: 10) was amplified by PCR using primers SEQ ID NOS: 14 and 15 for deletion of AR1, and homology region 2 (SEQ ID NO: 16) was sequenced Amplified by PCR using 17 and 18 primers. Thereafter, homologous regions 1 (SEQ ID NO: 13) and 2 (SEQ ID NO: 16) were simultaneously amplified by PCR to complete DNA fragments (SEQ ID NO: 19) in which homologous regions 1 and 2 were conjugated (Table 3).
  • homologous region 1 (SEQ ID NO: 20) of the target gene dar (SEQ ID NO: 12) was amplified by PCR using primers SEQ ID NO: 21 and 22, and homologous region 2 (SEQ ID NO: 23) was sequenced for deletion of AR2. Amplification by PCR using 24 and 25 primers. Thereafter, homologous regions 1 (SEQ ID NO: 20) and 2 (SEQ ID NO: 23) were simultaneously amplified by PCR to complete DNA fragments (SEQ ID NO: 26) in which homologous regions 1 and 2 were conjugated (Table 4).
  • Klebsiella oxytoca KCTC 12133BP ⁇ ldhA (KO ⁇ ldhA), in which lactic acid dehydrogenase (ldhA) was deleted, was prepared.
  • the DNA fragments of SEQ ID NOs: 19 and 26 were introduced into Klebsiella oxytoca (KO ⁇ ldhA) using electroporation (25 uF, 200 ⁇ , 18 kV / cm), respectively.
  • a recombinant strain (KO ⁇ ldhA ⁇ budC) from which AR1 (budC) was removed from KO ⁇ ldhA and a recombinant strain (KO ⁇ ldhA ⁇ dar) from which AR2 (dar) was removed were produced, respectively.
  • a pKOV deltaAR2 plasmid was introduced to the recombinant strain (KO ⁇ ldhA ⁇ budC) from which AR1 (budC) was removed, thereby completing a recombinant strain (KO ⁇ ldhA ⁇ budC ⁇ dar) from which AR2 (dar) was also removed.
  • the depletion pathway of 2,3-butanediol with acetoin as an intermediate was used to confirm the function of AR1 and AR2 proteins. Specifically, growth and residual 2,3-butanediol concentration of recombinant Klebsiella oxytoca strains were observed using 2,3-butanediol as the only carbon source in M9 minimal medium. The strains were streaked in LB solid medium for 16 hours at 30 ° C., and then single colonies were incubated for 8 hours in 3 ml LB liquid medium.
  • the culture was washed twice with M9 minimal medium to remove residual LB components, and then cultured by inoculating 100 ml of M9 basal medium containing 10 g / L 2,3-butanediol. Samples were taken during the culture of the recombinant strains. The growth rate was measured by measuring the optical density (OD600) of the collected sample, and the collected sample was centrifuged at 13,000 rpm for 10 minutes, and then the concentration of metabolite and 2,3-butanediol in the supernatant liquid chromatography. Analysis by (HPLC).
  • 2,3-butanediol may or may not be used as a carbon source depending on the presence of AR2 (dar) regardless of the presence or absence of budC encoding AR1 (FIG. 6: growth results.
  • Figure 7 Concentration of residual 2,3-butanediol ⁇ : KO ⁇ ldhA, ⁇ : KO ⁇ ldhA ⁇ budC, ⁇ : KO ⁇ ldhA ⁇ dar.
  • AR2 has a conversion activity between acetoin and 2,3-butanediol, aceto 2,3-butanediol than the activity of converting acetoin to 2,3-butanediol It was confirmed that the activity to convert to phosphorus is high.
  • AR1 had a conversion activity between acetoin and 2,3-butanediol, and was found to have higher activity of converting acetoin to 2,3-butanediol than that of 2,3-butanediol to acetoin.
  • 2,3-butanediol was produced by culturing the recombinant strains prepared in Experimental Example 3. At this time, Klebsiella oxytoca KCTC 12133BP ⁇ ldhA (KO ⁇ ldhA) was used as a comparative example.
  • Each recombinant strain was inoculated in 250 ml of complex medium containing 9 g / L glucose (50mM, glucose) and incubated for 16 hours at 37 °C, the culture was inoculated in 3 L complex medium and fermented.
  • the fermentation conditions were a micro-aerobic condition (aerobic rate 1 vvm, stirring speed 400 rpm), 90 g / L initial glucose concentration, pH 6.8, culture temperature 37 °C. 5N NaOH was used for the adjustment of pH during fermentation.
  • the recombinant Klebsiella was sampled during fermentation, the growth rate was measured by measuring the optical density (OD600) of the collected sample, the sample was centrifuged at 13,000 rpm for 10 minutes, and then the supernatant Metabolites and 2,3-butanediol concentrations were analyzed by liquid chromatography (HPLC).
  • the recombinant strain lacking AR1 had a lower productivity of 2,3-butanediol as compared to KO ⁇ ldhA (FIG. 8), which was a comparative example, whereas acetoin accumulation was higher (FIG. 9).
  • the AR2-deficient strain showed 2,3-butanediol productivity similar to that of the comparative example ⁇ ldhA up to the time of sugar consumption, and 2,3-butanediol consumption rate and acetoin after the sugar consumption was completed. The accumulation rate was lower than that of the comparative example (FIG. 10).
  • the present invention relates to a recombinant microorganism having enhanced production capacity of 2,3-butanediol and a method for producing 2,3-butanediol using the same.
  • SEQ ID NO: 1 is the gene sequence of ldhA
  • SEQ ID NO: 2 is its homologous region 1
  • SEQ ID NO: 3 and SEQ ID NO: 4 is a primer for its PCR amplification.
  • SEQ ID NO: 5 is homology region 2 of ldhA
  • SEQ ID NOs: 6 and 7 are primers for its PCR amplification.
  • SEQ ID NO: 8 is a DNA fragment conjugated with the homology regions 1 and 2 of ldhA.
  • SEQ ID NO: 9 is the amino acid sequence of AR1
  • SEQ ID NO: 10 is the nucleotide sequence of budC, which is a gene encoding it.
  • SEQ ID NO: 11 is the amino acid sequence of AR2
  • SEQ ID NO: 12 is the nucleotide sequence of dar, which is a gene encoding it.
  • SEQ ID NO: 13 is homology region 1 of budC, and SEQ ID NOs: 14 and 15 are primers for its PCR amplification.
  • SEQ ID NO: 16 is homology region 2 of budC, and SEQ ID NOs: 17 and 18 are primers for its PCR amplification.
  • SEQ ID NO: 19 is a DNA fragment conjugated with the homology regions 1 and 2 of budC.
  • SEQ ID NO: 20 is homology region 1 of dar, and SEQ ID NOs: 21 and 22 are primers for its PCR amplification.
  • SEQ ID NO: 23 is homology region 2 of dar, and SEQ ID NOs: 24 and 25 are primers for its PCR amplification.
  • SEQ ID NO: 26 is a DNA fragment conjugated with the homology regions 1 and 2 of dar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 아세토인과 2,3-부탄디올 간의 전환 활성을 갖는 효소를 코드하며, 서열번호 12의 염기서열을 갖는 유전자에 대한 것이다. 또한 본 발명은 상기 유전자가 코드하는 단백질에 대한 것이다. 또한 본 발명은 상기 단백질의 활성이 억제된 재조합 미생물에 대한 것이다.

Description

2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
본 발명은 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법에 대한 것이다.
네 개의 탄소와 두 개의 하이드록시기(-OH)를 가지는 알코올의 하나(CH3CHOHCHOHCH3)인 2,3-부탄디올은 합성고무 제조 공정의 원료물질인 1,3-부타디엔(1,3-Butadiene)과 연료 첨가제 및 용매로 사용되는 메틸에틸케톤(Methyl ethyl ketone, MEK)으로 화학적 촉매 전환이 가능하다 (Ji et al., Biotechnol. Adv., 29: 351, 2011). 또한, 2,3-부탄디올은 가솔린(Gasoline)과 혼합하여 octane booster로 적용할 수 있어 산업적으로 매우 중요한 중간체이다(Celinska et al., Biotechnol. Adv., 27: 715, 2009).
2,3-부탄디올은 화학적 합성 공정과 미생물 발효 공정을 통하여 생산할 수 있다. 하지만 상기 공정을 통한 2,3-부탄디올 생산 가격이 매우 높기 때문에 상업적 규모로의 2,3-부탄디올 생산은 이루어지지 않고 있다. 한편, 최근 미생물 발효 공정을 통한 2,3-부탄디올 생산 기술의 비약적인 발전과 함께, 화석원료 물질의 급격한 가격 상승과 국제적인 환경오염에 대한 규제가 강화됨에 따라 미생물 발효를 통한 바이오 기반 2,3-부탄디올 생산에 대한 관심과 연구 개발의 중요성이 증대되고 있다.
미생물 발효 공정을 통한 바이오 기반 2,3-부탄디올 생산 연구는 발효 공정 최적화 (온도, pH, 용존산소 등)와 미생물 개발 (미생물 발굴, 생리학적 특성 파악, 돌연변이, 유전자 조작 등) 분야로 나누어서 진행되고 있다. 발효 공정 최적화 측면에 있어서는 2,3-부탄디올을 효율적으로 생산할 수 있는 온도, pH, 용존산소 농도 등 다양한 조건들이 규명되었다 (Ji et al., Bioresour. Technol., 100: 3410, 2009; Nakashimada et al., J. Biosci. Bioeng., 90: 661, 2000; Nakashimada et al., Biotechnol. Lett., 20: 1133, 1998). 하지만 상기 조건에서의 미생물 발효 공정을 통한 2,3-부탄디올 생산은 여전히 생산성(Productivity) 및 수율(Yield)이 낮아 상업 공정에 직접 적용하기 어렵운 것이 사실이다. 또한 발효 과정에서 2,3-부탄디올과 함께 젖산을 포함하는 유기산들(Organic acids)과 에탄올을 포함하는 알코올들(Alcohols)등 다양한 부산물들(By-products)이 생성되는 단점이 있다.
부산물 생성은 바이오 원료물질에 대한 2,3-부탄디올의 수율을 낮출 뿐 아니라 배양액으로부터 2,3-부탄디올 회수 과정에서 막대한 분리 및 정제 비용을 요구한다. 따라서 2,3-부탄디올 생산에 관련된 미생물 개발 연구는 주로 부산물을 감소시키는 방향으로 진행되어 왔다. 대표적으로 Ji 등은 야생형 클렙시엘라 옥시토카 균주에 물리/화학적 돌연변이 방법의 일종인 UV를 노출시켜 부산물인 유기산들의 생성을 일부 억제시키는 것에 성공하였다 (Ji et al., Biotechnol. Lett., 30: 731, 2008). 이와 함께, 이온 주사(Ion beam) 방식을 클렙시엘라 뉴모니에 균주에 적용하여 바이오매스 소모속도를 증가시켜 2,3-부탄디올 생산을 향상시킬 수 있었다 (Ma et al., Appl. Microbiol. Biotechnol., 82: 49, 2009). 선택적 유전자 조작을 통한 부산물 감소 관련 연구에서는, 주요한 부산물의 하나인 젖산(Lactic acid) 생성에 관여하는 유전자(ldhA)를 제거하여 만든 변이 미생물이 일반적인 조건에서 가장 좋은 성능을 보였다. 또한, 부산물인 에탄올의 생성을 저하시키기 위하여 에탄올 생성에 관여하는 유전자 (adhE, aldA)를 제거한 예도 있다 (Ji et al., Appl. Microbiol. Biotechnol., 85: 1751, 2010). 또한, 젖산균 (lactic acid bacteria, LAB)에서 포름산 생성에 관여하는 효소 (pyruvate-formate lyase)의 활성을 저하시킨 예도 있다 (WO2010/037114 A1).
본 발명자들은 2,3-부탄디올의 전환능을 갖는 유전자를 확인하였으며, 상기 유전자의 활성을 저해한 재조합 미생물의 2,3-부탄디올 생성능이 증가하고 생성된 2,3-부탄디올의 소모가 저해되는 것을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은,
아세토인과 2,3-부탄디올 간의 전환 활성을 갖는 효소를 코드하며, 서열번호 12의 염기서열을 갖는 유전자를 제공한다.
또한 본 발명은 상기 유전자를 포함하는 것을 특징으로 하는 재조합 벡터를 제공한다.
또한 본 발명은 상기 유전자가 코드하는 단백질을 제공한다. 또한 본 발명은 상기 단백질의 활성이 억제되는 것을 특징으로 하는 재조합 미생물을 제공한다.
또한 본 발명은, 2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서, 상기 단백질의 활성이 억제되는 것을 특징으로 하는, 2,3-부탄디올의 생성능이 증가한 재조합 미생물을 제공한다.
또한 본 발명은,
2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서,
아세토인과 2,3-부탄디올 간의 전환 활성을 가지며, 2,3-부탄디올로의 전환 활성보다 아세토인으로의 전환 활성이 높은 효소가 억제된, 2,3-부탄디올의 생성능이 증가된 재조합 미생물을 제공한다.
또한 본 발명은,
상기 재조합 미생물을 배양하는 단계;및
상기 배양액으로부터 2,3-부탄디올을 회수하는 단계를 포함하는 2,3-부탄디올의 생산 방법을 제공한다.
본 발명의 재조합 미생물은 2,3-부탄디올의 생성능이 증가되며, 기생산된 2,3-부탄디올의 소모율이 감소한다. 또한 재조합 미생물의 배양에 따른 아세토인 축적율이 낮다.
도 1은 2,3-부탄디올 생성 균주에서 2,3-부탄디올의 생합성 경로(A) 및 소모 경로(B 및 C)를 나타낸다.
도 2는 클렙시엘라 옥시토카 내에 존재하는 2,3-부탄디올 합성 관련 유전자 오페론을 도식한 것이다.
도 3은 클렙시엘라 옥시토카 내에 존재하는 2,3-부탄디올 합성 관련 유전자의 세포 내 기능을 확인하기 위해 대장균 (E. coli JM109) 발현 재조합 벡터 제작 과정을 도식화한 것이다.
도 4는 재조합 대장균의 회분식 발효 시 2,3-부탄디올 생산능을 나타내며, 도 5는 아세토인 생산능을 나타낸다(●: pBRbudRAB/E. coli JM109, ▲: pBRbudRABC/E. coli JM109, ■: pBRbudRABD/E. coli JM109).
도 6은 M9 최소 배지에서 2,3-부탄디올을 유일 탄소원으로 하여 재조합 클렙시엘라 균주를 성장시킨 결과이며, 도 7는 잔류 2,3-부탄디올의 농도이다(●: KO △ldhA, ▲: KO △dhA △budC, ■: KO △ldhA △dar. ◆: KO △ldhA △budC△dar.)
도 8 내지 11은 재조합 클렙시엘라 균주들을 회분식 발효하여 2,3-부탄디올을 생산한 결과를 나타낸다(도 8: KO △ldhA, 도 9: KO △ldhA △budC, 도 10: KO △ldhA △dar, 도 11: KO △ldhA △budC △dar).
본 발명은 아세토인과 2,3-부탄디올 간의 전환 활성을 갖는 효소를 코드하며, 서열번호 12의 염기서열을 갖는 유전자에 대한 것이다.
또한 본 발명은 상기 유전자를 포함하는 것을 특징으로 하는 재조합 벡터에 대한 것이다.
또한 본 발명은 상기 유전자가 코드하는 단백질에 대한 것이다. 또한 본 발명은 상기 단백질의 활성이 억제되는 것을 특징으로 하는 재조합 미생물에 대한 것이다.
또한 본 발명은, 2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서, 상기 단백질의 활성이 억제되는 것을 특징으로 하는, 2,3-부탄디올의 생성능이 증가한 재조합 미생물에 대한 것이다.
또한 본 발명은,
2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서,
아세토인과 2,3-부탄디올 간의 전환 활성을 가지며, 2,3-부탄디올로의 전환 활성보다 아세토인으로의 전환 활성이 높은 효소가 억제된, 2,3-부탄디올의 생성능이 증가된 재조합 미생물에 대한 것이다.
또한 본 발명은,
상기 재조합 미생물을 배양하는 단계;및
상기 배양액으로부터 2,3-부탄디올을 회수하는 단계를 포함하는 2,3-부탄디올의 생산 방법에 대한 것이다.
이하, 본 발명을 자세히 설명한다.
아세토인과 2,3-부탄디올의 전환 활성
본 발명의 재조합 미생물은 2,3-부탄디올의 생성능을 갖는다. 본 발명의 재조합 미생물에서 2,3-부탄디올은 아세토인을 거쳐 생성되며, 또한 2,3-부탄디올은 아세토인으로 전환된다. 이를 아세토인과 2,3-부탄디올 간의 전환 활성, 특히 상호 전환 활성이라 한다.
이와 관련된 2,3-부탄디올의 생합성 경로는 도 1(A)에 기재되어 있다. 한편, 대부분의 2,3-부탄디올 생산 균주들은 2,3-부탄디올을 유일 탄소원으로 이용할 수 있는데, 이 때 2,3-부탄디올는 아세토인을 중간물질로 하여 소모되며, 그 경로는 하기 2 개가 알려져 있다. 이 중 경로 2는 “2,3-부탄디올 cycle”을 통하여 2분자의 2,3-부탄디올이 1분자의 2,3-부탄디올과 2분자의 초산(acetic acid)으로 전환된다.
<경로 1>
2,3-부탄디올 → 아세토인 → 아세트알데히드(acetaldehyde), 아세틸 코엔자임 에이 (Acetyl-CoA) → TCA 경로(도 1(B)).
<경로 2>
2,3-부탄디올 → 아세토인 → 디아세틸 (Diacetyl) → 초산 (acetic acid), AAc (acetylacetoin) → 초산 (acetic acid) 및 ABD (acetylbutanediol)(도 1(C)).
서열번호 12의 염기서열을 갖는 유전자
본 발명은 아세토인과 2,3-부탄디올 간의 전환 활성을 갖는 효소를 코드하며, 서열번호 12의 염기서열을 갖는 유전자에 대한 것이다. 또한 본 발명은 상기 유전자를 포함하는 것을 특징으로 하는 재조합 벡터에 대한 것이다. 상기 벡터는 플라스미드 등 당업계에서 일반적으로 사용되는 벡터이면 되고, 그 종류가 특별히 제한되는 것은 아니다.
또한 본 발명은 상기 유전자가 코드하는 단백질에 대한 것이다. 상기 단백질은 서열번호 11의 아미노산 서열 또는 그와 90% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있다.
재조합 미생물
본 발명의 재조합 미생물은 2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서, 아세토인과 2,3-부탄디올 간의 전환 활성을 가지며, 2,3-부탄디올로의 전환 활성보다 아세토인으로의 전환 활성이 높은 효소가 억제된, 2,3-부탄디올의 생성능이 증가된 재조합 미생물이다.
또한 본 발명의 재조합 미생물은 2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서, 서열번호 12의 유전자가 코드하는 단백질의 활성이 억제된 재조합 미생물이다. 상기 서열번호 12의 유전자가 코드하는 단백질은, 서열번호 11의 아미노산 서열을 갖는 단백질, 서열번호 11과 90% 이상의 상동성을 갖는 아미노산 서열을 갖는 단백질, AR2 단백질, 또는 AR2와 효소 활성이 90% 이상 동일한 단백질 등이 될 수 있다.
상기 단백질의 활성은 상기 단백질의 발현 억제, 효소 활성 억제 등에 의하여 억제될 수 있다. 예컨대, 상기 단백질의 활성은 단백질을 코드하는 유전자, 예컨대 dar 유전자, 서열번호 12의 유전자, 또는 이와 90% 이상의 상동성을 갖는 유전자를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 상기 단백질의 활성을 억제할 수 있다.
본 발명의 재조합 미생물은 피루베이트를 락테이트로 전환하는 경로가 추가로 억제될 수 있다. 락테이트 디하이드로게나제(lactate dehydrogenase)는 피루베이트의 락테이트로의 전환을 조절한다. 상기 락테이트 디하이드로게나제를 억제함으로써 피루베이트를 락테이트로 전환하는 경로가 억제될 수 있다. 상기 락테이트 디하이드로게나제의 억제는 락테이트 디하이드로게나제의 발현 억제, 락테이트 디하이드로게나제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 락테이트 디하이드로게나제를 코드하는 유전자인 ldhA를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 락테이트 디하이드로게나제를 억제할 수 있다.
2,3-부탄디올 전환 효소는 2,3-부탄디올의 생성과 소모에 관여하는데, 본 발명의 재조합 미생물은 이중 소모 활성이 높은 dar 유전자가 억제되는바, 2,3-부탄디올 생산은 그대로 유지하면서, 생성된 2,3-부탄디올의 소모가 줄어든다. 그러므로2,3-부탄디올의 생산성, 즉 생성능이 증가하게 된다. 또한, 2,3-부탄디올의 생산 시 대표적인 부산물들 중의 하나인 아세토인의 축적 역시 감소하여 분리/정제 공정의 비용을 절감할 수 있다.
상기 재조합 미생물은 2,3-부탄디올의 생성능을 갖는 미생물이다. 상기 재조합 미생물은 클렙시엘라 (Klebsiella) 속, 바실러스 (Bacillus) 속, 엔테로벡터 (Enterobacter) 속으로 구성된 군에서 선택될 수 있으며, 바람직하게는 클렙시엘라 속이다.
2,3-부탄디올의 생산 방법
본 발명은 본 발명의 재조합 미생물을 배양하는 단계;및 상기 배양액으로부터 2,3-부탄디올을 회수하는 단계를 포함하는 2,3-부탄디올의 생산 방법에 대한 것이다.
상기 배양은 호기 조건에서 수행되며, 바람직하게는 미세호기적 조건(microaerobic condition)에서 수행된다. 예컨대, 상기 배양은 배양 시 산소, 즉 공기를 공급하면서 수행되며, 구체적인 예로서, 이는 교반을 통하여 이루어질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
<재료 및 방법>
클렙시엘라 옥시토카 KCTC 12133BP △ldhA (KO △ldhA) 균주
젖산 탈수소화 효소 (락테이트 디하이드로게나제, ldhA)가 결실된 클렙시엘라 옥시토카 KCTC 12133BP △ldhA (KO △ldhA) 균주는 하기의 방법으로 제조하였다. 먼저, 클렙시엘라 옥시토카의 락테이트 디하이드로게나제를 클로닝하기 위해 표적 유전자인 ldhA(서열번호 1)의 상동 부위 1(서열번호 2)을 서열번호 3 및 4의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2(서열번호 5)를 서열번호 6 및 7의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편(서열번호 8)을 완성하였다. 표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
상기 제작된 DNA 단편은 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 클렙시엘라 옥시토카 야생형에 전달하였으며, 미생물이 자체적으로 가지고 있는 상동 재조합 기작 이용하여 표적 유전자를 제거하게 된다.
표 1
Figure PCTKR2014009067-appb-T000001
Figure PCTKR2014009067-appb-I000001
<실험예 1> 2,3-부탄디올 전환 효소
클렙시엘라 옥시토카 KCTC 12133BP의 유전체 정보를 바탕으로 KEGG database(http://www.genome.jp/kegg/)와 NCBI database ((http://www.ncbi.nlm.nih.gov/blast/)를 이용하여 2,3-부탄디올의 합성 및 소모 경로와 관련된 효소들을 탐색하였다. 그 결과, 유전체 정보가 알려진 모든 클렙시엘라 옥시토카들은 적어도 두 개의 2,3-부탄디올 전환 효소(AR1 및 AR2)를 갖는 것으로 확인되었다. 이를 이용하여 도식화한 유전자군은 도 2와 같다.
상기 AR1의 아미노산 서열은 서열번호 9에 기재되어 있으며, 이를 코드하는 유전자인 budC의 염기서열은 서열번호 10이다. 한편, AR2의 아미노산 서열은 서열번호 11에 기재되어 있으며, 이를 코드하는 유전자인 dar의 염기서열은 서열번호 12이다(표 2).
표 2
Figure PCTKR2014009067-appb-T000002
Figure PCTKR2014009067-appb-I000002
클렙시엘라 속 미생물을 포함하여 2,3-부탄디올 생산 미생물들은 지금까지 하나의 2,3-부탄디올 전환 효소를 가지고 있는 것으로 알려져 있었다. 또한 일반적인 클렙시엘라 속 미생물은 AR1에 해당하는 2,3-부탄디올 전환 효소가 관련 효소들 (ALDC 및 ALS)과 함께 오페론 형식으로 존재한다(Oppermann, U. et al., Chem. Biol. Interact. 143: 247-253). 즉, 본 발명에서 확인한 AR2는 기존에 알려져 있지 않던 신규 효소이며, AR2는 하기 (1) 내지 (3)과 같은 2,3-부탄디올 전환 효소의 특징을 갖는 것으로 확인되었다.
(1) 2,3-부탄디올 전환 효소는 효소군 중 short chain dehydrogenase/reductase (SDR) 군에 속하고, SDR의 특징은 250~350 정도의 아미노산 서열을 가진다.
(2) 2,3-부탄디올 전환 효소는 N-말단(terminal) 부분에 코엔자임인 NADH 부위를 갖는다(glycine-rich TGXXXGXG 와 NNAG motifs).
(3) 2,3-부탄디올 전환 효소는 Asn-Ser-Tyr-Lys 아미노산 서열의 촉매 활성 부위 (catalytic tetrad) 및 활성 부위 (YXXXK)를 갖는다.
<실험예 2> 2,3-부탄디올 전환 효소의 확인
도 3과 같은 재조합 플라스미드를 제작하여, AR1 및 AR2의 2,3-부탄디올 전환 활성을 실험적으로 확인하였다. 이 때 기본 벡터로는 클로람페니콜 내성인자를 함유하는 것을 특징으로 하는 pBBR1MCS를 사용하였다(Kovach, M. E., et al., Biotechniques 16: 800-802).
pBRbudRAB는 활성 전사인자(TA), 아세토락테이트 합성효소 (ALS), 아세토인 디카르복실레이즈(ALDC)를 함유하고 있어 아세토인 합성만 가능할 것으로 예상되었다. pBRbudRABC는 활성 전사인자(TA), 아세토락테이트 합성효소 (ALS), 아세토인 디카르복실레이즈(ALDC), 2,3-부탄디올 전환 효소(AR1)을 모두 가지고 있어 2,3-부탄디올 생산이 가능할 것으로 예상되었다. 한편, 실험의 대상인 pBRbudRAD는 활성 전사인자(TA), 아세토락테이트 합성효소 (ALS), 아세토인 디카르복실레이즈(ALDC), 2,3-부탄디올 전환 효소(AR2)를 가지고 있어 AR2의 기능에 따라 2,3-부탄디올 생산 유무가 결정된다.
상기 제작한 플라스미드를 대장균(E. coli JM109)에 형질 전환 시켜 재조합 대장균을 제작하였다. 그리고 상기 재조합 대장균을 이용하여 발효를 수행하였으며, 모든 배양 과정에서 도입한 재조합 벡터의 유지를 위해 클로람페니콜을 30 μg/ml의 농도로 포함시켰다. 상기 발효는 상기 재조합 대장균을 9 g/L 포도당 (50mM, glucose)을 포함한 250 ml의 복합배지에 접종하여 37℃에서 16 시간 동안 배양한 후, 이 배양액을 3 L 복합배지에 접종하여 수행하였으며, 발효 조건은 미세호기조건 (micro-aerobic condition; 호기 속도 1 vvm, 교반 속도 400 rpm), 90 g/L 초기 포도당 농도, pH 6.8, 배양 온도 37℃로 하였다. 발효 중 pH의 조정을 위하여 5N NaOH를 사용하였다. 상기 재조합 대장균에 대하여 발효 중 샘플을 채취하였으며, 채취된 시료의 OD600 (optical density)를 측정하여 생장 속도를 측정하였고, 채취된 시료는 13,000 rpm에서 10 분 동안 원심분리한 후, 상층액의 대사산물 및 2,3-부탄디올의 농도를 액체크로마토그래피(HPLC)로 분석하였다.
그 결과, 발효 24시간 후 pBRbudRAB/E. coli JM109는 2,3-부탄디올 2.0 g/L 및 아세토인 30.0 g/L를 생산한 반면, pBRbudRABC/E. coli JM109는 2,3-부탄디올 34.0 g/L 및 아세토인 4.7 g/L 를 생산하였다. 실험의 대상인 pBRbudRABD/E. coli JM109는 2,3-부탄디올 12.6 g/L 및 아세토인 13.0 g/L 를 생산하였다(도 4: 2,3-부탄디올 생산능 및 도 5: 아세토인 생산능. ●: pBRbudRAB/E. coli JM109, ▲: pBRbudRABC/E. coli JM109, ■: pBRbudRABD/E. coli JM109).
즉, 비록 AR1을 코드하는 budC 유전자를 포함하는 재조합 균주보다 2,3-부탄디올 합성능이 떨어지기는 하지만, AR2를 코딩하는 dar 유전자를 포함한 재조합 균주 역시 2,3-부탄디올의 생산이 가능한 것으로 확인되었다. 그러므로 AR1 및 AR2 모두 2,3-부탄디올의 전환 활성을 갖는 효소로 확인되었다.
<실험예 3> AR1 및 AR2가 결실된 재조합 균주의 제조
실험예 2에서 2,3-부탄디올 전환 효소로 확인된AR1(budC 유전자가 코드함) 및 AR2(dar 유전자가 코드함)에 대하여, 각각의 효소를 코딩하는 유전자를 클렙시엘라 옥시토카 유전체에서 결실시키기 위하여 미생물의 상동성 재조합 기작을 이용하였다. 클렙시엘라 옥시토카의 표적 유전자를 불활성화 시키는 재조합 DNA 단편은 제거하고자 하는 유전자의 상동 부위 (homologous region)를 포함하고, 재조합 확률을 높이기 위해 항생제 내성 유전자 등과 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위한 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다. 이에 제작된 DNA 단편을 대상 미생물 (클렙시엘라 옥시토카)에 도입하면, DNA 단편 내 유전자의 상동 부위와 미생물 유전체에 있는 유전자 사이에 재조합 효소 (recombinase)에 의한 재조합 기작으로 표적 유전자를 제거하게 된다.
클렙시엘라 옥시토카의 AR1(budC)와 AR2 (dar)가 결실 시키기 위한 재조합 플라스미드는 하기의 방법으로 제조하였다.
먼저, AR1 결실을 위해 표적 유전자인 budC (서열번호 10)의 상동 부위 1 (서열번호 13)을 서열번호 14 및 15 프라이머를 이용하며 PCR로 증폭하고, 상동 부위 2 (서열번호 16)를 서열번호 17 및 18 프라이머를 이용하며 PCR로 증폭하였다. 그 후, 상동 부위 1 (서열번호 13)과 2 (서열번호 16)를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편 (서열번호 19)을 완성하였다(표 3).
표 3
Figure PCTKR2014009067-appb-T000003
Figure PCTKR2014009067-appb-I000003
또, AR2 결실을 위해 표적 유전자인 dar (서열번호 12)의 상동 부위 1 (서열번호 20)을 서열번호 21 및 22 프라이머를 이용하며 PCR로 증폭하고, 상동 부위 2 (서열번호 23)를 서열번호 24 및 25 프라이머를 이용하며 PCR로 증폭하였다. 그 후, 상동 부위 1 (서열번호 20)과 2 (서열번호 23)를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편 (서열번호 26)을 완성하였다(표 4).
표 4
Figure PCTKR2014009067-appb-T000004
Figure PCTKR2014009067-appb-I000004
젖산 탈수소화 효소 (ldhA)가 결실된 클렙시엘라 옥시토카 KCTC 12133BP △ldhA (KO △ldhA)를 준비하였다. 그리고 상기 서열 번호 19, 26의 DNA 단편을 각각 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 클렙시엘라 옥시토카 (KO △ldhA)에 도입하였다. 이로써, KO △ldhA 에서 AR1 (budC)이 제거된 재조합 균주 (KO △ldhA △budC) 및 AR2 (dar)가 제거된 재조합 균주 (KO △ldhA △dar)가 각각 제작되었다.
또한 AR1 (budC)이 제거된 재조합 균주 (KO △ldhA △budC)를 대상으로 pKOV deltaAR2 플라스미드를 도입하여 추가로 AR2 (dar) 역시 제거된 재조합 균주 (KO △ldhA △budC △dar)를 완성하였다.
상기 DNA 단편을 도입한 후, 유전자 결실을 위한 일반적인 과정은 항생제 내성 test와 수크로오스 (sucrose) 내성 test를 거치며, 콜로니 PCR을 수행하여 해당 유전자가 제거된 것을 확인하였다
<실험예 4> AR1 및 AR2의 기능 확인
아세토인을 중간물질로 하는 2,3-부탄디올의 소모 경로를 이용하여, AR1 및 AR2 단백질의 기능을 확인하였다. 구체적으로는, M9 최소 배지에 2,3-부탄디올을 유일 탄소원으로 사용하여 재조합 클렙시엘라 옥시토카 균주들의 생장 및 잔류 2,3-부탄디올 농도를 관찰하였다. 상기 균주들을 LB 고체 배지에 스트리킹 (streaking)하여 30℃에서 16 시간 동안 배양한 후, 단일 콜로니를 3 ml LB 액체 배지에서 8시간 배양하였다. 이 배양액을 M9 최소 배지로 2번 씻어 잔류하는 LB 성분들을 제거한 후, 10 g/L 2,3-부탄디올을 포함한 100 ml의 M9 기본 배지에 접종하여 배양하였다. 상기 재조합 균주들의 배양 중 샘플을 채취하였다. 상기 채취된 시료의 OD600 (optical density)를 측정하여 생장 속도를 측정하였으며, 채취된 시료는 13,000 rpm에서 10 분 동안 원심분리한 후, 상층액의 대사산물 및 2,3-부탄디올 농도를 액체크로마토그래피(HPLC)로 분석하였다.
그 결과, AR2를 코딩하는 dar 유전자가 유전체에 온전히 남아 있는 균주들 (KO △ldhA와 KO △ldhA △budC)은 2,3-부탄디올을 탄소원으로 이용하여 성장을 하고, 잔류 2,3-부탄디올 농도 역시 성장과 더불어 낮아졌다. 반면, dar 유전자가 제거된 균주들(KO △ldhA △dar과 KO △ldhA △budC △dar)은 모두 200 시간의 배양에 걸쳐 전혀 성장을 하지 못했고, 잔류 2,3-부탄디올의 농도 역시 배양 초기 농도를 유지하였다. 즉, AR1을 코딩하는 budC의 유무와는 상관없이 AR2(dar)의 유무에 따라 2,3-부탄디올을 탄소원으로 이용하기도 하고 그렇지 못하기도 하는 것으로 나타났다(도 6: 성장 결과. ●: KO △ldhA, ▲: KO △ldhA △budC, ■: KO △ldhA △dar. ◆: KO △ldhA △budC △dar. 도 7:잔류 2,3-부탄디올의 농도. ●: KO △ldhA, ▲: KO △ldhA △budC, ■: KO △ldhA △dar. ◆: KO △ldhA △budC △dar.).
그러므로 2,3-부탄디올 소모와 관련된 두 가지 경로에서 가장 핵심적인 효소는 AR2로 판단되었으며, AR2가 세포 내에서 2,3-부탄디올을 아세토인으로 전환시키는 2,3-부탄디올 디하이드로게나제(2,3-butanediol dehydrogenase)로서 기능하는 것으로 확인되었다.
이를 실험예 1 및 2의 결과와 종합하여 보면, AR2는 아세토인과 2,3-부탄디올 간의 전환 활성을 가지며, 아세토인을 2,3-부탄디올로의 전환하는 활성보다 2,3-부탄디올을 아세토인으로 전환하는 활성이 높은 것으로 확인되었다. 반면, AR1은 아세토인과 2,3-부탄디올 간의 전환 활성을 가지며, 2,3-부탄디올을 아세토인으로 전환하는 활성보다 아세토인을 2,3-부탄디올로 전환하는 활성이 높은 것으로 확인되었다.
<실험예 5> 2,3-부탄디올의 생산
상기 실험예 3에서 제작한 재조합 균주들을 배양하여 2,3-부탄디올을 생산하였다. 이 때, 비교예로는 클렙시엘라 옥시토카 KCTC 12133BP △ldhA (KO △ldhA)를 사용하였다.
각 재조합 균주들을 9 g/L 포도당 (50mM, glucose)을 포함하는 250 ml의 복합배지에 접종하여 37℃에서 16 시간 동안 배양한 후, 이 배양액을 3 L 복합배지에 접종하여 발효시켰다. 이 때, 발효 조건은 미세호기조건 (micro-aerobic condition; 호기 속도 1 vvm, 교반 속도 400 rpm), 90 g/L 초기 포도당 농도, pH 6.8, 배양 온도 37℃로 하였다. 발효 중 pH의 조정을 위하여 5N NaOH를 사용하였다. 상기 재조합 클렙시엘라에 대해 발효 중 샘플을 채취하였으며, 채취된 시료의 OD600 (optical density)를 측정하여 생장 속도를 측정하였고, 채취된 시료는 13,000 rpm에서 10 분 동안 원심분리한 후, 상층액의 대사산물 및 2,3-부탄디올 농도를 액체크로마토그래피(HPLC)로 분석하였다.
그 결과, AR1이 결실된 재조합 균주(KO △ldhA △budC)는 비교예인 KO △ldhA (도 8)에 비하여 2,3-부탄디올 생산성이 낮은 반면, 아세토인 축적은 더 많았다(도 9). 반면, AR2가 결실된 균주(KO △ldhA △dar)의 경우 당 소모 시점까지 비교예인 KO △ldhA와 유사한 2,3-부탄디올 생산성을 보였고, 당 소모 완료 후에는 2,3-부탄디올 소모율 및 아세토인 축적율이 비교예보다 낮았다(도 10). 한편, AR1과 AR2가 모두 결실 된 균주는 2,3-부탄디올을 거의 생산하지 못하고 대신 높은 아세토인 생산성을 보였다(도 11). 그러므로, AR2가 제거되고 AR1은 온전히 남아 있는 균주(KO △ldhA △dar)가 2,3-부탄디올 생산과 및 발효 완료 후 보관에 매우 유리한 것으로 확인되었다(표 5).
표 5
Figure PCTKR2014009067-appb-T000005
본 발명은 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법에 대한 것이다.
서열번호 1은 ldhA의 유전자 염기서열이며, 서열번호 2는 그 상동 부위 1이고, 서열번호 3 및 서열번호 4는 그것의 PCR 증폭을 위한 프라이머이다. 서열번호 5는 ldhA의 상동 부위 2이며, 서열번호 6 및 7은 그것의 PCR 증폭을 위한 프라이머이다. 서열번호 8은 ldhA의 상기 상동 부위 1 및 2가 접합된 DNA 단편이다.
서열번호 9는 AR1의 아미노산 서열이고, 서열번호 10은 이를 코드하는 유전자인 budC의 염기서열이다.
서열번호 11은 AR2의 아미노산 서열이고, 서열번호 12는 이를 코드하는 유전자인 dar의 염기서열이다.
서열번호 13은 budC의 상동 부위 1이고, 서열번호 14 및 15는 그 PCR 증폭을 위한 프라이머들이다. 서열번호 16은 budC의 상동 부위 2이고, 서열번호 17 및 18은 그 PCR 증폭을 위한 프라이머들이다. 서열번호 19는 budC의 상기 상동 부위 1 및 2가 접합된 DNA 단편이다.
서열번호 20은 dar의 상동 부위 1이고, 서열번호 21 및 22는 그 PCR 증폭을 위한 프라이머들이다. 서열번호 23은 dar의 상동 부위 2이고, 서열번호 24 및 25는 그 PCR 증폭을 위한 프라이머들이다. 서열번호 26은 dar의 상기 상동 부위 1 및 2가 접합된 DNA 단편이다.

Claims (13)

  1. 아세토인과 2,3-부탄디올 간의 전환 활성을 갖는 효소를 코드하며, 서열번호 12의 염기서열을 갖는 유전자.
  2. 제 1항에 있어서,
    상기 유전자를 포함하는 것을 특징으로 하는 재조합 벡터.
  3. 제 1항에 있어서,
    상기 유전자가 코드하는 단백질.
  4. 제 3항에 있어서,
    서열번호 11의 아미노산 서열을 갖는 것을 특징으로 하는 단백질.
  5. 제 3항의 단백질의 활성이 억제되는 것을 특징으로 하는 재조합 미생물.
  6. 2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서,
    제 3항의 단백질의 활성이 억제되는 것을 특징으로 하는, 2,3-부탄디올의 생성능이 증가한 재조합 미생물.
  7. 제 6항에 있어서,
    피루베이트를 락테이트로 전환하는 경로가 추가로 억제되는 것을 특징으로 하는 재조합 미생물.
  8. 제 6항에 있어서,
    락테이트 디하이드로게나제의 활성이 추가로 억제되는 것을 특징으로 하는 재조합 미생물.
  9. 제 6항에 있어서,
    락테이트 디하이드로게나제를 코드하는 유전자인 ldhA가 결실 또는 억제되는 것을 특징으로 하는 재조합 미생물.
  10. 제 6항에 있어서,
    상기 미생물은 클렙시엘라인 것을 특징으로 하는 재조합 미생물.
  11. 2,3-부탄디올 및 락테이트 생합성 경로를 갖는 미생물에 있어서,
    아세토인과 2,3-부탄디올 간의 전환 활성을 가지며, 2,3-부탄디올로의 전환 활성이 아세토인으로의 전환 활성보다 높은 효소가 억제된, 2,3-부탄디올의 생성능이 증가된 재조합 미생물.
  12. 제 11항에 있어서,
    피루베이트를 락테이트로 전환하는 경로가 추가로 억제되는 것을 특징으로 하는 재조합 미생물.
  13. 제 5항 내지 제 12항 중 어느 한 항의 재조합 미생물을 배양하는 단계;및
    상기 배양액으로부터 2,3-부탄디올을 회수하는 단계를 포함하는 2,3-부탄디올의 생산 방법.
PCT/KR2014/009067 2013-09-27 2014-09-26 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법 WO2015046978A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480053587.0A CN105593368B (zh) 2013-09-27 2014-09-26 2,3-丁二醇的生成能力得到增加的重组微生物及利用其的2,3-丁二醇的生产方法
US15/025,521 US10006008B2 (en) 2013-09-27 2014-09-26 Recombinant microorganism having enhanced ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130115682A KR101551533B1 (ko) 2013-09-27 2013-09-27 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
KR10-2013-0115682 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046978A1 true WO2015046978A1 (ko) 2015-04-02

Family

ID=52743986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009067 WO2015046978A1 (ko) 2013-09-27 2014-09-26 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법

Country Status (4)

Country Link
US (1) US10006008B2 (ko)
KR (1) KR101551533B1 (ko)
CN (1) CN105593368B (ko)
WO (1) WO2015046978A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581504B1 (ko) * 2013-03-18 2015-12-31 지에스칼텍스 주식회사 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
KR101577502B1 (ko) * 2013-12-16 2015-12-14 지에스칼텍스 주식회사 D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413765B1 (en) * 1998-04-21 2002-07-02 Chr. Hanson A/S Genetically modified lactic acid bacteria having modified diacetyl reductase activities
US20100112655A1 (en) * 2008-09-29 2010-05-06 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR20120128776A (ko) * 2011-05-18 2012-11-28 서강대학교산학협력단 2,3-부탄다이올 생산을 위한 크렙시엘라 뉴모니아 균주 및 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413765B1 (en) * 1998-04-21 2002-07-02 Chr. Hanson A/S Genetically modified lactic acid bacteria having modified diacetyl reductase activities
US20100112655A1 (en) * 2008-09-29 2010-05-06 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR20120128776A (ko) * 2011-05-18 2012-11-28 서강대학교산학협력단 2,3-부탄다이올 생산을 위한 크렙시엘라 뉴모니아 균주 및 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 12 September 2012 (2012-09-12), "Klebsiella oxytoca E718, complete genome", accession no. P003683 *
DATABASE GENBANK 29 August 2013 (2013-08-29), "MULTISPECIES: diacetyl reductase [Klebsiella", accession no. P_004124794 *

Also Published As

Publication number Publication date
US20160244730A1 (en) 2016-08-25
CN105593368B (zh) 2021-04-30
CN105593368A (zh) 2016-05-18
KR101551533B1 (ko) 2015-09-21
US10006008B2 (en) 2018-06-26
KR20150035657A (ko) 2015-04-07

Similar Documents

Publication Publication Date Title
WO2012099396A2 (en) A microorganism having enhanced l-amino acids productivity and process for producing l-amino acids using the same
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2014003439A1 (ko) 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
WO2019203436A1 (ko) 에탄올 생산 경로가 억제된 내산성 효모 및 이를 이용한 젖산의 제조방법
WO2013119020A1 (ko) 에탄-1, 2-디올 생산 미생물 및 이를 이용한 에탄-1, 2-디올 생산 방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2011155799A2 (ko) 탄화수소 생성능을 가지는 변이 미생물 및 이를 이용한 탄화수소의 제조방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2012030130A2 (ko) 수크로오즈와 글리세롤을 동시에 이용하는 신규 숙신산 생성 변이 미생물 및 이를 이용한 숙신산 제조방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2015093832A1 (ko) 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015046978A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2014081084A1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
WO2010093150A2 (ko) 글리세롤 대사능력 및 숙신산 생산능력이 향상된 재조합 미생물 및 이를 이용한 숙신산의 제조방법
WO2016129895A1 (ko) 다이올 생산용 재조합 미생물
WO2020116941A2 (ko) 디카르복시산 생산을 위한 미생물 및 이를 이용한 디카르복시산 생산방법
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2021125867A1 (ko) 화합물을 생산하는 미생물 및 이를 이용한 화합물의 생산 방법
WO2020180132A1 (ko) D-글루타메이트 영양요구성 대장균 및 이를 이용한 목적 물질 생산 방법
KR100232552B1 (ko) 에스테라제 유전자, 에스테라제, 조환체 플라스미드 및 형질전환 미생물 및 이 형질전환 미생물을 사용한 광학활성 카본산 및 그 대장체 에스테르의 제조법
WO2018212627A1 (ko) 숙신산 생산능이 향상된 변이 미생물 및 이를 이용한 숙신산 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849951

Country of ref document: EP

Kind code of ref document: A1