WO2022139523A1 - L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법 - Google Patents

L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법 Download PDF

Info

Publication number
WO2022139523A1
WO2022139523A1 PCT/KR2021/019769 KR2021019769W WO2022139523A1 WO 2022139523 A1 WO2022139523 A1 WO 2022139523A1 KR 2021019769 W KR2021019769 W KR 2021019769W WO 2022139523 A1 WO2022139523 A1 WO 2022139523A1
Authority
WO
WIPO (PCT)
Prior art keywords
histidine
seq
protein
microorganism
pgapa
Prior art date
Application number
PCT/KR2021/019769
Other languages
English (en)
French (fr)
Inventor
허란
서창일
정기용
임수빈
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to JP2023514404A priority Critical patent/JP2023540292A/ja
Priority to CN202180078472.7A priority patent/CN116615548A/zh
Priority to AU2021409842A priority patent/AU2021409842A1/en
Priority to EP21911588.8A priority patent/EP4269597A1/en
Priority to CA3197710A priority patent/CA3197710A1/en
Publication of WO2022139523A1 publication Critical patent/WO2022139523A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/35Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • a novel protein having histidine excretion activity, an L-histidine-producing microorganism modified to express the protein, and a method for producing L-histidine using the microorganism is provided.
  • L-histidine is one of the 20 standard amino acids, and although it is not required in large amounts for adults from a nutritional point of view, it is classified as an essential amino acid for growing children.
  • L-histidine is involved in important physiological processes such as antioxidant and immune regulation, and is used in the medical industry, such as gastrointestinal ulcer treatment, circulatory system treatment raw material, and amino acid infusion preparation.
  • L-histidine Since L-histidine is particularly abundant in hemoglobin, it is mainly produced through proteolytic extraction using blood meal as a raw material. However, this method has disadvantages such as low efficiency and environmental pollution. On the other hand, it is possible to produce L-histidine through microbial fermentation, but large-scale industrialization has not been made yet. This is because the biosynthesis of L-histidine competes with phosphoribosyl pyrophosphate (PRPP), a nucleotide synthesis precursor, and has a complex biosynthetic process and regulatory mechanism requiring high energy.
  • PRPP phosphoribosyl pyrophosphate
  • the protein may be a protein having L-histidine-specific excretion ability.
  • Another example provides an L-histidine-producing microorganism expressing the L-histidine excreting protein.
  • Another example provides a method for producing L-histidine, comprising culturing the microorganism in a medium.
  • a recombinant microorganism having a remarkably improved L-histidine production by excavating a histidine-releasing protein having L-histidine excretion ability and introducing it from a microorganism having L-histidine production ability, and L-histidine production technology using the same do.
  • the protein may be a protein having L-histidine-specific excretion ability.
  • the protein may be expressed as an L-histidine excretion protein.
  • the L-histidine excretion protein may have L-histidine excretion ability in microorganisms of the genus Corynebacterium and/or Escherichia, wherein the L-histidine excretion protein is Corynebacterium genus And / or microorganisms not belonging to the genus Escherichia, such as Dermabacter genus (eg, Dermabacter vaginalis , etc.), Helcobacillus genus (eg, Helcobacillus massiliensis , etc.) Mycobacterium genus (eg, Mycobacterium abscessus subsp. abscessus , etc.), etc. It may be a protein derived from one or more microorganis
  • the L-histidine excretion protein may be a protein having at least 60% sequence homology with SEQ ID NO: 12, SEQ ID NO: 13, or a combination thereof.
  • the L-histidine excretion protein is SEQ ID NO: 12, 13, or a combination thereof and at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% It may have homology of at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%.
  • the L-histidine excretion protein may be one or more selected from the group consisting of proteins comprising or consisting of an amino acid sequence selected from the following, for example, one, two or three kinds:
  • SEQ ID NO: 44 SEQ ID NO: 45, or a combination thereof.
  • the protein represented by SEQ ID NO: 12 is encoded by the nucleic acid sequence of SEQ ID NO: 64
  • the protein represented by SEQ ID NO: 13 is encoded by the nucleic acid sequence of SEQ ID NO: 65, or represented by SEQ ID NO: 12 and/or SEQ ID NO: 13
  • the protein to be used may be encoded by the nucleic acid sequence of SEQ ID NO: 14 (an operon sequence fused at the overlapping site between the 3' end of SEQ ID NO: 64 and the 5' end of SEQ ID NO: 65).
  • the protein represented by SEQ ID NO: 41 is encoded by the nucleic acid sequence of SEQ ID NO: 66
  • the protein represented by SEQ ID NO: 42 is encoded by the nucleic acid sequence of SEQ ID NO: 67, or represented by SEQ ID NO: 41 and/or SEQ ID NO: 42
  • the protein to be used may be encoded by the nucleic acid sequence of SEQ ID NO: 43 (an operon sequence fused at the overlapping site between the 3' end of SEQ ID NO: 66 and the 5' end of SEQ ID NO: 67).
  • the protein represented by SEQ ID NO: 44 is encoded by the nucleic acid sequence of SEQ ID NO: 68
  • the protein represented by SEQ ID NO: 45 is encoded by the nucleic acid sequence of SEQ ID NO: 69, or represented by SEQ ID NO: 44 and/or SEQ ID NO: 45
  • the protein to be used may be encoded by the nucleic acid sequence of SEQ ID NO: 46 (an operon sequence fused at the overlapping site between the 3' end of SEQ ID NO: 68 and the 5' end of SEQ ID NO: 69).
  • L-histidine-producing microorganism modified to express an L-histidine excreting protein.
  • the L-histidine excretion protein is the same as described above.
  • the L-histidine excreting protein may be a protein foreign to the L-histidine-producing microorganism, for example, a protein derived from a microorganism different from the microorganism.
  • L-histidine-producing microorganism means,
  • microorganism encompasses single-celled bacteria, and may be used interchangeably with “cell”.
  • the unmodified microorganism is modified to express an L-histidine excreting protein to increase L-histidine-producing ability or to be used to distinguish from "L-histidine-producing microorganism" to which L-histidine-producing ability is endowed, the L - It may mean a microorganism that has not been modified to express the histidine-releasing protein or a microorganism that has not been modified to express the L-histidine-releasing protein, and may also be expressed as a host microorganism.
  • the microorganism is any gram-positive bacteria that can have L-histidine-producing ability by introducing a mutation into a microorganism having naturally L-histidine-producing ability or a strain having no or significantly less L-histidine-producing ability, such as Corynebacterium genus (the genus Corynebacterium ) microorganisms and Escherichia genus (the genus Escherichia ) It may be at least one selected from the group consisting of microorganisms.
  • the Corynebacterium genus microorganism is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Brevibacterium lactofermentum ( Brevibacterium lactofermentum ), Brevibacterium flabum ( Brevibacterium flavum ), Corynebacterium thermoaminogenes ( Corynebacterium thermoaminogenes ), Corynebacterium efficiens ( Corynebacterium efficiens ) It may include, but is not limited to.
  • the microorganism of the genus Corynebacterium may be Corynebacterium glutamicum .
  • the L-histidine-producing microorganism modified to express the L-histidine excreting protein is compared to a homogeneous unmodified microorganism that has not been modified to express the L-histidine excreting protein, such as an exogenous L-histidine excreting protein.
  • L-histidine production capacity may be increased.
  • the L-histidine-producing microorganism modified to express the L-histidine excreting protein has an L-histidine production (eg, content in the medium) of 5% (w/v) or more, compared to the unmodified microorganism.
  • the upper limit of the L-histidine production increase rate is, but not limited to, 100% (w / v), 90% (w / v), 80% (w / v), 75% (w / v), 70% (w/v), 65% (w/v), 60% (w/v), 55% (w/v), or 50% (w/v)).
  • the comparison of L-histidine production between the L-histidine-producing microorganism modified to express the L-histidine excreting protein and the unmodified microorganism is performed based on the case in which the substrate (eg, sugar such as glucose) is used in the same amount.
  • the substrate eg, sugar such as glucose
  • it may be a comparison of the L-histidine content in the substrate (eg, sugar such as glucose) unit amount (1 g, 10 g, or 100 g, etc.) in the reference medium.
  • modification to express an L-histidine excreting protein may refer to any manipulation that causes an exogenous L-histidine excreting protein to be expressed in a microorganism, for example, introducing the exogenous L-histidine excreting protein to the microorganism. It may mean introducing a gene encoding or transforming the microorganism with a gene encoding an exogenous L-histidine excretion protein.
  • a polynucleotide which may be used interchangeably with “gene” or a polypeptide (which may be used interchangeably with “protein”) means “comprises a specific nucleic acid sequence or amino acid sequence, consists of a specific nucleic acid sequence or amino acid sequence, Or, it is expressed as a specific nucleic acid sequence or amino acid sequence” is an expression that is interchangeable with an equivalent meaning, and may mean that the polynucleotide or polypeptide consists essentially of the specific nucleic acid sequence or amino acid sequence,
  • nucleic acid sequences or amino acid sequences provided herein can be prepared by conventional mutagenesis methods such as direct evolution and/or site-specification to the extent that they retain their original or desired functions. It may include those modified by site-directed mutagenesis or the like.
  • reference to a polynucleotide or polypeptide "comprising a specific nucleic acid sequence or amino acid sequence” means that the polynucleotide or polypeptide (i) consists of or consists essentially of the specific nucleic acid sequence or amino acid sequence; or (ii) at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93% of the specific nucleic acid sequence or amino acid sequence.
  • the original function may be an L-histidine excretion function (in the case of an amino acid sequence), or a function encoding a protein having an L-histidine excretion function (in the case of a nucleic acid sequence), and the desired function is It may refer
  • nucleic acid sequence described herein is an amino acid sequence of a protein expressed from a coding region and / Alternatively, various modifications may be made to the coding region within a range that does not change the function.
  • the term 'homology' or 'identity' refers to a degree related to two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used.
  • Substantially, homologous or identical sequences generally have moderate or high stringency conditions along at least about 50%, 60%, 70%, 80% or 90% of the entire or full-length sequence. It can hybridize under stringent conditions. It is obvious that hybridization also includes polynucleotides containing common codons in polynucleotides or codons taking codon degeneracy into account.
  • a GAP program can be defined as the total number of symbols in the shorter of two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap opening penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
  • transformation refers to introducing an expression vector containing a polynucleotide encoding a target protein (L-histidine excretion protein) into a host microorganism so that the protein encoded by the polynucleotide can be expressed in a host cell.
  • the transformed polynucleotide may be inserted and/or located extrachromosomally of the host microorganism as long as it can be expressed in the host microorganism.
  • the form in which it is introduced is not limited.
  • the polynucleotide may be introduced into a host microorganism in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
  • the expression cassette may include expression control elements such as a promoter, a transcription termination signal, a ribosome binding site and/or a translation termination signal, which are operably linked to the polynucleotide in general.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell.
  • operably linked refers to an expression control element (eg, a promoter) so that the expression control element can perform transcriptional control (eg, transcription initiation) of a polynucleotide encoding a target protein (L-histidine excretion protein).
  • transcriptional control eg, transcription initiation
  • polynucleotides may mean that they are functionally linked.
  • Operable ligation may be performed using genetic recombination techniques known in the art, for example, may be performed by conventional site-specific DNA cleavage and ligation, but is not limited thereto.
  • the method of transforming the polynucleotide into a host microorganism can be performed by any method of introducing a nucleic acid into a cell (microorganism), and can be performed by appropriately selecting a transformation technique known in the art according to the host microorganism.
  • the known transformation methods include electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol-mediated uptake. ), DEAE-dextran method, cationic liposome method, lipofection, lithium acetate-DMSO method and the like may be exemplified, but is not limited thereto.
  • Insertion of the gene into the host cell genome can be performed by appropriately selecting a known method by those skilled in the art, for example, an RNA-guided endonuclease system (RNA-guided endonuclease system; for example, (a) RNA- A guide endonuclease (eg, Cas9 protein, etc.), its coding gene, or a vector comprising the gene; and (b) a guide RNA (eg, single guide RNA (sgRNA), etc.), its coding DNA, or the DNA
  • RNA-guided endonuclease system for example, (a) RNA- A guide endonuclease (eg, Cas9 protein, etc.), its coding gene, or a vector comprising the gene; and (b) a guide RNA (eg, single guide RNA (sgRNA), etc.), its coding DNA, or the DNA
  • RNA-guided endonuclease system for example, (a) RNA- A guide
  • nucleic acid molecule encoding the L-histidine excretion protein.
  • the nucleic acid molecule comprises SEQ ID NO: 64 and/or SEQ ID NO: 65, or SEQ ID NO: 14; SEQ ID NO: 66 and/or SEQ ID NO: 67, or SEQ ID NO: 43; or a nucleic acid molecule comprising or consisting of the nucleic acid sequence of SEQ ID NO: 68 and/or SEQ ID NO: 69, or SEQ ID NO: 46.
  • Another example provides a recombinant vector (expression vector) comprising the nucleic acid molecule.
  • Another example provides a recombinant cell comprising the nucleic acid molecule or recombinant vector.
  • An example is a nucleic acid molecule encoding an L-histidine excretion protein, a recombinant vector comprising the nucleic acid molecule, or a composition for producing L-histidine, comprising a cell comprising the nucleic acid molecule or the recombinant vector, L-histidine production It provides a composition for increasing, or a composition for producing L-histidine-producing microorganisms.
  • Another example provides a method for producing an L-histidine-producing microorganism, or a method for enhancing and/or imparting L-histidine-producing ability of the microorganism, comprising modifying the microorganism to express an L-histidine excreting protein.
  • the step of modifying the microorganism to express the L-histidine excreting protein is performed by introducing a gene encoding the L-histidine excreting protein into the microorganism or transforming the microorganism with a gene encoding the L-histidine excreting protein.
  • the L-histidine excretion protein, the gene encoding it, and the microorganism are the same as described above.
  • the term "vector” refers to a DNA preparation containing the nucleotide sequence of a polynucleotide encoding the target protein operably linked to a suitable regulatory sequence so that the target protein can be expressed in a suitable host.
  • the regulatory sequence may include a promoter capable of initiating transcription, an optional operator sequence for regulating transcription, a sequence encoding a suitable mRNA ribosome binding site, and/or a sequence regulating the termination of transcription and/or translation. have.
  • the vector After transformation into an appropriate host microorganism, the vector may be expressed independently of the genome (genome) of the host microorganism, or may be integrated into the genome of the host microorganism.
  • the vector usable herein is not particularly limited as long as it is capable of replication in a host cell, and may be selected from all commonly used vectors.
  • commonly used vectors include natural or recombinant plasmids, cosmids, viruses, bacteriophages, and the like.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as a phage vector or a cosmid vector, and pBR-based, pUC as a plasmid vector system, pBluescript II system, pGEM system, pTZ system, pCL system, pET system, etc.
  • pDZ pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like may be exemplified, but is not limited thereto.
  • the vector usable herein may be a known expression vector and/or a vector for inserting a polynucleotide into a host cell chromosome.
  • the insertion of the polynucleotide into the host cell chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • the vector may further include a selection marker for confirming whether or not it is inserted into the chromosome.
  • the selection marker is used to select cells transformed with the vector, that is, to determine whether the polynucleotide is inserted, and selectable phenotypes such as drug resistance, auxotrophicity, resistance to cytotoxic agents, or surface protein expression It can be selected from among the genes that confer In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
  • Another example provides a method for producing L-histidine, comprising culturing the L-histidine-producing microorganism in a medium.
  • the method may further include, after the culturing, recovering L-histidine from the cultured microorganism, the medium, or both.
  • the step of culturing the microorganism is not particularly limited thereto, but may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, and the like.
  • the culture conditions are not particularly limited thereto, but use a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid) to an appropriate pH (eg, pH 5 to 9, specifically can control pH 6-8, most specifically pH 6.8), and introduce oxygen or oxygen-containing gas mixture into the culture to maintain aerobic conditions.
  • a basic compound eg, sodium hydroxide, potassium hydroxide or ammonia
  • an acidic compound eg, phosphoric acid or sulfuric acid
  • the culture temperature can be maintained at 20 to 45 ° C, or 25 to 40 ° C, and can be cultured for about 10 to about 160 hours, about 10 to 96 hours, about 10 to 48 hours, or about 10 to 36 hours.
  • L-histidine produced by the above culture may be secreted into the medium or remain in the cells.
  • the medium usable for the culture includes sugars and carbohydrates (eg, glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), oils and fats (eg, soybean oil, sunflower oil, Peanut oil and coconut oil), fatty acids (eg palmitic acid, stearic acid and linoleic acid), alcohols (eg glycerol and ethanol), organic acids (eg acetic acid), etc. are individually used or Alternatively, two or more types may be mixed and used, but the present invention is not limited thereto.
  • Nitrogen sources include nitrogen-containing organic compounds (e.g. peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea), inorganic compounds (e.g.
  • ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and nitric acid) ammonium), etc. may be used individually or in mixture of two or more selected from the group consisting of, but is not limited thereto.
  • a phosphorus source at least one selected from the group consisting of potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and a corresponding sodium-containing salt may be used individually or in combination of two or more, but is not limited thereto.
  • the medium may contain essential growth-promoting substances such as other metal salts (eg, magnesium sulfate or iron sulfate), amino acids, and/or vitamins.
  • the step of recovering L-histidine may be collecting a desired amino acid from a medium, a culture medium, or a microorganism using a suitable method known in the art depending on the culture method.
  • the recovering may be performed by one or more methods selected from centrifugation, filtration, anion exchange chromatography, crystallization, HPLC, and the like.
  • the method for recovering the L-histidine may further include a purification step before, simultaneously with, or after the recovery step.
  • L-histidine excretion gene provided herein in a microorganism having the ability to produce L-histidine, it is possible to dramatically improve the production of L-histidine compared to the parent strain in which the gene is not expressed, Not only can it be produced more effectively, but it can also contribute to the large-scale production of L-histidine on an industrial scale.
  • L-histidine is mainly classified as a basic amino acid among amino acids, but it is also classified as an aromatic amino acid or branched chain amino acid.
  • the excretion protein (LysE (Arch Microbiol 180: 155-160) for each amino acid (base amino acid: L-lysine, aromatic amino acid: Trp, side branch amino acid: isoleucine) for each classification , Wex (Korea Patent No.
  • the biosafety level is according to the microbial pathogenicity index (level 1-4) defined by the Centers for Disease Control and Prevention in the United States (the lower the level, the safer)
  • an NCgl2131 deletion and target gene insertion vector was prepared.
  • PCR was performed using the primer pairs of SEQ ID NO: 16 and SEQ ID NO: 17, SEQ ID NO: 18 and SEQ ID NO: 19 using the chromosome of Corynebacterium glutamicum strain ATCC13032 as a template, respectively.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • 531 bp of del-N2131L (SEQ ID NO: 20) and 555 bp of del-N2131R (SEQ ID NO: 21) DNA fragments were obtained, respectively.
  • the obtained DNA product was purified using QIAGEN's PCR Purification kit and cloned using pDZ vector (Korean Patent No. 10-0924065) and TaKaRa's Infusion Cloning Kit, NCgl2131 gene deletion and target gene insertion
  • pDZ vector Korean Patent No. 10-0924065
  • TaKaRa's Infusion Cloning Kit NCgl2131 gene deletion and target gene insertion
  • haq The nucleotide sequence information of the gene (hereinafter, haq , SEQ ID NO: 2) encoding the Herbaspirillum aquaticum -derived protein (hereinafter, Haq, SEQ ID NO: 1) was obtained from the National Institutes of Health (NIH GenBank). To amplify haq , PCR was performed using the primer pair of SEQ ID NO: 22 and SEQ ID NO: 23 using the chromosomal DNA of Herbaspirillum aquaticum strain (KCTC42001) as a template.
  • KCTC42001 Herbaspirillum aquaticum strain
  • PCR As a polymerase for the PCR reaction, PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 977bp haq fragment including 945bp haq (SEQ ID NO: 2) was obtained. In order to obtain a PgapA fragment capable of being linked to haq , PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 25 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained haq fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were subjected to Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method.
  • Gibson assembly DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix
  • the nucleotide sequence information of the gene (hereinafter, cpi , SEQ ID NO: 4) encoding the Cupriavidus pinatubonensis -derived protein (hereinafter, Cpi, SEQ ID NO: 3) was obtained from the National Institutes of Health (NIH GenBank).
  • NIH GenBank National Institutes of Health
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 25 using the chromosomal DNA of Cupriavidus pinatubonensis strain (KCTC22125) as a template.
  • a polymerase for the PCR reaction PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a cpi fragment of 977 bp including a cpi of 945 bp (SEQ ID NO: 4) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 22 and SEQ ID NO: 26 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained cpi fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Cpi.
  • the nucleotide sequence information of the gene (hereinafter, kcr , SEQ ID NO: 6) encoding the Kluyvera cryocrescens- derived protein (hereinafter, Kcr, SEQ ID NO: 5) was obtained from the National Institutes of Health (NIH GenBank).
  • NIH GenBank National Institutes of Health
  • PCR was performed using the primer pair of SEQ ID NO: 29 and SEQ ID NO: 30 using the chromosomal DNA of the Kluyvera cryocrescens strain (KCTC2580) as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 914bp kcr fragment including 882bp of kcr (SEQ ID NO: 6) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 31 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained kcr fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Kcr.
  • the nucleotide sequence information of the gene (hereinafter, cst , SEQ ID NO: 8) encoding the Corynebacterium stationis -derived protein (hereinafter, Cst, SEQ ID NO: 7) was obtained from the National Institutes of Health (NIH GenBank).
  • NIH GenBank National Institutes of Health
  • PCR was performed using the primer pair of SEQ ID NO: 32 and SEQ ID NO: 33 using the chromosomal DNA of the Corynebacterium stationis strain (ATCC6872) as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a cst fragment of 749 bp including cst of 717 bp (SEQ ID NO: 8) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 34 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained cst fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Cst.
  • the nucleotide sequence information of the operon (hereinafter, lsa , SEQ ID NO: 11) encoding the Leucobacter salsicius- derived protein (hereinafter, LsaFE, SEQ ID NOs: 9 and 10) was obtained from the National Institutes of Health (NIH GenBank).
  • NIH GenBank National Institutes of Health
  • PCR was performed using the primer pair of SEQ ID NO: 35 and SEQ ID NO: 36 using the chromosomal DNA of the Leucobacter salsicius strain (KCTC19904) as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 1080 bp lsa fragment including 1048 bp lsa (SEQ ID NO: 11) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 37 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained lsa fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Lsa.
  • the nucleotide sequence information of the operon (hereinafter, dva , SEQ ID NO: 14) encoding the Dermabacter vaginalis -derived protein (hereinafter, DvaFE, SEQ ID NO: 12, 13) was obtained from the National Institutes of Health (NIH GenBank).
  • NIH GenBank National Institutes of Health
  • PCR was performed using the primer pair of SEQ ID NO: 38 and SEQ ID NO: 39 using the chromosomal DNA of the Dermabacter vaginalis strain (KCTC39585) as a template.
  • a polymerase for the PCR reaction PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a dva fragment of 1113 bp including dva of 1081 bp (SEQ ID NO: 14) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 40 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained dva fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Dva.
  • the constructed NCgl2131 deletion vector (pDZ ⁇ N2131) and 6 exogenous L-histidine excreting gene candidates introduction vectors (pDZ ⁇ N2131-PgapA-Haq, pDZ ⁇ N2131-PgapA) -Cpi, pDZ ⁇ N2131-PgapA-Kcr, pDZ ⁇ N2131-PgapA-Cst, pDZ ⁇ N2131-PgapA-Lsa, pDZ ⁇ N2131-PgapA-Dva) were introduced into the Corynebacterium glutamicum ATCC13032 strain, respectively.
  • the vectors were transformed into ATCC13032 strains by electroporation, respectively, and 7 recombinant strains in which the NCgl2131 gene on the chromosome was deleted or substituted with L-histidine excreting gene candidates were produced through a secondary crossover process.
  • ATCC13032 ⁇ N2131 (N2131 gene deletion), ATCC13032 ⁇ N2131::Haq (N2131 gene replaced with haq ), ATCC13032 ⁇ N2131::Cpi (N2131 gene replaced with cpi ), ATCC13032 ⁇ N2131::Kcr (N2131 gene replaced with kcr ), ATCC13032 ⁇ N2131::Kcr (N2131 gene replaced with kcr), respectively ::Cst (N2131 gene replaced with cst ), ATCC13032 ⁇ N2131::Lsa (N2131 gene replaced with lsa ), and ATCC13032 ⁇ N2131::Dva (N2131 gene replaced with dva ).
  • Glucose 10 g KH 2 PO 4 1 g, K 2 HPO 4 2 g, MgSO 4 7H 2 O 0.4 g, urea 2 g, (NH 4 ) 2 SO 4 5 g, NaCl 0.5 g, nicotinamide 5 ⁇ g, calcium- Pantothenic acid 0.1 ⁇ g, Biotin 0.2 ⁇ g, Thiamine HCl 3 ⁇ g, Trace elements solution* 1ml (based on 1 liter of distilled water), 20g Agar
  • the + number indicates the relative growth degree of the strains, and each represents the following: +: a single colony is not formed but heavy (a form that does not grow into a single colony and grows together) is formed;
  • the Dermabacter vaginalis- derived protein Dva was selected as a protein having L-histidine-specific excretion ability while conferring resistance to L-histidine above the minimum inhibitory concentration to the Corynebacterium strain.
  • Example 4 Based on L-histidine-producing strain KCCM 80179 derived from Corynebacterium Dermabacter vaginalis Production of derived gene-transduced strains and evaluation of L-histidine production ability
  • the Dermabacter vaginalis-derived gene dva was introduced into the L-histidine-producing strain KCCM 80179 (Korean Patent Application No. 10-2019-004693414-682) strain.
  • the vectors pDZ ⁇ N2131 and pDZ ⁇ N2131-PgapA-Dva prepared in Example 2 were transformed into KCCM80179 strains by electroporation, respectively, and the NCgl2131 gene on the chromosome was deleted or L-histidine-releasing gene candidates through a secondary crossover process.
  • Two strains substituted with ( dva ) were prepared, and these were named KCCM 80179 ⁇ N2131 (NCgl2131 gene deletion) and KCCM 80179 ⁇ N2131-PgapA-Dva (NCgl2131 gene substituted with dva ), respectively.
  • KCCM 80179 ⁇ N2131 and KCCM 80179 ⁇ N2131-PgapA-Dva strains were cultured as follows: KCCM 80179 ⁇ N2131 and KCCM 80179 ⁇ N2131-PgapA-Dva strains were cultured in an activation medium for 16 hours. After incubation, each strain was inoculated into a 250 ml corner-baffle flask containing 25 ml of a seed medium, and cultured with shaking at 30° C. for 20 hours at 200 rpm.
  • L-histidine production (histidine content in the medium) was measured by HPLC, and the results are shown in Table 3 below:
  • the NCgl2131 deficient strain has the same L-histidine-producing ability as the parent strain KCCM 80179 strain, whereas the KCCM 80179 ⁇ N2131-PgapA-Dva strain into which the Dermabacter vaginalis -derived gene is introduced is the NCgl2131 deficient strain and the parent strain. It was confirmed that the L-histidine production capacity was increased by 23% and 21% or more, respectively, compared to the strain KCCM 80179 strain. Through the results of Examples 3 and 4, it was confirmed that not only the resistance to the L-histidine concentration above the minimum inhibitory concentration was increased, but also the L-histidine production ability was greatly increased through the introduction of the Dermabacter vaginalis- derived gene. These results prove that the Dermabacter vaginalis -derived protein is an L-histidine excreting protein capable of specifically excreting L-histidine.
  • Two vectors were prepared for introducing the two L-histidine excretion gene candidates additionally selected in Example 5 into the Corynebacterium sp. strain.
  • the NCgl2131 gene was used as a deletion site and PgapA was used as a promoter.
  • HmaFE Helcobacillus massiliensis- derived protein
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, an 1113 bp hma fragment including 1081 bp hma (SEQ ID NO: 43) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 49 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained hma fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Hma.
  • the nucleotide sequence information of the operon (hereinafter, mab , SEQ ID NO: 46) encoding the abscessus -derived protein (hereinafter, MabFE, SEQ ID NOs: 44, 45) was obtained from the National Institutes of Health (NIH GenBank).
  • mab The nucleotide sequence information of the operon
  • MabFE the abscessus -derived protein
  • NIH GenBank National Institutes of Health
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, an 1113 bp mab fragment including a 1081 bp mab (SEQ ID NO: 46) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 24 and SEQ ID NO: 52 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a 441 bp PgapA fragment including 409 bp PgapA (SEQ ID NO: 15) was obtained.
  • the obtained mab fragment, PgapA fragment, and pDZ ⁇ N2131 vector digested with ScaI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pDZ ⁇ N2131-PgapA-Mab.
  • Example 7 Based on L-histidine producing strain KCCM 80179 Helcobacillus massiliensis origin, Mycobacterium abscessus subsp. abscessus Production of derived gene-transduced strains and evaluation of L-histidine production ability
  • hma and mab were introduced into the L-histidine-producing strain KCCM 80179 strain, respectively.
  • the vectors pDZ ⁇ N2131-PgapA-Hma and pDZ ⁇ N2131-PgapA-Mab prepared in Example 6 were transformed into KCCM80179 strains by electroporation, respectively, and the NCgl2131 gene on the chromosome was transformed into an L-histidine excreting gene candidate through a secondary crossover process.
  • Two strains were prepared in which the substituted with
  • KCCM 80179 Helcobacillus massiliensis- derived gene from KCCM 80179 or Mycobacterium abscessus subsp. L-histidine production of abscessus -derived transgenic strain OD used Glucose (g/L) histidine Production (g/L) KCCM 80179 51.1 100 14.1 KCCM 80179 ⁇ N2131 50.5 100 13.9 KCCM 80179 ⁇ N2131-PgapA-Dva 41.6 100 17.1 KCCM 80179 ⁇ N2131-PgapA-Hma 42.8 100 16.4 KCCM 80179 ⁇ N2131-PgapA-Mab 44.1 100 16.1
  • the KCCM 80179 ⁇ N2131-PgapA-Hma strain and the KCCM 80179 ⁇ N2131-PgapA-Mab strain increased L-histidine production by 18% and 15.8%, respectively, compared to the parent strain, KCCM 80179 strain.
  • Example 8 Based on L-histidine-producing strain CA14-737 Dermabacter vaginalis origin , Helcobacillus massiliensis origin, Mycobacterium abscessus subsp. abscessus Production of derived gene-transduced strains and evaluation of L-histidine production ability
  • each of the four vectors (pDZ ⁇ N2131, pDZ ⁇ N2131-PgapA-Dva, pDZ ⁇ N2131-PgapA-Hma, and pDZ ⁇ N2131-PgapA-Mab) prepared in Examples 2 and 6 was transformed into CA14-737 strain by electroporation, 2 Through the secondary crossover process, four strains in which the NCgl2131 gene on the chromosome is deleted or substituted with the L-histidine excreting gene candidate were produced, and these were produced, respectively, CA14-737 ⁇ N2131, CA14-737 ⁇ N2131-PgapA-Dva, CA14-737 ⁇ N2131-PgapA-Hma , and CA14-737 ⁇ N2131-PgapA-Mab.
  • the CA14-737 ⁇ N2131-PgapA-Dva strain into which the Dermabacter vaginalis -derived gene was introduced had a 62.5% increase in L-histidine production compared to the CA14-737 strain, the parent strain, and CA14- into which the Helcobacillus massiliensis -derived gene was introduced.
  • 737 ⁇ N2131-PgapA-Hma strain was increased by 47.5%
  • CA14-737 ⁇ N2131-PgapA-Mab strain into which the abscessus -derived gene was introduced increased by 52.5%.
  • Example 9 Dermabacter vaginalis origin , Helcobacillus massiliensis origin, Mycobacterium abscessus subsp. abscessus Production of vector for expression of derived protein E. coli
  • L-histidine emitter exhibited L-histidine-producing ability in various strains.
  • Dermabacter vaginalis derived from E. coli, Helcobacillus massiliensis derived, Mycobacterium abscessus subsp.
  • a vector capable of expressing each abscessus -derived protein was constructed.
  • Each gene was cloned into an E. coli expression vector, pCC1BAC (hereinafter, pBAC, Epicenter corp.), and expressed under the yccA promoter (hereinafter, PyccA, SEQ ID NO: 53) of E. coli strain MG1655.
  • PCR was performed using the primer pair of SEQ ID NO: 54 and SEQ ID NO: 55 using the chromosomal DNA of the Dermabacter vaginalis strain as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • a dva fragment of 1113 bp including dva of 1081 bp (SEQ ID NO: 10) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 56 and SEQ ID NO: 57 using the MG1655 chromosome as a template to obtain a PyccA fragment that can be linked to dva .
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 132bp PyccA fragment including 100bp of PyccA (SEQ ID NO: 53) was obtained.
  • the obtained dva fragment, PyccA fragment, and pBAC vector digested with EcoRI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pBAC-PyccA-Dva.
  • PCR was performed using the primer pair of SEQ ID NO: 58 and SEQ ID NO: 59 using the pDZ ⁇ N2131-PgapA-Hma vector DNA prepared in Example 6 as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • an 1113 bp hma fragment including 1081 bp hma (SEQ ID NO: 43) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 56 and SEQ ID NO: 60 using the MG1655 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 132bp PyccA fragment including 100bp of PyccA (SEQ ID NO: 53) was obtained.
  • pBAC-PyccA-Hma The obtained hma fragment, PyccA fragment, and pBAC vector digested with EcoRI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pBAC-PyccA-Hma.
  • PCR was performed using the primer pair of SEQ ID NO: 61 and SEQ ID NO: 62 using the pDZ ⁇ N2131-PgapA-Mab vector DNA prepared in Example 6 as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 2 minutes 28 times, the polymerization reaction was performed at 72°C for 5 minutes.
  • an 1113 bp mab fragment including a 1081 bp mab (SEQ ID NO: 46) was obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 56 and SEQ ID NO: 63 using the MG1655 chromosome as a template.
  • PfuUltraTM high-confidence DNA polymerase (Stratagene) was used, and the PCR conditions were as follows: denaturation 95°C, 30 seconds; annealing 55° C., 30 seconds; And after repeating the polymerization reaction at 72°C for 1 minute 28 times, the polymerization reaction was performed at 72°C for 5 minutes. As a result, a 132bp PyccA fragment including 100bp of PyccA (SEQ ID NO: 53) was obtained.
  • the obtained mab fragment, PyccA fragment, and pBAC vector digested with EcoRI restriction enzyme were cloned using the Gibson assembly method to obtain a recombinant plasmid, which was named pBAC-PyccA-Mab.
  • Example 10 Based on E. coli-derived L-histidine-producing strain Dermabacter vaginalis Production of derived gene-transduced strains and evaluation of L-histidine production ability
  • Glucose 4% (w/v), yeast extract 0.2% (w/v), ammonium sulfate 1.6% (w/v), potassium diphosphate 0.06% (w/v), iron sulfate heptahydrate 0.0005% ( w/v), magnesium sulfate pentahydrate 0.0005% (w/v), calcium carbonate, pH 7.2,
  • L-histidine production (histidine content in the medium) was measured by HPLC, and the results are shown in Table 8 below.
  • the CA14-9003e/pBAC-PgapA-Dva strain into which the Dermabacter vaginalis -derived gene was introduced increased the L-histidine production by 62.5% compared to the parent strain CA14-9003e/pBAC strain, and the Helcobacillus massiliensis- derived gene
  • the introduced CA14-9003e/pBAC-PgapA-Hma strain increased by 21.9%, and Mycobacterium abscessus subsp.
  • the CA14-9003e/pBAC-PgapA-Mab strain into which the abscessus -derived gene was introduced increased by 18.8%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

히스티딘 배출 활성을 갖는 신규 단백질, 상기 단백질이 발현되도록 변형된 L-히스티딘 생산 미생물, 및 상기 미생물을 이용하여 L-히스티딘을 생산하는 방법이 제공된다.

Description

L-히스티딘 배출 단백질 및 이를 이용한 L-히스티딘 생산 방법
히스티딘 배출 활성을 갖는 신규 단백질, 상기 단백질이 발현되도록 변형된 L-히스티딘 생산 미생물, 및 상기 미생물을 이용하여 L-히스티딘을 생산하는 방법에 관한 것이다.
L-히스티딘은 20개의 표준 아미노산들 가운데 하나의 아미노산으로, 영양학적인 관점에서 볼 때 성인에게는 많은 양이 요구되지 않지만, 성장기 어린이들에게는 해당하는 필수 아미노산으로 분류된다. 또한, L-히스티딘은 항산화와 면역 조절 등 중요한 생리적 과정에 관여하여 위장 궤양 치료제, 순환기계 치료제의 원료 및 아미노산 수액 제제 등 의학 산업에 사용된다.
L-히스티딘은 특히 헤모글로빈에 많이 들어 있어서, 주로 혈분을 원료로 하는 단백질 가수 분해 추출법을 통해 주로 생산된다. 그러나, 이러한 방법은 낮은 효율과 환경 오염 등의 단점을 지니고 있다. 반면, 미생물 발효법을 통하여 L-히스티딘을 생산하는 것은 가능하나, 대규모 공업화는 아직 이루어지지 않았다. 이는 L-히스티딘의 생합성이 뉴클레오티드 합성 전구체인 포스포리보실 피로인산 (PRPP)과 경쟁 관계를 가지며, 고 에너지를 요구하는 복잡한 생합성 과정 및 조절 메커니즘을 가지고 있기 때문이다.
다른 종류의 아미노산의 배출능을 갖는 단백질의 발현 및/또는 기능이 강화되면 해당 아미노산의 생산이 증가되는 예는 알려져 있으나, L-히스티딘 특이적 배출능을 갖는 단백질에 대한 선행 연구는 거의 진행된 바 없다.
이러한 배경하에서, 히스티딘 특이적 배출능을 갖는 단백질의 발굴 및 이를 이용한 히스티딘 생산 기술의 개발이 요구된다.
본 명세서에서는 L-히스티딘 배출능을 갖는 히스티딘 배출 단백질을 발굴하고, 이를 L-히스티딘의 생산능을 가지는 미생물에서 발현시킨 결과, L-히스티딘 생산량을 획기적으로 향상시킬 수 있음을 제안한다.
일 예는 L-히스티딘 배출 활성을 갖는 단백질을 제공한다. 상기 단백질은 L-히스티딘 특이적 배출능을 갖는 단백질일 수 있다.
다른 예는 상기 L-히스티딘 배출 단백질을 발현하는, L-히스티딘 생산 미생물을 제공한다.
다른 예는 상기 미생물을 배지에서 배양하는 단계를 포함하는, L-히스티딘 생산 방법을 제공한다.
본 명세서에서는 L-히스티딘 배출능을 갖는 히스티딘 배출 단백질을 발굴하고, 이를 L-히스티딘의 생산능을 가지는 미생물에서 도입시켜 L-히스티딘 생산량이 획기적으로 향상된 재조합 미생물 및 이를 이용한 L-히스티딘 생산 기술을 제공한다.
이하, 보다 상세히 설명한다.
일 예는 L-히스티딘 배출 활성을 갖는 단백질을 제공한다. 상기 단백질은 L-히스티딘 특이적 배출능을 갖는 단백질일 수 있다. 본 명세서에서, 상기 단백질은 L-히스티딘 배출 단백질로 표현될 수 있다. 일 예에서, 상기 L-히스티딘 배출 단백질은 코리네박테리움 속 및/또는 에스케리키아 속 미생물에서 L-히스티딘 배출능을 갖는 것일 수 있으며, 이 때 상기 L-히스티딘 배출 단백질은 코리네박테리움 속 및/또는 에스케리키아 속에 속하지 않는 미생물, 예컨대, 더마박터 속 (예, Dermabacter vaginalis 등), 헬코바실러스 속 (예, Helcobacillus massiliensis 등) 미코박테리움 속 (예, Mycobacterium abscessus subsp. abscessus 등) 등으로 이루어진 군에서 선택된 1종 이상의 미생물 유래의 단백질일 수 있다.
일 예에서, 상기 L-히스티딘 배출 단백질은 서열번호 12, 서열번호 13 또는 이들의 조합과 60% 이상의 서열 상동성을 갖는 단백질일 수 있다. 예컨대, 일 구체예에서, 상기 L-히스티딘 배출 단백질은 서열번호 12, 13, 또는 이의 조합과 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상, 또는 99.5% 이상의 상동성을 갖는 것일 수 있다.
일 구체예에서, 상기 L-히스티딘 배출 단백질은 다음 중에서 선택된 아미노산 서열을 포함하거나 상기 서열로 이루어지는 단백질로 이루어진 군에서 선택된 1종 이상, 예컨대, 1종, 2종 또는 3종일 수 있다:
서열번호 12, 서열번호 13, 또는 이의 조합;
서열번호 41, 서열번호 42, 또는 이의 조합; 및
서열번호 44, 서열번호 45, 또는 이의 조합.
상기 서열번호 12로 표현되는 단백질은 서열번호 64의 핵산서열에 의하여 암호화되고, 서열번호 13로 표현되는 단백질은 서열번호 65의 핵산서열에 의하여 암호화되거나, 서열번호 12 및/또는 서열번호 13으로 표현되는 단백질은 서열번호 14의 핵산서열 (서열번호 64의 3' 말단과 서열번호 65의 5' 말단의 중복 부위에서 융합된 오페론 서열임)에 의하여 암호화되는 것일 수 있다.
상기 서열번호 41로 표현되는 단백질은 서열번호 66의 핵산서열에 의하여 암호화되고, 서열번호 42로 표현되는 단백질은 서열번호 67의 핵산서열에 의하여 암호화되거나, 서열번호 41 및/또는 서열번호 42로 표현되는 단백질은 서열번호 43의 핵산서열(서열번호 66의 3' 말단과 서열번호 67의 5' 말단의 중복 부위에서 융합된 오페론 서열임)에 의하여 암호화되는 것일 수 있다.
상기 서열번호 44로 표현되는 단백질은 서열번호 68의 핵산서열에 의하여 암호화되고, 서열번호 45로 표현되는 단백질은 서열번호 69의 핵산서열에 의하여 암호화되거나, 서열번호 44 및/또는 서열번호 45로 표현되는 단백질은 서열번호 46의 핵산서열(서열번호 68의 3' 말단과 서열번호 69의 5' 말단의 중복 부위에서 융합된 오페론 서열임)에 의하여 암호화되는 것일 수 있다.
다른 예는 L-히스티딘 배출 단백질을 발현하도록 변형된, L-히스티딘 생산 미생물을 제공한다. 상기 L-히스티딘 배출 단백질은 앞서 설명한 바와 같다. 상기 L-히스티딘 배출 단백질은 상기 L-히스티딘 생산 미생물에 대하여 외래의 단백질, 예컨대, 상기 미생물과 이종의 미생물 유래의 단백질일 수 있다.
본 명세서에서, 용어 "L-히스티딘 생산 미생물"은,
L-히스티딘 생산능을 갖는 미생물이 상기 L-히스티딘 배출 단백질을 발현하도록 변형, 예컨대, 1) 상기 L-히스티딘 배출 단백질을 추가로 발현하거나 2) 내재적 L-히스티딘 배출 단백질을 대체하여 발현하도록 변형됨으로써, 비변형 미생물 대비 증가된 L-히스티딘 생산능을 갖는 경우, 및/또는
L-히스티딘 생산능을 갖지 않는 미생물이 상기 L-히스티딘 배출 단백질을 발현하도록 변형됨으로써 L-아미노산 생산능을 갖게 되는 경우
를 의미하기 위하여 사용될 수 있다.
본 명세서에서 "미생물"은 단세포 박테리아를 포괄하는 것으로, "세포"와 혼용될 수 있다.
본 명세서에서, 상기 비변형 미생물은 L-히스티딘 배출 단백질을 발현하도록 변형되어 L-히스티딘 생산능이 증가되거나 L-히스티딘 생산능이 부여된 "L-히스티딘 생산 미생물"과 구별하기 위하여 사용되는 것으로, 상기 L-히스티딘 배출 단백질을 발현하도록 변형되기 전의 미생물 또는 상기 L-히스티딘 배출 단백질을 발현하도록 변형되지 않은 미생물을 의미하는 것일 수 있고, 숙주 미생물로도 표현될 수 있다.
상기 미생물은 자연적으로 L-히스티딘 생산능을 가지는 미생물 또는 L-히스티딘 생산능이 없거나 현저히 적은 균주에 변이가 도입되어 L-히스티딘 생산능을 가질 수 있는 모든 그람양성 세균, 예컨대 코리네박테리움 속 (the genus Corynebacterium) 미생물 및 에스케리키아 속 (the genus Escherichia) 미생물로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 코리네박테리움 암모니아게네스 (Corynebacterium ammoniagenes), 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum), 브레비박테리움 플라범 (Brevibacterium flavum), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 코리네박테리움 에피션스 (Corynebacterium efficiens) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 예컨대, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)일 수 있다.
일 예에서, 상기 L-히스티딘 배출 단백질을 발현하도록 변형된 L-히스티딘 생산 미생물은, 상기 L-히스티딘 배출 단백질, 예컨대 외래의 L-히스티딘 배출 단백질을 발현하도록 변형되지 않은 동종의 비변형 미생물과 비교하여, L-히스티딘 생산능이 증가된 것일 수 있다. 일 구체예에서, 상기 L-히스티딘 배출 단백질을 발현하도록 변형된 L-히스티딘 생산 미생물은, 비변형 미생물과 비교하여, L-히스티딘 생산량 (예컨대, 배지 내 함량)이 5%(w/v) 이상, 10%(w/v) 이상, 12.5%(w/v) 이상, 15%(w/v) 이상, 17.5%(w/v) 이상, 또는 20%(w/v) 이상 증가한 것일 수 있다 (상기 L-히스티딘 생산 증가율의 상한값은, 이에 제한되지 않지만, 100%(w/v), 90%(w/v), 80%(w/v), 75%(w/v), 70%(w/v), 65%(w/v), 60%(w/v), 55%(w/v), 또는 50%(w/v)일 수 있다). 상기 L-히스티딘 배출 단백질을 발현하도록 변형된 L-히스티딘 생산 미생물과 비변형 미생물과의 L-히스티딘 생산량 비교는, 기질 (예컨대, 포도당 등의 당)이 서로 동일한 양으로 사용된 경우를 기준으로 수행되는 것일 수 있으며, 예컨대, 기질 (예컨대, 포도당 등의 당) 단위량 (1g, 10g, 또는 100g 등) 기준 배지 내 L-히스티딘 함량을 비교한 것일 수 있다.
본 명세서에서, 용어 "L-히스티딘 배출 단백질을 발현하도록 변형"은 미생물에서 외래의 L-히스티딘 배출 단백질이 발현되도록 하는 모든 조작을 의미할 수 있으며, 예컨대, 미생물에 외래의 L-히스티딘 배출 단백질을 암호화하는 유전자를 도입 또는 상기 미생물을 외래의 L-히스티딘 배출 단백질을 암호화하는 유전자로 형질전환시키는 것을 의미할 수 있다.
본 명세서에서, 폴리뉴클레오타이드("유전자"와 혼용될 수 있음) 또는 폴리펩타이드("단백질"과 혼용될 수 있음)가 "특정 핵산 서열 또는 아미노산 서열을 포함한다, 특정 핵산 서열 또는 아미노산 서열로 이루어진다, 또는 특정 핵산 서열 또는 아미노산 서열로 표현된다" 함은 등가적 의미로 상호 혼용 가능한 표현으로, 상기 폴리뉴클레오타이드 또는 폴리펩타이드가 상기 특정 핵산 서열 또는 아미노산 서열을 필수적으로 포함하여 이루어진 것을 의미할 수 있으며, 상기 폴리뉴클레오타이드 또는 폴리펩타이드의 본래의 기능 및/또는 목적하는 기능을 유지하는 범위에서 상기 특정 핵산 서열 또는 아미노산 서열에 변이(결실, 치환, 변형, 및/또는 부가)가 가해진 "실질적으로 동등한 서열"을 포함하는 것(또는 상기 변이가 도입된 것을 배제하지 않는 것)으로 해석될 수 있다.
일 예에서, 본 명세서에서 제공되는 핵산 서열 또는 아미노산 서열은 이들의 본래의 기능 또는 목적하는 기능을 유지하는 범위에서 통상적인 돌연변이 유발법, 예를 들면 방향성 진화법(direct evolution) 및/또는 부위특이적 돌연변이법(site-directed mutagenesis) 등에 의하여 변형된 것을 포함할 수 있다. 일 예에서, 폴리뉴클레오타이드 또는 폴리펩타이드가 "특정 핵산 서열 또는 아미노산 서열을 포함한다" 함은 상기 폴리뉴클레오타이드 또는 폴리펩타이드가 (i) 상기 특정 핵산 서열 또는 아미노산 서열로 이루어지거나 또는 이를 필수적으로 포함하거나, 또는 (ii) 상기 특정 핵산 서열 또는 아미노산 서열과 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상, 99.5% 이상, 또는 99.9% 이상 (예컨대, 60% 내지 99.5%, 70% 내지 99.5%, 80% 내지 99.5%, 85% 내지 99.5%, 90% 내지 99.5%, 91% 내지 99.5%, 92% 내지 99.5%, 93% 내지 99.5%, 94% 내지 99.5%, 95% 내지 99.5%, 96% 내지 99.5%, 97% 내지 99.5%, 98% 내지 99.5%, 또는 99% 내지 99.5%)의 상동성을 갖는 핵산 서열 또는 아미노산 서열로 이루어지거나 이를 필수적으로 포함하고, 본래의 기능 및/또는 목적하는 기능을 유지하는 것을 의미할 수 있다. 본 명세서에서, 상기 본래의 기능은, L-히스티딘 배출 기능 (아미노산 서열의 경우), 또는 L-히스티딘 배출 기능을 갖는 단백질을 암호화하는 기능 (핵산 서열의 경우)일 수 있고, 상기 목적하는 기능은 미생물의 L-히스티딘 생산능을 증가시키거나 부여하는 기능을 의미할 수 있다.
본 명세서에 기재된 핵산 서열은 코돈의 축퇴성(degeneracy)으로 인하여 상기 단백질(L-히스티딘 배출 단백질)을 발현시키고자 하는 미생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 단백질의 아미노산 서열 및/또는 기능을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있다.
본 출원에서 용어, ‘상동성 (homology)’ 또는 ‘동일성 (identity)’은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드 역시 포함됨이 자명하다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
또한, 임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
상기 L-히스티딘 배출 단백질을 암호화하는 유전자를 도입 또는 형질전환은 통상의 발현 벡터를 사용한 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있다. 본 명세서에서, 용어 "형질전환"은 표적 단백질(L-히스티딘 배출 단백질)을 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터를 숙주 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오타이드가 암호화하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오타이드는 숙주 미생물 내에서 발현될 수 있기만 한다면, 숙주 미생물의 염색체 내에 삽입되어 위치하거나 및/또는 염색체 외에 위치할 수 있다. 상기 폴리뉴클레오타이드는 숙주 미생물 내로 도입되어 발현될 수 있는 것이면, 그 도입되는 형태는 제한이 없다. 예를 들면, 상기 폴리뉴클레오타이드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주 미생물에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오타이드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및/또는 번역 종결신호 등의 발현 조절 요소를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오타이드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다. 상기에서 용어 "작동 가능하게 연결"된 것이란 발현조절 요소가 목적 단백질(L-히스티딘 배출 단백질)을 암호화하는 폴리뉴클레오타이드의 전사 조절 (예, 전사 개시)를 수행할 수 있도록 발현조절 요소 (예, 프로모터)와 폴리뉴클레오타이드가 기능적으로 연결되어 있는 것을 의미할 수 있다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 수행할 수 있으며, 예컨대, 통상적인 부위-특이적 DNA 절단 및 연결에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 폴리뉴클레오타이드를 숙주 미생물에 형질전환 하는 방법은 핵산을 세포(미생물) 내로 도입하는 어떠한 방법으로도 수행 가능하며, 숙주 미생물에 따라 당 분야에서 공지된 형질전환 기술을 적절히 선택하여 수행할 수 있다. 상기 공지된 형질전환 방법으로 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전법, 염화칼슘 (CaCl2) 침전법, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG) 침전법(polyethylene glycol-mediated uptake), DEAE-덱스트란법, 양이온 리포좀법, 리포펙션(lipofection), 초산 리튬-DMSO법 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 유전자의 숙주 세포 유전체 (염색체) 내 삽입은 공지된 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 예컨대, RNA-가이드 엔도뉴클레아제 시스템 (RNA-guided endonuclease system; 예컨대, (a) RNA-가이드 엔도뉴클레아제(예, Cas9 단백질 등), 이의 암호화 유전자, 또는 상기 유전자를 포함하는 벡터; 및 (b) 가이드 RNA (예, single guide RNA (sgRNA) 등), 이의 암호화 DNA, 또는 상기 DNA를 포함하는 벡터를 포함하는 혼합물(예컨대, RNA-가이드 엔도뉴클레아제 단백질과 가이드 RNA의 혼합물 등), 복합체 (예컨대, 리보핵산 융합단백질 (RNP), 재조합 벡터 (예컨대, RNA-가이드 엔도뉴클레아제 암호화 유전자 및 가이드 RNA 암호화 DNA를 포함하는 함께 포함하는 벡터 등) 등으로 이루어진 군에서 선택된 하나 이상)을 사용하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
다른 예는 상기 L-히스티딘 배출 단백질을 암호화하는 핵산 분자를 제공한다. 일 예에서, 상기 핵산 분자는 서열번호 64 및/또는 서열번호 65, 또는 서열번호 14; 서열번호 66 및/또는 서열번호 67, 또는 서열번호 43; 또는 서열번호 68 및/또는 서열번호 69, 또는 서열번호 46의 핵산 서열을 포함하거나 상기 서열로 이루어지는 핵산 분자일 수 있다.
다른 예는 상기 핵산 분자를 포함하는 재조합 벡터 (발현 벡터)를 제공한다.
다른 예는 상기 핵산 분자 또는 재조합 벡터를 포함하는 재조합 세포를 제공한다.
일 예는 L-히스티딘 배출 단백질을 암호화하는 핵산 분자, 상기 핵산 분자를 포함하는 재조합 벡터, 또는 상기 핵산 분자 또는 상기 재조합 벡터를 포함하는 세포를 포함하는, L-히스티딘 생산용 조성물, L-히스티딘 생산 증가용 조성물, 또는 L-히스티딘 생산 미생물 제조용 조성물을 제공한다.
다른 예는 미생물을 L-히스티딘 배출 단백질을 발현하도록 변형시키는 단계를 포함하는, L-히스티딘 생산 미생물 제조 방법, 또는 상기 미생물의 L-히스티딘 생산능 증진 및/또는 부여 방법을 제공한다. 상기 미생물을 L-히스티딘 배출 단백질을 발현하도록 변형시키는 단계는 상기 미생물에 L-히스티딘 배출 단백질을 암호화하는 유전자를 도입하거나, 상기 미생물을 L-히스티딘 배출 단백질을 암호화하는 유전자로 형질전환시키는 것에 의하여 수행될 수 있다.
상기 L-히스티딘 배출 단백질, 이를 암호화하는 유전자, 및 미생물은 앞서 설명한 바와 같다.
본 명세서에서, 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 암호화하는 폴리뉴클레오타이드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 암호화하는 서열, 및/또는 전사 및/또는 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주 미생물 내로 형질전환된 후, 숙주 미생물의 게놈(유전체)과 무관하게 발현되거나, 숙주 미생물의 게놈 내에 통합될 수 있다.
본 명세서에서 사용가능한 벡터는 숙주 세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 통상 사용되는 모든 벡터들 중에서 선택될 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스, 박테리오파지 등을 들 수 있다. 예를 들어, 상기 벡터로서, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 예시할 수 있으나, 이에 제한되지 않는다.
본 명세서에서 사용 가능한 벡터는 공지된 발현 벡터 및/또는 폴리뉴클레오타이드의 숙주 세포 염색체 내 삽입용 벡터일 수 있다. 상기 폴리뉴클레오타이드의 숙주 세포 염색체 내 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 벡터는 상기 염색체 내 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉, 상기 폴리뉴클레오타이드의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 유전자들 중에서 선택되어 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
다른 예는 상기 L-히스티딘 생산 미생물을 배지에서 배양하는 단계를 포함하는, L-히스티딘의 생산 방법을 제공한다. 상기 방법은, 상기 배양하는 단계 이후에, 상기 배양된 미생물, 배지, 또는 이들 모두로부터 L-히스티딘을 회수하는 단계를 추가로 포함할 수 있다.
 상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45℃, 또는 25 내지 40℃를 유지할 수 있고, 약 10 내지 약 160 시간, 약 10 시간 내지 96시간, 약 10 시간 내지 48시간, 또는 약 10 시간 내지 36시간 동안 배양할 수 있으나, 이에 제한되는 것은 아니다. 상기 배양에 의하여 생산된 L-히스티딘은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
상기 배양에 사용 가능한 배지는 탄소 공급원으로 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올), 유기산 (예: 아세트산) 등으로 이루어진 군에서 선택된 1종 이상을 개별적으로 사용하거나 또는 2종 이상을 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두박분 및 우레아), 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등으로 이루어진 군에서 선택된 1종 이상을 개별적으로 사용하거나 또는 2종 이상을 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등으로 이루어진 군에서 선택된 1종 이상을 개별적으로 사용하거나 또는 2종 이상을 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 상기 배지는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산, 및/또는 비타민 등과 같은 필수성장-촉진 물질을 포함할 수 있다.
상기 L-히스티딘을 회수하는 단계는 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지, 배양액, 또는 미생물로부터 목적하는 아미노산을 수집하는 것일 수 있다. 예를 들어, 상기 회수하는 단계는 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화, HPLC 등에서 선택된 하나 이상의 방법으로 수행될 수 있다. 상기 L-히스티딘을 회수하는 방법은, 상기 회수하는 단계 이전, 동시, 또는 이후에, 정제단계를 추가적으로 포함할 수 있다.
본 명세서에서 제공되는 L-히스티딘 배출 유전자를 L-히스티딘 생산능을 가지는 미생물에 발현시킴으로써, 상기 유전자가 발현되지 않은 모균주에 비하여, L-히스티딘 생산량을 획기적으로 향상시킬 수 있어서, L-히스티딘을 보다 효과적으로 생산할 수 있을뿐 아니라, L-히스티딘의 산업적 규모의 대규모 생산에 기여할 수 있다.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. 외래 히스티딘 배출 유전자 탐색 및 후보 선별
L-히스티딘은 아미노산 분류 중 주로 염기(Basic) 아미노산으로 분류되나 방향족(Aromatic) 아미노산 또는 곁가지(Branched chain) 아미노산으로 분류되기도 한다. L-히스티딘 특이 배출능을 갖는 단백질 후보를 선별하기 위하여 각 분류별 아미노산(염기 아미노산: L-라이신, 방향족 아미노산: Trp, 곁가지 아미노산: 이소류신)에 대한 배출 단백질(LysE(Arch Microbiol 180: 155-160), Wex(대한민국 등록특허 제10-1968317호), BrnFE(Arch Microbiol 180: 155-160))의 아미노산 서열을 query 서열로 하고, NCBI와 Kegg database를 기반으로 PSI-BLAST 탐색 결과, L-히스티딘을 배출할 가능성이 있는 막단백질로 예측되는 후보 유전자들과 이를 보유하는 미생물을 선정하였다.
이 중 생산 균주에 적용 가능한 정도의 생물 안전도 (Biosafety level)와 확보 가능성을 고려하여, 아래 표 1 과 같이 LysE 기반 1종, Wex 기반 3종, BrnFE기반 2종의 단백질, 이를 암호화하는 유전자, 및 이를 포함하는 미생물을 선정하였다:
L-히스티딘 배출자 후보 list
No. 균 주 Protein Ref Seq. gDNA Ref Seq. 생물 안전도 아미노산 서열 핵산 서열
Wex 기반 1 Herbaspirillum aquaticum
(KCTC42001)
WP_088757482.1 NZ_NJGV01000035.1 1 서열번호 1 서열번호 2
2 Cupriavidus pinatubonensis
(KCTC22125)
WP_041680244.1 CP000091.1 1 서열번호 3 서열번호 4
3 Kluyveracryocrescens
(KCTC2580)
WP_052283291.1 NZ_LGHZ01000014.1 1 서열번호 5 서열번호 6
LysE 기반 4 Corynebacterium stationis
(ATCC6872)
WP_066837457.1 CP014279.1 1 서열번호 7 서열번호 8
BrnFE 기반 5 Leucobacter salsicius
(KCTC19904)
WP_026139602.1 NZ_AOCN01000022.1 1 서열번호 9 서열번호 11
WP_083879221.1 서열번호 10
6 Dermabacter vaginalis
(KCTC39585)
WP_065248528.1 (DvaF) NZ_CP012117.1 1 서열번호 12 서열번호 64
WP_065248527.1(DvaE) 서열번호 13 서열번호 65
DvaFE 서열번호 12 및 13 서열번호 14 (DvaFE 오페론)
(상기 표 1에서, 생물안전도는 미국의 Centers for Disease Control and Prevention에서 정의한 미생물 병원성 지표 (level 1~4)에 따른 것임 (level이 낮을수록 안전함)
실시예 2. 외래 L-히스티딘 배출 유전자 후보 도입 벡터 및 이를 도입한 재조합 코리네박테리움 속 균주 제작
상기 실시예 1에서 선정한 외래 L-히스티딘 배출 유전자 후보 6종을 코리네박테리움 속 균주에 도입하기 위한 벡터 6종을 제작하였다.
외래 L-히스티딘 배출 유전자 후보들을 도입하기 위하여, 코리네박테리움 글루타미쿰의 트렌스포존을 코딩하는 유전자 중 NCgl2131 유전자를 삽입 site로 사용하였다(Journal of Biotechnology 104, 5-25 Jorn Kalinowski et al, 2003). 또한 외래 L-히스티딘 배출 유전자 후보들이 코리네박테리움 유래 gapA 유전자의 프로모터(이하, PgapA, 서열번호 15) 하에서 발현되도록 설계하였다.
NCgl2131 유전자를 배출자 유전자들로 치환하기 위하여 NCgl2131 결손 및 타겟 유전자 삽입 벡터를 제작하였다. 벡터를 제작하기 위해, 코리네박테리움 글루타미쿰 균주 ATCC13032의 염색체를 주형으로 하여 서열번호 16 과 서열번호 17, 서열번호 18과 서열번호 19의 프라이머 쌍을 각각 이용하여 PCR을 각각 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 각각 531bp의 del-N2131L(서열번호 20)와 555bp의 del-N2131R(서열번호 21)의 DNA 단편을 수득하였다. 수득한 DNA 산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 pDZ 벡터(대한민국 등록특허 제10-0924065호)와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝하여, NCgl2131유전자결손 및 타겟 유전자 삽입용 벡터 pDZΔN2131을 제작하였다.
Herbaspirillum aquaticum 유래 단백질(이하, Haq, 서열번호 1)를 코딩하는 유전자(이하, haq, 서열번호 2)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. haq를 증폭시키기 위하여 Herbaspirillum aquaticum 균주(KCTC42001)의 염색체 DNA를 주형으로 하여 서열번호 22와 서열번호 23의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 945bp의 haq (서열번호 2)를 포함한 977bp의 haq 단편을 수득하였다. haq와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 하여 서열번호 24과 서열번호 25의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 상기 수득된 haq 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Haq로 명명하였다.
Cupriavidus pinatubonensis 유래 단백질(이하, Cpi, 서열번호 3)를 코딩하는 유전자(이하, cpi, 서열번호 4)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. Cupriavidus pinatubonensis 유래 cpi를 증폭시키기 위하여, Cupriavidus pinatubonensis 균주(KCTC22125)의 염색체 DNA를 주형으로 하여 서열번호 24와 서열번호 25의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 945bp의 cpi(서열번호 4)를 포함한 977bp의 cpi 단편을 수득하였다. cpi와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 하여 서열번호 22과 서열번호 26의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 상기 수득된 cpi 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Cpi로 명명하였다.
Kluyvera cryocrescens 유래 단백질(이하, Kcr, 서열번호 5)를 코딩하는 유전자(이하, kcr, 서열번호 6)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. Kluyvera cryocrescens 유래 kcr를 증폭시키기 위하여, Kluyvera cryocrescens 균주(KCTC2580)의 염색체 DNA를 주형으로 하여 서열번호 29와 서열번호 30의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 882bp의 kcr(서열번호 6)를 포함한 914bp의 kcr단편을 수득하였다. kcr와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 서열번호 24과 서열번호 31의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 상기 수득된 kcr 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Kcr로 명명하였다.
Corynebacterium stationis 유래 단백질(이하, Cst, 서열번호 7)를 코딩하는 유전자(이하, cst, 서열번호 8)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. Corynebacterium stationis 유래 cst를 증폭시키기 위하여, Corynebacterium stationis 균주(ATCC6872)의 염색체 DNA를 주형으로 하여 서열번호 32와 서열번호 33의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 717bp의 cst (서열번호 8)를 포함한 749bp의 cst 단편을 수득하였다. cst 와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 서열번호 24과 서열번호 34의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 수득된 cst 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Cst로 명명하였다.
Leucobacter salsicius 유래 단백질(이하, LsaFE, 서열번호 9, 10)를 코딩하는 오페론(이하, lsa, 서열번호 11)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. Leucobacter salsicius 유래 lsa 를 증폭시키기 위하여 Leucobacter salsicius 균주(KCTC19904)의 염색체 DNA를 주형으로 하여 서열번호 35와 서열번호 36의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1048bp의 lsa (서열번호 11)를 포함한 1080bp의 lsa 단편을 수득하였다. lsa 와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 서열번호 24과 서열번호 37의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 수득된 lsa 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Lsa로 명명하였다.
Dermabacter vaginalis 유래 단백질(이하, DvaFE, 서열번호 12, 13)를 코딩하는 오페론(이하, dva, 서열번호 14)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. Dermabacter vaginalis 유래 dva 를 증폭시키기 위하여, Dermabacter vaginalis 균주(KCTC39585)의 염색체 DNA를 주형으로 하여 서열번호 38와 서열번호 39의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1081bp의 dva (서열번호 14)를 포함한 1113bp의 dva 단편을 수득하였다. dva 와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 서열번호 24과 서열번호 40의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 수득된 dva 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Dva로 명명하였다.
상기 외래 L-히스티딘 배출 유전자 후보들의 L-히스티딘 배출능을 확인하기 위하여, 상기 제작된 NCgl2131 결손 벡터(pDZΔN2131), 외래 L-히스티딘 배출 유전자 후보 도입 벡터 6종(pDZΔN2131-PgapA-Haq, pDZΔN2131-PgapA-Cpi, pDZΔN2131-PgapA-Kcr, pDZΔN2131-PgapA-Cst, pDZΔN2131-PgapA-Lsa, pDZΔN2131-PgapA-Dva)을 각각 코리네박테리움 글루타미쿰 ATCC13032 균주에 도입하였다. 보다 구체적으로, 상기 벡터들을 각각 ATCC13032 균주에 전기천공법으로 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 NCgl2131 유전자가 결손 되거나 L-히스티딘 배출유전자 후보로 치환되어 있는 7종의 재조합 균주를 제작하였으며, 이들을 각각 ATCC13032ΔN2131 (N2131 유전자 결손), ATCC13032ΔN2131::Haq (N2131 유전자가 haq로 치환), ATCC13032ΔN2131::Cpi (N2131 유전자가 cpi로 치환), ATCC13032ΔN2131::Kcr (N2131 유전자가 kcr로 치환), ATCC13032ΔN2131::Cst (N2131 유전자가 cst로 치환), ATCC13032ΔN2131::Lsa (N2131 유전자가 lsa로 치환), 및 ATCC13032ΔN2131::Dva (N2131 유전자가 dva로 치환)로 명명하였다.
실시예 3. 외래 L-히스티딘 배출 유전자 후보 도입 코리네박티리움 속 균주들의 MIC 측정
상기 실시예 2에서 제작된 7종의 재조합 코리네박테리움 글루타미쿰 균주 (ATCC13032ΔN2131, ATCC13032ΔN2131::Haq, ATCC13032ΔN2131::Cpi, ATCC13032ΔN2131::Kcr, ATCC13032ΔN2131::Cst, ATCC13032ΔN2131::Lsa, 및 ATCC13032ΔN2131::Dva)들의 L-히스티딘 배출능 활성의 보유여부 확인을 위하여, L-히스티딘을 이용한 최소저지농도 (minimum inhibitory concentration, MIC) 실험을 수행하였다. 7종의 균주들을 최소 액체 배지에 30℃에서 24시간 동안 배양한 후, 1 X 103과 1 X 104 개의 세포로 희석하여 L-히스티딘이 첨가된 최소 고체 배지에서 스포팅 (spotting) 배양하였다. 상기 사용된 최소 고체 배지 조성은 다음과 같다:
최소 배지 (pH 7.2)
포도당 10g, KH2PO4 1 g, K2HPO4 2 g, MgSO4 7H2O 0.4 g, 요소 2 g, (NH4)2SO4 5 g, NaCl 0.5 g, 니코틴아미드 5 ㎍, 칼슘-판토텐산 0.1 ㎍, 바이오틴 0.2 ㎍, 티아민 HCl 3 ㎍, Trace elements solution* 1ml (증류수 1 리터 기준), 20g Agar
*Trace elements solution
Na2B4O7 10H2O 0.09 g, (NH4)6Mo7O27 4H2O 0.04 g, ZnSO4 7H2O 0.01 g, CuSO4 5H2O 0.27 g, MnCl2 4H2O 0.01 g, FeCl3 6H2O 1 g, CaCl2 0.01 g (증류수 1 리터 기준)
최소저지농도 실험을 위해, 1 g/L의 L-히스티딘을 최소 고체 배지에 첨가하였고, 48시간 후 세포의 성장을 관찰하여, 그 결과를 하기의 표 2에 나타내었다:
L-히스티딘이 포함된 최소배지에서 외래 L-히스티딘 배출 유전자 후보 도입 코리네박티리움 속 균주들의 성장 정도
균주 L-히스티딘 미포함 최소배지 L-히스티딘 1 g/L 포함 최소배지
ATCC13032ΔN2131 ++++ +
ATCC13032ΔN2131::Haq ++++ +
ATCC13032ΔN2131::Cpi ++++ +
ATCC13032ΔN2131::Kcr ++++ +
ATCC13032ΔN2131::Cst ++++ +
ATCC13032ΔN2131::Lsa ++++ +
ATCC13032ΔN2131::Dva ++ +++
(표 2에서, + 개수는 균주들의 상대적 성장 정도를 나타내는 것으로, 각각 다음을 나타냄:+: single colony는 형성되지 못하나 heavy(single colony로 성장되지 못하고 뭉쳐서 자라는 형태)는 형성됨;
++: heavy 형성되고 single colony 5개 미만 형성됨;
+++: heavy 형성되고 single colony 50개 미만 형성됨;
++++: heavy가 single colony 구분되지 않게 형성됨)
표 2에 나타난 바와 같이, ATCC13032ΔN2131::Dva 균주를 제외한 모든 균주가 L-히스티딘 미포함 최소배지에서 원활히 성장하였다. 그러나 L-히스티딘이 1g/L 포함된 최소배지에서는 대부분의 L-히스티딘 배출 후보 유전자들이 도입된 균주들의 성장이 미미했으며, Dermabacter vaginalis 유래 유전자가 도입된 ATCC13032ΔN2131::Dva 균주만 ATCC13032ΔN2131 대비 월등한 성장을 보였다. 이는, 도입된 Dermabacter vaginalis 유래 단백질이 최소저지농도 이상의 L-히스티딘 포함 배지에서도 L-히스티딘 배출능을 가질 수 있음을 보여준다.
이로부터 Dermabacter vaginalis 유래 단백질 Dva를 코리네박테리움 균주에 최소저지농도 이상의 L-히스티딘에 대한 내성을 부여하며 L-히스티딘 특이 배출능을 갖는 단백질로 선택하였다.
실시예 4. 코리네박테리움 유래 L-히스티딘 생산 균주 KCCM 80179 기반 Dermabacter vaginalis 유래 유전자 도입 균주 제작 및 L-히스티딘 생산능 평가
Dermabacter vaginalis 유래 단백질 Dva의 L-히스티딘 배출능을 확인하기 위하여, Dermabacter vaginalis 유래 유전자 dva를 L-히스티딘 생산균주 KCCM 80179(대한민국 출원특허 제10-2019-004693414-682호) 균주에 도입하였다.
이를 위하여, 실시예 2에서 제작된 벡터 pDZΔN2131, 및 pDZΔN2131-PgapA-Dva를 각각 KCCM80179 균주에 전기천공법으로 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 NCgl2131 유전자가 결손 되거나 L-히스티딘 배출 유전자 후보 (dva)로 치환되어 있는 균주 2종을 제작하였으며, 이를 각각 KCCM 80179ΔN2131 (NCgl2131 유전자가 결손) 및 KCCM 80179ΔN2131-PgapA-Dva (NCgl2131 유전자가 dva로 치환)으로 명명하였다.
상기 제작된 KCCM 80179ΔN2131 및 KCCM 80179ΔN2131-PgapA-Dva 균주의 L-히스티딘 생산능을 확인하기 위하여, 다음과 같은 방법으로 배양하였다: KCCM 80179ΔN2131 및 KCCM 80179ΔN2131-PgapA-Dva 균주를 활성화 배지에서 16시간 동안 배양한 후, 종 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 배양에 사용된 배지 조성은 다음과 같다:
<활성화 배지>
육즙 1%(w/v), 폴리펩톤 1%(w/v), 소듐클로라이드 0.5%(w/v), 효모엑기스 1%(w/v), 한천 2%(w/v), pH 7.2
<종 배지>
포도당 5%(w/v), 박토펩톤 1%(w/v), 소듐클로라이드 0.25%(w/v), 효모엑기스 1%(w/v), 요소 0.4%(w/v), pH 7.2
<생산 배지>
포도당 10%(w/v), 황산암모늄 2%(w/v), 제1인산칼륨 0.1%(w/v), 황산마그네슘7수염 0.05%(w/v), CSL(옥수수 침지액) 2.0%(w/v), 비오틴 200 ㎍/L, 탄산칼슘, pH 7.2,
배양 종료 후, HPLC에 의해 L-히스티딘 생산량 (배지 내 히스티딘 함량)을 측정하여, 그 결과를 다음의 표 3에 나타내었다:
KCCM 80179 유래 Dermabacter vaginalis 유래 유전자 도입 균주의 L-히스티딘 생산량
Cell OD 600 사용한
포도당 (g/L)
히스티딘
생산량 (g/L)
KCCM 80179 51.4 100 14.1
KCCM 80179ΔN2131 51.6 100 13.9
KCCM 80179ΔN2131-PgapA-Dva 42.6 100 17.1
표 3에 나타난 바와 같이, NCgl2131 결손 균주는 모균주인 KCCM 80179 균주와 동등 정도의 L-히스티딘 생산능을 가지는 반면, Dermabacter vaginalis 유래 유전자가 도입된 KCCM 80179ΔN2131-PgapA-Dva 균주는 NCgl2131 결손 균주 및 모균주인 KCCM 80179 균주 대비 L-히스티딘 생산능이 각각 23% 및 21% 이상 증가됨을 확인하였다. 상기 실시예 3 및 4의 결과를 통해, Dermabacter vaginalis 유래 유전자 도입을 통해 최소저해농도 이상의 L-히스티딘 농도에 대한 내성이 증가될 뿐만 아니라, L-히스티딘 생산능도 크게 증가됨을 확인하였다. 이러한 결과는 Dermabacter vaginalis 유래 단백질이 L-히스티딘을 특이적으로 배출할 수 있는 L-히스티딘 배출 단백질임을 입증한다.
실시예 5. Dermabacter vaginalis 유래 L-히스티딘 배출자 유사 단백질 추가 확보
상기 실시예 3과 4에서 Dermabacter vaginalis 유래 단백질의 L-히스티딘 배출능을 확인하였으므로, 상기 단백질과 아미노산 서열 상동성이 높은 유사 단백질을 추가로 확보하기 위하여, DvaFE 중 DvaF의 서열(서열번호 12)을 query로 이용하여 BLAST 탐색을 수행하였다 (표 4 참조).
Figure PCTKR2021019769-appb-img-000001
상기 BLAST 탐색 결과, 60% 이상의 서열 상동성을 나타내고 Dermabacter 속에 속하지 않는 L-히스티딘 배출자 후보 2종을 추가로 선정하여, 다음의 표 5에 나타내었다:
L-히스티딘 배출자 추가 후보 리스트
No. 균 주 Protein Ref Seq. gDNA Ref Seq. 생물 안전도 단백질 서열 유전자
서열
DvaFE 기반 7 Helcobacillus massiliensis WP_055090792.1
(HmaF)
NZ_CYUG01000017.1 2 서열번호 41 (서열번호 12와 95% 상동성 가짐) 서열번호 66
WP_055090293.1
(HmaE)
서열번호 42 (서열번호 13과 95% 상동성 가짐) 서열번호 67
HmaFE 서열번호 41 및 42 서열번호 43 (HmaFE 오페론)
8 Mycobacterium abscessus subsp. abscessus SHX01622.1
(MabF)
FSEE01000013.1 1 서열번호 44 (서열번호 12와 98% 상동성 가짐) 서열번호 68
SHX01653.1
(MabE)
서열번호 45(서열번호 13과 99% 상동성 가짐) 서열번호 69
MabFE 서열번호 44 및 45 서열번호 46 (MabFE 오페론)
실시예 6. 추가 외래 L-히스티딘 배출 유전자 후보 도입 벡터 제작
상기 실시예 5에서 추가 선정된 L-히스티딘 배출 유전자 후보 2종을 코리네 박테리움 속 균주에 도입하기 위한 벡터 2종을 제작하였다. 실시예 2와 동일하게 NCgl2131 유전자를 결손 site로, PgapA를 프로모터로 사용하였다.
Helcobacillus massiliensis 유래 단백질(이하, HmaFE, 서열번호 41, 42)을 코딩하는 오페론(이하, hma, 서열번호 43)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. haq DNA를 수득하기 위하여 Bionics 사(社)의 진합성 서비스를 이용하여 DNA를 합성하였다. 합성된 DNA를 증폭하기 위하여 서열번호 47와 서열번호 48의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1081bp의 hma (서열번호 43)를 포함한 1113bp의 hma 단편을 수득하였다. hma 와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 서열번호 24과 서열번호 49의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 수득된 hma 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Hma로 명명하였다.
Mycobacterium abscessus subsp. abscessus 유래 단백질(이하, MabFE, 서열번호 44, 45)을 코딩하는 오페론(이하, mab, 서열번호 46)의 염기서열 정보를 미국보건원 진뱅크(NIH GenBank)로부터 획득하였다. mab DNA를 수득하기 위하여 Bionics 사(社)의 진합성 서비스를 이용하여 DNA를 합성하였다. 합성된 DNA를 증폭하기 위하여 서열번호 50와 서열번호 51의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1081bp의 mab(서열번호 46)를 포함한 1113bp의 mab 단편을 수득하였다. mab 와 연결 가능한 PgapA 단편을 수득하기 위하여, ATCC13032의 염색체를 주형으로 서열번호 24과 서열번호 52의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 409bp의 PgapA(서열번호 15)를 포함한 441bp의 PgapA 단편을 수득하였다. 수득된 mab 단편과 PgapA 단편, 그리고 ScaI 제한효소로 절단된 pDZΔN2131 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pDZΔN2131-PgapA-Mab로 명명하였다.
실시예 7. L-히스티딘 생산 균주 KCCM 80179 기반 Helcobacillus massiliensis 유래, Mycobacterium abscessus subsp. abscessus 유래 유전자 도입 균주 제작 및 L-히스티딘 생산능 평가
Helcobacillus massiliensis 유래 단백질 Hma 및 Mycobacterium abscessus subsp. abscessus 유래 단백질 Mab가 L-히스티딘 배출능을 갖는지 확인하기 위하여, hmamab를 각각 L-히스티딘 생산균주 KCCM 80179 균주에 도입하였다.
이를 위해 실시예 6에서 제작된 벡터 pDZΔN2131-PgapA-Hma 및 pDZΔN2131-PgapA-Mab를 각각 KCCM80179 균주에 전기천공법으로 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 NCgl2131 유전자가 L-히스티딘 배출유전자 후보로 치환되어 있는 균주 2종을 제작하였으며, 이를 각각 KCCM 80179ΔN2131-PgapA-Hma (NCgl2131 유전자가 hma로 치환) 및 KCCM 80179ΔN2131-PgapA-Mab (NCgl2131 유전자가 mab로 치환)으로 명명하였다.
상기 제작된 KCCM 80179ΔN2131-PgapA-Hma 및 KCCM 80179ΔN2131-PgapA-Mab 균주의 L-히스티딘 생산능을 확인하기 위하여, 상기 균주를 실시예 4에서 수행한 방법으로 배양하고 L-히스티딘 생산량을 측정하였다. 대조군으로 실시예 4에서 제작된 KCCM 80179ΔN2131 균주와 KCCM 80179ΔN2131-PgapA-Dva 균주에 대하여 동일한 방법으로 배양 및 L-히스티딘 생산량(배지 내 히스티딘 함량) 측정을 수행하였다. 상기 얻어진 결과를 표 6에 나타내었다.
KCCM 80179 유래 Helcobacillus massiliensis 유래 유전자 또는 Mycobacterium abscessus subsp. abscessus 유래 유전자 도입 균주의 L-히스티딘 생산량
OD 사용한
포도당 (g/L)
히스티딘
생산량 (g/L)
KCCM 80179 51.1 100 14.1
KCCM 80179ΔN2131 50.5 100 13.9
KCCM 80179ΔN2131-PgapA-Dva 41.6 100 17.1
KCCM 80179ΔN2131-PgapA-Hma 42.8 100 16.4
KCCM 80179ΔN2131-PgapA-Mab 44.1 100 16.1
표 6에 나타난 바와 같이, KCCM 80179ΔN2131-PgapA-Hma 균주 및 KCCM 80179ΔN2131-PgapA-Mab 균주는 모균주인 KCCM 80179 균주 대비 L-히스티딘 생산량이 각각 18% 및 15.8% 증가하였다. 이러한 결과는 Helcobacillus massiliensis 유래 단백질과 Mycobacterium abscessus subsp. abscessus 유래 단백질도 L-히스티딘을 특이적으로 배출할 수 있는 L-히스티딘 배출자로 선별될 수 있음을 보여준다.
실시예 8. L-히스티딘 생산 균주 CA14-737 기반 Dermabacter vaginalis 유래 , Helcobacillus massiliensis 유래, Mycobacterium abscessus subsp. abscessus 유래 유전자 도입 균주 제작 및 L-히스티딘 생산능 평가
상기 Dermabacter vaginalis 유래 단백질 Dva, Helcobacillus massiliensis 유래 단백질 Hma, 및 Mycobacterium abscessus subsp. abscessus 유래 단백질 Mab의 L-히스티딘 배출능을 다시 한번 확인하기 위하여, 야생형의 코리네박테리움 글루타미쿰 ATCC13032 유래로 L-히스티딘에 의한 피드백 제한 해소 HisG 폴리펩티드 변이 도입, L-히스티딘 생합성 유전자가 강화된 L-히스티딘 생산균주 CA14-737(대한민국 출원특허 제10-2019-004693414-682호) 균주에 도입하였다.
이를 위해 실시예 2와 6에서 제작된 벡터 4종(pDZΔN2131, pDZΔN2131-PgapA-Dva, pDZΔN2131-PgapA-Hma, pDZΔN2131-PgapA-Mab)을 각각 CA14-737 균주에 전기천공법으로 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 NCgl2131 유전자가 결손되거나 L-히스티딘 배출유전자 후보로 치환되어 있는 균주 4종을 제작하였으며, 이를 각각 CA14-737ΔN2131, CA14-737ΔN2131-PgapA-Dva, CA14-737ΔN2131-PgapA-Hma, 및 CA14-737ΔN2131-PgapA-Mab으로 명명하였다.
상기 제작된 CA14-737ΔN2131, CA14-737ΔN2131-PgapA-Dva, CA14-737ΔN2131-PgapA-Hma, CA14-737ΔN2131-PgapA-Mab 균주의 L-히스티딘 생산능을 확인하기 위하여, 실시예 4에서 수행한 방법으로 배양하고 L-히스티딘 생산량(배지 내 히스티딘 함량)을 측정하여, 그 결과를 다음의 표 7에 나타내었다:
CA14-737 유래 Dermabacter vaginalis 유래 유전자, Helcobacillus massiliensis 유래 유전자, Mycobacterium abscessus subsp. abscessus 유래 유전자 도입 균주의 L-히스티딘 생산량
OD 사용한
포도당 (g/L)
히스티딘
생산량 (g/L)
CA14-737 89.6 100 4.0
CA14-737ΔN2131 90.1 100 4.1
CA14-737ΔN2131-PgapA-Dva 71.8 100 6.5
CA14-737ΔN2131-PgapA-Hma 73.8 100 5.9
CA14-737ΔN2131-PgapA-Mab 70.1 100 6.1
표 7에 나타난 바와 같이, Dermabacter vaginalis 유래 유전자가 도입된 CA14-737ΔN2131-PgapA-Dva 균주는 모균주인 CA14-737 균주 대비 L-히스티딘 생산량이 62.5% 증가하였고, Helcobacillus massiliensis 유래 유전자가 도입된 CA14-737ΔN2131-PgapA-Hma 균주는 47.5% 증가하였으며, Mycobacterium abscessus subsp. abscessus 유래 유전자가 도입된 CA14-737ΔN2131-PgapA-Mab 균주는 52.5% 증가하였다. 이를 통해 Dermabacter vaginalis 유래 단백질, Helcobacillus massiliensis 유래 단백질, 및 Mycobacterium abscessus subsp. abscessus 유래 단백질 모두 L-히스티딘을 특이적으로 배출할 수 있는 L-히스티딘 배출자임을 다시 한번 확인하였다. 상기 제작된 재조합 균주들 중에서, CA14-737ΔN2131-PgapA-Dva 균주 (Corynebacterium glutamicum CA14-0875)를 2020년09월21일자로 대한민국 서울시 서대문구에 소재하는 부다페스트 조약하의 국제기탁기관인 한국미생물보존센터(KCCM)에 국제 기탁하여 KCCM12793P로 기탁번호를 부여받았다.
실시예 9. Dermabacter vaginalis 유래 , Helcobacillus massiliensis 유래, Mycobacterium abscessus subsp. abscessus 유래 단백질 대장균 발현용 벡터 제작
상기 선별된 L-히스티딘 배출자가 다양한 균주에서 L-히스티딘 생산능을 나타내는지 확인하였다. 이를 위하여, 대장균에서 Dermabacter vaginalis 유래, Helcobacillus massiliensis 유래, Mycobacterium abscessus subsp. abscessus 유래 단백질을 각각 발현시킬 수 있는 벡터를 제작하였다. 각각의 유전자는 대장균 발현 벡터인 pCC1BAC(이하, pBAC, Epicenter corp.)에 클로닝 되었으며, 대장균 균주 MG1655의 yccA 프로모터(이하, PyccA, 서열번호 53) 하에서 발현시켰다.
Dermabacter vaginalis 유래 dva를 증폭하기 위하여 Dermabacter vaginalis 균주의 염색체 DNA를 주형으로 하여 서열번호 54와 서열번호 55의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1081bp의 dva (서열번호 10)를 포함한 1113bp의 dva 단편을 수득하였다. dva 와 연결 가능한 PyccA 단편을 수득하기 위하여 MG1655의 염색체를 주형으로 서열번호 56과 서열번호 57의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 100bp의 PyccA(서열번호 53)를 포함한 132bp의 PyccA 단편을 수득하였다. 수득된 dva 단편과 PyccA 단편, 그리고 EcoRI 제한효소로 절단된 pBAC 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pBAC-PyccA-Dva로 명명하였다.
Helcobacillus massiliensis 유래 hma를 증폭하기 위하여, 실시예 6에서 제작한 pDZΔN2131-PgapA-Hma 벡터 DNA를 주형으로 하여 서열번호 58와 서열번호 59의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1081bp의 hma (서열번호 43)를 포함한 1113bp의 hma 단편을 수득하였다. hma 와 연결 가능한 PyccA 단편을 수득하기 위하여 MG1655의 염색체를 주형으로 서열번호 56과 서열번호 60의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 100bp의 PyccA(서열번호 53)를 포함한 132bp의 PyccA 단편을 수득하였다. 수득된 hma 단편과 PyccA 단편, 그리고 EcoRI 제한효소로 절단된 pBAC 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pBAC-PyccA-Hma로 명명하였다.
Mycobacterium abscessus subsp. abscessus 유래 mab를 증폭하기 위하여, 실시예 6에서 제작한 pDZΔN2131-PgapA-Mab 벡터 DNA를 주형으로 하여 서열번호 61와 서열번호 62의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 1081bp의 mab (서열번호 46)를 포함한 1113bp의 mab 단편을 수득하였다. mab 와 연결 가능한 PyccA 단편을 수득하기 위하여, MG1655의 염색체를 주형으로 서열번호 56과 서열번호 63의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 다음과 같이 하였다: 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행. 그 결과 100bp의 PyccA(서열번호 53)를 포함한 132bp의 PyccA 단편을 수득하였다. 수득된 mab 단편과 PyccA 단편, 그리고 EcoRI 제한효소로 절단된 pBAC 벡터를 깁슨 어셈블리 방법을 이용하여 클로닝하여, 재조합 플라스미드를 획득하였으며, 이를 pBAC-PyccA-Mab로 명명하였다.
실시예 10. 대장균 유래 L-히스티딘 생산 균주 기반 Dermabacter vaginalis 유래 유전자 도입 균주 제작 및 L-히스티딘 생산능 평가
대장균 유래 L-히스티딘 생산 균주를 기반으로 새로운 히스티딘 배출자 3종(Dva, Hma, Mab)의 L-히스티딘 배출능을 확인하기 위하여, 상기 제작된 벡터 3종을 기 보고된 유전자형(purR 결손, hisL 결손, hisGr; The directed modification of Escherichia coli MG1655 to obtain histidine-producing mutants; Applied Biochemistry and Microbiology, 2013, Vol. 49, No. 2, pp. 130-135)을 갖는 CA14-9003e 균주 (MG1655+ hisGr hisL'_Δ ΔpurR)에 도입하였다. 이를 위하여 상기 실시예 9에서 제작된 벡터 3종(pBAC-PyccA-Dva, pBAC-PyccA-Hma, pBAC-PyccA-Mab)와 pBAC 벡터를 각각 도입하여, CA14-9003e/pBAC, CA14-9003e/pBAC-PyccA-Dva, CA14-9003e/pBAC-PyccA-Hma, 및 CA14-9003e/pBAC-PyccA-Mab 균주를 제작하였다.
제작된 CA14-9003e/pBAC, CA14-9003e/pBAC-PyccA-Dva, CA14-9003e/pBAC-PyccA-Hma, CA14-9003e/pBAC-PyccA-Mab 균주의 L-히스티딘 생산능을 확인하기 위하여, 다음과 같은 방법으로 배양하였다. 균주들을 LB 고체 배지(클로람페니콜 25㎍/ml 포함)에서 16시간 동안 배양한 후, LB 액체 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 37 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 대장균 생산 배지(Applied Biochemistry and Microbiology, 2013, Vol. 49, No. 2, pp. 130-135) 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 37 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 배양에 사용된 배지는 다음과 같다:
<대장균 생산배지>
포도당 4%(w/v), 효모추출액 0.2%(w/v), 황산암모늄 1.6%(w/v), 제2인산칼륨3수염 0.06%(w/v), 황산철7수염 0.0005%(w/v), 황산마그네슘 5수염 0.0005%(w/v), 탄산칼슘, pH 7.2,
배양 종료 후 HPLC에 의해 L-히스티딘 생산량(배지 내 히스티딘 함량)을 측정하여 그 결과를 다음의 표 8에 나타내었다.
CA14-9003e 유래 Dermabacter vaginalis 유래 유전자, Helcobacillus massiliensis 유래 유전자, Mycobacterium abscessus subsp. abscessus 유래 유전자 도입 균주의 L-히스티딘 생산량
OD 사용한
포도당 (g/L)
히스티딘
생산량 (g/L)
CA14-9003e/pBAC 23.6 40 3.2
CA14-9003e/pBAC-PgapA-Dva 17.6 40 4.2
CA14-9003e/pBAC-PgapA-Hma 18.7 40 3.9
CA14-9003e/pBAC-PgapA-Mab 18.9 40 3.8
표 8에 나타난 바와 같이, Dermabacter vaginalis 유래 유전자가 도입된 CA14-9003e/pBAC-PgapA-Dva 균주는 모균주인 CA14-9003e/pBAC 균주 대비 L-히스티딘 생산량이 62.5% 증가하였고, Helcobacillus massiliensis 유래 유전자가 도입된 CA14-9003e/pBAC-PgapA-Hma 균주는 21.9% 증가하였으며, Mycobacterium abscessus subsp. abscessus 유래 유전자가 도입된 CA14-9003e/pBAC-PgapA-Mab 균주는 18.8% 증가하였다. 이를 통해 Dermabacter vaginalis 유래 단백질, Helcobacillus massiliensis 유래 단백질, Mycobacterium abscessus subsp. abscessus 유래 단백질 모두 대장균 L-히스티딘 생산 균주에서도 L-히스티딘을 특이적 배출자로 작동함을 확인하였다.
상기 결과를 통해, Dermabacter vaginalis 유래 단백질과의 상동성이 60% 이상인 단백질을 미생물에 도입시 L-히스티딘을 특이적으로 세포 밖으로 배출하는 배출자로써 작동함을 확인하였다.
이상, 본 명세서에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 본 명세서에서 개시된 다양한 요소들의 가능한 모든 조합이 본 명세서에서 제안되는 발명의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 명세서의 발명의 범주가 제한된다고 할 수 없으며, 당해 기술분야의 통상의 지식을 가진 자가 본 명세서에 기재된 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있는 한, 이러한 등가물은 본 명세서에서 제안되는 발명에 포함되는 것으로 의도된다.
[수탁번호]
기탁기관명: 한국미생물보존센터
수탁번호: KCCM12793P
수탁일자: 20200921
Figure PCTKR2021019769-appb-img-000002

Claims (15)

  1. 서열번호 12, 서열번호 13, 또는 이의 조합과 60% 이상의 서열 상동성을 갖는 단백질을 발현하도록 변형된, L-히스티딘 생산 미생물.
  2. 제1항에 있어서, 상기 단백질은 외래의 단백질인, L-히스티딘 생산 미생물.
  3. 제1항에 있어서, 상기 변형은 서열번호 12, 서열번호 13, 또는 이의 조합과 60% 이상의 서열 상동성을 갖는 아미노산 서열을 암호화하는 유전자의 도입에 의한 것인, L-히스티딘 생산 미생물.
  4. 제1항에 있어서, 상기 단백질은 서열번호 12 및 13, 서열번호 41 및 42, 또는 서열번호 44 및 45의 아미노산 서열로 표현되는 것인, L-히스티딘을 생산하는 미생물.
  5. 제4항에 있어서, 상기 변형은 서열번호 12 및 13, 서열번호 41 및 42, 또는 서열번호 44 및 45의 아미노산 서열을 암호화하는 유전자의 도입에 의한 것인, L-히스티딘 생산 미생물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 미생물은 코리네박테리움 속 또는 에스케리키아 속인, L-히스티딘 생산 미생물.
  7. 제6항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰 또는 에스케리키아 콜라이인, L-히스티딘 생산 미생물.
  8. 서열번호 12, 서열번호 13, 또는 이의 조합과 60% 이상의 서열 상동성을 갖는 단백질,
    상기 단백질을 암호화하는 유전자,
    상기 유전자를 포함하는 재조합 벡터, 또는
    상기 유전자 또는 상기 재조합 벡터를 포함하는 재조합 미생물
    을 포함하는, L-히스티딘 생산용 조성물.
  9. 제8항에 있어서, 상기 단백질은 서열번호 12 및 13, 서열번호 41 및 42, 또는 서열번호 44 및 45의 아미노산 서열로 표현되는 것인, L-히스티딘 생산용 조성물.
  10. 제8항 또는 제9항에 있어서, 상기 미생물은 코리네박테리움 속 또는 에스케리키아 속인, L-히스티딘 생산용 조성물.
  11. 제10항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰 또는 에스케리키아 콜라이인, L-히스티딘 생산용 조성물.
  12. 제1항 내지 제5항 중 어느 한 항의 L-히스티딘 생산 미생물을 배지에서 배양하는 단계를 포함하는, L-히스티딘 생산 방법.
  13. 제12항에 있어서, 상기 배양하는 단계 이후에, 배양된 미생물 또는 배지로부터 L-히스티딘을 회수하는 단계를 추가로 포함하는, L-히스티딘 생산 방법.
  14. 제12항에 있어서, 상기 미생물은 코리네박테리움 속 또는 에스케리키아 속인, L-히스티딘 생산 방법.
  15. 제14항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰 또는 에스케리키아 콜라이인, L-히스티딘 생산 방법.
PCT/KR2021/019769 2020-12-24 2021-12-23 L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법 WO2022139523A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023514404A JP2023540292A (ja) 2020-12-24 2021-12-23 L-ヒスチジン排出蛋白質およびこれを利用したl-ヒスチジン生産方法
CN202180078472.7A CN116615548A (zh) 2020-12-24 2021-12-23 L-组氨酸输出蛋白和使用其生产l-组氨酸的方法
AU2021409842A AU2021409842A1 (en) 2020-12-24 2021-12-23 L-histidine export protein and method of producing l-histidine using same
EP21911588.8A EP4269597A1 (en) 2020-12-24 2021-12-23 L-histidine export protein and method of producing l-histidine using same
CA3197710A CA3197710A1 (en) 2020-12-24 2021-12-23 L-histidine export protein and method of producing l-histidine using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200183702A KR20220092182A (ko) 2020-12-24 2020-12-24 L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법
KR10-2020-0183702 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022139523A1 true WO2022139523A1 (ko) 2022-06-30

Family

ID=82159751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019769 WO2022139523A1 (ko) 2020-12-24 2021-12-23 L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법

Country Status (7)

Country Link
EP (1) EP4269597A1 (ko)
JP (1) JP2023540292A (ko)
KR (2) KR20220092182A (ko)
CN (1) CN116615548A (ko)
AU (1) AU2021409842A1 (ko)
CA (1) CA3197710A1 (ko)
WO (1) WO2022139523A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051233A (ko) * 1999-10-27 2001-06-25 데구사-휠스 악티엔게젤샤프트 측쇄 아미노산의 배출을 암호화하는 뉴클레오타이드 서열,이의 분리 방법 및 이의 용도
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR20170096617A (ko) * 2017-08-11 2017-08-24 대상 주식회사 비산화 펜토오스 인산 경로 관련 효소의 불활성화에 의한 히스티딘 생산능 변이 균주
KR101904666B1 (ko) * 2017-08-02 2018-11-29 씨제이제일제당 (주) Atp 포스포리보실기 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
KR101968317B1 (ko) 2018-02-23 2019-04-11 씨제이제일제당 주식회사 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
KR20190046934A (ko) 2016-09-13 2019-05-07 유니메이트 로보티카, 에스.엘. 페이스티 물질들을 투여하기 위한 장치
KR20190065984A (ko) * 2019-04-22 2019-06-12 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051233A (ko) * 1999-10-27 2001-06-25 데구사-휠스 악티엔게젤샤프트 측쇄 아미노산의 배출을 암호화하는 뉴클레오타이드 서열,이의 분리 방법 및 이의 용도
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR20190046934A (ko) 2016-09-13 2019-05-07 유니메이트 로보티카, 에스.엘. 페이스티 물질들을 투여하기 위한 장치
KR101904666B1 (ko) * 2017-08-02 2018-11-29 씨제이제일제당 (주) Atp 포스포리보실기 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
KR20170096617A (ko) * 2017-08-11 2017-08-24 대상 주식회사 비산화 펜토오스 인산 경로 관련 효소의 불활성화에 의한 히스티딘 생산능 변이 균주
KR101968317B1 (ko) 2018-02-23 2019-04-11 씨제이제일제당 주식회사 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
KR20190065984A (ko) * 2019-04-22 2019-06-12 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
APPLIED BIOCHEMISTRY AND MICROBIOLOGY, vol. 49, no. 2, 2013, pages 130 - 135
ARCH MICROBIOL, vol. 180, pages 155 - 160
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DATABASE PROTEIN 28 July 2021 (2021-07-28), ANONYMOUS : "AzlC family ABC transporter permease [Dermabacter vaginalis] ", XP055945322, retrieved from NCBI Database accession no. WP_065248528 *
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES, vol. 14, 1986, pages 6745
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
JORN KALINOWSKI ET AL., JOURNAL OF BIOTECHNOLOGY, vol. 104, 2003, pages 5 - 25
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL.: "The European Molecular Biology Open Software Suite", TRENDS GENET, vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2

Also Published As

Publication number Publication date
KR20220092182A (ko) 2022-07-01
CA3197710A1 (en) 2022-06-30
EP4269597A1 (en) 2023-11-01
CN116615548A (zh) 2023-08-18
KR20230149787A (ko) 2023-10-27
JP2023540292A (ja) 2023-09-22
AU2021409842A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2021162459A1 (ko) 변이형 LysE를 포함하는 미생물, 및 이를 이용한 L-아미노산 생산 방법
WO2019027267A2 (ko) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2019190193A1 (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2022225322A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 알파 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022124671A1 (ko) 쉬와넬라 오네이덴시스 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
WO2022163917A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022154190A1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163923A1 (ko) 신규한 atp 포스포리보실트랜스퍼라제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163922A1 (ko) 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163920A1 (ko) 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022225320A1 (ko) 신규한 포스포글리세린산 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225321A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 감마 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022139523A1 (ko) L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법
WO2022215800A1 (ko) 신규한 분지쇄아미노산 투과효소 변이체 및 이를 이용한 l-발린 생산 방법
WO2022158646A1 (ko) 신규한 쿠퍼익스포팅 p-type 에이티피에이즈 a 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2022163930A1 (ko) 신규한 2-숙시닐-5-엔도피루빌-6-하이드록시-3-사이클로헥센-1-카복실레이트 신타아제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163929A1 (ko) 신규한 펩티딜-디펩티다제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154186A1 (ko) 신규한 피토엔 탈포화효소 변이체 및 이를 이용한 imp 생산 방법
WO2022163925A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163921A1 (ko) 신규한 스퍼미딘 신타제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514404

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3197710

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008012

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021409842

Country of ref document: AU

Date of ref document: 20211223

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180078472.7

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023008012

Country of ref document: BR

Free format text: EXIGENCIAS:1 - APRESENTAR PROCURACAO REGULAR, UMA VEZ QUE A PROCURACAO APRESENTADA NAO POSSUI ASSINATURA.2 - COM BASE NA PORTARIA 48 DE 20/06/2022, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO 870230035116 DE 27/04/2023 POSSUI INFORMACOES DIVERGENTES DO PEDIDO NO CAMPO 120 . DEVERA SER INCLUIDO NA RESPOSTA O CAMPO 140 / 141 , UMA VEZ QUE O DEPOSITANTE JA POSSUI O NUMERO DO PEDIDO NO BRASIL.

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911588

Country of ref document: EP

Effective date: 20230724

ENP Entry into the national phase

Ref document number: 112023008012

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427