WO2013018710A1 - 希土類元素の回収方法 - Google Patents

希土類元素の回収方法 Download PDF

Info

Publication number
WO2013018710A1
WO2013018710A1 PCT/JP2012/069180 JP2012069180W WO2013018710A1 WO 2013018710 A1 WO2013018710 A1 WO 2013018710A1 JP 2012069180 W JP2012069180 W JP 2012069180W WO 2013018710 A1 WO2013018710 A1 WO 2013018710A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
carbon
earth element
oxide
treatment
Prior art date
Application number
PCT/JP2012/069180
Other languages
English (en)
French (fr)
Inventor
星 裕之
菊川 篤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201280038041.9A priority Critical patent/CN103717764B/zh
Priority to JP2013512663A priority patent/JP5327409B2/ja
Priority to EP12819272.1A priority patent/EP2738270B1/en
Priority to US14/234,750 priority patent/US9322082B2/en
Publication of WO2013018710A1 publication Critical patent/WO2013018710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering a rare earth element from a processing object including at least a rare earth element and an iron group element, such as an R—Fe—B permanent magnet (R is a rare earth element).
  • R—Fe—B permanent magnets are used in various fields today because they have high magnetic properties.
  • R-Fe-B permanent magnet production plants produce a large amount of magnets every day, but due to an increase in the production of magnets, processing defects etc. during the manufacturing process.
  • the amount of magnet scrap discharged as magnets and magnet processed scraps discharged as cutting scraps, grinding scraps, and the like is also increasing.
  • the processing yield ratio tends to increase and the manufacturing yield tends to decrease year by year.
  • Patent Document 1 As a method for recovering rare earth elements from a processing object containing at least a rare earth element and an iron group element, several methods have been proposed so far.
  • the processing object is placed in an oxidizing atmosphere. After heating to obtain an oxide of the contained metal element, it is mixed with water to form a slurry, and hydrochloric acid is added with heating to dissolve the rare earth element in the solution.
  • the resulting solution is heated with an alkali (sodium hydroxide) , Ammonia, potassium hydroxide, etc.) to precipitate the iron group element leached into the solution together with the rare earth element, and then separate the solution from the undissolved material and the precipitate.
  • alkali sodium hydroxide
  • This method does not require an acid or alkali like the method described in Patent Document 1, and the atmosphere in the crucible is theoretically oxidized by oxidizing the iron group element by heating the object to be processed in the carbon crucible. Therefore, it is considered that the method is superior in that the process is simple compared to the method described in Patent Document 1 because it is autonomously controlled to the oxygen partial pressure at which only rare earth elements are oxidized.
  • the atmosphere in the crucible can be autonomously controlled to a predetermined oxygen partial pressure to separate the rare earth element and the iron group element. It is not.
  • the desirable oxygen-containing concentration of the atmosphere in the crucible is 1 ppm to 1%, but there is essentially no need for an external operation for controlling the atmosphere.
  • rare earth elements and iron group elements cannot be separated at least when the oxygen-containing concentration is less than 1 ppm. Therefore, if the object to be treated is heated in a carbon crucible, the atmosphere in the crucible is theoretically controlled autonomously to an oxygen partial pressure in which only rare earth elements are oxidized without oxidizing iron group elements. However, it is actually necessary to artificially control the inside of the crucible to an atmosphere having an oxygen-containing concentration of 1 ppm or more.
  • Such control can be performed by introducing an inert gas having an oxygen-containing concentration of 1 ppm or more into the crucible as described in Patent Document 2, but argon is widely used as an industrial inert gas.
  • the oxygen concentration is usually 0.5 ppm or less. Therefore, in order to introduce an argon gas having an oxygen-containing concentration of 1 ppm or more into the crucible, a general-purpose argon gas cannot be used as it is, and it is necessary to increase the oxygen-containing concentration.
  • the method described in Patent Document 2 seems to be simple at first glance, it is not so, and like the method described in Patent Document 1, it is put to practical use as a recycling system that requires low cost and simplicity. It must be said that it has difficult aspects.
  • an object of the present invention is to provide a method for recovering a rare earth element from a processing object containing at least a rare earth element and an iron group element, which can be put into practical use as a low-cost and simple recycling system.
  • the present inventors have conducted an oxidation treatment on the R—Fe—B permanent magnet, and then moved the treatment environment to the presence of carbon at a predetermined temperature. It has been found that by heat treatment, the rare earth element contained in the magnet can be separated and recovered from the iron group element as an oxide.
  • the method for recovering a rare earth element from a treatment object containing at least a rare earth element and an iron group element according to the present invention based on the above knowledge is obtained by oxidizing the treatment object as described in claim 1. Then, the process environment is transferred to the presence of carbon, and heat treatment is performed at a temperature of 1150 ° C. or higher, thereby including at least a step of separating the rare earth element from the iron group element as an oxide.
  • the method according to claim 2 is the method according to claim 1, wherein the heat treatment in the presence of carbon of the object to be oxidized is performed using a carbon crucible as a processing vessel and a carbon supply source. It is characterized by.
  • the method according to claim 3 is the method according to claim 1, wherein the heat treatment in the presence of carbon of the object to be oxidized is performed by adding a carbon source to a non-carbon treatment vessel. It is characterized by performing.
  • the method according to claim 4 is the method according to claim 1, characterized in that at least a part of the object to be treated is in the form of particles or powder having a particle size of 500 ⁇ m or less.
  • the method according to claim 5 is characterized in that, in the method according to claim 1, the object to be treated is an R—Fe—B permanent magnet.
  • the method according to claim 6 is the method according to claim 5, wherein after the step of separating the rare earth element from the iron group element as an oxide, the oxide of the rare earth element together with the alkali metal carbonate is added to the carbon. It is characterized by performing a step of reducing the boron content of the rare earth element oxide by heat treatment in the presence. Further, according to the method for reducing the boron content of a rare earth element-containing oxide containing boron according to the present invention, the rare earth element-containing oxide containing boron is heat-treated in the presence of carbon together with an alkali metal carbonate. It is characterized by that.
  • the method for recovering a rare earth element from a treatment object containing at least a rare earth element and an iron group element according to the present invention performs an oxidation treatment on the treatment object, then moves the treatment environment to the presence of carbon, and a predetermined temperature. Since the rare earth element can be separated from the iron group element as an oxide by heat treatment at, it is a method that can be put into practical use as a simple recycling system at low cost.
  • the treatment environment is moved to the presence of carbon and 1150 ° C. or higher. It is characterized by comprising at least a step of separating the rare earth element from the iron group element as an oxide by heat treatment at a temperature of
  • the oxidation treatment on the object to be treated in the method of the present invention aims to convert rare earth elements contained in the object to be treated into oxides.
  • the iron group element contained in the processing object may be converted into an oxide together with the rare earth element by the oxidation treatment on the processing object.
  • the oxygen-containing atmosphere may be an air atmosphere.
  • heat treating the object to be treated it may be performed at 350 ° C. to 1000 ° C. for 1 hour to 5 hours, for example.
  • spontaneous ignition or artificial ignition may be performed.
  • the oxidation process with respect to a process target object can also be performed by the alkali process which advances the oxidation of a process target object in alkaline aqueous solution.
  • alkali that can be used for the alkali treatment include sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, and ammonia.
  • concentration of the alkaline aqueous solution may be 0.1 mol / L to 10 mol / L.
  • the treatment temperature include 60 ° C. to 150 ° C.
  • Examples of the treatment time include 1 hour to 10 hours.
  • the molar concentration of oxygen contained in the object to be treated is 1.5 times or more the molar concentration of the rare earth element, and the conversion of the rare earth element to the oxide is more reliable. can do. It is desirable that the molar concentration of oxygen contained in the object to be treated by the oxidation treatment is 2.0 times or more that of the rare earth element. Moreover, it is desirable to perform the oxidation treatment on the object to be treated in the absence of carbon. This is because when the oxidation treatment is performed on the object to be treated in the presence of carbon, the rare earth element contained in the object to be treated may cause an undesired chemical reaction with carbon and inhibit the conversion to a desired oxide. (Thus, “in the absence of carbon” here means that there is no carbon that causes a chemical reaction sufficient to inhibit the conversion of the rare earth element contained in the object to be processed into an oxide).
  • the rare earth element can be separated from the iron group element as an oxide by transferring the object to be treated which has been subjected to the oxidation treatment in the presence of carbon and performing a heat treatment at a temperature of 1150 ° C. or higher. This is because the treatment object subjected to the oxidation treatment is transferred to the presence of carbon and heat treated at a temperature of 1150 ° C. or higher while supplying carbon to the treatment object subjected to the oxidation treatment.
  • the rare earth element oxide contained in the object melts as an oxide at a high temperature, while the iron group element melts by solid solution of carbon, and the iron group element oxide also melts.
  • the melt of the rare earth element oxide and the melt of the iron group element and carbon alloy exist independently of each other without being dissolved.
  • This is based on a phenomenon found by the present inventors to perform, and is described in Patent Document 2 in which carbon is used to oxidize only rare earth elements without oxidizing iron group elements contained in the object to be processed. The role of carbon is completely different from .
  • the temperature at which the object to be treated is heat-treated in the presence of carbon is defined as 1150 ° C. or higher. When the temperature is lower than 1150 ° C., rare earth oxides and alloys of iron group elements and carbon do not melt. Because.
  • the temperature for heat-treating the object to be treated in the presence of carbon is preferably 1300 ° C.
  • the source of carbon for the object to be oxidized may be of any structure or shape, such as graphite (graphite or graphite), charcoal, coke, coal, diamond, etc., but a carbon crucible is used.
  • the carbon crucible serves not only as a processing vessel but also as a carbon source from its surface (of course, it does not prevent further addition of a separate carbon source).
  • the heat treatment in the presence of carbon of the object to be oxidized is performed in an inert gas atmosphere such as an argon gas atmosphere (the oxygen-containing concentration is preferably less than 1 ppm) or in a vacuum ( It is desirable to carry out in less than 1000 Pa).
  • an oxygen-containing atmosphere such as the air atmosphere
  • carbon in the atmosphere reacts with carbon on the surface of the carbon crucible to generate carbon dioxide, and the carbon crucible efficiently plays a role as a carbon supply source.
  • the processing container that can be used is not limited to a carbon crucible as in the method described in Patent Document 2, but a non-carbon processing container, for example, a metal oxide such as alumina, magnesium oxide, or calcium oxide. Or ceramic crucible made of silicon oxide (may be composed of a single material or may be composed of a plurality of materials. Even if it is a material containing a carbon element such as silicon carbide, it is a carbon source. (Including materials made of materials that do not play a role). In the case of using a non-carbon processing container, the processing container does not serve as a carbon supply source. Therefore, the processing object subjected to the oxidation treatment is heat-treated by adding the carbon supply source to the processing container.
  • a non-carbon processing container for example, a metal oxide such as alumina, magnesium oxide, or calcium oxide.
  • ceramic crucible made of silicon oxide may be composed of a single material or may be composed of a plurality of materials. Even if it is a material containing a carbon element
  • a blast furnace, an electric furnace, a high-frequency induction furnace, etc. for iron making are used as a non-carbon processing vessel, and if charcoal or coke is used as a carbon supply source, a large amount of the object to be oxidized is processed at once. Can be heat-treated.
  • the amount of the carbon source to be added is preferably 1.5 times or more in terms of molar ratio with respect to the iron group element contained in the object to be treated.
  • the heat treatment in the presence of carbon of the object to be oxidized is performed in an inert gas atmosphere such as an argon gas atmosphere (the oxygen-containing concentration is preferably less than 1 ppm). Or in a vacuum (desirably less than 1000 Pa) or in an oxygen-containing atmosphere such as an air atmosphere.
  • the heat treatment in the presence of carbon of the object to be oxidized is performed in an oxygen-containing atmosphere, the surplus carbon supply source after the heat treatment becomes carbon dioxide by reacting with oxygen in the atmosphere. Convenient in that it is discharged from the container.
  • both the rare earth element oxide, the iron group element, and the alloy of carbon are melted. Since the former melt is not compatible and the specific gravity of the former melt is lighter than that of the latter melt, it comes to exist on the surface of the latter melt, so that both can be easily separated.
  • the oxide melt of rare earth elements and the melt of the alloy of iron group element and carbon each form a lump and stick to the processing vessel. It is also possible to separate them in the form of
  • a mass of rare earth element oxide and an iron group element and carbon alloy mass fixed to the processing vessel are heat-treated at a temperature of 1350 ° C.
  • both masses are melted and the latter melt is treated. While the former melt is spread on the surface of the container and spreads, the former melt floats on the surface of the latter melt, so the former melt is removed from the latter melt. It can be easily separated. Further, if this phenomenon is utilized, an inert gas such as argon gas in a state in which a processing vessel in which an agglomerate of rare earth element oxide and an agglomerate of an iron group element and carbon are fixed is turned upside down.
  • oxygen-containing concentration is preferably less than 1 ppm
  • a vacuum preferably less than 1000 Pa
  • the oxide of the rare earth element recovered by separation from the alloy of the iron group element and carbon by such a method can be converted into a rare earth metal by reduction, for example, by a molten salt electrolysis method.
  • the processing object containing at least a rare earth element and an iron group element to which the method of the present invention is applied includes a rare earth element such as Nd, Pr, Dy, Tb, and Sm and an iron group element such as Fe, Co, and Ni.
  • a rare earth element such as Nd, Pr, Dy, Tb, and Sm
  • an iron group element such as Fe, Co, and Ni.
  • other elements such as boron may be included.
  • Specific examples include R—Fe—B permanent magnets.
  • the size and shape of the object to be processed are not particularly limited. When the object to be processed is an R—Fe—B permanent magnet, it may be magnet scrap or magnet processing waste discharged during the manufacturing process. .
  • the object to be treated is granular or powdery having a particle size of 500 ⁇ m or less (for example, considering the ease of preparation, the lower limit of the particle size is 1 ⁇ m is desirable).
  • the object to be processed is in such a granular or powder form, and it may be a part of the object to be processed.
  • the object to be treated containing at least a rare earth element and an iron group element to which the method of the present invention is applied contains boron as another element such as an R—Fe—B permanent magnet
  • the rare earth element oxide recovered by separation from the alloy of the group element and carbon contains some amount of boron.
  • a rare earth element containing boron is reduced by a molten salt electrolysis method using a molten salt component containing fluorine, boron contained in the rare earth element reacts with fluorine to generate toxic boron fluoride. There is a fear. Therefore, in such a case, it is desirable to reduce the boron content of the rare earth element oxide in advance.
  • the boron content of rare earth oxides containing boron can be reduced by, for example, heat treating rare earth oxides containing boron together with alkali metal carbonates (lithium carbonate, sodium carbonate, potassium carbonate, etc.) in the presence of carbon. Can be done.
  • the heat treatment in the presence of carbon may be performed at 1300 ° C. to 1600 ° C. using graphite (graphite or graphite), charcoal, coke, coal, diamond or the like as a carbon supply source.
  • An appropriate heat treatment time is, for example, 30 minutes to 5 hours.
  • Heat treatment using a carbon crucible is advantageous because the carbon crucible serves as a carbon source from the surface as well as a treatment vessel (of course preventing further addition of a separate carbon source) is not).
  • the alkali metal carbonate may be used in an amount of 0.1 to 2 parts by weight, for example, with respect to 1 part by weight of a rare earth oxide containing boron.
  • Reference example 1 After storing 2.00 g of iron lump, neodymium lump, iron oxide powder, and neodymium oxide powder in a carbon crucible (external diameter 36 mm x height 10 mm x thickness 5 mm) (hereinafter the same) Then, heat treatment was performed at 1450 ° C. for 1 hour in an industrial argon gas atmosphere (oxygen-containing concentration: 0.2 ppm, flow rate: 10 L / min, the same shall apply hereinafter), and changes in properties were examined when heat treatment was performed using a carbon crucible as a carbon source. .
  • FIG. 1 shows the results of changes in appearance
  • the difference in properties when the rare earth element oxide (neodymium oxide) and the iron group element oxide (iron oxide) were heat-treated in the presence of carbon was clarified.
  • the example supported the fact that the rare earth elements can be separated from iron as oxides.
  • Example 1 After dewatering the processed waste (stored in water for 7 days to prevent spontaneous ignition) generated during the manufacturing process of R-Fe-B permanent magnets by suction filtration. Oxidation treatment was performed by igniting fire in an air atmosphere and performing combustion treatment. Table 1 shows the results of ICP analysis (magnification used: ICPV-1017 manufactured by Shimadzu Corp., the same applies hereinafter) of the magnet processing scraps thus oxidized. Further, as a result of gas analysis (device used: EMGA-550W manufactured by Horiba, Ltd., the same applies hereinafter), the molar concentration of oxygen contained in the magnet processing waste subjected to the oxidation treatment was 6.5 times the molar concentration of rare earth elements. It was.
  • Example 2 The magnet processing scraps subjected to the combustion treatment in Example 1 were further heat-treated at 860 ° C. for 2 hours in an air atmosphere to perform an oxidation treatment.
  • the molar concentration of oxygen contained in the magnet processing waste subjected to the oxidation treatment was 10.5 times the molar concentration of rare earth elements.
  • magnet processing scraps that were oxidized in the same manner as in Example 1 were housed in a carbon crucible, heat treated, and then furnace-cooled to room temperature.
  • the carbon crucible contained two types of lumps (lumps). A and lump B) were fixed and present. Table 3 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen of the block B was 98.1%.
  • Comparative Example 1 Instead of the magnet processing waste subjected to the oxidation treatment in Example 1, a prismatic magnet (composition is the same as that of the processing waste) having dimensions of 10 mm in length, 1 mm in width, and 1 mm in thickness not subjected to the oxidation treatment is used.
  • the magnet was housed in a carbon crucible and heat-treated in the same manner as described above, and then cooled to room temperature.
  • the carbon crucible did not form two kinds of lump, and separated rare earth elements from iron as an oxide. ( Figure 7).
  • Comparative Example 2 A magnet ingot having the composition shown in Table 4 was pulverized until the particle size became about 500 ⁇ m.
  • the obtained pulverized product (2.00 g) was stored in a carbon crucible without heat treatment and heat-treated in the same manner as in Example 1, and then cooled to room temperature. No product was formed and the rare earth element could not be separated from iron as an oxide. Note that the pulverized product after the heat treatment collapsed with odor by leaving it in an air atmosphere. From the above results, it was found that when the method described in Patent Document 2 was carried out using industrial argon gas having an oxygen-containing concentration of 0.2 ppm, rare earth elements and iron could not be separated.
  • Example 3 5.00 g of magnet processing scraps subjected to oxidation treatment in Example 2 and 5.00 g of prismatic magnets (the composition is the same as processing scraps) having dimensions of 10 mm in length, 1 mm in width, and 1 mm in thickness not subjected to oxidation treatment.
  • a total of 10.00 g (the total oxygen molar concentration is 5.3 times the molar concentration of rare earth elements) was placed in a carbon crucible in the same manner as in Example 1 and heat-treated, and then cooled to room temperature.
  • two kinds of lumps (lumps A and lumps B) were fixedly present.
  • Table 5 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen in the block B was 86.2%.
  • Example 4 A nickel-plated film is coated on the surface with 5.00 g of magnet processing scraps subjected to oxidation treatment in Example 2 and a cylindrical magnet (composition is the same as processing scraps) having a diameter of 2 mm ⁇ height of 5 mm without oxidation treatment.
  • a total of 9.97 g of the formed 4.97 g (the total oxygen molar concentration is 5.3 times the molar concentration of the rare earth element) is accommodated in the carbon crucible in the same manner as in Example 1 and heat-treated.
  • two kinds of lumps (lumps A and lumps B) were firmly present in the carbon crucible.
  • Table 6 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron
  • the main component of the block B was a rare earth element
  • the rare earth element could be separated from iron as an oxide.
  • the purity of the rare earth element excluding oxygen in the block B was 88.5%.
  • Example 5 The pulverized material prepared in Comparative Example 2 was subjected to an oxidation treatment by heat treatment at 350 ° C. for 1 hour in an air atmosphere. As a result of gas analysis, the molar concentration of oxygen contained in the pulverized product subjected to the oxidation treatment was 2.3 times the molar concentration of rare earth elements. Next, 10.00 g of the pulverized product subjected to the oxidation treatment was placed in a carbon crucible in the same manner as in Example 1 and subjected to heat treatment, and then cooled to room temperature. (Agglomerate A and Agglomerate B) were firmly present. Table 7 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen in the block B was 98.0%.
  • Example 6 The pulverized material prepared in Comparative Example 2 was subjected to an oxidation treatment by heat treatment at 400 ° C. for 1 hour in an air atmosphere. As a result of gas analysis, the molar concentration of oxygen contained in the pulverized product subjected to the oxidation treatment was 3.1 times the molar concentration of rare earth elements. Next, 5.00 g of the pulverized product subjected to the oxidation treatment was placed in a carbon crucible in the same manner as in Example 1 and subjected to heat treatment, followed by furnace cooling to room temperature. (Agglomerate A and Agglomerate B) were firmly present. Table 8 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen in the block B was 97.8%.
  • Example 7 The pulverized material prepared in Comparative Example 2 was subjected to an oxidation treatment by heat treatment at 600 ° C. for 1 hour in an air atmosphere. As a result of gas analysis, the molar concentration of oxygen contained in the pulverized product subjected to the oxidation treatment was 5.2 times the molar concentration of rare earth elements. Next, 10.00 g of the pulverized product subjected to the oxidation treatment was placed in a carbon crucible in the same manner as in Example 1 and subjected to heat treatment, and then cooled to room temperature. (Agglomerate A and Agglomerate B) were firmly present. Table 9 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen in the block B was 98.2%.
  • Example 8 The pulverized material prepared in Comparative Example 2 was subjected to an oxidation treatment by heat treatment at 900 ° C. for 1 hour in an air atmosphere. As a result of gas analysis, the molar concentration of oxygen contained in the pulverized product subjected to the oxidation treatment was 10.5 times the molar concentration of rare earth elements. Next, 10.00 g of the pulverized product subjected to the oxidation treatment was placed in a carbon crucible in the same manner as in Example 1 and subjected to heat treatment, and then cooled to room temperature. (Agglomerate A and Agglomerate B) were firmly present. Table 10 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen in the block B was 97.3%.
  • Example 9 Two types of lumps (lumps A and lumps) that are fixed to the carbon crucible in the same manner as in Example 1 except that the heat treatment in the presence of carbon of the magnet processing scrap subjected to oxidation treatment is performed at 1400 ° C. for 1 hour.
  • Product B was obtained.
  • Table 11 shows the results of analyzing each of the lump A and lump B using SEM / EDX.
  • the main component of the block A was iron
  • the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • the purity of the rare earth element excluding oxygen in the block B was 97.0%.
  • Example 10 Magnet processing scraps 5.00 g and carbon powder (graphite powder) 1.00 g (corresponding to 1.8 times in molar ratio with respect to iron contained in magnet processing scraps) subjected to the oxidation treatment in Example 2, After being accommodated in an alumina crucible having dimensions of an outer diameter of 50 mm, a height of 50 mm, and a wall thickness of 2 mm, it was heat-treated at 1450 ° C. for 1 hour in an industrial argon gas atmosphere. Then, when the alumina crucible was furnace-cooled to room temperature, two types of lumps (lumps A and lumps B) were present in the alumina crucible together with excess carbon powder.
  • alumina crucible having dimensions of an outer diameter of 50 mm, a height of 50 mm, and a wall thickness of 2 mm.
  • Table 12 shows the results of analyzing each of the lump A and lump B using SEM • EDX.
  • the main component of the block A was iron
  • the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide.
  • the purity of the rare earth element excluding oxygen in the block B was 91.8%.
  • Example 11 The carbon crucible to which the two kinds of lumps (lumps A and lumps B) obtained in Example 1 were fixed was heat-treated at 1350 ° C. for 1 hour in an industrial argon gas atmosphere with the top and bottom reversed. All of the lumps were melted, and only the melt of the lumps B mainly composed of rare earth elements dropped into the alumina crucible used as a receiver and fixed as lumps.
  • Table 13 shows the recovery rate of the rare earth element recovered from the magnet processing scrap, which is a processing target of the rare earth element recovered as a lump fixed to the alumina crucible, and the purity of the rare earth element excluding oxygen in the lump.
  • Table 13 shows that the carbon crucible to which the two kinds of lumps obtained in Examples 2, 6, 7, 8, and 9 were fixed was fixed to the alumina crucible when the above heat treatment was performed.
  • the recovery rate from the pulverized product of magnet processing waste or magnet ingot, which is the processing target of the rare earth element recovered as a lump, and the purity of the rare earth element excluding oxygen in the lump are shown together.
  • the purity of the rare earth element excluding oxygen was 95%. Greater agglomerates could be obtained in the alumina crucible.
  • Comparative Example 3 About 10 g of magnet processing scraps of Example 1 were washed with pure water and then dried on a hot plate at 80 ° C. for 1 hour. The obtained dry waste 5.00 g was housed in a carbon crucible and heat-treated in the same manner as in Example 1 without performing an oxidation treatment, and then cooled to room temperature. No product was formed and the rare earth element could not be separated from iron as an oxide. In addition, the dry waste after heat-processing disintegrated with an odor by leaving it in air
  • Example 12 Except that 20.0 g of magnetized scraps subjected to oxidation treatment are accommodated in a carbon crucible having dimensions of outer diameter 70 mm ⁇ height 70 mm ⁇ thickness 10 mm, and then heat-treated at 1600 ° C. for 1 hour in an industrial argon gas atmosphere.
  • two kinds of lumps (lumps A and lumps B) were obtained in a carbon crucible.
  • Table 14 shows the analysis results of the lump A using SEM • EDX and the lump B using ICP. As is apparent from Table 14, the main component of the block A was iron, while the main component of the block B was a rare earth element, and it was found that the rare earth element could be separated from iron as an oxide. .
  • Example 13 After thoroughly pulverizing 3.00 g of the mass B obtained in Example 1 using an agate mortar and an agate pestle, it was placed in a carbon crucible having dimensions of an outer diameter of 36 mm, a height of 10 mm, and a thickness of 5 mm together with 1.50 g of lithium carbonate. Then, heat treatment was performed at 1450 ° C. for 1 hour in an industrial argon gas atmosphere.
  • the boron content of the pulverized product of the mass B before the heat treatment was 2.30 mass%
  • the boron content of the pulverized product after the heat treatment was 1.99 mass%, and it was found that the boron content can be reduced by heat-treating an oxide of a rare earth element containing boron in the presence of carbon together with lithium carbonate.
  • Example 14 After thoroughly crushing 3.00 g of the mass B obtained in Example 1 using an agate mortar and an agate pestle, 0.48 g of potassium carbonate is placed in a carbon crucible having dimensions of an outer diameter of 36 mm, a height of 10 mm, and a thickness of 5 mm. Then, heat treatment was performed at 1450 ° C. for 5 hours in an industrial argon gas atmosphere.
  • the boron content of the pulverized product of the mass B before the heat treatment was 2.30 mass%
  • the boron content of the pulverized material after heat treatment was 1.69 mass%, and it was found that the boron content can be reduced by heat-treating an oxide of a rare earth element containing boron together with potassium carbonate in the presence of carbon.
  • the present invention is industrially applicable in that it can provide a method for recovering a rare earth element from a processing object containing at least a rare earth element and an iron group element, which can be put into practical use as a low-cost and simple recycling system. Have sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 本発明の課題は、低コストで簡易なリサイクルシステムとして実用化が可能な、少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法を提供することである。その解決手段としての本発明の方法は、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離する工程を少なくとも含んでなることを特徴とする。

Description

希土類元素の回収方法
 本発明は、例えばR-Fe-B系永久磁石(Rは希土類元素)などの、少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法に関する。
 R-Fe-B系永久磁石は、高い磁気特性を有していることから、今日様々な分野で使用されていることは周知の通りである。このような背景のもと、R-Fe-B系永久磁石の生産工場では、日々、大量の磁石が生産されているが、磁石の生産量の増大に伴い、製造工程中に加工不良物などとして排出される磁石スクラップや、切削屑や研削屑などとして排出される磁石加工屑などの量も増加している。とりわけ情報機器の軽量化や小型化によってそこで使用される磁石も小型化していることから、加工代比率が大きくなることで、製造歩留まりが年々低下する傾向にある。従って、製造工程中に排出される磁石スクラップや磁石加工屑などを廃棄せず、そこに含まれる金属元素、特に希土類元素をいかに回収して再利用するかが今後の重要な技術課題となっている。また、R-Fe-B系永久磁石を使用した電化製品などから循環資源として希土類元素をいかに回収して再利用するかについても同様である。
 少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法については、これまでにもいくつかの方法が提案されており、例えば特許文献1では、処理対象物を酸化性雰囲気中で加熱して含有金属元素を酸化物とした後、水と混合してスラリーとし、加熱しながら塩酸を加えて希土類元素を溶液に溶解させ、得られた溶液に加熱しながらアルカリ(水酸化ナトリウムやアンモニアや水酸化カリウムなど)を加えることで、希土類元素とともに溶液に浸出した鉄族元素を沈殿させた後、溶液を未溶解物と沈殿物から分離し、溶液に沈殿剤として例えばシュウ酸を加えて希土類元素をシュウ酸塩として回収する方法が提案されている。この方法は、希土類元素を鉄族元素と効果的に分離して回収することができる方法として注目に値する。しかしながら、工程の一部に酸やアルカリを用いることから、工程管理が容易ではなく、また、回収コストが高くつくといった問題がある。従って、特許文献1に記載の方法は、低コストと簡易さが要求されるリサイクルシステムとして実用化するには困難な側面を有するといわざるを得ない。
 また、特許文献2では、処理対象物に含まれる鉄族元素を酸化することなく希土類元素のみを酸化することによって両者を分離する方法として、処理対象物を炭素るつぼの中で加熱する方法が提案されている。この方法は、特許文献1に記載の方法のように酸やアルカリを必要とせず、また、炭素るつぼの中で処理対象物を加熱することで理論的にるつぼ内の雰囲気が鉄族元素が酸化されることなく希土類元素のみが酸化される酸素分圧に自律的に制御されることから、特許文献1に記載の方法に比較して工程が簡易であるという点において優れていると考えられる。しかしながら、単に処理対象物を炭素るつぼの中で加熱すればるつぼ内の雰囲気が所定の酸素分圧に自律的に制御されて希土類元素と鉄族元素を分離できるのかといえば、現実的には必ずしもそうではない。特許文献2では、るつぼ内の雰囲気の望ましい酸素含有濃度は1ppm~1%であるとされているが、本質的には雰囲気を制御するための外的操作は必要とされないとある。しかしながら、本発明者らの検討によれば、少なくとも酸素含有濃度が1ppm未満の場合には希土類元素と鉄族元素は分離できない。従って、炭素るつぼの中で処理対象物を加熱すれば、理論的にはるつぼ内の雰囲気が鉄族元素が酸化されることなく希土類元素のみが酸化される酸素分圧に自律的に制御されるとしても、現実的にはるつぼ内を酸素含有濃度が1ppm以上の雰囲気に人為的に制御する必要がある。こうした制御は、特許文献2にも記載されているように酸素含有濃度が1ppm以上の不活性ガスをるつぼ内に導入することで行うことができるが、工業用不活性ガスとして汎用されているアルゴンガスの場合、その酸素含有濃度は通常0.5ppm以下である。従って、酸素含有濃度が1ppm以上のアルゴンガスをるつぼ内に導入するためには、汎用されているアルゴンガスをそのまま用いることはできず、その酸素含有濃度をわざわざ高めた上で用いる必要がある。結果として、特許文献2に記載の方法は、一見工程が簡易に思えるものの実はそうではなく、特許文献1に記載の方法と同様、低コストと簡易さが要求されるリサイクルシステムとして実用化するには困難な側面を有するといわざるを得ない。
特開2009-249674号公報 国際公開第2010/098381号
 そこで本発明は、低コストで簡易なリサイクルシステムとして実用化が可能な、少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法を提供することを目的とする。
 本発明者らは上記の点に鑑みて鋭意検討を重ねた結果、R-Fe-B系永久磁石に対して酸化処理を行った後、処理環境を炭素の存在下に移し、所定の温度で熱処理することで、磁石に含まれる希土類元素を酸化物として鉄族元素から分離して回収することができることを見出した。
 上記の知見に基づいてなされた本発明の少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法は、請求項1記載の通り、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離する工程を少なくとも含んでなることを特徴とする。
 また、請求項2記載の方法は、請求項1記載の方法において、酸化処理を行った処理対象物の炭素の存在下での熱処理を、炭素るつぼを処理容器および炭素供給源として用いて行うことを特徴とする。
 また、請求項3記載の方法は、請求項1記載の方法において、酸化処理を行った処理対象物の炭素の存在下での熱処理を、非炭素製の処理容器に炭素供給源を添加して行うことを特徴とする。
 また、請求項4記載の方法は、請求項1記載の方法において、処理対象物の少なくとも一部が500μm以下の粒径を有する粒状ないし粉末状であることを特徴とする。
 また、請求項5記載の方法は、請求項1記載の方法において、処理対象物がR-Fe-B系永久磁石であることを特徴とする。
 また、請求項6記載の方法は、請求項5記載の方法において、希土類元素を酸化物として鉄族元素から分離する工程を行った後、希土類元素の酸化物をアルカリ金属の炭酸塩とともに炭素の存在下で熱処理して希土類元素の酸化物のホウ素含量を低減する工程を行うことを特徴とする。
 また、本発明のホウ素を含む希土類元素の酸化物のホウ素含量の低減方法は、請求項7記載の通り、ホウ素を含む希土類元素の酸化物をアルカリ金属の炭酸塩とともに炭素の存在下で熱処理することを特徴とする。
 本発明の少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法は、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、所定の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離することができるので、低コストで簡易なリサイクルシステムとして実用化が可能な方法である。
参考例1における鉄、ネオジム、酸化鉄、酸化ネオジムのそれぞれを炭素の存在下で熱処理した際の外観の変化の結果である。 同、鉄についての熱処理前後のX線回折の結果である。 同、ネオジムについての熱処理前後のX線回折の結果である。 同、酸化鉄についての熱処理前後のX線回折の結果である。 同、酸化ネオジムについての熱処理前後のX線回折の結果である。 実施例1における酸化処理を行った磁石加工屑を炭素の存在下で熱処理した後の炭素るつぼの内部の様子である(2種類の塊状物の存在)。 比較例1における酸化処理を行っていない磁石を炭素の存在下で熱処理した後の炭素るつぼの内部の様子である(塊状物の不存在)。
 本発明の少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法は、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離する工程を少なくとも含んでなることを特徴とするものである。
 まず、本発明の方法における処理対象物に対する酸化処理は、処理対象物に含まれる希土類元素を酸化物に変換することを目的とするものである。特許文献2に記載の方法と異なり、処理対象物に対する酸化処理によって処理対象物に含まれる鉄族元素が希土類元素とともに酸化物に変換されてもよい。処理対象物に対する酸化処理は、酸素含有雰囲気中で処理対象物を熱処理したり燃焼処理したりすることによって行うことが簡便である。酸素含有雰囲気は大気雰囲気であってよい。処理対象物を熱処理する場合、例えば350℃~1000℃で1時間~5時間行えばよい。処理対象物を燃焼処理する場合、例えば自然発火や人為的点火により行えばよい。また、処理対象物に対する酸化処理は、アルカリ水溶液中で処理対象物の酸化を進行させるアルカリ処理によって行うこともできる。アルカリ処理に用いることができるアルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、アンモニアなどが挙げられる。また、アルカリ水溶液の濃度としては0.1mol/L~10mol/Lが挙げられる。処理温度としては60℃~150℃が挙げられる。処理時間としては1時間~10時間が挙げられる。処理対象物に対してこうした酸化処理を行うと、処理対象物に含まれる酸素モル濃度は希土類元素のモル濃度の1.5倍以上となり、希土類元素の酸化物への変換をより確実なものにすることができる。酸化処理によって処理対象物に含まれる酸素モル濃度は希土類元素のモル濃度の2.0倍以上になることが望ましい。また、処理対象物に対する酸化処理は、炭素の非存在下で行うことが望ましい。炭素の存在下で処理対象物に対する酸化処理を行うと、処理対象物に含まれる希土類元素が炭素と望まざる化学反応を起こして所望する酸化物への変換が阻害される恐れがあるからである(従ってここでは「炭素の非存在下」は処理対象物に含まれる希土類元素の酸化物への変換が阻害されるに足る化学反応の起因となる炭素が存在しないことを意味する)。
 次に、酸化処理を行った処理対象物を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離することができる。これは、酸化処理を行った処理対象物を炭素の存在下に移し、酸化処理を行った処理対象物に対して炭素を供給しながら1150℃以上の温度で熱処理すると、酸化処理を行った処理対象物に含まれる希土類元素の酸化物は高温で酸化物のままで溶融するのに対し、鉄族元素は炭素を固溶して合金化して溶融し、また、鉄族元素の酸化物は炭素によって還元された後に炭素を固溶して合金化して溶融し、結果として、希土類元素の酸化物の溶融物と鉄族元素と炭素の合金の溶融物が相溶することなく互いに独立して存在するという本発明者らによって見出された現象に基づくものであり、処理対象物に含まれる鉄族元素を酸化することなく希土類元素のみを酸化するために炭素が利用される特許文献2に記載の方法とは炭素の役割が全く異なる。酸化処理を行った処理対象物を炭素の存在下で熱処理する温度を1150℃以上に規定するのは、1150℃未満であると、希土類元素の酸化物も鉄族元素と炭素の合金も溶融しないからである。酸化処理を行った処理対象物を炭素の存在下で熱処理する温度は1300℃以上が望ましく、1350℃以上がより望ましく、1400℃以上がさらに望ましい。なお、熱処理温度の上限は例えばエネルギーコストの点に鑑みれば1700℃が望ましく、1650℃がより望ましく、1600℃がさらに望ましい。熱処理時間は例えば10分間~3時間が適当である。酸化処理を行った処理対象物に対する炭素の供給源は、グラファイト(黒鉛や石墨)、木炭、コークス、石炭、ダイヤモンドなど、どのような構造や形状のものであってもよいが、炭素るつぼを用いて熱処理を行えば、炭素るつぼは処理容器としての役割とともにその表面からの炭素供給源としての役割も果たすので都合がよい(もちろん別個の炭素供給源をさらに添加することを妨げるものではない)。処理容器として炭素るつぼを用いる場合、酸化処理を行った処理対象物の炭素の存在下での熱処理は、アルゴンガス雰囲気などの不活性ガス雰囲気(酸素含有濃度は1ppm未満が望ましい)中や真空(1000Pa未満が望ましい)中で行うことが望ましい。大気雰囲気などの酸素含有雰囲気中で熱処理を行うと、雰囲気中の酸素が炭素るつぼの表面において炭素と反応することで二酸化炭素を生成し、炭素るつぼが炭素供給源としての役割を効率的に果さない恐れがあるからである。なお、用いることができる処理容器は、特許文献2に記載の方法のように炭素るつぼに限定されるわけではなく、非炭素製の処理容器、例えばアルミナや酸化マグネシウムや酸化カルシウムなどの金属酸化物や酸化ケイ素でできたセラミックスるつぼ(単一の素材からなるものであってもよいし複数の素材からなるものであってもよい。炭化ケイ素などの炭素元素を含む素材であっても炭素供給源としての役割を果さない素材からなるものを含む)などを用いることもできる。非炭素製の処理容器を用いる場合、処理容器は炭素供給源としての役割を果さないので、処理容器に炭素供給源を添加することによって酸化処理を行った処理対象物を熱処理する。また、非炭素製の処理容器として製鉄のための溶鉱炉、電気炉、高周波誘導炉などを用いるとともに、炭素供給源として木炭やコークスなどを用いれば、酸化処理を行った処理対象物を一度に大量に熱処理することができる。添加する炭素供給源の量は処理対象物に含まれる鉄族元素に対してモル比で1.5倍以上であることが望ましい。添加する炭素供給源の量をこのように調整することで、処理対象物に含まれる鉄族元素が酸化処理によって酸化物に変換されてもその還元を確実なものとして炭素との合金化を進行させることができる。なお、非炭素製の処理容器を用いる場合、酸化処理を行った処理対象物の炭素の存在下での熱処理は、アルゴンガス雰囲気などの不活性ガス雰囲気(酸素含有濃度は1ppm未満が望ましい)中や真空(1000Pa未満が望ましい)中で行ってもよいし、大気雰囲気などの酸素含有雰囲気中で行ってもよい。酸化処理を行った処理対象物の炭素の存在下での熱処理を酸素含有雰囲気中で行った場合、熱処理後における余剰の炭素供給源は雰囲気中の酸素と反応することによって二酸化炭素となって処理容器から排出される点において都合がよい。
 以上のようにして酸化処理を行った処理対象物を炭素の存在下で熱処理することで、希土類元素の酸化物と鉄族元素と炭素の合金のいずれもが溶融すると、両者の溶融物は、相溶せず、前者の溶融物は後者の溶融物よりも比重が軽いため、後者の溶融物の表面に浮き上がった状態で存在するようになるので、両者を容易に分離することができる。また、熱処理を行った後に冷却を行うと、希土類元素の酸化物の溶融物と鉄族元素と炭素の合金の溶融物は、それぞれが塊状物を形成して処理容器に固着するので、塊状物の形態で両者を分離することもできる。また、処理容器に固着した希土類元素の酸化物の塊状物と鉄族元素と炭素の合金の塊状物を1350℃以上の温度で熱処理すると、いずれの塊状物も溶融し、後者の溶融物は処理容器の表面に拡散層を形成して展延するのに対し、前者の溶融物は後者の溶融物の表面に浮き上がった状態で存在するようになるので、前者の溶融物を後者の溶融物から容易に分離することができる。また、この現象を利用すれば、希土類元素の酸化物の塊状物と鉄族元素と炭素の合金の塊状物が固着した処理容器を、天地を逆転させた状態で例えばアルゴンガスなどの不活性ガス雰囲気(酸素含有濃度は1ppm未満が望ましい)中や真空(1000Pa未満が望ましい)中で1350℃以上の温度で熱処理することで(熱処理時間は例えば10分間~3時間が適当である)、前者の溶融物だけを落下させて後者の溶融物と分離するといったこともできる。こうした方法で鉄族元素と炭素の合金から分離することで回収された希土類元素の酸化物は、例えば溶融塩電解法などによって還元することで希土類金属に変換することができる。
 なお、本発明の方法の適用対象となる少なくとも希土類元素と鉄族元素を含む処理対象物は、Nd,Pr,Dy,Tb,Smなどの希土類元素とFe,Co,Niなどの鉄族元素を含むものであれば特段の制限はなく、希土類元素と鉄族元素に加えてその他の元素として例えばホウ素などを含んでいてもよい。具体的には、例えばR-Fe-B系永久磁石などが挙げられる。処理対象物の大きさや形状は特段制限されるものではなく、処理対象物がR-Fe-B系永久磁石の場合には製造工程中に排出される磁石スクラップや磁石加工屑などであってよい。処理対象物に対して十分な酸化処理を行うためには、処理対象物は500μm以下の粒径を有する粒状ないし粉末状であることが望ましい(例えば調製の容易性に鑑みれば粒径の下限は1μmが望ましい)。しかしながら、処理対象物の全てがこのような粒状ないし粉末状である必要は必ずしもなく、粒状ないし粉末状であるのは処理対象物の一部であってよい。
 本発明の方法の適用対象となる少なくとも希土類元素と鉄族元素を含む処理対象物が例えばR-Fe-B系永久磁石などのようにその他の元素としてホウ素を含む場合、本発明の方法によって鉄族元素と炭素の合金から分離することで回収された希土類元素の酸化物にはホウ素が多少なりとも含まれる。ホウ素を含む希土類元素の酸化物をフッ素を含む溶融塩成分を用いた溶融塩電解法によって還元すると、希土類元素の酸化物に含まれるホウ素がフッ素と反応することで有毒なフッ化ホウ素が発生する恐れがある。従って、こうした場合には予め希土類元素の酸化物のホウ素含量を低減しておくことが望ましい。ホウ素を含む希土類元素の酸化物のホウ素含量の低減は、例えばホウ素を含む希土類元素の酸化物をアルカリ金属の炭酸塩(炭酸リチウム、炭酸ナトリウム、炭酸カリウムなど)とともに炭素の存在下で熱処理することで行うことができる。炭素の存在下での熱処理は、例えばグラファイト(黒鉛や石墨)、木炭、コークス、石炭、ダイヤモンドなどを炭素の供給源として用いて1300℃~1600℃で行えばよい。熱処理時間は例えば30分間~5時間が適当である。炭素るつぼを用いて熱処理を行えば、炭素るつぼは処理容器としての役割とともにその表面からの炭素供給源としての役割も果たすので都合がよい(もちろん別個の炭素供給源をさらに添加することを妨げるものではない)。アルカリ金属の炭酸塩は、例えばホウ素を含む希土類元素の酸化物1重量部に対して0.1重量部~2重量部用いればよい。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
参考例1:
 鉄の塊状物、ネオジムの塊状物、酸化鉄の粉末、酸化ネオジムの粉末のそれぞれ2.00gを、寸法が外径36mm×高さ10mm×肉厚5mmの炭素るつぼ(以下同じ)に収容した後、工業用アルゴンガス雰囲気(酸素含有濃度:0.2ppm、流量:10L/分。以下同じ)中で1450℃で1時間熱処理し、炭素るつぼを炭素供給源として熱処理した際の性状変化を調べた。外観の変化の結果を図1に、熱処理前後のX線回折の結果(使用装置:リガク社製のRINT2400)を図2~図5にそれぞれ示す。鉄については、図2から明らかなように、熱処理後においても結晶構造変化は認められなかったが、炭素の混在が認められた。また、図1から明らかなように、熱処理によって鉄が溶融したことによる外観の変化が認められた。以上の結果は、鉄が炭素を固溶して合金化し、融点が低下して溶融したことによると考察された。ネオジムについては、図1と図3から明らかなように、熱処理後に大気雰囲気中に放置することで酸化ネオジムに変換された。この時、熱処理後の生成物は臭気を伴って崩壊した。以上の結果は、ネオジムがいったん炭素の存在下での熱処理によって性状変化を起こした後、大気雰囲気中に放置することで大気雰囲気中の水分によって酸化されて最終的に酸化ネオジムに変換されたことによると考察された。酸化鉄については、図1と図4から明らかなように、熱処理によって鉄と同様の現象が認められた。これは、酸化鉄が炭素によって鉄に還元された後、鉄が炭素を固溶して合金化し、融点が低下して溶融したことによると考察された。酸化ネオジムについては、図1と図5から明らかなように、炭素の存在下での熱処理による性状変化は認められなかった。以上の結果から、希土類元素の酸化物(酸化ネオジム)と鉄族元素の酸化物(酸化鉄)を炭素の存在下で熱処理した際の性状変化の違いが明らかとなり、このことは以下に示す実施例において、希土類元素を酸化物として鉄から分離することができるという事実を支持するものであった。
実施例1:
 R-Fe-B系永久磁石の製造工程中に発生した約10μmの粒径を有する加工屑(自然発火防止のため水中で7日間保管したもの)に対し、吸引ろ過することで脱水してから大気雰囲気中で火をつけて燃焼処理を行うことで酸化処理を行った。こうして酸化処理を行った磁石加工屑のICP分析結果(使用装置:島津製作所社製のICPV-1017、以下同じ)を表1に示す。また、ガス分析の結果(使用装置:堀場製作所社製のEMGA-550W、以下同じ)、酸化処理を行った磁石加工屑に含まれる酸素モル濃度は希土類元素のモル濃度の6.5倍であった。
Figure JPOXMLDOC01-appb-T000001
 次に、酸化処理を行った磁石加工屑2.00gを炭素るつぼに収容した後、工業用アルゴンガス雰囲気中で1450℃で1時間熱処理した。その後、炭素るつぼを室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した(図6)。塊状物Aと塊状物BのそれぞれをSEM・EDX(日立ハイテクノロジーズ社製のS800、以下同じ)を用いて分析した結果を表2に示す。表2から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は98.7%であった。
Figure JPOXMLDOC01-appb-T000002
実施例2:
 実施例1で燃焼処理を行った磁石加工屑をさらに大気雰囲気中で860℃で2時間熱処理することで酸化処理を行った。ガス分析の結果、酸化処理を行った磁石加工屑に含まれる酸素モル濃度は希土類元素のモル濃度の10.5倍であった。次に、実施例1と同様にして酸化処理を行った磁石加工屑を炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表3に示す。表3から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は98.1%であった。
Figure JPOXMLDOC01-appb-T000003
比較例1:
 実施例1で酸化処理を行った磁石加工屑のかわりに酸化処理を行っていない寸法が縦10mm×横1mm×厚さ1mmの角柱状磁石(組成は加工屑と同じ)を用い、実施例1と同様にして磁石を炭素るつぼに収容して熱処理を行った後、室温まで炉冷したが、炭素るつぼには2種類の塊状物は形成されず、希土類元素を酸化物として鉄から分離することができなかった(図7)。なお、熱処理を行った後の磁石は、大気雰囲気中に放置することで臭気を伴って崩壊した。以上の結果から、特許文献2に記載の方法を酸素含有濃度が0.2ppmの工業用アルゴンガスを用いて実施した場合、希土類元素と鉄を分離することができないことがわかった。
比較例2:
 表4に示す組成を有する磁石用インゴットを粒径が約500μmになるまで粉砕した。得られた粉砕物2.00gを、酸化処理を行わずに実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したが、炭素るつぼには2種類の塊状物は形成されず、希土類元素を酸化物として鉄から分離することができなかった。なお、熱処理を行った後の粉砕物は、大気雰囲気中に放置することで臭気を伴って崩壊した。以上の結果から、特許文献2に記載の方法を酸素含有濃度が0.2ppmの工業用アルゴンガスを用いて実施した場合、希土類元素と鉄を分離することができないことがわかった。
Figure JPOXMLDOC01-appb-T000004
実施例3:
 実施例2で酸化処理を行った磁石加工屑5.00gと、酸化処理を行っていない寸法が縦10mm×横1mm×厚さ1mmの角柱状磁石(組成は加工屑と同じ)5.00gの計10.00g(全体としての酸素モル濃度は希土類元素のモル濃度の5.3倍)を、実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表5に示す。表5から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は86.2%であった。
Figure JPOXMLDOC01-appb-T000005
実施例4:
 実施例2で酸化処理を行った磁石加工屑5.00gと、酸化処理を行っていない寸法が直径2mm×高さ5mmの円柱状磁石(組成は加工屑と同じ)で表面にニッケルめっき被膜を形成したもの4.97gの計9.97g(全体としての酸素モル濃度は希土類元素のモル濃度の5.3倍)を、実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表6に示す。表6から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は88.5%であった。
Figure JPOXMLDOC01-appb-T000006
実施例5:
 比較例2で調製した粉砕物を大気雰囲気中で350℃で1時間熱処理することで酸化処理を行った。ガス分析の結果、酸化処理を行った粉砕物に含まれる酸素モル濃度は希土類元素のモル濃度の2.3倍であった。次に、酸化処理を行った粉砕物10.00gを、実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表7に示す。表7から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は98.0%であった。
Figure JPOXMLDOC01-appb-T000007
実施例6:
 比較例2で調製した粉砕物を大気雰囲気中で400℃で1時間熱処理することで酸化処理を行った。ガス分析の結果、酸化処理を行った粉砕物に含まれる酸素モル濃度は希土類元素のモル濃度の3.1倍であった。次に、酸化処理を行った粉砕物5.00gを、実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表8に示す。表8から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は97.8%であった。
Figure JPOXMLDOC01-appb-T000008
実施例7:
 比較例2で調製した粉砕物を大気雰囲気中で600℃で1時間熱処理することで酸化処理を行った。ガス分析の結果、酸化処理を行った粉砕物に含まれる酸素モル濃度は希土類元素のモル濃度の5.2倍であった。次に、酸化処理を行った粉砕物10.00gを、実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表9に示す。表9から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は98.2%であった。
Figure JPOXMLDOC01-appb-T000009
実施例8:
 比較例2で調製した粉砕物を大気雰囲気中で900℃で1時間熱処理することで酸化処理を行った。ガス分析の結果、酸化処理を行った粉砕物に含まれる酸素モル濃度は希土類元素のモル濃度の10.5倍であった。次に、酸化処理を行った粉砕物10.00gを、実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したところ、炭素るつぼには2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表10に示す。表10から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は97.3%であった。
Figure JPOXMLDOC01-appb-T000010
実施例9:
 酸化処理を行った磁石加工屑の炭素の存在下での熱処理を1400℃で1時間行うこと以外は実施例1と同様にして、炭素るつぼに固着する2種類の塊状物(塊状物Aと塊状物B)を得た。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表11に示す。表11から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は97.0%であった。
Figure JPOXMLDOC01-appb-T000011
実施例10:
 実施例2で酸化処理を行った磁石加工屑5.00gと炭素粉末(グラファイト粉末)1.00g(磁石加工屑に含まれる鉄に対してモル比で1.8倍の量に相当)を、寸法が外径50mm×高さ50mm×肉厚2mmのアルミナるつぼに収容した後、工業用アルゴンガス雰囲気中で1450℃で1時間熱処理した。その後、アルミナるつぼを室温まで炉冷したところ、アルミナるつぼには余剰の炭素粉末とともに2種類の塊状物(塊状物Aと塊状物B)が固着して存在した。塊状物Aと塊状物BのそれぞれをSEM・EDXを用いて分析した結果を表12に示す。表12から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。塊状物Bの酸素を除いた希土類元素の純度は91.8%であった。
Figure JPOXMLDOC01-appb-T000012
実施例11:
 実施例1において得られた2種類の塊状物(塊状物Aと塊状物B)が固着した炭素るつぼを、天地を逆転させた状態で工業用アルゴンガス雰囲気中で1350℃で1時間熱処理したところ、いずれの塊状物も溶融し、希土類元素を主成分とする塊状物Bの溶融物だけが受け手として使用したアルミナるつぼに落下して塊状物として固着した。こうしてアルミナるつぼに固着した塊状物として回収した希土類元素の処理対象物である磁石加工屑からの回収率と、塊状物の酸素を除いた希土類元素の純度を表13に示す。また、表13には、実施例2,6,7,8,9のそれぞれにおいて得られた2種類の塊状物が固着した炭素るつぼに対して上記の熱処理を行った際の、アルミナるつぼに固着した塊状物として回収した希土類元素の処理対象物である磁石加工屑または磁石用インゴットの粉砕物からの回収率と、塊状物の酸素を除いた希土類元素の純度をあわせて示す。表13から明らかなように、いずれの実施例において得られた2種類の塊状物が固着した炭素るつぼに対して上記の熱処理を行った場合でも、酸素を除いた希土類元素の純度が95%を超える塊状物をアルミナるつぼに得ることができた。実施例2,8において得られた2種類の塊状物が固着した炭素るつぼに対して上記の熱処理を行った場合には、その他の場合に比較して回収率が低いが、これは処理対象物に対する酸化処理の程度が高いことで、炭素の存在下での熱処理の際の発熱が顕著となり、溶融物の一部が微細に飛散してしまったことが原因であると考察された。
Figure JPOXMLDOC01-appb-T000013
比較例3:
 実施例1の磁石加工屑約10gを純水を用いて洗浄した後、ホットプレート上で80℃で1時間かけて乾燥させた。得られた乾燥屑5.00gを、酸化処理を行わずに実施例1と同様にして炭素るつぼに収容して熱処理を行った後、室温まで炉冷したが、炭素るつぼには2種類の塊状物は形成されず、希土類元素を酸化物として鉄から分離することができなかった。なお、熱処理を行った後の乾燥屑は、大気雰囲気中に放置することで臭気を伴って崩壊した。以上の結果から、特許文献2に記載の方法を酸素含有濃度が0.2ppmの工業用アルゴンガスを用いて実施した場合、希土類元素と鉄を分離することができないことがわかった。
実施例12:
 酸化処理を行った磁石加工屑20.0gを寸法が外径70mm×高さ70mm×肉厚10mmの炭素るつぼに収容した後、工業用アルゴンガス雰囲気中で1600℃で1時間熱処理すること以外は実施例1と同様にして炭素るつぼに2種類の塊状物(塊状物Aと塊状物B)を得た。塊状物AをSEM・EDXを用いて、塊状物BをICPを用いて、それぞれ分析した結果を表14に示す。表14から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、希土類元素を酸化物として鉄から分離することができたことがわかった。
Figure JPOXMLDOC01-appb-T000014
実施例13:
 実施例1において得た塊状物B3.00gをメノウ乳鉢とメノウ乳棒を用いてよく粉砕した後、炭酸リチウム1.50gとともに寸法が外径36mm×高さ10mm×肉厚5mmの炭素るつぼに収容し、工業用アルゴンガス雰囲気中で1450℃で1時間熱処理した。熱処理前の塊状物Bの粉砕物と熱処理後の粉砕物のそれぞれをICPを用いて分析したところ、熱処理前の塊状物Bの粉砕物のホウ素含量が2.30mass%であったのに対し、熱処理後の粉砕物のホウ素含量は1.99mass%であり、ホウ素を含む希土類元素の酸化物を炭酸リチウムとともに炭素の存在下で熱処理することで、そのホウ素含量を低減できることがわかった。
実施例14:
 実施例1において得た塊状物B3.00gをメノウ乳鉢とメノウ乳棒を用いてよく粉砕した後、炭酸カリウム0.48gとともに寸法が外径36mm×高さ10mm×肉厚5mmの炭素るつぼに収容し、工業用アルゴンガス雰囲気中で1450℃で5時間熱処理した。熱処理前の塊状物Bの粉砕物と熱処理後の粉砕物のそれぞれをICPを用いて分析したところ、熱処理前の塊状物Bの粉砕物のホウ素含量が2.30mass%であったのに対し、熱処理後の粉砕物のホウ素含量は1.69mass%であり、ホウ素を含む希土類元素の酸化物を炭酸カリウムとともに炭素の存在下で熱処理することで、そのホウ素含量を低減できることがわかった。
 本発明は、低コストで簡易なリサイクルシステムとして実用化が可能な、少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法を提供することができる点において産業上の利用可能性を有する。

Claims (7)

  1.  少なくとも希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法であって、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離する工程を少なくとも含んでなることを特徴とする方法。
  2.  酸化処理を行った処理対象物の炭素の存在下での熱処理を、炭素るつぼを処理容器および炭素供給源として用いて行うことを特徴とする請求項1記載の方法。
  3.  酸化処理を行った処理対象物の炭素の存在下での熱処理を、非炭素製の処理容器に炭素供給源を添加して行うことを特徴とする請求項1記載の方法。
  4.  処理対象物の少なくとも一部が500μm以下の粒径を有する粒状ないし粉末状であることを特徴とする請求項1記載の方法。
  5.  処理対象物がR-Fe-B系永久磁石であることを特徴とする請求項1記載の方法。
  6.  希土類元素を酸化物として鉄族元素から分離する工程を行った後、希土類元素の酸化物をアルカリ金属の炭酸塩とともに炭素の存在下で熱処理して希土類元素の酸化物のホウ素含量を低減する工程を行うことを特徴とする請求項5記載の方法。
  7.  ホウ素を含む希土類元素の酸化物をアルカリ金属の炭酸塩とともに炭素の存在下で熱処理することを特徴とするホウ素を含む希土類元素の酸化物のホウ素含量の低減方法。
PCT/JP2012/069180 2011-07-29 2012-07-27 希土類元素の回収方法 WO2013018710A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280038041.9A CN103717764B (zh) 2011-07-29 2012-07-27 稀土元素的回收方法
JP2013512663A JP5327409B2 (ja) 2011-07-29 2012-07-27 希土類元素の回収方法
EP12819272.1A EP2738270B1 (en) 2011-07-29 2012-07-27 Method for recovering rare earth element
US14/234,750 US9322082B2 (en) 2011-07-29 2012-07-27 Method for recovering rare earth element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-166695 2011-07-29
JP2011166695 2011-07-29
JP2011287078 2011-12-28
JP2011-287078 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013018710A1 true WO2013018710A1 (ja) 2013-02-07

Family

ID=47629234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069180 WO2013018710A1 (ja) 2011-07-29 2012-07-27 希土類元素の回収方法

Country Status (5)

Country Link
US (1) US9322082B2 (ja)
EP (1) EP2738270B1 (ja)
JP (1) JP5327409B2 (ja)
CN (1) CN103717764B (ja)
WO (1) WO2013018710A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129595A (ja) * 2012-11-28 2014-07-10 Hitachi Metals Ltd ホウ素を含む希土類元素の酸化物のホウ素含量を低減する方法
WO2014115876A1 (ja) * 2013-01-28 2014-07-31 日立金属株式会社 重希土類元素の回収方法
JP2014169497A (ja) * 2012-11-28 2014-09-18 Hitachi Metals Ltd 希土類元素の回収方法
WO2014192874A1 (ja) 2013-05-31 2014-12-04 日立金属株式会社 希土類元素の回収方法
WO2015147181A1 (ja) * 2014-03-28 2015-10-01 日立金属株式会社 希土類元素の回収方法
JP2015193931A (ja) * 2014-03-28 2015-11-05 日立金属株式会社 希土類元素の回収方法
JP2015224364A (ja) * 2014-05-27 2015-12-14 日立金属株式会社 希土類元素の回収方法
JP2016069675A (ja) * 2014-09-29 2016-05-09 日立金属株式会社 希土類元素の回収方法
JP2016125096A (ja) * 2014-12-26 2016-07-11 日立金属株式会社 希土類元素の回収方法
JP2016191108A (ja) * 2015-03-31 2016-11-10 日立金属株式会社 希土類元素の回収方法
JP2017179414A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 軽希土類元素と重希土類元素を含む処理対象物から重希土類元素を溶出させる方法
JP2018165240A (ja) * 2017-03-28 2018-10-25 日立金属株式会社 希土類元素の炭酸塩の製造方法
JP2018538125A (ja) * 2015-10-19 2018-12-27 サントル・ナシオナル・ド・ラ・ルシェルシュ・シアンティフィックCentre National De La Recherche Scientifique 対象物内から希土類元素を回収する方法及び装置
JP2019052053A (ja) * 2017-09-13 2019-04-04 日立金属株式会社 希土類元素の炭酸塩の製造方法
JP2021155762A (ja) * 2020-03-25 2021-10-07 住友金属鉱山株式会社 有価金属を回収する方法及びマグネシア耐火物
JP7487509B2 (ja) 2020-03-25 2024-05-21 住友金属鉱山株式会社 有価金属を回収する方法及びマグネシア耐火物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884649B (zh) 2012-12-26 2018-05-29 日立金属株式会社 稀土元素的回收方法
JP6769437B2 (ja) * 2015-08-26 2020-10-14 日立金属株式会社 軽希土類元素と重希土類元素を分離するために有用な方法
JP6641593B2 (ja) 2016-01-12 2020-02-05 三菱マテリアル株式会社 希土類元素と鉄の分離方法
US11155897B2 (en) * 2017-11-09 2021-10-26 University Of Kentucky Research Foundation Low-cost selective precipitation circuit for recovery of rare earth elements from acid leachate of coal waste
CN109385528A (zh) * 2018-11-01 2019-02-26 华南理工大学 一种废永磁体中稀土的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222426A (ja) * 1988-07-08 1990-01-25 Daido Steel Co Ltd 希土類元素の回収方法
JP2002060863A (ja) * 2000-08-22 2002-02-28 Shin Etsu Chem Co Ltd 希土類元素含有スラッジからの希土類元素の回収方法
JP2004068082A (ja) * 2002-08-06 2004-03-04 Chiba Inst Of Technology 希土類金属の回収方法
JP2009249674A (ja) 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd 希土類元素の回収方法
WO2010098381A1 (ja) 2009-02-27 2010-09-02 国立大学法人大阪大学 Re-tm系混合物からの希土類元素の回収方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511966B (zh) * 2002-12-30 2011-06-08 北京有色金属研究总院 一种高含铁稀土原矿的选矿工艺
CN1255560C (zh) * 2004-06-28 2006-05-10 辽宁美宝稀土材料有限公司 从钕铁硼废料中回收稀土的新工艺
WO2007119846A1 (ja) * 2006-04-17 2007-10-25 Santoku Corporation 希土類-鉄-ボロン系磁石スクラップからの有用材料回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222426A (ja) * 1988-07-08 1990-01-25 Daido Steel Co Ltd 希土類元素の回収方法
JP2002060863A (ja) * 2000-08-22 2002-02-28 Shin Etsu Chem Co Ltd 希土類元素含有スラッジからの希土類元素の回収方法
JP2004068082A (ja) * 2002-08-06 2004-03-04 Chiba Inst Of Technology 希土類金属の回収方法
JP2009249674A (ja) 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd 希土類元素の回収方法
WO2010098381A1 (ja) 2009-02-27 2010-09-02 国立大学法人大阪大学 Re-tm系混合物からの希土類元素の回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738270A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169497A (ja) * 2012-11-28 2014-09-18 Hitachi Metals Ltd 希土類元素の回収方法
JP2014129595A (ja) * 2012-11-28 2014-07-10 Hitachi Metals Ltd ホウ素を含む希土類元素の酸化物のホウ素含量を低減する方法
US10233516B2 (en) 2013-01-28 2019-03-19 Hitachi Metals, Ltd. Method for recovering heavy rare earth element
WO2014115876A1 (ja) * 2013-01-28 2014-07-31 日立金属株式会社 重希土類元素の回収方法
JPWO2014115876A1 (ja) * 2013-01-28 2017-01-26 日立金属株式会社 重希土類元素の回収方法
WO2014192874A1 (ja) 2013-05-31 2014-12-04 日立金属株式会社 希土類元素の回収方法
CN105247083A (zh) * 2013-05-31 2016-01-13 日立金属株式会社 稀土元素的回收方法
CN105247083B (zh) * 2013-05-31 2018-03-30 日立金属株式会社 稀土元素的回收方法
US10023938B2 (en) 2013-05-31 2018-07-17 Hitachi Metals, Ltd. Method for recovering rare earth element
EP3006581A4 (en) * 2013-05-31 2017-01-11 Hitachi Metals, Ltd. Recovery method for rare earth elements
JPWO2014192874A1 (ja) * 2013-05-31 2017-02-23 日立金属株式会社 希土類元素の回収方法
WO2015147181A1 (ja) * 2014-03-28 2015-10-01 日立金属株式会社 希土類元素の回収方法
JP2015193931A (ja) * 2014-03-28 2015-11-05 日立金属株式会社 希土類元素の回収方法
US10316393B2 (en) 2014-03-28 2019-06-11 Hitachi Metals, Ltd. Method for recovering rare earth element
CN106133157A (zh) * 2014-03-28 2016-11-16 日立金属株式会社 稀土元素的回收方法
JP2015224364A (ja) * 2014-05-27 2015-12-14 日立金属株式会社 希土類元素の回収方法
JP2016069675A (ja) * 2014-09-29 2016-05-09 日立金属株式会社 希土類元素の回収方法
JP2016125096A (ja) * 2014-12-26 2016-07-11 日立金属株式会社 希土類元素の回収方法
JP2016191108A (ja) * 2015-03-31 2016-11-10 日立金属株式会社 希土類元素の回収方法
JP2018538125A (ja) * 2015-10-19 2018-12-27 サントル・ナシオナル・ド・ラ・ルシェルシュ・シアンティフィックCentre National De La Recherche Scientifique 対象物内から希土類元素を回収する方法及び装置
JP2017179414A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 軽希土類元素と重希土類元素を含む処理対象物から重希土類元素を溶出させる方法
JP2018165240A (ja) * 2017-03-28 2018-10-25 日立金属株式会社 希土類元素の炭酸塩の製造方法
JP2019052053A (ja) * 2017-09-13 2019-04-04 日立金属株式会社 希土類元素の炭酸塩の製造方法
JP2021155762A (ja) * 2020-03-25 2021-10-07 住友金属鉱山株式会社 有価金属を回収する方法及びマグネシア耐火物
JP7487510B2 (ja) 2020-03-25 2024-05-21 住友金属鉱山株式会社 有価金属を回収する方法及びマグネシア耐火物
JP7487509B2 (ja) 2020-03-25 2024-05-21 住友金属鉱山株式会社 有価金属を回収する方法及びマグネシア耐火物

Also Published As

Publication number Publication date
EP2738270B1 (en) 2020-01-22
JP5327409B2 (ja) 2013-10-30
EP2738270A1 (en) 2014-06-04
JPWO2013018710A1 (ja) 2015-03-05
EP2738270A4 (en) 2015-05-27
US20140186239A1 (en) 2014-07-03
CN103717764B (zh) 2016-09-07
US9322082B2 (en) 2016-04-26
CN103717764A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5327409B2 (ja) 希土類元素の回収方法
JP5598635B1 (ja) 希土類元素の回収方法
JP6233321B2 (ja) 重希土類元素の回収方法
JP6060704B2 (ja) 希土類元素の回収方法
JP6492657B2 (ja) 希土類元素の回収方法
JP6299181B2 (ja) 希土類元素の回収方法
WO2015147181A1 (ja) 希土類元素の回収方法
JP6413877B2 (ja) 希土類元素の回収方法
JP6281261B2 (ja) ホウ素を含む希土類元素の酸化物のホウ素含量を低減する方法
JP5853815B2 (ja) 希土類元素の回収方法
JP6347225B2 (ja) 希土類元素の回収方法
JP6988293B2 (ja) 希土類元素の炭酸塩の製造方法
JP6988292B2 (ja) 希土類元素の炭酸塩の製造方法
JP6264195B2 (ja) 希土類元素の回収方法
JP2017043807A (ja) 希土類元素の回収方法
JP6327250B2 (ja) 希土類元素の回収方法
JP7067196B2 (ja) 希土類元素のシュウ酸塩の製造方法
JP6323284B2 (ja) 希土類元素の回収方法
JP2019165118A (ja) 希土類元素のシュウ酸塩を用いた溶媒抽出用塩酸溶液の製造方法
JP2016183376A (ja) 希土類元素の回収方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013512663

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14234750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012819272

Country of ref document: EP