WO2013009150A9 - 높은 광추출 성능을 갖는 무기미립자 산란막 - Google Patents

높은 광추출 성능을 갖는 무기미립자 산란막 Download PDF

Info

Publication number
WO2013009150A9
WO2013009150A9 PCT/KR2012/005635 KR2012005635W WO2013009150A9 WO 2013009150 A9 WO2013009150 A9 WO 2013009150A9 KR 2012005635 W KR2012005635 W KR 2012005635W WO 2013009150 A9 WO2013009150 A9 WO 2013009150A9
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic fine
fine particle
inorganic
layer
scattering film
Prior art date
Application number
PCT/KR2012/005635
Other languages
English (en)
French (fr)
Other versions
WO2013009150A2 (ko
WO2013009150A3 (ko
Inventor
류광현
김화영
김성국
이용진
민성환
Original Assignee
엘티씨 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110070128A external-priority patent/KR20120007472A/ko
Application filed by 엘티씨 (주) filed Critical 엘티씨 (주)
Priority to US14/232,562 priority Critical patent/US20140234583A1/en
Priority to CN201280031464.8A priority patent/CN103608295B/zh
Priority to JP2014520141A priority patent/JP6255338B2/ja
Priority to EP12811804.9A priority patent/EP2733117A4/en
Publication of WO2013009150A2 publication Critical patent/WO2013009150A2/ko
Publication of WO2013009150A9 publication Critical patent/WO2013009150A9/ko
Publication of WO2013009150A3 publication Critical patent/WO2013009150A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating

Definitions

  • the present invention exhibits a high light extraction effect through the light scattering effect by forming an inorganic fine particle layer containing voids on the light emitting device interface or a transparent substrate, and excellent flatness and hardness by forming a flattening layer on the inorganic fine particle layer
  • the present invention relates to an inorganic fine particle scattering film and a method for producing the same.
  • reflection loss occurs in the light output due to a difference in refractive index at the light emitting device interface when light is emitted.
  • a method of increasing the light output by scattering is formed by forming an anti-reflection film on the surface or a transparent substrate or by etching the surface to form irregularities.
  • the antireflection film is formed of a multilayer film (a high refractive index layer, an intermediate refractive index layer, and a low refractive index layer) consisting of a transparent thin film layer containing a plurality of metal oxides, and the transparent thin film layers are stacked on each other and have different refractive indices.
  • a binder resin is used as a matrix for forming the film.
  • the refractive index of each layer is appropriately adjusted by selecting the type and amount of the inorganic particles used therein.
  • inorganic fine particles having a high refractive index are required, and it is very important to uniformly disperse the inorganic fine particles having a high refractive index in a matrix having sufficient film strength without aggregation.
  • the low reflection surface structure by scattering has a high light extraction effect because the light emitted from the light emitter is reflected at the interface to minimize the loss of the conversion back to the light emitting device.
  • the low reflection film due to scattering is suitable for application to solar cells as well as light emitting devices. That is, various solutions have been proposed for disturbing the substrate-air interface (eg, microlens or roughened surface) to affect light reaching the interface.
  • various solutions have been proposed for disturbing the substrate-air interface (eg, microlens or roughened surface) to affect light reaching the interface.
  • a study on forming a film of low reflection surface by light scattering by forming irregularities or nanowires on the surface of a light emitting device, or some research on corrugating electrode structures M. Fujita, et al .; Jpn. J.
  • the refractive index of the components of the light scattering layer satisfies the relationship Nf 2 >Nb> Nf 1 , and light scattering occurs due to the difference in refractive index between the three components.
  • Nf 2 >Nb> Nf 1 the refractive index of the components of the light scattering layer
  • Korean Patent Application Publication 10-2010-0138939 introduces a silicon oxide base scattering glass plate formed by forming pores in high refractive glass.
  • a scattering glass plate can not be applied directly to the surface of the light emitting device, there is a problem that is not appropriately applied to the substrate of various shapes and shapes.
  • the present inventors were able to maximize the light scattering effect by introducing inorganic oxide particles (eg, refractive index of 1.7 or more) having a larger refractive index than voids (refractive index-1) as scattering particles. That is, by preparing a nano-sized high refractive index fine particle powder, and forming it as an inorganic compound nanoparticle film having pores by coating on the surface of the light emitting body or substrates of various shapes and shapes, an optical thin film having a high light extraction effect by light scattering Invented.
  • inorganic oxide particles eg, refractive index of 1.7 or more
  • voids reffractive index-1
  • the inventors of the present invention have invented an inorganic fine particle scattering film that exhibits excellent flatness and hardness by forming a flattening layer on the inorganic fine particle layer, and thus does not have a detrimental effect on the electric field and electrical conductivity of the device.
  • An object of the present invention is to provide an inorganic fine particle scattering film excellent in light extraction effect.
  • Another object of the present invention is to provide an inorganic fine particle scattering film having excellent flatness and hardness.
  • Still another object of the present invention is to provide a method for preparing the inorganic fine particle scattering film.
  • Inorganic fine particle scattering film according to the present invention is a scattering film for improving light extraction, the inorganic fine particle layer comprising a void; And a planarization layer for protecting and planarizing the inorganic fine particle layer.
  • the refractive index of the inorganic fine particles of the inorganic fine particle layer is 1.7 or more, preferably 1.7 to 3.0.
  • the inorganic fine particles of the inorganic fine particle layer is Li, Be, B, Na, Mg, Si, K, Ca, Sc, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Mo, Cs, Ba, La, Hf, W, Tl, Pb, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, A metal oxide containing a metal selected from the group consisting of Ti, Sb, Sn, Zr, Ce, Ta, In, and combinations thereof.
  • the metal oxide is zirconium oxide (zirconium oxide, ZrO 2 ); Hafnium oxide (HfO 2 ); Tantalium oxide (Ta 2 O 5 ); Titanium dioxide (TiO 2 ); Yttrium oxide (Y 2 O 3 ); Zinc oxide (ZnO); Zirconium oxide stabilized or partially stabilized with yttrium oxide, magnesium oxide (MgO), calcium oxide (CaO) or cerium oxide (CeO 2 ) (Y 2 O 3 -ZrO 2 , MgO- ZrO 2 , CaO-ZrO 2 , CeO 2 -ZrO 2 ) and mixtures thereof.
  • the metal oxide is zirconium oxide stabilized or partially stabilized by yttrium oxide.
  • the average particle size (D 50 ) of the inorganic fine particles of the inorganic fine particle layer is 1nm to 1 ⁇ m, preferably 5nm to 500nm.
  • the planarization layer is an organic coating film formation
  • the organic coating film formation is a polyacrylic resin, polyimide resin or a mixture thereof.
  • the planarization layer is an inorganic coating film formation, and the inorganic coating film formation includes silicon compounds.
  • the silicon compound comprises silica, organosilicon, silicate or mixtures thereof.
  • the inorganic coating film formation further comprises a compound comprising Al, B, Li or Pb.
  • the thickness of the inorganic fine particle scattering film is 100nm to 30 ⁇ m.
  • the surface flatness Ra of the inorganic fine particle scattering film is 1 nm to 10 nm.
  • the surface hardness of the inorganic fine particle scattering film is 3H to 9H.
  • Method for producing an inorganic fine particle scattering film comprises the steps of providing a substrate; Preparing an inorganic fine particle layer containing pores on the substrate; And preparing a planarization layer on the inorganic fine particle layer.
  • the step of preparing an inorganic fine particle layer containing pores on the substrate is a step of applying a composition for coating the inorganic fine particles containing the inorganic fine particles and a solvent on the substrate; And heating the inorganic fine particle coating composition to remove the solvent and to form an inorganic fine particle layer including pores.
  • the step of preparing a planarization layer on the inorganic fine particle layer may include coating and thermally curing the organic polymer thin film on the inorganic fine particle layer.
  • the step of preparing a planarization layer on the inorganic fine particle layer is a step of applying a composition for forming an inorganic coating film on the inorganic fine particle layer; Removing the solvent from the composition for forming an inorganic coating film; And forming a planarization layer by heat treatment, electron beam treatment, or ultraviolet treatment of the composition for forming the inorganic coating film from which the solvent is removed.
  • the composition for forming the inorganic coating film is a silane (siloxane), siloxane (siloxane), silsesquioxane (silsesquioxane), silicate (silicate), silanol (silanol), silazane (silazane) and Compounds and solvents selected from the group consisting of mixtures thereof.
  • the inorganic coating film forming composition further comprises a compound containing Al, B, Li or Pb.
  • spin coating, dip-coating, slot-coating the inorganic fine particle coating composition, the organic coating film forming composition or the inorganic coating film forming composition Or screen printing.
  • Glass, a light emitting device, a solar cell substrate, an organic polymer film or an illumination element according to the present invention includes the inorganic fine particle scattering film.
  • the inorganic fine particle scattering film according to the present invention has excellent light extraction effect, flatness and hardness, and can be applied to various fields such as an image display device, an illumination element, a solar cell, and the like.
  • FIG. 1 is a schematic view showing a cross section of an inorganic fine particle scattering film according to the present invention.
  • FIG 2 is an electron micrograph (SEM) of the cross section of the inorganic fine particle scattering film according to the present invention.
  • AFM Automatic Force Microscope
  • TEM 8 is a transmission electron micrograph (TEM) of ZrO 2 nanopowder stabilized with Y 2 O 3 .
  • FIG. 9 is an electron micrograph (SEM) of a cross section of an inorganic fine particle layer prepared in Example 2-3 having a thickness of 9.8 ⁇ m.
  • Example 10 is an electron micrograph (SEM) of a cross section of the inorganic fine particle layer prepared in Example 2-3 having a thickness of 4.4 ⁇ m.
  • FIG. 11 is an electron micrograph (SEM) of a cross section of an inorganic particulate layer prepared in Example 2-3 having a thickness of 1.8 ⁇ m.
  • Inorganic fine particle scattering film according to the present invention is a scattering film for improving light extraction, the inorganic fine particle layer comprising a void; And a planarization layer for protecting and planarizing the inorganic fine particle layer.
  • the refractive index of the inorganic fine particles of the inorganic fine particle layer is 1.7 or more, preferably 1.7 to 3.0.
  • the inorganic fine particles of the inorganic fine particle layer is Li, Be, B, Na, Mg, Si, K, Ca, Sc, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Mo, Cs, Ba, La, Hf, W, Tl, Pb, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, A metal oxide containing a metal selected from the group consisting of Ti, Sb, Sn, Zr, Ce, Ta, In, and combinations thereof.
  • the metal oxide is zirconium oxide (zirconium oxide, ZrO 2 ); Hafnium oxide (HfO 2 ); Tantalium oxide (Ta 2 O 5 ); Titanium dioxide (TiO 2 ); Yttrium oxide (Y 2 O 3 ); Zinc oxide (ZnO); Zirconium oxide stabilized or partially stabilized with yttrium oxide, magnesium oxide (MgO), calcium oxide (CaO) or cerium oxide (CeO 2 ) (Y 2 O 3 -ZrO 2 , MgO- ZrO 2 , CaO-ZrO 2 , CeO 2 -ZrO 2 ) and mixtures thereof.
  • the metal oxide is zirconium oxide stabilized or partially stabilized by yttrium oxide.
  • the average particle size (D 50 ) of the inorganic fine particles of the inorganic fine particle layer is 1nm to 1 ⁇ m, preferably 5nm to 500nm.
  • the inorganic fine particles of the inorganic fine particle layer is prepared using a coprecipitation method.
  • the inorganic fine particles are prepared by preparing an aqueous solution containing a metal oxide, adjusting the pH by mixing the aqueous solution with a catalyst, a solvent and a neutralizing agent to make a uniform precipitate by adjusting the reaction temperature, filtering the precipitate, It can be prepared from a series of processes including uniformly mixing through a washing step, adjusting the specific surface area and crystallinity through heat treatment conditions.
  • the zirconium oxide stabilized or partially stabilized with yttrium oxide may be prepared by purifying an aqueous zirconia solution and an aqueous yttria solution, adjusting the pH and mixing the reaction temperature by mixing the aqueous solution with a catalyst, a solvent, and a neutralizer. It can be prepared from a series of processes including making a uniform precipitate, mixing the precipitate uniformly through filtration, washing with water, and adjusting specific surface area and crystallinity through heat treatment conditions.
  • zirconyl chloride octahydrate ZrOCl 3 ⁇ 8H 2 O
  • zirconyl nitrate hydrate ZrO (NO 3 ) 2 xH 2 O
  • zirconium sulfate sulfate sulfate
  • yttria yttrium nitrate hexahydrate (Y (NO 3 ) 3 .6H 2 O) or yttrium chloride hexahydrate (YCl 3 .6H 2 O).
  • Neutralizers include ammonium hydroxide (NH 4 OH), ammonium carbonate (NH 4 ) 2 CO 3 ), ammonium bicarbonate (NH 4 HCO 3 ), sodium hydroxide (Sodium hydroxide, NaOH), At least one substance of potassium hydroxide (KOH) may be used.
  • the raw materials are dissolved in an appropriate amount of raw materials in water and co-precipitated by dropping a catalyst in the filtered solution.
  • the reaction temperature may be adjusted to control the particle size distribution and specific surface area of the ZrO 2 nanoparticles stabilized with Y 2 O 3 .
  • the reaction temperature range can be synthesized at room temperature (20 ° C) to 100 ° C.
  • the precipitate is separated from the powder and the liquid through a filtration process and then washed.
  • the precipitate is dried for 24 hours at 100 °C to remove the moisture and then heat treated for 1 to 5 hours at a temperature range of 200 ⁇ 1100 °C can obtain a spherical powder of several nano to several tens of nanometers.
  • nanoparticles having a particle size of 1 to 500 nm and specific surface area of 5 to 100 m 2 / g can be obtained.
  • the shape, size and distribution of the formed particles can be observed through a scanning electron microscope (FE-SEM) and transmission electron microscope (TEM).
  • the crystallinity of the particles can be observed through an X-ray diffractometer (XRD).
  • the voids are formed between the inorganic fine particles when the inorganic fine particles are stacked.
  • the size and amount of the pores can be adjusted according to the control of the inorganic particles, the size and shape is not limited.
  • the inorganic fine particle layer may further include a coating film formation, such as a binder capable of fixing the surface of the inorganic fine particle layer.
  • the inorganic fine particle layer composed of the inorganic fine particles prepared as described above is rough (Ra> 100 kPa), defects such as disconnection of the electrode directly coated thereon or distortion of the light emitting device may occur.
  • the present invention provides an inorganic fine particle scattering film as a planarization layer including an inorganic particle having a high refractive index and an inorganic fine particle layer including voids having different refractive indices and a fixed material which is a material capable of flattening while fixing the structure. Configured. The above is illustrated in FIG. 1.
  • planarization layer formation a sticky material capable of fixing the nanoparticles of the inorganic fine particle layer to the support is used, in order to fix the structure in which the light scattering nanoparticles and the pores are mixed and to secure the adhesion to the substrate, It is used to planarize and strengthen the surface of the light scattering film.
  • the inorganic fine particle layer may have a flatness (Ra) value of 20 nm to 200 nm depending on the coating method or additives. In order to obtain lower flatness Ra, the planarization layer may be stacked and used. Surface flatness (Ra) is measured through AFM (Atomic Force Microscope).
  • the inorganic fine particle layer has a weak surface hardness and the coating layer formation is laminated to prevent the scattering layer structure from being collapsed by physical force, thereby strengthening the mechanical strength of the inorganic fine particle structure as well as the surface. The mechanical strength of the surface is measured using the pencil hardness test method (KS-D-6711-92) and the surface hardness is measured using the MITSUBISHI pencil.
  • the flatness Ra of the surface of the configured inorganic fine particle layer was roughly about 0.18 ⁇ m before laminating the deposit, and the surface flatness was lowered to 2 to 5 nm due to the lamination of the deposit.
  • Surface flatness (Ra) was measured by AFM (Atomic Force Microscope), and the cross-sections of the inorganic particulate layer and the planarization layer were observed by scanning electron microscope (FE-SEM), and the results are shown in FIGS. 2 and 3. It was.
  • the electron micrograph of FIG. 2 confirms that the cross section is laminated with the glass-inorganic fine particle layer-flattening layer, and it can be confirmed that the surface of the planarization layer is flat.
  • the mechanical strength of the surface after lamination of the adherend was measured using a pencil hardness measurement method (KS-D-6711-92), and the surface hardness was measured using an MITSUBISHI pencil.
  • the result of the inorganic fine particle layer has a surface hardness of about 6B, the hardness can be increased to 3H ⁇ 6H by adding a planarization layer (Fig. 3).
  • the planarization layer is an organic coating film formation
  • the organic coating film formation is a polyacrylic resin, polyimide resin or a mixture thereof.
  • the planarization layer is an inorganic coating film formation.
  • a spin on glass (SOG) process may be applied to manufacture the inorganic coating film formation.
  • the inorganic coating film formation may include silicon compounds.
  • the silicon compound comprises silica, organosilicon, silicate or mixtures thereof.
  • the inorganic coating film formation further comprises a compound comprising Al, B, Li or Pb.
  • planarization layer is an inorganic coating film formation
  • some organic coating film formation is decomposed or denatured in a process in which high temperature or high energy is applied, such as chemical vapor deposition (CVD), during the manufacture of an organic light emitting diode (OLED). Can be effectively prevented.
  • CVD chemical vapor deposition
  • the planarization layer is a silica coating film formation
  • the silica film formation is a main component of the hydrolysis product of the mixture comprising at least one of tetraalkoxysilane, monoalkoxysilane and dialkyldialkoxysilane It is formed by the step of applying a solution and heat treatment.
  • the thickness of the inorganic fine particle scattering film is 100nm to 30 ⁇ m.
  • the surface flatness Ra of the inorganic fine particle scattering film is 1 nm to 10 nm.
  • the surface hardness of the inorganic fine particle scattering film is 3H to 9H.
  • Method for producing an inorganic fine particle scattering film comprises the steps of providing a substrate; Preparing an inorganic fine particle layer containing pores on the substrate; And preparing a planarization layer on the inorganic fine particle layer.
  • the step of preparing an inorganic fine particle layer containing pores on the substrate is a step of applying a composition for coating the inorganic fine particles containing the inorganic fine particles and a solvent on the substrate; And heating the inorganic fine particle coating composition to remove the solvent and to form an inorganic fine particle layer including pores.
  • the inorganic fine particle layer by coating it is necessary to select the type and amount of the inorganic fine particles used therein to appropriately control the optical properties, and for this purpose, it is very important to uniformly disperse the inorganic fine particles without aggregation. That is, these materials are prepared in the form of nano-sized particles and dispersed in an organic solvent or water. The particles should be excellent in dispersion stability in the dispersed solution. To this end, a dispersant, a binder, a plasticizer, and the like together with the inorganic fine particles may be dissolved and used in a solvent.
  • the organic solvent may be a single substance or a mixture thereof selected from alcohols, ethers, acetates, ketones or toluene.
  • Acetone acetone, or ketones of acetone are used, but is not limited thereto.
  • high boiling point solvents include N-methyl formamide, N, N-dimethyl formamide, N-methyl acetamide, N, N-dimethyl acetamide, N-methyl pyrrolidone, dimethyl sulfoxide or benzyl ethyl ether Solvents may be used.
  • the method for producing an inorganic fine particle scattering film according to the present invention includes coating a layer of a material having a high refractive index on the surface of a light emitting device or a transparent substrate. Nanostructured features can be imparted within the organic material to create nanostructured surfaces. The planarization material may then be overcoated to form a planarization layer on the nanostructured surface.
  • the inorganic fine particle coating composition may be applied to the surface of the light emitting device or the substrate by various methods such as spin coating, dip coating, slot coating, and screen printing.
  • the spin coating method may be used to prepare the inorganic fine particle layer.
  • the dispersion is applied onto a glass plate and then spin coated.
  • the concentration of the inorganic material dispersion is controlled in the range of 5 ⁇ 50%, the spin speed during spin coating to coat the thin film under the conditions of 500 ⁇ 5000rpm.
  • heat is applied at 100 ° C. for 30 seconds to stabilize the glass surface particles and dry the thin film surface.
  • an organic or inorganic binder may be used to fix the surface structure of the inorganic fine particle layer including the voids.
  • the porous substrate coated with the inorganic fine particle layer may be formed by drying to scatter the solvent and the organic additive to form a coating film, and then firing at a temperature of 250 to 700 ° C.
  • the step of preparing a planarization layer on the inorganic fine particle layer may include coating and thermally curing the organic polymer thin film on the inorganic fine particle layer.
  • an organic polymer thin film may be coated on the inorganic fine particle layer and subjected to thermal curing at 230 ° C. for 30 minutes.
  • a spin on glass (SOG) process may be applied to manufacture the inorganic coating layer formation as the planarization layer.
  • SOG process refers to a process of forming a silica insulating film by rotationally applying and heat-treating a glass melted with an organic solvent on a wafer surface, but may be applied somewhat differently in the present invention.
  • Examples of the silicon compound that is the raw material of the SOG process include silane, siloxane, silsesquioxane, silicate, silanol, silazane, polysilazane ( Si, O, (N, H), a compound consisting of an alkyl group, an alkoxy group and the like), and the like, these may be used alone or in combination.
  • such a silicone compound may be dissolved in a solvent, preferably an organic solvent (for example, alcohol or butyl acetate) to prepare a composition for forming an inorganic coating film.
  • the composition for forming the inorganic coating film is a silane (siloxane), siloxane (siloxane), silsesquioxane (silsesquioxane), silicate (silicate), silanol (silanol), silazane (silazane) and Compounds and solvents selected from the group consisting of mixtures thereof.
  • the composition for forming an inorganic coating film is fired to obtain a spin on glass (SOG) layer containing silicate glass (SiO 2 ) as a main component.
  • SOG spin on glass
  • the SOG layer may be obtained as by irradiation ( ⁇ ) with an electron beam or ultraviolet rays to the SOG material layer, mainly composed of silica glass (SiO 2).
  • the step of preparing a planarization layer on the inorganic fine particle layer is a step of applying a composition for forming an inorganic coating film on the inorganic fine particle layer; Removing the solvent from the composition for forming an inorganic coating film; And forming a planarization layer by heat treatment, electron beam treatment, or ultraviolet treatment of the composition for forming the inorganic coating film from which the solvent is removed.
  • Silicon compounds which are the raw materials of the SOG process include both organic and inorganic. More specifically, it may include methylsiloxane, methylsilsesquioxane, phenylsiloxane, phenylsilsesquioxane, methylphenylsiloxane, methylphenylsilsesquioxane and silicate polymers.
  • the silicone compound also includes a hydrogensiloxane polymer of formula (H 0-1.0 SiO 1.5-2.0 ) x and a hydrogen silsesquioxane polymer of formula (HSiO 1.5 ) x , where x is greater than about 8 can do.
  • Hydrogensilsesquioxanes and alkoxyhydridosiloxanes or hydroxyhydridosiloxanes may also be included.
  • the silicone compound may further contain an organic hydridosiloxane polymer of the general formula (H 0-1.0 SiO 1.5-2.0 ) n (R 0-1.0 SiO 1.5-2.0 ) m and an organic of the general formula (HSiO 1.5 ) n (RSiO 1.5 ) m Hydridosilsesquioxane polymers, wherein m is greater than 0, the sum of n and m is greater than about 8, and R is alkyl or aryl.
  • the silicone compound is usually triethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, tetramethoxysilane, methyltrimethoxysilane, trimethoxysilane, dimethyldimethoxysilane, phenyl It can be synthesized from silane reactants such as triethoxysilane, phenyltrimethoxysilane, diphenyldiethoxysilane and diphenyldimethoxysilane.
  • Halosilanes especially chlorosilanes, for example trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, tetrachlorosilane, dichlorosilane, methyldichlorosilane, dimethyldichlorosilane, chlorotriethoxysilane Chlorotrimethoxysilane, chloromethyltriethoxysilane, chloroethyltriethoxysilane, chlorophenyltriethoxysilane, chloromethyltrimethoxysilane, chloroethyltrimethoxysilane, and chlorophenyltrimethoxysilane It can be used as the silane reactant.
  • chlorosilanes for example trichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichloro
  • the composition for forming the inorganic coating film may further include a compound containing Al, B, Li or Pb in order to minimize physical breakage such as cracks after heat treatment.
  • the method of manufacturing the planarization layer using the inorganic coating film formation may include spin coating, dip-coating, slot coating, and the like for forming an inorganic coating film on the inorganic fine particle layer. Coating by spray coating or screen printing, drying to disperse the solvent to form a coating film, and then firing at a temperature of 250 to 700 ° C. to produce an inorganic coating film formation. It may include a step.
  • spin coating, dip-coating, slot-coating the inorganic fine particle coating composition, the organic coating film forming composition or the inorganic coating film forming composition Or screen printing.
  • the inorganic fine particle layer may further comprise the step of preparing a coating liquid to form a coating layer.
  • the planarization layer is over-coated on the inorganic fine particle layer, and the coating layer is spin coated, dip-coated, slot-coated, or sprayed. It includes, but is not limited to, coating or screen printing.
  • the thin film made by the above method may be measured differently according to the thin film material, the thickness of the thin film, the thin film generation method, the void formation method, the transmittance, scattering transmittance, scattering reflectance, scattering layer. These optical properties can be measured in the 350 ⁇ 800nm wavelength region using a UV / Vis spectrometer.
  • the inorganic fine particle scattering film according to the present invention has excellent light extraction performance, excellent flatness and hardness, and thus can be preferably applied to the fields of glass, light emitting devices, solar cell substrates, organic polymer films or lighting elements.
  • Example 1-2 the additive is added dropwise to the aqueous solution of zirconia and aqueous solution of yttria. After the reaction at room temperature for 1 hour, the reaction temperature was raised to 60 ° C and further reaction was performed for 3 hours. Thereafter, the process is the same as in Example 1-1. The particles obtained by this method yielded smaller particles than in the reaction in Example 1-2.
  • the morphology and particle size of the YSZ particles prepared in Example 1-1 were confirmed by transmission electron microscope (TEM) images.
  • the size of the particle through the transmission electron micrograph is about 50 ⁇ 60nm. The results are shown in FIG.
  • Nanosized zirconia powder is mixed with additives in an organic solvent. This solution is milled for 3 hours to prepare a dispersion. The dispersion is coated on a glass substrate, the solvent is dried at 100 ° C. for 30 seconds, and then heated at 250 ° C. for 30 minutes to deposit an inorganic fine particle layer. Then, a polyacrylic compound was coated on the inorganic fine particle layer to stack the planarization layer.
  • a yttria powder having a nano size was prepared in the same manner as in Example 2-1, and an inorganic fine particle layer and a planarization layer were laminated.
  • Yttria stabilized zirconia (YSZ) having a size of 50-60 nm was prepared in the same manner as in Example 2-1, and an inorganic fine particle layer and a planarization layer were laminated. At this time, the coating conditions were changed to stack an inorganic fine particle layer having a thickness of 1 ⁇ 10 ⁇ m.
  • Yttria stabilized zirconia (YSZ) powder having a size of 50-60 nm is mixed with an additive in an organic solvent. This solution is milled for 48 hours to prepare a dispersion.
  • the dispersion was coated on a glass substrate to vary the coating conditions to form a thickness of 0.5 to 2 ⁇ m, and each coated glass substrate was dried at 140 ° C. for 5 minutes and then heated at 500 ° C. for 30 minutes to heat the inorganic fine particle layer. do.
  • planarization layer was spin-coated after applying 0.8g of SOG coating liquid (TOK, LML-series) on the glass substrate. Thereafter, a hard glass was carried out at 500 ° C. for 30 minutes in a nitrogen atmosphere to prepare scattered glass.
  • SOG coating liquid TOK, LML-series
  • the solvent was dried at 100 °C for 30 seconds, and then heated at 230 °C for 30 minutes to form a silicon oxide layer containing pores on the glass.
  • the SOG coating solution (TOK, LML-series) was maintained on the glass substrate at 400 rpm for 30 seconds to perform spin coating. After the pre-bake for 3 minutes at 150 °C on a hot plate to dry the solvent. Then hard-bake at 500 °C 30 minutes in a nitrogen atmosphere.
  • the glass substrate including the scattering film prepared in Examples 2-1, 2-2, 2-3 and 2-4 and Comparative Example 1, the glass substrate used in the comparison 2, only the SOG coating liquid coating in Comparative Example 3 The transmittance and reflectance of the glass substrates were measured using a UV / Vis spectrometer, and these values at the wavelength of 550 nm are shown in Table 1 from the results.
  • Example 2-1 Inorganic fine particle layer Inorganic fine particle layer thickness ( ⁇ m) Scattering Transmittance (%) Permeability (%) Total reflectance (%)
  • Example 2-1 ZrO 2 1.8 49.8 36.9 11.2
  • Example 2-2 Y 2 O 3 2.1 49.4 38.6 10.2
  • Example 2-3 YSZ 9.8 50.9 One 44.7 4.2 57.9 4.3 34.7 2 60.6 13.8 21.2 1.1 34.5 48.6 13.7
  • Example 2-4 YSZ 1.0 33.2 43.0 21.5 Comparative Example 1 Silicon oxide with voids 1.5 6 84.8 7.8 Comparative Example 2 x x 0 91.6 8.7 Comparative Example 3 x x 0.2 92.5 7.3
  • the glass substrate in which the scattering layer is not laminated in Comparative Example 2, or the glass substrate coated with only the SOG coating liquid in Comparative Example 3, has a permeability and reflection and no scattering of light.
  • the inorganic fine particle layer containing silicon oxide it can be seen that a small amount of light scattering occurs (Comparative Example 1).
  • Example 2-1 showed higher scattering transmittance than the silicon oxide layer containing pores. That is, it can be seen that the scattering film by the ZrO 2 inorganic fine particles shows high scattering efficiency and can increase the light extraction effect.
  • Example 2-2 the scattering layer using the Y 2 O 3 powder also had a scattering transmittance of about 50% and showed excellent performance in the light extraction effect.
  • Example 2-3 shows better light scattering efficiency through Yttria stabilized Zirconia (YSZ) composite oxide inorganic fine particles, which can be seen through scattering transmittance. Therefore, it is possible to adjust the transmittance, scattering transmittance, reflectance and the like, and to control the degree of voids.
  • 9, 10, and 11 are electron micrographs of cross-sections of the inorganic fine particle layers laminated in Example 2-3 having 2 ⁇ m, 4.4 ⁇ m, and 9,8 ⁇ m, respectively, and inorganic fine particle layers having various thicknesses can be stacked.
  • the degree of voids can also be obtained in various ways. Therefore, it is believed that this can show various types of light extraction effects.
  • Example 2-4 shows a high scattering transmittance by coating the SOG coating liquid as a planarization layer, and decomposition or denaturation in a process in which high temperature or high energy is applied, such as chemical vapor deposition (CVD), in the manufacture of organic light emitting diodes (OLEDs). It is expected to effectively prevent the problem.
  • CVD chemical vapor deposition

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명은 발광소자 계면 또는 투명기판(substrate)상에 공극을 포함하는 무기미립자층을 형성함으로써 광산란 효과를 통해 높은 광추출 효과를 나타내고, 무기미립자층상에 평탄화층을 형성함으로써 우수한 평탄도 및 경도를 나타내는 무기미립자 산란막 및 이의 제조방법에 관한 것이다. 본 발명에 따른 무기미립자 산란막은 높은 광추출 효과 및 우수한 평탄도 및 경도를 가지므로 화상표시장치, 조명요소, 태양광전지 같은 분야에 다양하게 적용될 수 있다.

Description

높은 광추출 성능을 갖는 무기미립자 산란막
본 발명은 발광소자 계면 또는 투명기판(substrate)상에 공극을 포함하는 무기미립자층을 형성함으로써 광산란 효과를 통해 높은 광추출 효과를 나타내고, 무기미립자층상에 평탄화층을 형성함으로써 우수한 평탄도 및 경도를 나타내는 무기미립자 산란막 및 이의 제조방법에 관한 것이다.
발광소자의 경우 빛이 방출될 때 발광소자 계면에서 굴절률(refractive index) 차이에 의해 광출력에 반사손실(reflection loss)이 발생한다. 지금까지는 발광소자의 광출력을 높이기 위해 표면 또는 투명기판에 반사방지막을 형성하거나 표면을 식각하여 요철을 형성하여 산란에 의한 광출력을 높이는 방법 등이 연구 개발되어왔다.
광투과와 반사방지기능을 갖는 보호필름(반사방지필름)은 특히 렌즈 또는 화상 표시 장치에 이용되는 글라스 또는 플라스틱 기판과 같은 투명 기판상에 제공되어 왔다. 일반적으로 반사방지필름은 복수의 금속 산화물을 함유하는 투명 박막층으로 이루어지는 다층필름(고굴절률층, 중간굴절률층, 및 저굴절률층)으로 형성되며, 이 투명 박막층은 서로 적층되고 서로 다른 굴절률을 갖는다. 코팅에 의해 반사방지필름을 제조하는 경우, 필름을 형성하기 위한 매트릭스로서 바인더 수지를 이용한다. 통상, 이러한 바인더 수지는 1.45 내지 1.55의 굴절률을 가지므로, 그에 이용되는 무기 입자의 종류와 양을 선택하여 각 층의 굴절률을 적절하게 조절한다. 특히, 고굴절율층과 함께, 고굴절율을 갖는 무기미립자가 필요하며, 충분한 필름 강도를 갖는 매트릭스에 고굴절율을 갖는 무기미립자를 응집없이 균일하게 분산하는 것이 매우 중요하다.
이와 달리 산란에 의한 저반사 표면구조는 발광체에서 방출되는 빛이 계면에서 반사되어 발광소자로 되돌아가 열에너지로 전환 손실되는 것을 최소화하기 때문에 높은 광추출 효과를 갖는다. 이러한 장점 때문에 산란에 의한 저반사막은 발광소자뿐만 아니라 태양전지 등에 적용하기에 적절하다. 즉, 기판-공기 계면을 교란시킴으로써(예를 들어, 마이크로렌즈 또는 거칠게 된 표면) 그 계면에 도달하는 광에 영향을 미치기 위한 다양한 해결책이 제안되어 왔다. 산란에 의한 광추출 효율을 높이기 위하여 발광소자 표면에 요철 또는 나노와이어를 형성하여 광산란에 의한 저반사 표면을 막을 제조하는 것에 대한 연구, 또는 전극 구조를 주름지게 하는 것(corrugating)에 대한 일부 연구(문헌[M.Fujita, et al.; Jpn.J.Appl.Phys. 44 (6A),pp.3669-3677 (2005)]) 등이 활발히 진행되고 있다. 그러나, 이러한 표면 요철의 형성 구조는 산란층 표면에 전극구성 등에 있어서 결과적으로 소자의 전기장에 해로운 효과를 미치는 것으로 예상되고 적용 범위에 한계가 있다.
다른 것으로는 기판 내에 또는 유기바인더 내에 산란 요소를 도입한 것이며(R. Bathelt, Organic Electronics 8, 293-299(2007) 또는 WO2002037580A1 또는 대한민국특허출원공보 10-2009-0128487 참조), 그럼으로써 기판 모드를 중단시켜서 소자로부터의 그 광을 방향전환시킨다. 코어-기판 계면에 산란 또는 회절 요소를 도입함으로써 이 계면을 교란시키기 위한 몇몇 이전의 시도가 있었다. 특히 이들 시도 중 대한민국특허출원공보 10-2009-0128487에 의하면 광산란층은 유기바인더(굴절율 Nb) 내에 굴절률이 다른 두종류의 충전제(Nf1 또는 Nf2)로 구성되는 것을 제안하였다. 광산란층의 구성물질의 굴절율은 Nf2> Nb > Nf1 인 관계를 만족하고, 이 3가지 구성물질간의 굴절율 차이에 의해서 광산란 현상이 일어난다. 그러나, 유기바인더 내에 굴절률이 다른 무기 입자를 도입하는 경우 유기바인더와 무기입자와의 굴절율 차이가 크지 않기 때문에 산란 효과가 크지 않을 것이고 이에 따라 광추출 효과가 반감될 것이라는 문제점이 있다.
또한 최근에는 유기발광소자(OLED)의 구조에서 투명기판 위에 광산란층을 형성함으로써 광추출 효율을 극대화하기 위한 연구가 보고되기도 하였다.(R. Bathelt, Organic Electronics 8, 293-299(2007)) 이 연구에서는 공극을 포함한 폴리아크릴계의 산란막을 사용하여 광산란효율을 상승시키고자하는 연구가 보고된바 있다. 이때 사용되는 수지의 경우 장시간 사용시 수분에 의한 변색 등에 의해 광효율의 감소 등이 야기된다. 또한 유기 백필(backfill)로 사용되는 수지는 굴절률(n=1.4~1.5)이 낮기 때문에 더 이상의 산란효과는 향상되지 않을 것이라는 문제점이 있다.
또한 대한민국특허출원공보 10-2010-0138939에 의하면 고굴절 유리에 기공을 형성하여 만든 실리콘산화물 기반(silicon oxide base)의 산란 유리판에 대해서 소개하고 있다. 하지만 이러한 산란유리판은 발광소자 표면에 직접 도포하는 공정을 적용할 수 없고, 다양한 모양과 형태의 기판에 적용하기에 공정적으로 적절하지 않다는 문제점이 있다.
이에 본 발명자들은 공극(굴절률~1) 대비 굴절률이 큰 무기산화물입자(예를 들어, 굴절률 1.7 이상)를 산란 입자로 도입함으로써 광산란효과를 극대화할 수 있었다. 즉 나노 크기의 고굴절률 미립자 분말을 제조하고, 이를 발광체 표면 또는 다양한 모양과 형태의 기판 위에 코팅에 의한 공극을 갖는 무기화합물 나노입자 막으로 형성함으로써, 광산란에 의한 높은 광추출 효과를 갖는 광학박막을 발명하기에 이르렀다. 또한, 본 발명자들은 무기미립자층상에 평탄화층을 형성함으로써 우수한 평탄도 및 경도를 나타내어 소자의 전기장 및 전기전도성에 해로운 효과를 미치지 않는 무기미립자 산란막을 발명하기에 이르렀다.
본 발명의 목적은 광추출 효과가 우수한 무기미립자 산란막을 제공하는 것이다.
본 발명의 다른 목적은 평탄도 및 경도가 우수한 무기미립자 산란막을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 무기미립자 산란막의 제조방법을 제공하는 것이다.
본 발명에 따른 무기미립자 산란막은 광추출을 향상시키기 위한 산란막으로서, 공극을 포함하는 무기미립자층; 및 무기미립자층의 보호와 평탄화를 위한 평탄화층을 포함한다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자의 굴절률은 1.7 이상, 바람직하게 1.7 내지 3.0이다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자는 Li, Be, B, Na, Mg, Si, K, Ca, Sc, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Mo, Cs, Ba, La, Hf, W, Tl, Pb, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ti, Sb, Sn, Zr, Ce, Ta, In 및 이들의 조합으로 이루어지는 군으로부터 선택되는 금속을 포함하는 금속 산화물이다.
본 발명의 일 구체예에서, 상기 금속 산화물은 산화지르코늄(zirconium oxide, ZrO2); 산화하프늄(hafnium oxide, HfO2); 산화탄탈륨(tantalium oxide, Ta2O5); 이산화티타늄(titanium oxide, TiO2); 산화이트륨(yttrium oxide, Y2O3); 산화아연(zinc oxide, ZnO); 산화이트륨, 산화마그네슘(magnesium oxide, MgO), 산화칼슘(calcium oxide, CaO) 또는 산화세륨(cerium oxide, CeO2)에 의해 안정화 또는 부분안정화된 산화지르코늄(Y2O3-ZrO2, MgO-ZrO2, CaO-ZrO2, CeO2-ZrO2) 및 이들의 혼합물로 이루어지는 군으로부터 선택된다.
본 발명의 일 구체예에서, 상기 금속 산화물이 산화이트륨에 의해 안정화 또는 부분안정화된 산화지르코늄이다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자의 입자 평균 크기(D50)는 1nm 내지 1㎛, 바람직하게 5nm 내지 500 nm이다.
본 발명의 일 구체예에서, 상기 평탄화층은 유기 코팅막 형성물이고, 상기 유기 코팅막 형성물은 폴리아크릴계 수지, 폴리이미드계 수지 또는 이들의 혼합물이다.
본 발명의 일 구체예에서, 상기 평탄화층은 무기 코팅막 형성물이고, 상기 무기 코팅막 형성물은 실리콘 화합물(silicon compounds)을 포함한다.
본 발명의 일 구체예에서, 상기 실리콘 화합물은 실리카(silica), 유기실리콘(organosilicon), 실리케이트(silicate) 또는 이들의 혼합물을 포함한다.
본 발명의 일 구체예에서, 상기 무기 코팅막 형성물은 Al, B, Li 또는 Pb를 포함하는 화합물을 추가로 포함한다.
본 발명의 일 구체예에서, 상기 무기미립자 산란막의 두께는 100nm 내지 30μm이다.
본 발명의 일 구체예에서, 상기 무기미립자 산란막의 표면 평탄도(Ra)는 1nm 내지 10nm이다.
본 발명의 일 구체예에서, 상기 무기미립자 산란막의 표면 경도는 3H 내지 9H이다.
본 발명에 따른 무기미립자 산란막의 제조방법은 기판을 제공하는 단계; 상기 기판상에 공극을 포함하는 무기미립자층을 제조하는 단계; 및 상기 무기미립자층상에 평탄화층을 제조하는 단계를 포함한다.
본 발명의 일 구체예에서, 상기 기판상에 공극을 포함하는 무기미립자층을 제조하는 단계는 상기 기판 위에 무기미립자와 용매를 포함하는 무기미립자 코팅용 조성물을 도포하는 단계; 및 상기 무기미립자 코팅용 조성물을 가열하여 용매를 제거하고 공극을 포함하는 무기미립자층을 형성하는 단계를 포함한다.
본 발명의 일 구체예에서, 상기 무기미립자층상에 평탄화층을 제조하는 단계는 상기 무기미립자층상에 유기고분자 박막을 입히고 열경화하는 단계를 포함할 수 있다.
본 발명의 다른 구체예에서, 상기 무기미립자층상에 평탄화층을 제조하는 단계는 상기 무기미립자층상에 무기 코팅막 형성용 조성물을 도포하는 단계; 상기 무기 코팅막 형성용 조성물로부터 용매를 제거하는 단계; 및 상기 용매가 제거된 무기 코팅막 형성용 조성물을 열처리, 전자선처리 또는 자외선처리하여 평탄화층을 형성하는 단계를 포함한다.
본 발명의 일 구체예에서, 상기 무기 코팅막 형성용 조성물은 실란(silane), 실록산(siloxane), 실세스퀴옥산(silsesquioxane), 실리케이트(silicate), 실라놀(silanol), 실라잔(silazane) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 화합물 및 용매를 포함한다.
본 발명의 일 구체예에서, 상기 무기 코팅막 형성용 조성물은 Al, B, Li 또는 Pb를 포함하는 화합물을 추가로 포함한다.
본 발명의 일 구체예에서, 상기 무기미립자 코팅용 조성물, 상기 유기 코팅막 형성용 조성물 또는 상기 무기 코팅막 형성용 조성물을 스핀 코팅(spin coating), 딥코팅(dip-coating), 슬롯코팅(slot-coating) 또는 스크린 프린팅(screen printing)을 이용하여 도포한다.
본 발명에 따른 유리, 발광소자, 태양전지 기판, 유기 고분자 필름 또는 조명요소는 상기 무기미립자 산란막을 포함한다.
본 발명에 따른 무기미립자 산란막은 광추출 효과, 평탄도 및 경도가 우수하여, 화상표시장치, 조명요소, 태양광전지 등과 같은 분야에 다양하게 적용될 수 있다.
도 1은 본 발명에 따른 무기미립자 산란막의 단면을 나타내는 개략도이다.
도 2는 본 발명에 따른 무기미립자 산란막의 단면을 찍은 전자현미경 사진(SEM)이다.
도 3은 무기미립자층 및 무기미립자층과 평탄화층의 표면 평탄도(AFM(Atomic Force Microscope))를 측정한 결과이다.
도 4는 Y2O3로 안정화된 ZrO2 나노 분말의 합성 공정 개략도이다.
도 5는 Y2O3로 안정화된 ZrO2 나노 분말의 x-선 회절도이다.
도 6은 Y2O3로 안정화된 ZrO2 나노 분말의 전자현미경 사진(SEM)이다.
도 7은 Y2O3로 안정화된 ZrO2 나노 분말의 전자현미경 사진(SEM)이다.
도 8은 Y2O3로 안정화된 ZrO2 나노 분말의 투과전자현미경 사진(TEM)이다.
도 9는 실시예 2-3에 의해서 제조된 무기미립자층 두께가 9.8㎛인 단면의 전자현미경 사진(SEM)이다.
도 10은 실시예 2-3에 의해서 제조된 무기미립자층 두께가 4.4㎛인 단면의 전자현미경 사진(SEM)이다.
도 11은 실시예 2-3에 의해서 제조된 무기미립자층 두께가 1.8㎛인 단면의 전자현미경 사진(SEM)이다.
무기미립자 산란막
본 발명에 따른 무기미립자 산란막은 광추출을 향상시키기 위한 산란막으로서, 공극을 포함하는 무기미립자층; 및 무기미립자층의 보호와 평탄화를 위한 평탄화층을 포함한다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자의 굴절률은 1.7 이상, 바람직하게 1.7 내지 3.0이다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자는 Li, Be, B, Na, Mg, Si, K, Ca, Sc, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Mo, Cs, Ba, La, Hf, W, Tl, Pb, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ti, Sb, Sn, Zr, Ce, Ta, In 및 이들의 조합으로 이루어지는 군으로부터 선택되는 금속을 포함하는 금속 산화물이다.
본 발명의 일 구체예에서, 상기 금속 산화물은 산화지르코늄(zirconium oxide, ZrO2); 산화하프늄(hafnium oxide, HfO2); 산화탄탈륨(tantalium oxide, Ta2O5); 이산화티타늄(titanium oxide, TiO2); 산화이트륨(yttrium oxide, Y2O3); 산화아연(zinc oxide, ZnO); 산화이트륨, 산화마그네슘(magnesium oxide, MgO), 산화칼슘(calcium oxide, CaO) 또는 산화세륨(cerium oxide, CeO2)에 의해 안정화 또는 부분안정화된 산화지르코늄(Y2O3-ZrO2, MgO-ZrO2, CaO-ZrO2, CeO2-ZrO2) 및 이들의 혼합물로 이루어지는 군으로부터 선택된다.
본 발명의 일 구체예에서, 상기 금속 산화물이 산화이트륨에 의해 안정화 또는 부분안정화된 산화지르코늄이다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자의 입자 평균 크기(D50)는 1nm 내지 1㎛, 바람직하게 5nm 내지 500 nm이다.
본 발명의 일 구체예에서, 상기 무기미립자층의 무기미립자는 공침법을 이용하여 제조한다. 예를 들어, 상기 무기미립자는 금속 산화물을 포함하는 수용액을 준비하는 단계, 상기 수용액과 촉매제, 용매 및 중화제를 혼합함으로써 pH를 조절하고 반응온도를 조절하여 균일한 침전물을 만드는 단계, 침전물을 여과, 수세 단계를 통하여 균일하게 혼합시키는 단계, 열처리 조건을 통하여 비표면적과 결정성을 조절하는 단계를 포함하는 일련의 공정으로부터 제조될 수 있다.
예를 들어, 상기 산화이트륨에 의해 안정화 또는 부분안정화된 산화지르코늄은 지르코니아 수용액과 이트리아 수용액을 준비하여 정제하는 단계, 상기 수용액과 촉매제, 용매 및 중화제를 혼합함으로써 pH를 조절하고 반응온도를 조절하여 균일한 침전물을 만드는 단계, 침전물을 여과, 수세 단계를 통하여 균일하게 혼합시키는 단계, 열처리 조건을 통하여 비표면적과 결정성을 조절하는 단계를 포함하는 일련의 공정으로부터 제조될 수 있다.
지르코니아의 경우, 지르코닐 클로라이드 옥타하이드레이드(Zirconyl chloride octahydrate, ZrOCl3·8H2O), 지르코닐 나이트레이드 하이드레이드(Zirconyl nitrate hydrate, ZrO(NO3)2·xH2O) 또는 지르코늄 설페이트(Zirconium sulfate)를 사용하며, 이트리아의 경우, 이트륨 나이트레이드 헥사하이드레이드(Yttrium nitrate hexahydrate, Y(NO3)3·6H2O) 또는 이트륨 클로라이드 헥사하이드레이드(Yttrium chloride hexahydrate, YCl3·6H2O)를 사용할 수 있다.
중화제로는 수산화 암모늄(Ammonium hydroxide, NH4OH), 탄산암모늄(Ammonium carbonate, (NH4)2CO3), 중탄산암모늄(Ammonium bicarbonate, NH4HCO3), 수산화나트륨(Sodium hydroxide, NaOH), 수산화칼륨(potassium hydroxide, KOH) 중 적어도 1종의 물질을 사용할 수 있다.
원료는 적정량의 원재료를 물에 용해시켜서 여과과정을 거친 용액에 촉매제를 적가하여 공침시킨다.
침전물이 생성된 후에 반응 온도를 조절하여 Y2O3로 안정화된 ZrO2 나노입자의 입도 분포와 비표면적을 조절할 수 있다. 반응 온도 범위는 상온(20℃) 내지 100℃에서 합성이 가능하다.
침전물은 여과 과정을 통해서 분말과 액을 분리하고 세정과정을 수행한다.
위 과정을 끝낸 침전물은 100℃에서 24시간 동안 건조하여 수분을 제거한 후에 200∼1100℃의 온도 범위에서 1~5시간 동안 열처리하여 수 나노에서 수십 나노의 구형분말을 얻을 수 있다.
상술한 방법에 의해 입자의 직경 크기가 1 내지 500 nm이고, 비표면적이 5 내지 100 m2/g 인 나노 분말을 얻을 수 있다. 형성된 입자의 모양, 크기 및 분포는 주사전자현미경(FE-SEM)과 투과전자현미경(TEM)을 통하여 관찰할 수 있다. 입자의 결정성은 X-선 회절분석기(XRD)를 통하여 관찰할 수 있다.
상기 공극은 무기미립자가 적층될 때 무기미립자 사이에 형성된다. 공극의 크기와 양은 무기미립자의 제어에 따라서 조절이 가능하고, 크기와 모양 등은 한정되지 않는다.
본 발명의 일 구체예에서, 상기 무기미립자층은 상기 무기미립자층의 표면을 고정할 수 있는 바인더와 같은, 코팅막 형성물을 추가로 포함할 수 있다.
그러나, 상기와 같이 제조된 무기 미립자로 구성된 무기미립자층은 표면이 거칠기 때문에(Ra>100Å) 그 위에 직접 입혀진 전극의 단선 또는 발광소자 뒤틀림 등 불량이 발생할 수 있다.
이에 따라, 본 발명자는 굴절률이 큰 무기물 입자와 그와 굴절률이 서로 다른 공극을 포함하는 무기미립자층과 이 구조를 고정하면서 평탄화를 할 수 있는 물질인 고착물을 포함하는 평탄화층으로 무기미립자 산란막을 구성하였다. 상기 내용은 도 1에서 도식화하였다.
평탄화층 형성물은 무기미립자층의 나노입자를 지지체에 고착할 수 있는 점착성 있는 물질이 사용되는데, 광산란 나노입자와 공극이 혼합된 구조를 고정하고 지지체(substrate)에 부착성을 견고히 하기 위해, 또한 광산란막의 표면을 평탄화하고 강화하기 위해 사용된다.
무기미립자층 위에 평탄화층을 적층함으로써 다양한 효과를 추가할 수 있다. 첫번째로 무기미립자층은 코팅 방법이나 첨가물에 따라서 그 표면은 20nm ~ 200nm의 평탄도(Ra) 값을 가질 수 있다. 좀더 낮은 평탄도(Ra)를 얻기 위해서 평탄화층을 적층하여 사용할 수 있다. 표면 평탄도(Ra)는 AFM(Atomic Force Microscope)를 통하여 측정한다. 두번째로 무기미립자층은 표면경도가 약하고 산란층 구조가 물리적 힘에 의해 붕괴되는 것을 방지하기 위해 코팅막 형성물을 적층함으로써 표면뿐만 아니라 무기미립자층 구조의 기계적 강도를 강하게 해준다. 표면의 기계적 강도는 연필경도측정법(KS-D-6711-92)을 이용하고 표면 경도는 MITSUBISHI pencil을 이용하여 측정한다.
예를 들어, 구성된 무기미립자층 표면의 평탄도(Ra)는 고착물을 적층하기 전 0.18㎛ 정도로 거칠어 있었는데, 고착물을 적층함으로 인해서 표면의 평탄도는 2~5nm로 낮아진다. 표면 평탄도(Ra)는 AFM(Atomic Force Microscope)를 통하여 측정하였고, 무기미립자층과 평탄화층의 단면을 주사전자현미경(FE-SEM)을 통하여 관찰하였으며, 그 결과들을 도 2와 도 3에 나타내었다.
도 2의 전자현미경 사진을 통하여 단면은 유리-무기미립자층-평탄화층으로 적층되어 있는 것을 확인하였고, 평탄화층의 표면이 평탄함을 확인할 수 있었다.
고착물을 적층한 후의 표면의 기계적 강도는 연필경도측정법(KS-D-6711-92)을 이용하여 측정하였고, MITSUBISHI pencil을 이용하여 표면 경도를 측정하였다. 무기미립자층의 결과는 6B정도의 표면경도를 가지며, 평탄화층을 더할 경우 그 경도는 3H~6H까지 경도를 증가시킬 수 있다(도 3).
본 발명의 일 구체예에서, 상기 평탄화층은 유기 코팅막 형성물이고, 상기 유기 코팅막 형성물은 폴리아크릴계 수지, 폴리이미드계 수지 또는 이들의 혼합물이다.
본 발명의 일 구체예에서, 상기 평탄화층은 무기 코팅막 형성물이다. 본 발명에서는 상기 무기코팅막 형성물을 제조하기 위해서 SOG(spin on glass) 공정을 적용할 수 있다. 이에 따라, 상기 무기 코팅막 형성물은 실리콘 화합물(silicon compounds)을 포함할 수 있다.
본 발명의 일 구체예에서, 상기 실리콘 화합물은 실리카(silica), 유기실리콘(organosilicon), 실리케이트(silicate) 또는 이들의 혼합물을 포함한다. 본 발명의 일 구체예에서, 상기 무기 코팅막 형성물은 Al, B, Li 또는 Pb를 포함하는 화합물을 추가로 포함한다.
또한, 상기 평탄화층이 무기 코팅막 형성물인 경우는, 유기발광소자(OLED) 등의 제조시 CVD(chemical vapor deposition) 등 고온 또는 고에너지가 적용되는 공정에서 일부 유기 코팅막 형성물이 분해 또는 변성되는 문제를 효과적으로 방지할 수 있다.
본 발명의 일 구체예에서, 상기 평탄화층은 실리카 코팅막 형성물이고, 실리카막 형성물은 테트라알콕시실란과 모노알콕시실란 및 디알킬디알콕시실란중의 적어도 하나를 포함하는 혼합물의 가수분해 생성물을 주성분으로 하는 용액을 도포하고 열처리하는 단계에 의해서 형성된다.
본 발명의 일 구체예에서, 상기 무기미립자 산란막의 두께는 100nm 내지 30μm이다.
본 발명의 일 구체예에서, 상기 무기미립자 산란막의 표면 평탄도(Ra)는 1nm 내지 10nm이다.
본 발명의 일 구체예에서, 상기 무기미립자 산란막의 표면 경도는 3H 내지 9H이다.
무기미립자 산란막의 제조방법
본 발명에 따른 무기미립자 산란막의 제조방법은 기판을 제공하는 단계; 상기 기판상에 공극을 포함하는 무기미립자층을 제조하는 단계; 및 상기 무기미립자층상에 평탄화층을 제조하는 단계를 포함한다.
본 발명의 일 구체예에서, 상기 기판상에 공극을 포함하는 무기미립자층을 제조하는 단계는 상기 기판 위에 무기미립자와 용매를 포함하는 무기미립자 코팅용 조성물을 도포하는 단계; 및 상기 무기미립자 코팅용 조성물을 가열하여 용매를 제거하고 공극을 포함하는 무기미립자층을 형성하는 단계를 포함한다.
코팅에 의해서 무기미립자층을 제조하는 경우, 그에 이용되는 무기 미립자의 종류와 양을 선택하여 광학특성을 적절하게 조절해야 하며, 이를 위하여 무기미립자를 응집없이 균일하게 분산하는 것이 매우 중요하다. 즉 이러한 재료들을 나노 크기의 입자형태로 제조하여 유기 용매 또는 물 내에서 분산시킨다. 분산시킨 용액 내에서 입자는 분산 안정성이 뛰어나야 한다. 이를 위해서 무기미립자와 함께 분산제, 결합제(binder), 가소제(plasticizer) 등을 용매에 용해시켜 사용할 수 있다.
상기의 유기 용매는 알코올류, 에테르류, 아세테이트류, 케톤류 또는 톨루엔으로부터 선택되는 하나의 단일물 또는 이들의 혼합물이 이용될 수 있다. 구체적으로는, 메틸알코올, 에틸알코올, 이소프로필알콜, 부틸알콜, 이소부틸알콜, 또는 디아세톤 알콜의 알코올류; 테트라하이드로퓨란, 디에틸렌글리콜디메틸 에테르, 디에틸렌글리콜디에틸에테르, 프로필렌글리콜 모노메틸에테르, 프로필렌글리코콜알킬에테르의 에테르류; 메틸아세테이트, 에틸아세테이트, 이소프로필아세테이트, 부틸아세테이트, 프로필렌 글리콜 메틸 에테르 아세테이트, 프로필렌 글리콜 에틸 에테르 아세테이트, 프로필렌 글리콜 프로필 에테르 아세테이트, 프로필렌 글리콜 부틸 에테르 아세테이트의 아세테이트류; 아세틸아세톤, 또는 아세톤의 케톤류가 이용되나, 이에 한정되는 것은 아니다.
또한, 상기 용매와 함께 고비등점 용매를 병용하는 것도 가능하다. 병용할 수 있는 고비등점 용매는 N-메틸 포름아미드, N,N-디메틸 포름아미드, N-메틸 아세트아미드, N,N-디메틸 아세트아미드, N-메틸 피롤리돈, 디메틸 설폭시드 또는 벤질 에틸 에테르 용매가 사용될 수 있다.
본원발명에 따른 무기미립자 산란막의 제조방법은 높은 굴절률을 갖는 재료의 층을 발광소자 표면 또는 투명기판(substrate)에 코팅하는 단계를 포함한다. 나노 구조화된 특징부가 나노구조화된 표면을 생성하도록 유기재료 내에 부여될 수 있다. 그 후, 나노구조화된 표면상에 평탄화 층을 형성하도록, 평탄화 재료가 오버코팅될 수 있다.
상기 무기미립자 코팅용 조성물은 스핀 코팅, 딥-코팅, 슬롯-코팅, 스크린 프린팅 등 다양한 방법에 의해 발광소자 또는 기판 표면에 도포될 수 있다.
본 발명의 일 구체예에서, 무기미립자층의 제조시에는 스핀 코팅법을 이용할 수 있다. 분산액을 유리판 위에 도포 후 스핀 코팅을 실시한다. 이때 무기재료 분산액의 농도는 5~50%의 범위 내에서 조절되며, 스핀 코팅시 회전속도는 500~5000rpm의 조건하에서 박막을 입힌다. 스핀 코팅이 완료된 후에는 100℃에서 30초간 열을 가해 주어 유리 표면 입자를 안정화시키고 박막 표면을 건조시킨다.
또한 이러한 공극을 포함하는 무기미립자층의 표면 구조를 고정하기 위해 유기 또는 무기 바인더를 사용할 수 있다. 무기미립자층이 코팅된 투면 기판은 용매 및 유기첨가제를 비산시키기 위해 건조시켜 도막을 형성한 다음 250∼700℃의 온도로 소성하여 형성될 수 있다.
본 발명의 일 구체예에서, 상기 무기미립자층상에 평탄화층을 제조하는 단계는 상기 무기미립자층상에 유기고분자 박막을 입히고 열경화하는 단계를 포함할 수 있다. 예를 들어, 상기 평탄화 층을 형성하기 위해서 상기 무기미립자층상에 유기고분자 박막을 입히고 230℃에서 30분간 열경화 과정을 거칠 수 있다.
앞서 언급한 바와 같이, 본 발명에서는 상기 평탄화층으로서 무기코팅막 형성물을 제조하기 위해서 SOG(spin on glass) 공정을 적용할 수 있다. SOG 공정은 본래 웨이퍼 표면에 유기 용매로 녹인 유리를 회전 도포하고 열처리하여 실리카 절연막을 형성하는 프로세스를 의미하나, 본 발명에서 이와 다소 다르게 적용할 수 있다.
SOG 공정의 원료가 되는 실리콘화합물의 예로는 실란(silane), 실록산(siloxane), 실세스퀴옥산(silsesquioxane), 실리케이트(silicate), 실라놀(silanol), 실라잔(silazane), 폴리실라잔(Si, O, (N, H), 알킬기, 알콕시기 등으로 구성되는 화합물) 등이 있으며, 이들은 단독으로 또는 혼합으로 사용될 수 있다. 또한, 이러한 실리콘화합물을 용매, 바람직하게 유기용매(예를 들면, 알코올이나 초산 부틸)에 용해시켜 무기 코팅막 형성용 조성물을 제조할 수 있다.
본 발명의 일 구체예에서, 상기 무기 코팅막 형성용 조성물은 실란(silane), 실록산(siloxane), 실세스퀴옥산(silsesquioxane), 실리케이트(silicate), 실라놀(silanol), 실라잔(silazane) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 화합물 및 용매를 포함한다.
무기 코팅막 형성용 조성물로부터 유기용매를 제거한 후, 무기 코팅막 형성용 조성물을 소성함으로써, 규산 유리(SiO2)를 주성분으로하는 SOG(Spin On Glass)층을 얻을 수 있다. 그리고, SOG 재료층을 구성하는 재료에 따라서는, 전자선이나 자외선을 SOG 재료층에 조사(照射)함으로써, 규산 유리(SiO2)를 주성분으로 하는 SOG층을 얻을 수도 있다.
본 발명의 일 구체예에서, 상기 무기미립자층상에 평탄화층을 제조하는 단계는 상기 무기미립자층상에 무기 코팅막 형성용 조성물을 도포하는 단계; 상기 무기 코팅막 형성용 조성물로부터 용매를 제거하는 단계; 및 상기 용매가 제거된 무기 코팅막 형성용 조성물을 열처리, 전자선처리 또는 자외선처리하여 평탄화층을 형성하는 단계를 포함한다.
SOG 공정의 원료가 되는 실리콘화합물은 유기계와 무기계 모두를 포함한다. 좀더 구체적으로 메틸실록산, 메틸실세스퀴옥산, 페닐실록산, 페닐실세스퀴녹산, 메틸페닐실록산, 메틸페닐실세스퀴옥산 및 실리케이트 중합체를 포함할 수 있다. 상기 실리콘화합물은 또한 일반식(H0-1.0SiO1.5-2.0)x의 수소실록산 중합체 및 일반식(HSiO1.5)x의 수소실세스퀴옥산 중합체(여기에서, x는 약 8보다 크다)를 포함할 수 있다. 또한, 수소실세스퀴옥산 및 알콕시히드리도실록산 또는 히드록시히드리도실록산이 포함할 수 있다. 실리콘화합물은 추가로 일반식(H0-1.0SiO1.5-2.0)n(R0-1.0SiO1.5-2.0)m의 유기히드리도실록산 중합체 및 일반식 (HSiO1.5)n(RSiO1.5)m의 유기히드리도실세스퀴옥산 중합체(여기에서, m은 0보다 크고, n과 m의 합은 약 8보다 크며, R은 알킬 또는 아릴이다)를 포함할 수 있다.
또한, 실리콘화합물은 통상적으로 트리에톡시실란, 테트라에톡시실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 테트라메톡시실란, 메틸트리메톡시실란, 트리메톡시실란, 디메틸디메톡시실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 디페닐디에톡시실란 및 디페닐디메톡시실란과 같은 실란 반응물로부터 합성될 수 있다. 할로실란, 특히 클로로실란, 예를 들어, 트리클로로실란, 메틸트리클로로실란, 에틸트리클로로실란, 페닐트리클로로실란, 테트라클로로실란, 디클로로실란, 메틸디클로로실란, 디메틸디클로로실란, 클로로트리에톡시실란, 클로로트리메톡시실란, 클로로메틸트리에톡시실란, 클로로에틸트리에톡시실란, 클로로페닐트리에톡시실란, 클로로메틸트리메톡시실란, 클로로에틸트리메톡시실란, 및 클로로페닐트리메톡시실란 또한 실란 반응물로서 사용될 수 있다.
본 발명의 일 구체예에서, 상기 무기 코팅막 형성용 조성물은 열처리후 크랙(crack)등 물리적 부서짐을 최소화하기 위해 Al, B, Li 또는 Pb를 포함하는 화합물을 추가로 포함할 수 있다.
무기코팅막 형성물을 이용한 평탄화층의 제조방법은, 예를 들어, 무기코팅막 형성용 조성물을 무기미립자층 위에 스핀 코팅(spin coating), 딥코팅(dip-coating), 슬롯코팅(slot-coating), 분사코팅(spray coating) 또는 스크린 프린팅(screen printing) 등으로 도포하고, 용매를 비산시키기 위해 건조시켜 도막을 형성하는 단계, 다음으로, 250∼700℃의 온도로 소성하여 무기코팅막 형성물을 제조하는 단계를 포함할 수 있다.
본 발명의 일 구체예에서, 상기 무기미립자 코팅용 조성물, 상기 유기 코팅막 형성용 조성물 또는 상기 무기 코팅막 형성용 조성물을 스핀 코팅(spin coating), 딥코팅(dip-coating), 슬롯코팅(slot-coating) 또는 스크린 프린팅(screen printing)을 이용하여 도포한다.
상기 무기미립자층은 코팅층을 형성하기 위해 코팅액을 제조하는 단계를 추가로 포함할 수 있다. 이러한 경우, 무기미립자층 위에 평탄화층을 오버코팅(over-coating)하는 것을 특징으로 하며, 상기 코팅층은 스핀 코팅(spin coating), 딥코팅(dip-coating), 슬롯코팅(slot-coating), 분사코팅(spray coating) 또는 스크린 프린팅(screen printing)을 포함하지만 코팅 방법을 한정하지는 않는다.
상기의 방법으로 만들어진 박막은 박막재료와 박막두께, 박막생성 방식, 공극의 생성방식에 따라서 정투과율, 산란투과율, 산란반사율, 산란층이 각기 다르게 측정될 수 있다. 이러한 광학적 특성은 UV/Vis 분광기를 이용하여 350~800nm 파장영역에서 측정할 수 있다.
본 발명에 따른 무기미립자 산란막은 광추출 성능이 우수하고, 평탄도 및 경도가 우수하여 유리, 발광소자, 태양전지 기판, 유기 고분자 필름 또는 조명요소 등이 분야에 바람직하게 적용할 수 있다.
이하, 본 발명을 하기의 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
실시예
실시예 1. 무기미립자의 제조
실시예 1-1.
12.5wt% ZrOCl3·8H2O와 2wt% Y(NO3)3·6H2O을 물에 용해시킨 후 암모늄 하이드록사이드(Ammonium hydroxide, NH4OH)의 혼합액에 반응시켜 pH=9.00에서 침전된 용액을 제조하였다. 제조된 침전 용액을 1시간 동안 상온에서 반응시킨 후 반응을 완료시킨다. 침전물과 용액을 여과과정을 통하여 분리하고 증류수에 분리된 침전물을 분산시키면서 세척하고, 1μm 기공의 필터를 통하여 수분을 제거하고 세정을 반복한다. 수분을 제거한 침전물을 건조기에서 100℃로 24시간 동안 건조하고, 전기로에서 공기 분위기, 800℃에서 1시간 동안 열처리하였다.
상기 과정을 도 4에 나타내었다. 또한, 합성된 나노 분말의 x-선 회절분석결과와 전자현미경(SEM)사진을 도 5과 도 6에 각각 나타내었다.
실시예 1-2.
12.5 wt% ZrOCl3·8H2O와 2wt% Y(NO3)3·6H2O을 첨가제가 들어가 있는 증류수에 용해시킨 후 암모늄 하이드록사이드(Ammonium hydroxide, NH4OH)의 혼합액에 반응시켜 pH=9.00에서 침전된 용액을 제조하였다. 제조된 침전 용액을 1시간 동안 상온에서 반응시킨 후 반응온도를 60℃로 올린 후에 3시간 동안 반응하여 반응을 완료시킨다. 이후 과정은 실시예 1-1번과 동일하다. 합성된 나노 분말의 x-선 회절분석결과와 전자현미경(SEM)사진을 도 5과 도 7에 각각 나타내었다.
실시예 1-3.
실시예 1-2번과 동일하게 진행하되, 지르코니아 수용액과 이트리아 수용액에 첨가제를 적가한다. 상온에서 1시간 반응 후 반응온도를 60℃ 올리고 3시간 동안 추가반응을 진행한다. 그 이후 과정은 실시예 1-1번과 동일하다. 이 방법으로 얻어진 입자는 실시예 1-2에서 반응시보다 작은 입자를 얻었다.
상기의 결과로부터 실시예 1-1에서 제조된 YSZ 분말의 결정성이 더 발달한 것을 볼 수 있다(도 5 참조).
실시예 1-1에서 제조된 YSZ 입자의 투과전자현미경(TEM) 사진을 통하여 입자의 형태와 입자 크기를 확인할 수 있었다. 투과전자현미경 사진을 통한 입자의 크기는 50~60nm 정도이다. 상기 결과는 도 8에 나타내었다.
실시예 2. 무기미립자 산란막의 제조
실시예 2-1.
나노 크기를 가지는 지르코니아 분말을 첨가제와 함께 유기 용매 내에서 혼합시킨다. 이 용액을 3시간 동안 밀링하여 분산액을 제조한다. 분산액을 유리 기판 위에 코팅하고, 건조기 100℃에서 30초간 용매를 건조한 후 250℃에서 30분동안 가열하여 무기미립자층을 적층한다. 이후 무기미립자층 위에 폴리아크릴계 화합물을 코팅하여 평탄화 층을 적층하였다.
실시예 2-2.
나노크기를 가지는 이트리아 분말을 실시예 2-1과 동일한 방법으로 분산액을 제조하고, 무기미립자층과 평탄화 층을 적층하였다.
실시예 2-3.
50~60nm 크기를 가지는 이트리아로 안정화된 지르코니아(YSZ)를 실시예 2-1과 동일한 방법으로 분산액을 제조하고, 무기미립자층과 평탄화층을 적층하였다. 이때, 코팅조건을 변화하여 1~10㎛ 두께를 가지는 무기미립자층을 적층하였다.
실시예 2-4.
50~60nm 크기를 가지는 이트리아로 안정화된 지르코니아(YSZ)분말을 첨가제와 함께 유기 용매 내에서 혼합시킨다. 이 용액을 48시간 동안 밀링하여 분산액을 제조한다. 분산액을 유리 기판 위에 코팅조건을 변화하여 0.5~2㎛ 두께를 형성토록 코팅하고, 각각 코팅된 유리기판을 건조기 140℃에서 5분간 용매를 건조한 후 500℃에서 30분 동안 가열하여 무기미립자층을 열처리한다.
무기미립자층을 코팅하고, 그 위에 평탄화 층을 코팅하였다. 이때, 평탄화 층은 SOG 도포액(TOK사, LML-series)을 유리기판 위에 0.8g 도포 후 스핀코팅 실시한다. 이후 질소 분위기에서 500℃ 30분 hard-bake를 실시하여 산란 유리를 제조하였다.
비교예 1
유리 기판 위에 공극생성인자를 가지는 실리콘 유기화합물을 코팅한 후, 건조기 100℃에서 30초간 용매를 건조한 후 230℃에서 30분간 가열하여 유리 위에 공극을 포함한 실리콘 산화물층을 형성하였다.
비교예 2
상기 실시예 2와 비교예 1에서 사용되는 유리 기판만을 사용하였다.
비교예 3
유리 기판 위에 SOG 도포액(TOK사, LML-series)을 400rpm으로 30초 동안 유지하여 스핀코팅을 실시하였다. 이후 핫 플레이트 위에서 150℃에서 3분 동안 pre-bake를 실시하여 용매를 건조한다. 이후 질소 분위기에서 500℃ 30분 hard-bake를 실시한다.
상기 실시예 2-1, 2-2, 2-3 및 2-4와 비교예 1에서 제조된 산란막을 포함한 유리 기판, 비교에 2에서 사용되는 유리 기판, 비교예 3에서 SOG 도포액만이 코팅된 유리 기판을 UV/Vis 분광기를 이용하여 투과율과 반사율을 측정하였고, 이 결과로부터 550nm 파장에서의 이들 값을 표 1에 나타내었다.
표 1
  무기미립자층 무기미립자층 두께(㎛) 산란투과율 (%) 정투과율 (%) 총반사율 (%)
실시예 2-1 ZrO2 1.8 49.8 36.9 11.2
실시예 2-2 Y2O3 2.1 49.4 38.6 10.2
실시예 2-3 YSZ 9.8 50.9 1 44.7
4.2 57.9 4.3 34.7
2 60.6 13.8 21.2
1.1 34.5 48.6 13.7
실시예 2-4 YSZ 1.0 33.2 43.0 21.5
비교예 1 공극을 포함한 실리콘 산화물 1.5 6 84.8 7.8
비교예 2 x x 0 91.6 8.7
비교예 3 x x 0.2 92.5 7.3
상기 표 1에서 보는 바와 같이, 비교예 2에서 산란층이 적층되지 않은 유리 기판 또는 비교예 3에서 SOG 도포액만이 코팅된 유리 기판은 정투과와 반사가 일어나고 빛의 산란은 일어나지 않고, 공극과 실리콘 산화물을 포함하는 무기미립자층의 경우 적은 양의 광산란이 일어나는 것을 볼 수 있다(비교예1).
실시예 2-1은 공극을 포함한 실리콘 산화물층보다 높은 산란투과율을 나타내었다. 즉, ZrO2 무기미립자에 의한 산란막은 높은 산란효율을 보여주고 광추출 효과를 증대시킬 수 있음을 알 수 있다.
실시예 2-2는 Y2O3 분말을 이용한 산란층도 50% 정도의 산란투과율을 가지며 광추출 효과에 우수한 성능을 보이고 있다.
실시예 2-3은 이트리아로 안정화된 지르코니아(Yttria stabilized Zirconia) (YSZ) 복합산화물 무기미립자를 통하여 더 우수한 광산란 효율을 보임을 산란투과율을 통하여 알 수 있는데, 무기미립자층의 두께와 코팅 방법에 따라서 정투과율, 산란투과율, 반사율 등을 조절할 수 있으며, 공극의 정도를 조절할 수 있다. 도9, 도10, 도 11에서는 실시예 2-3에서 적층된 무기미립자층이 각각 2㎛, 4.4㎛, 9,8㎛인 단면의 전자현미경 사진인데, 다양한 두께의 무기미립자층을 적층할 수 있으며, 그 공극의 정도도 다양하게 얻을 수 있다. 따라서, 이는 다양한 형태의 광추출 효과를 보여줄 수 있을 것으로 사료된다.
실시예 2-4는 평탄화층으로서 SOG 도포액을 코팅하여 높은 산란 투과율을 나타내며, 유기발광소자(OLED) 등의 제조시 CVD(chemical vapor deposition) 등 고온 또는 고에너지가 적용되는 공정에서 분해 또는 변성 문제를 효과적으로 방지할 것으로 예상된다.
지금까지 예시적인 실시 태양을 참조하여 본 발명을 기술하여 왔지만, 본 발명의 속하는 기술 분야의 당업자는 본 발명의 범주를 벗어나지 않고서도 다양한 변화를 실시할 수 있으며 그의 요소들을 등가물로 대체할 수 있음을 알 수 있을 것이다. 또한, 본 발명의 본질적인 범주를 벗어나지 않고서도 많은 변형을 실시하여 특정 상황 및 재료를 본 발명의 교시내용에 채용할 수 있다. 따라서, 본 발명이 본 발명을 실시하는데 계획된 최상의 양식으로서 개시된 특정 실시 태양으로 국한되는 것이 아니며, 본 발명이 첨부된 특허청구의 범위에 속하는 모든 실시 태양을 포함하는 것으로 해석되어야 한다.

Claims (21)

  1. 광추출을 향상시키기 위한 산란막으로서,
    공극을 포함하는 무기미립자층; 및
    무기미립자층의 보호와 평탄화를 위한 평탄화층을 포함하는 무기미립자 산란막.
  2. 제1항에 있어서, 상기 무기미립자층의 무기미립자의 굴절률이 1.7 이상인 것을 특징으로 하는 무기미립자 산란막.
  3. 제1항에 있어서, 상기 무기미립자층의 무기미립자가 Li, Be, B, Na, Mg, Si, K, Ca, Sc, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Mo, Cs, Ba, La, Hf, W, Tl, Pb, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ti, Sb, Sn, Zr, Ce, Ta, In 및 이들의 조합으로 이루어지는 군으로부터 선택되는 금속을 포함하는 금속 산화물인 것을 특징으로 하는 무기미립자 산란막.
  4. 제3항에 있어서, 상기 금속 산화물이 산화지르코늄(zirconium oxide, ZrO2); 산화하프늄(hafnium oxide, HfO2); 산화탄탈륨(tantalium oxide, Ta2O5); 이산화티타늄(titanium oxide, TiO2); 산화이트륨(yttrium oxide, Y2O3); 산화아연(zinc oxide, ZnO); 산화이트륨, 산화마그네슘(magnesium oxide, MgO), 산화칼슘(calcium oxide, CaO) 또는 산화세륨(cerium oxide, CeO2)에 의해 안정화 또는 부분안정화된 산화지르코늄(Y2O3-ZrO2, MgO-ZrO2, CaO-ZrO2, CeO2-ZrO2) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 무기미립자 산란막.
  5. 제4항에 있어서, 상기 금속 산화물이 산화이트륨에 의해 안정화 또는 부분안정화된 산화지르코늄인 것을 특징으로 하는 무기미립자 산란막.
  6. 제1항에 있어서, 상기 무기미립자층의 무기미립자의 입자 평균 크기(D50)가 1nm 내지 1㎛인 것을 특징으로 하는 무기미립자 산란막.
  7. 제1항에 있어서, 상기 평탄화층이 유기 코팅막 형성물이고, 상기 유기 코팅막 형성물이 폴리아크릴계 수지, 폴리이미드계 수지 또는 이들의 혼합물인 것을 특징으로 하는 무기미립자 산란막.
  8. 제1항에 있어서, 상기 평탄화층이 무기 코팅막 형성물이고, 상기 무기 코팅막 형성물이 실리콘 화합물(silicon compounds)을 포함하는 것을 특징으로 하는 무기미립자 산란막.
  9. 제8항에 있어서, 상기 실리콘 화합물이 실리카(silica), 유기실리콘(organosilicon), 실리케이트(silicate) 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 무기미립자 산란막.
  10. 제8항에 있어서, 상기 무기 코팅막 형성물이 Al, B, Li 또는 Pb를 포함하는 화합물을 추가로 포함하는 것을 특징으로 하는 무기미립자 산란막.
  11. 제1항에 있어서, 상기 무기미립자 산란막의 두께가 100nm 내지 30μm인 것을 특징으로 하는 무기미립자 산란막.
  12. 제1항에 있어서, 상기 무기미립자 산란막의 표면 평탄도(Ra)가 1nm 내지 10nm인 것을 특징으로 하는 무기미립자 산란막.
  13. 제1항에 있어서, 상기 무기미립자 산란막의 표면 경도가 3H 내지 9H인 것을 특징으로 하는 무기미립자 산란막.
  14. 기판을 제공하는 단계;
    상기 기판상에 공극을 포함하는 무기미립자층을 제조하는 단계; 및
    상기 무기미립자층상에 평탄화층을 제조하는 단계를 포함하는 무기미립자 산란막의 제조방법.
  15. 제14항에 있어서, 상기 기판상에 공극을 포함하는 무기미립자층을 제조하는 단계가 상기 기판 위에 무기미립자와 용매를 포함하는 무기미립자 코팅용 조성물을 도포하는 단계; 및 상기 무기미립자 코팅용 조성물을 가열하여 용매를 제거하고 공극을 포함하는 무기미립자층을 형성하는 단계를 포함하는 것을 특징으로 하는 무기미립자 산란막의 제조방법.
  16. 제14항에 있어서, 상기 무기미립자층상에 평탄화층을 제조하는 단계가 상기 무기미립자층상에 유기고분자 박막을 입히고 열경화하는 단계를 포함하는 것을 특징으로 하는 무기미립자 산란막의 제조방법.
  17. 제14항에 있어서, 상기 무기미립자층상에 평탄화층을 제조하는 단계가 상기 무기미립자층상에 무기 코팅막 형성용 조성물을 도포하는 단계; 상기 무기 코팅막 형성용 조성물로부터 용매를 제거하는 단계; 및 상기 용매가 제거된 무기 코팅막 형성용 조성물을 열처리, 전자선처리 또는 자외선처리하여 평탄화층을 형성하는 단계를 포함하는 것을 특징으로 하는 무기미립자 산란막의 제조방법.
  18. 제17항에 있어서, 상기 무기 코팅막 형성용 조성물이 실란(silane), 실록산(siloxane), 실세스퀴옥산(silsesquioxane), 실리케이트(silicate), 실라놀(silanol), 실라잔(silazane) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 화합물 및 용매를 포함하는 것을 특징으로 하는 무기미립자 산란막의 제조방법.
  19. 제18항에 있어서, 상기 무기 코팅막 형성용 조성물이 Al, B, Li 또는 Pb를 포함하는 화합물을 추가로 포함하는 것을 특징으로 하는 무기미립자 산란막의 제조방법.
  20. 제15항 내지 제17항 중 어느 한 항에 있어서, 상기 무기미립자 코팅용 조성물, 상기 유기 코팅막 형성용 조성물 또는 상기 무기 코팅막 형성용 조성물을 스핀 코팅(spin coating), 딥코팅(dip-coating), 슬롯코팅(slot-coating) 또는 스크린 프린팅(screen printing)을 이용하여 도포하는 것을 특징으로 하는 무기미립자 산란막의 제조방법.
  21. 제1항 내지 제13항 중 어느 한 항에 따른 무기미립자 산란막을 포함하는 유리, 발광소자, 태양전지 기판, 유기 고분자 필름 또는 조명요소.
PCT/KR2012/005635 2011-07-14 2012-07-13 높은 광추출 성능을 갖는 무기미립자 산란막 WO2013009150A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/232,562 US20140234583A1 (en) 2011-07-14 2012-07-13 Inorganic particle scattering film having a good light-extraction performance
CN201280031464.8A CN103608295B (zh) 2011-07-14 2012-07-13 具有良好的光提取性能的无机粒子散射膜
JP2014520141A JP6255338B2 (ja) 2011-07-14 2012-07-13 高光取り出し性能を有する無機粒子散乱フィルム
EP12811804.9A EP2733117A4 (en) 2011-07-14 2012-07-13 INORGANIC PARTICLE SPREADING FILM WITH GOOD LIGHT EXTRACTION POWER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0070128 2011-07-14
KR1020110070128A KR20120007472A (ko) 2010-07-14 2011-07-14 높은 광추출 성능을 갖는 무기 산란막

Publications (3)

Publication Number Publication Date
WO2013009150A2 WO2013009150A2 (ko) 2013-01-17
WO2013009150A9 true WO2013009150A9 (ko) 2013-03-21
WO2013009150A3 WO2013009150A3 (ko) 2013-05-02

Family

ID=47514440

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/008076 WO2013008982A1 (ko) 2011-07-14 2011-10-27 높은 광추출 성능을 갖는 무기 산란막 {inorganic scattering films having high light extraction performance}
PCT/KR2012/005635 WO2013009150A2 (ko) 2011-07-14 2012-07-13 높은 광추출 성능을 갖는 무기미립자 산란막

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008076 WO2013008982A1 (ko) 2011-07-14 2011-10-27 높은 광추출 성능을 갖는 무기 산란막 {inorganic scattering films having high light extraction performance}

Country Status (7)

Country Link
US (1) US20140234583A1 (ko)
EP (1) EP2733117A4 (ko)
JP (1) JP6255338B2 (ko)
KR (1) KR101503704B1 (ko)
CN (1) CN103608295B (ko)
TW (1) TWI547433B (ko)
WO (2) WO2013008982A1 (ko)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780432B1 (en) * 2011-03-22 2014-07-15 Paul Phong Nguyen Electrochromic devices and methods for forming such devices
CN104051658A (zh) * 2013-03-12 2014-09-17 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
KR101484088B1 (ko) * 2013-07-16 2015-01-21 코닝정밀소재 주식회사 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
KR101484089B1 (ko) 2013-07-16 2015-01-19 코닝정밀소재 주식회사 초박형 유기발광소자 제조방법
KR101493601B1 (ko) * 2013-07-17 2015-02-13 쌩-고벵 글래스 프랑스 발광 디바이스용 적층체 및 그의 제조 방법
KR101487102B1 (ko) * 2013-09-30 2015-01-27 고려대학교 산학협력단 유리 기판 구조물의 제조 방법
KR101493612B1 (ko) 2013-10-08 2015-02-13 쌩-고벵 글래스 프랑스 발광 디바이스용 적층체 및 그의 제조 방법
KR102323281B1 (ko) * 2014-10-31 2021-11-05 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102273631B1 (ko) * 2014-12-09 2021-07-07 한국전자통신연구원 유기발광 다이오드 및 그 제조방법
CN105762290A (zh) * 2014-12-18 2016-07-13 固安翌光科技有限公司 一种有机电致发光器件及其制备方法
WO2016117924A1 (ko) * 2015-01-21 2016-07-28 코닝정밀소재 주식회사 유기발광장치용 광추출 기판 및 이를 포함하는 유기발광장치
KR101866243B1 (ko) * 2015-01-21 2018-06-12 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
CN105467654A (zh) * 2015-12-11 2016-04-06 无锡联创薄板有限公司 高硬度的led光扩散板
US11034845B2 (en) * 2016-02-04 2021-06-15 Pixelligent Technologies, Llc Nanocomposite formulations for optical applications
KR101999294B1 (ko) * 2016-03-23 2019-07-15 코닝 인코포레이티드 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
SG11201900395VA (en) 2016-07-18 2019-02-27 Az Electronic Mat Luxembourg Sarl Formulation for an led encapsulation material
CN109476873B (zh) 2016-07-18 2021-08-24 Az电子材料(卢森堡)有限公司 用于led封装材料的制剂
CN106206983A (zh) 2016-08-18 2016-12-07 深圳市华星光电技术有限公司 一种有机发光二极管结构
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
JP6947914B2 (ja) 2017-08-18 2021-10-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧高温下のアニールチャンバ
CN111095524B (zh) 2017-09-12 2023-10-03 应用材料公司 用于使用保护阻挡物层制造半导体结构的设备和方法
JP7112490B2 (ja) 2017-11-11 2022-08-03 マイクロマテリアルズ エルエルシー 高圧処理チャンバのためのガス供給システム
JP2021503714A (ja) 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧処理システムのためのコンデンサシステム
CN107902694A (zh) * 2017-11-30 2018-04-13 齐鲁工业大学 一种快速制备氧化锆薄膜的低温液相方法
EP3762962A4 (en) 2018-03-09 2021-12-08 Applied Materials, Inc. HIGH PRESSURE ANNEALING PROCESS FOR METAL-BASED MATERIALS
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
KR102709857B1 (ko) * 2018-05-15 2024-09-24 코닝 인코포레이티드 유기발광장치의 광추출층 코팅용액 및 이를 이용한 유기발광장치의 광추출 기판 제조방법
KR102566542B1 (ko) 2018-05-15 2023-08-10 코닝 인코포레이티드 유기발광장치용 광추출 기판 및 그 제조방법
CN108987606B (zh) * 2018-06-29 2020-07-17 江苏集萃有机光电技术研究所有限公司 光提取膜的制备方法、及具有光提取膜的oled器件
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
KR20210077779A (ko) 2018-11-16 2021-06-25 어플라이드 머티어리얼스, 인코포레이티드 강화된 확산 프로세스를 사용한 막 증착
CN109585685B (zh) * 2018-12-07 2021-06-01 纳晶科技股份有限公司 光取出结构、其制作方法及发光器件
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film
CN111303614A (zh) * 2020-03-20 2020-06-19 东华大学 一种Y2O3:Yb,Er-聚合物复合薄膜的制备方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155373A (en) * 1981-03-18 1982-09-25 Sadami Ito Adhering method of irregular reflection evaporated film
US5040870A (en) * 1989-10-13 1991-08-20 Sumitomo Chemical Company, Limited Screen for projection
JP4484330B2 (ja) * 1999-09-21 2010-06-16 ダイセル化学工業株式会社 異方性光散乱フィルム
WO2002037580A1 (en) 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness enhancement of emissive displays
US6703780B2 (en) * 2001-01-16 2004-03-09 General Electric Company Organic electroluminescent device with a ceramic output coupler and method of making the same
JP2002260845A (ja) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセンス発光素子、それを用いた表示装置または発光源
US20030118750A1 (en) * 2001-12-14 2003-06-26 Eastman Kodak Company Microvoided light diffuser containing optical contact layer
US6869185B2 (en) * 2002-10-16 2005-03-22 Eastman Kodak Company Display systems using organic laser light sources
JPWO2005115740A1 (ja) * 2004-05-26 2008-03-27 日産化学工業株式会社 面発光体
JP2006137932A (ja) * 2004-10-12 2006-06-01 Toray Ind Inc コーティング用組成物およびそれを用いた表示装置
JP4634129B2 (ja) * 2004-12-10 2011-02-16 三菱重工業株式会社 光散乱膜,及びそれを用いる光デバイス
JP5066814B2 (ja) * 2005-03-11 2012-11-07 三菱化学株式会社 エレクトロルミネッセンス素子及び照明装置
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
JP2007317536A (ja) * 2006-05-26 2007-12-06 Mitsubishi Materials Corp 無機エレクトロルミネッセンス素子用酸化ジルコニウム系バリア膜
JP5536977B2 (ja) * 2007-03-30 2014-07-02 パナソニック株式会社 面発光体
US7560747B2 (en) * 2007-05-01 2009-07-14 Eastman Kodak Company Light-emitting device having improved light output
US7982396B2 (en) * 2007-06-04 2011-07-19 Global Oled Technology Llc Light-emitting device with light-scattering particles and method of making the same
US8179034B2 (en) * 2007-07-13 2012-05-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display and lighting devices
JP2009027036A (ja) * 2007-07-20 2009-02-05 Fujifilm Corp 表示装置及び欠陥画素のリペア方法
US8040046B2 (en) * 2007-08-21 2011-10-18 Fujifilm Corporation Organic electroluminescent display having light scattering film
WO2009028456A1 (ja) * 2007-08-27 2009-03-05 Panasonic Electric Works Co., Ltd. 有機el発光素子
JP5054464B2 (ja) * 2007-08-27 2012-10-24 パナソニック株式会社 有機el発光素子
KR100958514B1 (ko) * 2007-12-12 2010-05-17 한국생산기술연구원 고체산화물 연료전지의 제조방법
CN101978781A (zh) 2008-03-18 2011-02-16 旭硝子株式会社 电子器件用基板、有机led元件用层叠体及其制造方法、有机led元件及其制造方法
JP5182108B2 (ja) * 2009-01-09 2013-04-10 コニカミノルタアドバンストレイヤー株式会社 El素子、及びそれを用いたel表示装置
JP2010170969A (ja) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd 電極付き基板、その製造方法、有機led素子およびその製造方法
JP2010205650A (ja) * 2009-03-05 2010-09-16 Fujifilm Corp 有機el表示装置
JP5381326B2 (ja) * 2009-05-25 2014-01-08 コニカミノルタ株式会社 異方性散乱フィルム及びそれを用いたel素子、el表示装置、el照明装置
TWI384654B (zh) * 2009-07-31 2013-02-01 Univ Nat Taiwan Science Tech 色溫可調之白光發光裝置
US20110062469A1 (en) * 2009-09-17 2011-03-17 Koninklijke Philips Electronics N.V. Molded lens incorporating a window element
KR101381353B1 (ko) * 2012-07-06 2014-04-04 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CA2906380C (en) * 2013-03-15 2019-07-16 Gurdeep AHIRA Test strips for visual differentiation of liquid mixture composition

Also Published As

Publication number Publication date
KR20130009704A (ko) 2013-01-23
CN103608295B (zh) 2016-09-07
US20140234583A1 (en) 2014-08-21
TWI547433B (zh) 2016-09-01
JP6255338B2 (ja) 2017-12-27
JP2014527683A (ja) 2014-10-16
EP2733117A4 (en) 2015-10-07
WO2013009150A2 (ko) 2013-01-17
WO2013008982A1 (ko) 2013-01-17
KR101503704B1 (ko) 2015-03-20
WO2013009150A3 (ko) 2013-05-02
EP2733117A2 (en) 2014-05-21
TW201318962A (zh) 2013-05-16
CN103608295A (zh) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2013009150A9 (ko) 높은 광추출 성능을 갖는 무기미립자 산란막
US10516140B2 (en) Advanced light extraction structure
WO2015137761A1 (ko) 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
EP0615000B1 (en) Coatings using filled hydrogen silsequioxane
JP5556878B2 (ja) 太陽電池用積層カバー基板、太陽電池、並びに、太陽電池用積層カバー基板の製造方法
US20120021177A1 (en) Water-repellent substrate and process for its production
TWI671362B (zh) 混成材料之用途、其塗布方法及光電元件
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
KR20120007472A (ko) 높은 광추출 성능을 갖는 무기 산란막
WO2014069808A1 (ko) 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용하여 표면 에너지가 조절된 반사 방지 필름
CN105814157B (zh) 用于抗反射的硅氧烷纳米颗粒涂料
WO2012165766A2 (ko) 저굴절 중공 복합체, 그 제조 방법 및 이를 포함하는 코팅액
KR101864767B1 (ko) 고순도 중공 실리카 나노분말의 제조방법 및 동 나노분말을 포함하는 저반사 코팅막
JP2011137097A (ja) 透明被膜形成用塗布液ならびに透明被膜付基材、および疎水性金属酸化物粒子の製造方法
WO2015108385A1 (ko) 배리어 필름 및 그 제조 방법
CA2239345A1 (en) Method for producing thick crack-free coatings from hydrogen silsesquioxane resin
WO2015093825A1 (ko) 고방열 세라믹 복합체, 이의 제조방법, 및 이의 용도
JP5685884B2 (ja) シリカ体及びその製造方法
CN109844959A (zh) 太阳能电池元件及太阳能电池元件的制造方法
US5807611A (en) Electronic coatings
JP2022089560A (ja) 改質中空粒子及びその製造方法
JP6751578B2 (ja) 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
JP2005330172A (ja) ガラス板およびその製造方法、低反射性透明ガラス板、低反射性透明導電基板およびその製造方法、ならびに、低反射性透明導電基板を用いた光電変換素子
JP2012031054A (ja) セラミックス多孔質体
US20240280731A1 (en) Optical element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811804

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014520141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012811804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14232562

Country of ref document: US