WO2015108385A1 - 배리어 필름 및 그 제조 방법 - Google Patents

배리어 필름 및 그 제조 방법 Download PDF

Info

Publication number
WO2015108385A1
WO2015108385A1 PCT/KR2015/000530 KR2015000530W WO2015108385A1 WO 2015108385 A1 WO2015108385 A1 WO 2015108385A1 KR 2015000530 W KR2015000530 W KR 2015000530W WO 2015108385 A1 WO2015108385 A1 WO 2015108385A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
group
refractive index
barrier film
layer
Prior art date
Application number
PCT/KR2015/000530
Other languages
English (en)
French (fr)
Inventor
황장연
김동렬
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580001842.1A priority Critical patent/CN105636775B/zh
Priority to US14/911,441 priority patent/US10196492B2/en
Publication of WO2015108385A1 publication Critical patent/WO2015108385A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7248Odour barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/16Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/20Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present application relates to a barrier film and a method of manufacturing the same.
  • the electrical components and metal wires that make up the inside of organic or inorganic light emitters, display devices, photovoltaic power generators, etc. are denatured or oxidized when they come into contact with external chemicals such as oxygen or moisture, and thus fail to exhibit their original functions. Occurs. Therefore, it is necessary to protect the electric element or the like from the chemical. To this end, a technique of protecting an internal electric device vulnerable to chemicals by using a glass plate as a substrate material or a cover plate has been proposed.
  • the glass plate has an advantage of having satisfactory properties in light transmittance, thermal expansion coefficient, chemical resistance and the like. However, glass is not only heavy, but also hard and brittle, which requires disadvantageous handling.
  • plastic which is a representative material that is lighter, has better impact resistance, and has flexible properties than glass plates used as substrate materials for electric devices.
  • plastic films have a number of disadvantages in terms of physical properties compared to glass plates, and thus, supplementation is required.
  • the water resistance and gas barrier properties of the plastic film is most urgently needed to be improved compared to the properties of the glass plate, and a barrier film having excellent gas barrier properties and light transmittance is required.
  • the present application is applied to an organic or inorganic light emitting device, a display device, a photovoltaic device, and the like to effectively block chemicals such as moisture or oxygen to protect the electronic devices inside, and at the same time maintain the excellent optical properties and its manufacture Provide a method.
  • the present application relates to a barrier film.
  • the barrier film of the present application may be applied to an organic or inorganic light emitter, a display device, a photovoltaic device.
  • the exemplary barrier film 10 sequentially includes a base layer 14, a first dielectric layer 13, an inorganic layer 12, and a second dielectric layer 11.
  • the inorganic layer may have a refractive index of 1.65 or more.
  • the thickness of the first dielectric layer may be less than 100 nm, and the thickness of the second dielectric layer may be greater than or equal to the thickness of the first dielectric layer. That is, the thickness of the second dielectric layer may be equal to or larger than the thickness of the first dielectric layer.
  • the refractive index of the inorganic layer may be at least 1.65, for example, 1.7 or more, 1.75 or more, 1.8 or more, 1.85 or more, 1.9 or more, 1.95 or more, 1.96 or more, 1.97 or more, 1.98 or more, 1.99 or more or 2.0 or more Can be.
  • the upper limit of the inorganic layer refractive index is not particularly limited, but may be, for example, 3.0 or less, 2.5 or less, 2.4 or less, 2.3 or less, or 2.2 or less.
  • the present application can provide a barrier film having excellent optical properties along with gas barrier properties by controlling the thickness and refractive index of the first dielectric layer and the second dielectric layer together with the relatively high refractive index inorganic material layer.
  • n 1 represents a refractive index of the first dielectric layer
  • n 2 represents a refractive index of the second dielectric layer
  • n i represents a refractive index of the inorganic layer.
  • the optical properties of a film having a structure in which several layers are laminated vary with the refractive index and thickness of the constituent layers.
  • the stacking material and the stacking order capable of controlling the difference in refractive index have a great influence on the optical properties of the multilayer film.
  • the first dielectric layer, the inorganic layer and the second dielectric layer of the present application can use any material known to those skilled in the art without limitation as long as the refractive index has the relationship of the refractive index, and by satisfying the refractive index relationship and the thickness relationship as described above
  • the barrier film excellent in optical characteristics can be manufactured.
  • the refractive index may mean a refractive index in a wavelength range of 300 nm to 1000 nm. In one example, the refractive index herein may mean a refractive index at a wavelength of 550 nm or 633 nm.
  • the barrier film of this application can manufacture the barrier film excellent in optical characteristic by satisfying the thickness relationship which concerns on following General formula (4).
  • d 1 is the thickness of the first dielectric layer
  • d 2 is the thickness of the second dielectric layer.
  • the ratio of the thickness d 1 of the first dielectric layer to the thickness d 2 of the second dielectric layer may be 0.01 to 1, or 0.01 or more and less than 1, for example, 0.02 to 1.0, 0.05 to 1.0, 0.1 to 1.0, 0.1 to 0.9, 0.1 to 0.8 or 0.1 to 0.7.
  • 0.02 to 1.0 0.02 to 1.0
  • 0.05 to 1.0 0.01 to 1.0
  • 0.1 to 1.0 0. to 0.9
  • 0.1 to 0.8 or 0.1 to 0.7 0.01 to 1 of the first dielectric layer
  • the ratio of the thickness d 1 of the first dielectric layer to the thickness d 2 of the second dielectric layer may be 0.01 to 1, or 0.01 or more and less than 1, for example, 0.02 to 1.0, 0.05 to 1.0, 0.1 to 1.0, 0.1 to 0.9, 0.1 to 0.8 or 0.1 to 0.7.
  • the thickness d 1 of the first dielectric layer may be less than 100 nm, for example, 5 nm to 98 nm. Also, it may be 10 nm to 95 nm, 10 nm to 90 nm, 10 nm to 85 nm, 10 nm to 80 nm, or 10 nm to 75 nm. That is, the thickness relationship between the first dielectric layer and the second dielectric layer satisfying the general formula (4) of the present application can be established, for example, when the thickness of the first dielectric layer is less than 100 nm.
  • the thickness d 2 of the second dielectric layer may be 10 nm to 1 ⁇ m, 10 nm to 900 nm, 20 nm to 800 nm, 30 nm to 700 nm, 35 nm to 600 nm, 40 nm to 500 nm, or 45 nm to 400 nm.
  • the first dielectric layer and the second dielectric layer according to the present application by satisfying the above-described thickness relationship, it is possible to implement excellent gas barrier properties and light transmittance together with the zinc oxide-based inorganic material layer to be described later than the silicon oxide-based refractive index.
  • the refractive index n 1 of the first dielectric layer and the refractive index n 2 of the second dielectric layer may satisfy the following general formula (2).
  • the ratio (n 2-1 ) / (n 1-1 ) of the refractive index n 2 of the second dielectric layer to the refractive index n 1 of the first dielectric layer may be 0.5 to 1, preferably May be 0.55 to 1, 0.6 to 1, 0.65 to 1, or 0.7 to 1.
  • the refractive index n 1 of the first dielectric layer and the refractive index n i of the inorganic layer may satisfy the following general formula (3).
  • the ratio of the refractive index n 1 of the first dielectric layer to the refractive index n i of the inorganic material layer (n 1 - 1) / ( n i - 1) may be 0.3 to 0.95 day, preferably 0.35 to 0.85, 0.4 to 0.8, 0.4 to 0.75, 0.4 to 0.7 or 0.45 to 0.7.
  • the present application can produce a film having excellent light transmittance by limiting the ratio of the refractive indices of the first dielectric layer and the second dielectric layer or the ratio of the refractive indices of the inorganic layer and the second dielectric layer to a specific range as described above.
  • the refractive index of the base layer is not particularly limited, but may be 1.45 to 1.75, 1.45 to 1.7 or 1.5 to 1.65.
  • the refractive index n 1 of the first dielectric layer or the refractive index n 2 of the second dielectric layer is not particularly limited as long as the general formula 1 is satisfied, but may be 1.35 to 1.9, 1.4 to 1.9, 1.45 to 1.9, or 1.45 to 1.8.
  • the refractive index of the base layer when the refractive index of the base layer is n s , the refractive index of the base layer may be smaller than the refractive index n i of the inorganic layer.
  • the refractive index n s of the base layer and the refractive index n i of the inorganic layer may satisfy the following general formula (5).
  • the refractive index n s of the substrate layer and the refractive index n 1 of the first dielectric layer may satisfy the following general formula (6).
  • the material of the base layer of the present application is not particularly limited, but the general formulas 5 or 6 may be satisfied.
  • the ratio n s / n 1 of the refractive index n s of the substrate layer to the refractive index n 1 of the first dielectric layer may be 0.5 to 1.5, and specifically, 0.6 to 1.4 or 0.7 to 1.3 days. Can be.
  • the thickness relationship between the first dielectric layer and the second dielectric layer of the barrier film according to the present application may be appropriately controlled according to the material properties, refractive index relationships, and inorganic material properties of each layer of the barrier film, as described above. 4 can be satisfied. For example, by satisfying the thickness relationship, it is possible to implement excellent gas barrier properties and light transmittance together with the zinc oxide-based inorganic material layer to be described later.
  • the barrier film may also have good light transmittance in the visible light region.
  • the present application may exhibit a light transmittance of 88% or more within a wavelength range of 380 nm to 780 nm.
  • the barrier film sequentially including the base layer, the first dielectric layer, the inorganic layer, and the second dielectric layer described above in the present application may maintain excellent transparency.
  • the barrier film formed by satisfying a specific refractive index relationship or a thickness ratio relationship of each layer may have a light transmittance of 88% or more, 89% or more, or 90% or more within a wavelength range of 380 nm to 780 nm.
  • the barrier film may exhibit low yellowness with good light transmittance.
  • a barrier film having a low yellowness value may be provided.
  • yellowness according to ASTM E313 may represent -2.0 to 2.0, -1.8 to 1.8, -1.5 to 1.9, or -1.3 to 1.8.
  • the barrier film may have a b * value in the CIE coordinate system in the range of -1.0 to 1.5 or -0.5 to 1.3.
  • the CIE coordinate system is a color value defined by the International Lighting Institution (CIE), also referred to as a CIE color system or a CIE color space.
  • the coordinate system is a uniform color space coordinate, and is a coordinate system that is currently standardized worldwide because it shows a very small difference with the eye.
  • the CIE coordinate system is defined as L * for brightness and a * and b * for chroma, where a * and b * indicate the direction of color. Specifically, if the a * value is positive, it means red, and if it is negative, it means green. If the b * value is positive, yellow, and if it is negative, the direction of blue is indicated.
  • the b * value of the barrier film can be measured in a known manner.
  • the first dielectric layer, the inorganic layer and the second dielectric layer may use any material known to those skilled in the art without limitation as long as it satisfies the relationship between the refractive index and the thickness relationship of the general formula (1). have.
  • the base layer is a polyester resin such as polyethylene terephthalate, polycarbonate, polyethylene naphthalate, polyarylate, polyether resin such as polyether sulfone, cycloolefin polymer, polyethylene resin, polypropylene resin, or the like. It may include one or more selected from the group consisting of cellulose resin, polyimide resin and epoxy resin such as polyolefin resin, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate. In the present application, the base layer may preferably include a polycarbonate or a cycloolefin polymer.
  • the thickness of the substrate layer is not particularly limited, but may be 2 ⁇ m to 200 ⁇ m, and may be 5 ⁇ m to 190 ⁇ m, 10 ⁇ m to 180 ⁇ m, 20 ⁇ m to 180 ⁇ m, or 20 ⁇ m to 150 ⁇ m.
  • the substrate layer may be laminated with a separate coating layer on the opposite side of the laminated surface of the above-described multilayer structure.
  • the coating layer may be laminated to a thickness of 0.01 to 10 ⁇ m, with such a coating layer may give the possibility to improve the optical properties, to complement the mechanical properties or to facilitate the future process.
  • the inorganic layer is not limited as long as the material satisfies the aforementioned refractive index range, and in one example, at least one metal oxide selected from the group consisting of Al, Zr, Ti, Hf, Ta, In, Sn, Zn, and Si or It may be a nitride.
  • the inorganic layer may have a thickness of 5 to 100 nm, 10 nm to 90 nm, or 10 to 80 nm.
  • the inorganic layer of the present application may be zinc oxide-based.
  • the zinc oxide system may be zinc oxide without a dopant or zinc oxide based material with a dopant.
  • the dopant which can be doped with zinc oxide is at least one element selected from the group consisting of Ga, Si, Ge, Al, Sn, Ge, B, In, Tl, Sc, V, Cr, Mn, Fe, Co and Ni Or an oxide of the element, but is not limited thereto.
  • the dopant may be doped with zinc oxide (ZnO) in the form of a cation, and may serve to increase the concentration of electrons or holes in the zinc oxide-based inorganic material layer by substituting Zn sites.
  • ZnO zinc oxide
  • the concentration of the dopant is preferably in the range of 0.1 to 20 wt%.
  • the concentration of the dopant may be increased to be used at 15 to 85 at%.
  • the inorganic layer is not particularly limited as long as it satisfies the refractive index, but may be, for example, zinc tin oxide.
  • zinc tin oxide may be applied to a barrier film that satisfies the above-described refractive index relationship and thickness relationship to satisfy excellent gas barrier properties and optical properties.
  • the first dielectric layer or the second dielectric layer may be an organic or organic-inorganic composite layer.
  • the first dielectric layer or the second dielectric layer may be at least one selected from the group consisting of an acrylic resin, a urethane resin, a melamine resin, an alkyd resin, an epoxy resin, a siloxane polymer, and an organosilane compound represented by Formula 1 below. It may include.
  • X is hydrogen, halogen, alkoxy group, acyloxy group, alkylcarbonyl group, alkoxycarbonyl group or -N (R 2 ) 2 , wherein R 2 is hydrogen or alkyl group, R 1 is an alkyl group, Alkenyl group, alkynyl group, aryl group, arylalkyl group, alkylaryl group, arylalkenyl group, alkenylaryl group, arylalkynyl group, alkynylaryl group, halogen, amino group, amide group, aldehyde group, alkylcarbonyl group, carboxyl group, mercap Earth, cyano, hydroxy, alkoxy, alkoxycarbonyl, sulfonyl, phosphoryl, acryloyloxy, methacryloyloxy or epoxy and Q is a single bond, oxygen atom or- N (R 2 ) —, wherein R 2 is a hydrogen atom or an alkyl group
  • the organosilane may be used by selecting one or more from the group consisting of the compound represented by Formula 1, and in this case, crosslinking may be possible when one organosilane compound is used.
  • organosilane examples include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxy Silane, phenyldimethoxysilane, phenyldiethoxysilane, methyldimethoxysilane, methyldiethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, triphenylmethoxysilane, Triphenylethoxysilane, phenyldimethylmethoxysilane, phenyldimethylethoxysilane, diphenylmethylmethoxysilane, diphenylmethylethoxysilane, dimethyleth
  • the first dielectric layer or the second dielectric layer is pentaerythritol triacrylate, hydroxyethylacrylate, hydroxyethylacrylate, polyethyleneglycol monoacrylate. ), Ethyleneglycol monoacrylate, hydroxybutylacrylate, glycidoxy methacrylate (glyxidoxymethacrylate), propyleneglycol monoacrylate, trimethoxysilylethyl epoxycyclohexane ( trimethoxysilylethyl epoxycyclohexane), acrylic acid (acrylic acid) and methacrylic acid (methacrylic acid) may further include one or more selected from the group consisting of.
  • the epoxy resin may be at least one selected from the group consisting of an alicyclic epoxy resin and an aromatic epoxy resin.
  • the alicyclic epoxy resin may be, for example, at least one alicyclic epoxy resin selected from the group consisting of an alicyclic glycidyl ether type epoxy resin and an alicyclic glycidyl ester type epoxy resin.
  • 3,4-epoxycyclohexyl-methyl-3,4-epoxycyclohexane carboxylate (3,4-epoxycyclohexyl-methyl-3,4-epoxycyclohexane carboxylate), which is, for example, Celloxide 2021P (Daicel)
  • Derivatives may be used, which are stable at high temperatures, are colorless, transparent, toughness, and have good adhesion and adhesion properties for lamination. Especially when used for coating, surface hardness is excellent.
  • aromatic epoxy resins examples include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, fluorene-containing epoxy resins, and triglycidyl isocyanurates. It may be at least one aromatic epoxy resin selected from the group consisting of.
  • the inorganic material for forming the first dielectric layer or the second dielectric layer may be a coating composition formed by a sol-gel reaction, for example, SiO x (where x is an integer of 1 to 4), SiO x N y (where , x and y may each be an integer of 1 to 3), Al 2 O 3 , TiO 2 , ZrO, and ITO.
  • first dielectric layer or the second dielectric layer may further include one or more from the group consisting of a metal alkoxide compound represented by the following formula (2).
  • M is any one metal selected from the group consisting of aluminum, zirconium and titanium
  • R 3 is a halogen, an alkyl group, an alkoxy group, an acyloxy group or a hydroxy group
  • z is 3 or 4.
  • the first dielectric layer or the second dielectric layer may further include a filler of nanoparticles to control the refractive index.
  • the filler may be a metal oxide or a metal nitride, but is not limited thereto.
  • the filler is CaO, CaF 2 , MgO, ZrO 2 , TiO 2 , SiO 2 , In 2 O 3 , SnO 2 , CeO 2 , BaO, Ga 2 O 3 , ZnO, Sb 2 O 3 , NiO And it may include one or more selected from the group consisting of Al 2 O 3 .
  • the filler when used in the coating used as the dielectric layer, it is possible to improve the adhesion by treating the surface of the filler as necessary.
  • epoxy silane, acrylic silane or vinyl silane can be surface treated.
  • the filler may have a particle diameter of 0.1 nm to 150 nm, 0.1 nm to 100 nm, 1 nm to 90 nm, 1 nm to 70 nm, or 1 nm to 50 nm. By controlling to this size, not only the transparency of the film, but also the refractive index desired in the present application can be satisfied.
  • the first dielectric layer or the second dielectric layer may be cured by thermosetting, photocuring, or a combination thereof, and may further include a thermal onset acid catalyst or a photoinitiation photocatalyst as needed. have.
  • the heat resistance of the base layer should be considered, and in case of the amorphous base layer, the glass transition temperature should be used below, and in the case of crystallinity, the temperature higher than the glass transition temperature may be used. Do. For example, 120 ° C or less for COP (cyclo olefin copolymer), 130 ° C or less for PC (polycarbonate), 130 ° C or less for PET (poly (ethylene terephthalate)), and 150 ° C or less for PEN (polyethylenenaphthalate) desirable.
  • COP cyclo olefin copolymer
  • PC polycarbonate
  • PET poly (ethylene terephthalate)
  • PEN polyethylenenaphthalate
  • An exemplary manufacturing method may include sequentially laminating a first dielectric layer, an inorganic layer having a refractive index of 1.65 or more, and a second dielectric layer on a base layer.
  • the first dielectric layer, the inorganic layer and the second dielectric layer may satisfy the following general formula 1, the thickness of the first dielectric layer is less than 100nm, the thickness of the second dielectric layer may be greater than the thickness of the first dielectric layer. .
  • n 1 represents a refractive index of the first dielectric layer
  • n 2 represents a refractive index of the second dielectric layer
  • n i represents a refractive index of the inorganic layer.
  • a vacuum evaporation method As a method of sequentially forming the first dielectric layer, the inorganic layer, and the second dielectric layer on the base layer, a vacuum evaporation method, a sterling method, an atomic layer deposition method, an ion plating method, a coating method, or the like may be used, but the present invention is not limited thereto. No general method known in the art can be used.
  • the barrier film according to the present application is applied to an organic or inorganic light emitter, a display device, a photovoltaic device, and the like to effectively block chemicals such as moisture or oxygen, thereby protecting internal electronic devices, and at the same time maintaining excellent optical characteristics.
  • FIG. 1 is a diagram illustrating an exemplary barrier film according to the present application.
  • the first dielectric layer having a refractive index of 1.65 was 40 nm thick using a coating solution (TYT65, Toyo Ink Co., Ltd.) containing metal oxide nanoparticles (titanium dioxide) in an acrylic resin on a PC (polycarbonate) film (thickness 100 ⁇ m, refractive index of 1.61). Formed.
  • the coating layer was formed by applying a coating solution on a PC film with a meyer bar and drying at 100 ° C. for about 2 minutes, and irradiating and curing UV light at a strength of 0.5 J / cm 2 .
  • a 20 nm thick zinc tin oxide having a refractive index of 2.0 was deposited as an inorganic layer on the coated film by sputtering in an argon atmosphere of 3 mTorr.
  • a barrier film was prepared by forming a second dielectric layer having a refractive index of 1.48 using a coating solution prepared by using pentaerythritol triacrylate and methylethoxy silane in a ratio (weight ratio) of 40:60 on the deposition layer. . Specifically, half of the total amount of pentaerythritol triacrylate used in the coating solution used isocyanate trideoxysilane and the reactant.
  • the mixture of pentaerythritol triacrylate and methoxy silane was hydrated at room temperature for 30 hours using 2 equivalents of water relative to silanol and 1.5 parts by weight of 0.1 N hydrochloric acid relative to solids to prepare a coating solution.
  • the coating solution was applied onto a PC film using a Mayer bar, dried at room temperature for 3 minutes, and dried at 100 ° C. for 1 minute to form a second dielectric layer.
  • a barrier film was manufactured in the same manner as in Example 1, except that the thickness of the first dielectric layer was formed to 91 nm and the thickness of the second dielectric layer was formed to 40 nm.
  • Metal oxide nano to acrylic resin is made of a dielectric layer (thickness: 40 nm) having a refractive index of 1.48 using a coating solution prepared by using pentaerythritol triacrylate and methylethoxy silane in a ratio of 40:60 (weight ratio).
  • a barrier film was prepared in the same manner as in Example 1, except that a dielectric layer (thickness: 91 nm) having a refractive index of 1.65 using a coating solution containing particles (TYT65, Toyo Ink, Inc.) was used as the second dielectric layer.
  • a barrier film was manufactured in the same manner as in Example 1, except that the thickness of the first dielectric layer was 20 nm and the thickness of the second dielectric layer was 100 nm.
  • a barrier film was prepared in the same manner as in Example 2, except that the second dielectric layer was not used.
  • a barrier film was prepared in the same manner as in Example 1.
  • Example 1 except for using a COP (cyclo olefin copolymer) film (thickness 50 ⁇ m, refractive index 1.53) as the base material layer, the thickness of the first dielectric layer is formed to 35nm, the thickness of the second dielectric layer is formed to 960nm
  • a barrier film was prepared in the same manner as in the following.
  • a zinc tin oxide layer having a refractive index of 2.0 as an inorganic layer was laminated to a thickness of about 20 nm by using a sputtering technique in an argon atmosphere of 3 mTorr.
  • a barrier film was prepared by forming a second dielectric layer having a thickness of 0.26 ⁇ m using the coating solution on the deposition layer.
  • a barrier film was prepared in the same manner as in Example 4, except that the first dielectric layer was formed to be 75 nm thick, and the second dielectric layer was formed to be 75 nm thick.
  • the first dielectric layer, the second dielectric layer, and the inorganic layer according to Examples and Comparative Examples of the present application were measured for refractive index and thickness by the following method.
  • Samples for measuring the refractive index were prepared by forming a dielectric layer or an inorganic layer on the Si substrate. The sample was analyzed using an ellipsometer (model M2000U of J.A. Woolam Co) to obtain refractive index.
  • the thickness of the layers coated on the base layer was measured by observing with an electron scanning microscope (Hitachi S4800).
  • the light transmission spectrum of the barrier films prepared according to Examples and Comparative Examples of the present application was evaluated by Shimadzu UV3600 (average of light transmission between 380 and 780 nm).
  • Moisture permeability of the barrier films prepared according to the above Examples and Comparative Examples is 30 °C and 100% R.H. Evaluated under.
  • the yellowness (according to ASTM E313) and a * and b * in CIE color coordinates of barrier films prepared according to the above examples and comparative examples were obtained in the light transmission spectrum using utilities provided by Shimadzu.
  • Example 1 Average light transmittance (%) a * b * Yellow road Moisture permeability (g / m 2 day)
  • Example 2 90.8 -1.0 1.3 1.8 ⁇ 0.03
  • Example 3 91.7 -0.9 1.2 1.6 ⁇ 0.03
  • Example 4 91.1 -0.7 -0.4 -1.3 ⁇ 0.03
  • Example 5 90.2 -0.7 -0.4 -1.3 ⁇ 0.03 Comparative Example 1 85.7 -0.1 1.3 2.5 ⁇ 0.03 Comparative Example 2 87.5 -0.2 -1.2 -2.5 ⁇ 0.03 Comparative Example 3 84.5 -0.1 2.9 5.6 ⁇ 0.03 Comparative Example 4 86.6 -0.6 -2.5 -5.5 ⁇ 0.03

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 출원은 배리어 필름 및 그 제조 방법에 관한 것으로서, 유기 혹은 무기 발광체, 디스플레이 장치, 태양광 발전 소자 등에 적용되어, 수분이나 산소 등 화학물질들을 효과적으로 차단하여 내부의 전자 소자를 보호하고, 동시에 우수한 광학특성을 유지하는 배리어 필름을 제공한다.

Description

배리어 필름 및 그 제조 방법
본 출원은 배리어 필름 및 그 제조 방법에 관한 것이다.
유기나 무기 발광체, 디스플레이 장치, 태양광 발전소자 등의 내부를 구성하는 전기소자 및 금속 배선들은 산소 또는 수분 등과 같은 외부 화학물질들과 접촉될 경우 변성 혹은 산화가 일어나 본래 기능발휘를 하지 못하는 문제점이 생긴다. 따라서, 상기 화학물질로부터 상기 전기소자 등을 보호할 필요가 있다. 이를 위해 유리판을 기판재 혹은 덮개판으로 이용하여 화학물질에 취약한 내부 전기소자를 보호하는 기술이 제안되었다. 유리판은 광투과도, 열팽창 계수, 내화학성 등에서 만족할 만한 특성을 갖는 장점은 있다. 그러나 유리는 무게가 무거울 뿐만 아니라 딱딱하고 깨지기 쉬우므로 취급에 많은 주의가 요구되는 단점이 있다.
따라서, 전기소자용 기판재로 사용되고 있는 유리판 보다 가볍고 내충격성이 우수하며 유연한 특성을 갖는 대표적 물질인 플라스틱으로 유리판을 대체하려는 시도가 활발히 진행되고 있다. 그러나, 현재 상업적으로 생산되는 플라스틱 필름들은 유리판에 비해 물성 면에서 많은 단점이 있어 이에 대한 보완이 필요하다. 특히, 플라스틱 필름의 물성 중 내수성 및 가스차단성은 유리판의 특성과 비교할 때 가장 시급한 개선이 필요하며, 가스차단성과 광투과도가 모두 우수한 배리어 필름이 요구되고 있다.
[선행기술문헌]
[특허문헌]
1. 일본 공개특허 제2007-090803호
본 출원은 유기 혹은 무기 발광체, 디스플레이 장치, 태양광 발전 소자 등에 적용되어, 수분이나 산소 등 화학물질들을 효과적으로 차단하여 내부의 전자 소자를 보호하고, 동시에 우수한 광학특성을 유지할 수 있는 배리어 필름 및 그 제조 방법을 제공한다.
본 출원은 배리어 필름에 관한 것이다. 하나의 예시에서, 본 출원의 배리어 필름은 유기 혹은 무기 발광체, 디스플레이 장치, 태양광 발전 소자 등에 적용될 수 있다. 예시적인 배리어 필름(10)은 도 1에서 나타낸 바와 같이, 기재층(14), 제1유전체층(13), 무기물층(12) 및 제2유전체층(11)을 순차로 포함하고, 하기 일반식 1을 만족할 수 있다. 상기에서, 무기물층은 굴절률이 1.65이상일 수 있다. 또한, 상기 제1유전체층의 두께는 100nm 미만이고, 상기 제2유전체층의 두께는 상기 제1유전체층의 두께 이상일 수 있다. 즉, 상기 제2유전체층의 두께는 제1유전체층의 두께와 동일하거나, 더 클 수 있다. 한편, 상기 무기물층의 굴절률은 적어도 1.65 이상일 수 있고, 예를 들어, 1.7 이상, 1.75 이상, 1.8 이상, 1.85 이상, 1.9 이상, 1.95 이상, 1.96이상, 1.97이상, 1.98 이상, 1.99이상 또는 2.0 이상일 수 있다. 무기물층 굴절률의 상한은 특별히 한정되지 않으나, 예를 들어, 3.0 이하, 2.5 이하, 2.4 이하, 2.3 이하 또는 2.2 이하일 수 있다. 본 출원은 상대적으로 높은 굴절률의 무기물층과 함께 제1유전체층 및 제2유전체층의 두께 및 굴절률을 제어함으로써, 가스 차단성과 함께 우수한 광학 특성을 갖는 배리어 필름을 제공할 수 있다.
[일반식 1]
n2 n1 < ni
상기 일반식 1에서 n1은 제1유전체층의 굴절률이고, n2는 제2유전체층의 굴절률이며, ni는 무기물층의 굴절률이다.
여러 층들이 적층된 구조를 갖는 필름의 광학 특성은 구성층들의 굴절률과 두께에 의해 달라진다. 특히, 굴절률이 다른 두 층 사이의 계면에는 빛의 반사와 굴절 현상이 일어나므로, 굴절률의 차이를 조절할 수 있는 적층 물질과 적층 순서는 다층 필름의 광학 특성에 지대한 영향을 미친다. 본 출원의 제1유전체층, 무기물층 및 제2유전체층은 상기 굴절률의 관계를 갖는 한 당업계의 통상의 기술자가 알 수 있는 소재를 제한 없이 사용할 수 있으며, 상기와 같은 굴절률 관계 및 두께 관계를 만족시킴으로써, 광학특성이 우수한 배리어 필름을 제조할 수 있다.
본 명세서에서 굴절률이란 특별하게 정의하지 않는 이상, 300 내지 1000nm파장 범위에서의 굴절률을 의미할 수 있다. 하나의 예시에서, 본 명세서에서 굴절률은 550nm 또는 633nm의 파장에서의 굴절률을 의미할 수 있다.
또한, 본 출원의 배리어 필름은, 하기 일반식 4에 따른, 두께 관계를 만족시킴으로써, 광학특성이 우수한 배리어 필름을 제조할 수 있다.
[일반식 4]
0.01 ≤ d1/d2 ≤ 1
상기 일반식 4에서 d1은 상기 제1유전체층의 두께이고, d2는 상기 제2유전체층의 두께이다.
상기와 같이, 제2유전체층의 두께 d2에 대한 제1유전체층의 두께 d1의 비율은 0.01 내지 1 또는 0.01 이상, 1 미만일 수 있으며, 예를 들어 0.02 내지 1.0, 0.05 내지 1.0, 0.1 내지 1.0, 0.1 내지 0.9, 0.1 내지 0.8 또는 0.1 내지 0.7일 수 있다. 상기와 같이 제1유전체층 및 제2유전체층의 두께의 비를 특정 범위로 한정함으로써, 가스차단성 뿐만 아니라, 광투과도가 우수한 필름을 제조할 수 있다.
전술한 바와 같이, 제1유전체층의 두께 d1 은 100nm 미만일 수 있으며, 예를 들어 5nm 내지 98nm일 수 있다. 또한, 10nm 내지 95nm, 10nm 내지 90nm, 10nm 내지 85nm, 10nm 내지 80nm, 또는 10nm 내지 75nm일 수 있다. 즉, 본 출원의 일반식 4를 만족하는 제1유전체층 및 제2유전체층의 두께 관계는, 예를 들어, 제1유전체층의 두께가 100nm 미만인 경우, 성립할 수 있다. 또한, 하나의 예시에서, 제2유전체층의 두께 d2는 10nm 내지 1㎛, 10nm 내지 900 nm, 20nm 내지 800nm, 30nm 내지 700nm, 35nm 내지 600nm, 40nm 내지 500nm, 또는 45nm 내지 400nm일 수 있다. 본 출원에 따른 제1유전체층 및 제2유전체층은, 상기 두께 관계를 만족시킴으로써, 굴절률이 산화실리콘계보다 높은 후술하는 산화아연계 무기물층과 함께 우수한 가스차단성과 광투과도를 구현할 수 있다.
또한, 본 출원의 구체예에서, 제1유전체층의 굴절률 n1 및 제2유전체층의 굴절률 n2는 하기 일반식 2를 만족할 수 있다.
[일반식 2]
0.5 ≤ (n2 - 1) / (n1 - 1) ≤ 1
상기 일반식 2에서 나타난 바와 같이, 제1유전체층의 굴절률 n1에 대한 제2유전체층의 굴절률 n2의 비율 (n2 - 1) / (n1 - 1)은 0.5 내지 1일 수 있으며, 바람직하게는 0.55 내지 1, 0.6 내지 1, 0.65 내지 1 또는 0.7 내지 1일 수 있다.
또한, 본 출원의 구체예에서, 제1유전체층의 굴절률 n1 및 무기물층의 굴절률 ni는 하기 일반식 3을 만족할 수 있다.
[일반식 3]
0.3 ≤ (n1 - 1) / (ni - 1) ≤ 0.95
상기 일반식 3에서 나타난 바와 같이, 무기물층의 굴절률 ni에 대한 제1유전체층의 굴절률 n1의 비율 (n1 - 1) / (ni - 1)은 0.3 내지 0.95일 수 있으며, 바람직하게는 0.35 내지 0.85, 0.4 내지 0.8, 0.4 내지 0.75, 0.4 내지 0.7 또는 0.45 내지 0.7일 수 있다.
본 출원은 상기와 같이 제1유전체층 및 제2유전체층의 굴절률의 비 또는 무기물층 및 제2유전체층의 굴절률의 비를 특정 범위로 한정함으로써, 광투과도가 우수한 필름을 제조할 수 있다.
본 출원의 구체예에서, 상기 기재층의 굴절률은 특별히 한정되지는 않으나, 1.45 내지 1.75, 1.45 내지 1.7 또는 1.5 내지 1.65일 수 있다. 제1유전체층의 굴절률 n1 또는 제2유전체층의 굴절률 n2 또한, 상기 일반식 1을 만족하는 한 특별히 한정되지 않으나, 1.35 내지 1.9, 1.4 내지 1.9, 1.45 내지 1.9 또는 1.45 내지 1.8일 수 있다.
또한, 상기 기재층의 굴절률을 ns라고 할 때, 기재층의 굴절률은 상기 무기물층의 굴절률 ni보다 작을 수 있다. 하나의 예시에서, 기재층의 굴절률 ns와 무기물층의 굴절률 ni는 하기 일반식 5를 만족할 수 있다.
[일반식 5]
ns < ni
본 출원은 또한, 기재층의 굴절률 ns와 제1유전체층의 굴절률 n1이 하기 일반식 6을 만족할 수 있다.
[일반식 6]
0.5 ≤ ns / n1 ≤ 1.5
즉, 본 출원의 기재층의 소재 등은 특별히 한정되지 않으나, 상기 일반식 5 또는 6을 만족할 수 있다. 예를 들어, 제1유전체층의 굴절률 n1에 대한 기재층의 굴절률 ns의 비 ns/n1가, 상기와 같이, 0.5 내지 1.5일 수 있고, 구체적으로, 0.6 내지 1.4 또는 0.7 내지 1.3일 수 있다.
본 출원에 따른 배리어 필름의 제1유전체층 및 제2유전체층의 두께 관계는 상기 배리어 필름의 각 층의 재료 특성, 굴절률 관계, 무기물층의 특성에 따라서 적절하게 제어될 수 있고, 전술한 바와 같이 일반식 4를 만족할 수 있다. 예를 들어, 상기 두께 관계를 만족시킴으로써, 후술하는 산화아연계 무기물층과 함께 우수한 가스차단성과 광투과도를 구현할 수 있다.
배리어 필름은 또한 가시 광선 영역에서 우수한 광투과도를 가질 수 있다. 하나의 예시에서, 본 출원은 380nm 내지 780nm 파장 범위 내에서 88% 이상의 광투과도를 나타낼 수 있다. 본 출원에서 전술한 기재층, 제1유전체층, 무기물층 및 제2유전체층을 순차로 포함하는 배리어 필름은 투명성을 우수하게 유지할 수 있다. 예를 들어, 상기 각 층의 특정 굴절률 관계 또는 두께 비율 관계를 만족하여 형성된 배리어 필름은 380nm 내지 780nm 파장 범위 내에서 88% 이상, 89% 이상, 또는 90% 이상의 광투과도를 가질 수 있다.
또한, 배리어 필름은 우수한 광투과도와 함께 낮은 황색도를 나타낼 수 있다. 하나의 예시에서 상기 각 층의 특정 굴절률 관계 또는 두께 비율 관계를 만족하여 형성하는 경우 황색도 값이 낮은 배리어 필름을 제공할 수 있다. 예를 들어 ASTM E313에 따른 황색도가 -2.0 내지 2.0, -1.8 내지 1.8, -1.5 내지 1.9, 또는 -1.3 내지 1.8을 나타낼 수 있다.
또한, 배리어 필름은 CIE 좌표계에서 b* 수치가 -1.0 내지 1.5 또는 -0.5 내지 1.3 범위 내에 있을 수 있다. CIE 좌표계는 국제 조명 기구(CIE)에서 규정한 색상 수치로서, CIE 표색계 또는 CIE 색 공간으로도 호칭된다. 상기 좌표계는 균일한 색 공간 좌표로서, 눈과 매우 근소한 차이를 보여주기 때문에 현재 세계적으로 표준화되어 있는 좌표계이다. CIE 좌표계는 명도를 표시하는 L*, 색도를 표시하는 a* 및 b*로 규정되며, a* 및 b*는 색의 방향을 나타낸다. 구체적으로 a* 수치가 양수일 경우 적(red), 음수일 경우 녹(green)을 의미하고, b* 수치가 양수일 경우, 황(yellow), 음수일 경우 청(blue)의 방향을 표시한다. 상기 배리어 필름의 b* 수치는 공지의 방식으로 측정할 수 있다.
본 출원의 구체예에서, 상기 제1유전체층, 무기물층 및 제2유전체층은 상기 일반식 1의 굴절률의 관계 및 두께 관계를 만족하는 한 당업계의 통상의 기술자가 알 수 있는 물질을 제한 없이 사용할 수 있다.
하나의 예시에서, 기재층은 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리에틸렌나프탈레이트, 폴리아릴레이트 등의 폴리에스테르계 수지, 폴리에테르설폰 등의 폴리에테르계 수지, 사이클로올레핀폴리머, 폴리에틸렌 수지, 폴리프로필렌 수지 등의 폴리올레핀계 수지, 디아세틸셀룰로오스, 트리아세틸셀룰로오스, 아세틸셀룰로오스부틸레이트 등의 셀룰로오스계 수지, 폴리이미드계 수지 및 에폭시계 수지로 이루어진 군으로부터 선택된 1 종 이상을 포함할 수 있다. 본 출원에서 기재층은 바람직하게, 폴리카보네이트 또는 사이클로올레핀폴리머를 포함할 수 있다. 하나의 예시에서, 기재층의 두께는 특별히 한정되지 않으나, 2㎛ 내지 200㎛일 수 있으며, 5㎛ 내지 190㎛, 10㎛ 내지 180㎛, 20㎛ 내지 180㎛ 또는 20㎛ 내지 150㎛일 수 있다. 또한, 상기 기재층은 전술한 다층 구조의 적층면의 반대면에 별도의 코팅층을 적층할 수 있다. 상기 코팅층은 0.01 내지 10 ㎛ 두께로 적층될 수 있으며, 이러한 코팅층으로 광학 특성을 향상시키거나 기계적 물성을 보완하거나 향후 공정을 용이하게 만들어주는 가능성을 부여할 수 있다.
무기물층은 전술한 굴절률 범위를 만족하는 한 그 소재는 제한되지 않으며, 하나의 예시에서, Al, Zr, Ti, Hf, Ta, In, Sn, Zn 및 Si로 이루어진 군으로부터 선택된 하나 이상의 금속 산화물 또는 질화물일 수 있다. 상기 무기물층의 두께는 5 내지 100 nm, 10 nm 내지 90nm 또는 10 내지 80nm일 수 있다. 하나의 예시에서, 본 출원의 무기물층은 산화 아연계일 수 있다. 산화아연계는 도판트가 포함되지 않은 산화아연이거나, 또는 도판트가 포함된 산화아연계 물질일 수 있다. 산화아연에 도핑될 수 있는 상기 도판트는 Ga, Si, Ge, Al, Sn, Ge, B, In, Tl, Sc, V, Cr, Mn, Fe, Co 및 Ni로 이루어진 군에서 선택된 1종 이상의 원소 또는 상기 원소의 산화물일 수 있으나, 이에 한정되지 않는다. 상기 도판트는 양이온의 형태로 산화아연(ZnO)에 도핑될 수 있으며, 이때 Zn자리를 치환하여 산화아연계 무기물층의 전자 또는 정공의 농도를 증가시키는 역할을 할 수 있다. 다만, 전자의 이동도를 저하시키지 않기 위해서 상기 도판트의 농도는 0.1~20 wt% 범위인 것이 바람직하다. 혹은 도판트를 사용하여 기계적인 특성과 광학적인 특성을 조절하는 경우에는 도판트의 농도를 증가시켜 15 내지 85 at%로 사용할 수 있다. 본 출원의 구체예에서, 상기 무기물층은 상기 굴절률을 만족하는 한 특별히 한정되지 않으나, 예를 들어 아연 주석 산화물일 수 있다. 무기물층으로서, 아연 주석 산화물은, 전술한 굴절률 관계 및 두께 관계를 만족하는 배리어 필름에 적용되어 우수한 가스 차단성 및 광학 특성을 만족할 수 있다.
본 출원의 구체예에서, 제1유전체층 또는 제2유전체층는 유기 또는 유기-무기 복합층일 수 있다. 하나의 예시에서, 제1유전체층 또는 제2유전체층은 아크릴계 수지, 우레탄계 수지, 멜라민 수지, 알키드 수지, 에폭시계 수지, 실록산계폴리머 및 하기 화학식 1로 표시되는 유기 실란 화합물로 이루어진 군으로부터 1종 이상을 포함할 수 있다.
[화학식 1]
Figure PCTKR2015000530-appb-I000001
화학식 1에서, X는 수소, 할로겐, 알콕시기, 아실옥시기, 알킬카보닐기, 알콕시카보닐기 또는 -N(R2)2이고, 상기에서 R2는 수소 또는 알킬기이며, R1은, 알킬기, 알케닐기, 알키닐기, 아릴기, 아릴알킬기, 알킬아릴기, 아릴알케닐기, 알케닐아릴기, 아릴알키닐기, 알키닐아릴기, 할로겐, 아미노기, 아마이드기, 알데히드기, 알킬카보닐기, 카르복시기, 머캅토기, 시아노기, 하이드록시기, 알콕시기, 알콕시카보닐기, 설포닐기, 포스포릴기(phosphoryl group), 아크릴로일옥시기, 메타크릴로일옥시기 또는 에폭시기이고, Q는 단일 결합, 산소 원자 또는 -N(R2)-이며, 상기에서 R2는 수소 원자 또는 알킬기이며, m은 1 내지 3의 범위 내의 수이다.
상기 유기 실란은 상기 화학식 1로 표시되는 화합물로 이루어진 그룹으로부터 1종 이상 선택하여 사용할 수 있으며, 이 때, 1종의 유기실란 화합물을 사용할 경우 가교가 가능할 수 있다.
상기 유기실란의 예로는 메틸트리메톡시실란, 메틸트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란, 페닐디메톡시실란, 페닐디에톡시실란, 메틸디메톡시실란, 메틸디에톡시실란, 페닐메틸디메톡시실란, 페닐메틸디에톡시실란, 트리메틸메톡시실란, 트리메틸에톡시실란, 트리페닐메톡시실란, 트리페닐에톡시실란, 페닐디메틸메톡시실란, 페닐디메틸에톡시실란, 디페닐메틸메톡시실란,디페닐메틸에톡시실란, 디메틸에톡시실란, 디메틸에톡시실란, 디페닐메톡시실란, 디페닐에톡시실란, 3-아미노프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, p-아미노페닐실란, 알릴트리메톡시실란, n-(2-아미노에틸)-3-아미노프로필트리메톡시실란, 3-아민프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-글리시독시프로필디이소프로필에톡시실란, (3-글리시독시프로필)메틸디에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 3-메타크릴옥시프로필메틸디에톡시실란, 3-메타크릴옥시프로필메틸디메톡시실란, 3-메타크릴옥시프로필트리메톡시실란, n-페닐아미노프로필트리메톡시실란, 비닐메틸디에톡시실란, 비닐트리에톡시실란, 비닐트리메톡시실란 및 이들의 혼합물로 이루어진 그룹으로부터 선택하여 사용할 수 있다.
하나의 예시에서, 제1유전체층 또는 제2유전체층은 펜타에리트리톨 트리아크릴레이트 (pentaerythritol triacrylate), 하이드록시에틸아크릴레이트 (hydroxyethylacrylate), 하이드록시프로필아크릴레이트 (hydroxyethylacrylate), 폴리에틸렌글리콜 모노아크릴레이트 (polyethyleneglycol monoacrylate), 에틸렌글리콜 모노아크릴레이트 (ethyleneglycol monoacrylate), 하이드록시부틸아크릴레이트 (hydroxybutylacrylate), 글리시독시메타크릴레이트 (glyxidoxymethacrylate), 프로필렌글리콜 모노아크릴레이트 (propyleneglycol monoacrylate), 트리메톡시실릴에틸에폭시사이클로헥산 (trimethoxysilylethyl epoxycyclohexane), 아크릴산 (acrylic acid) 및 메타크릴산 (methacrylic acid)로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함할 수 있다.
하나의 예시에서, 상기 에폭시계 수지는 지환족 에폭시 수지 및 방향족 에폭시 수지로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 지환족 에폭시 수지로는 예를 들어, 지환족 글리시딜 에테르형 에폭시 수지 및 지환족 글리시딜 에스터형 에폭시 수지로 이루어지는 군으로부터 선택되는 1종 이상의 지환족 에폭시 수지일 수 있다. 또한, 예를 들어, Celloxide 2021P(Daicel사)인 3,4-에폭시사이클로헥실-메틸-3,4-에폭시사이클로헥산 카복실레이트(3,4-epoxycyclohexyl-methyl-3,4-epoxycyclohexane carboxylate) 및 이의 유도체들을 사용할 수 있으며, 이들은 고온에서도 안정하고 무색 투명하며 단단하고(toughness), 점착력(adhesion) 및 합지용 접착력(adhesives)이 우수하다. 특히 코팅용으로 사용하였을 경우 표면 경도가 우수하다.
상기 방향족 에폭시 수지로는 예를 들어, 비스페놀 A형 에폭시 수지, 브롬화 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 AD형 에폭시 수지, 플루오렌 함유 에폭시 수지 및 트라이글리시딜 아이소사이아누레이트로 이루어지는 군으로부터 선택되는 1종 이상의 방향족 에폭시 수지일 수 있다.
상기 제1유전체층 또는 제2유전체층을 형성하기 위한 무기물은 졸-겔 반응으로 형성된 코팅 조성물일 수 있고, 예를 들어, SiOx(여기서, x는 1 내지 4의 정수), SiOxNy(여기서, x 및 y는 각각 1 내지 3의 정수), Al2O3, TiO2, ZrO 및 ITO로 이루어진 그룹으로부터 선택되는 1종 이상일 수 있다.
또한, 제1유전체층 또는 제2유전체층은 하기 화학식 2로 표시되는 금속알콕사이드 화합물로 이루어진 군으로부터 1종 이상을 추가로 포함할 수 있다.
[화학식 2]
Figure PCTKR2015000530-appb-I000002
화학식 2에서 M은 알루미늄, 지르코늄 및 티타늄으로 이루어진 군으로부터 선택되는 어느 하나의 금속이고, R3는 할로겐, 알킬기, 알콕시기, 아실옥시기 또는 하이드록시기이며, z는 3 또는 4이다.
본 출원의 구체예에서, 제1유전체층 또는 제2유전체층은 굴절률을 조절하기 위하여 나노 입자의 필러를 추가로 포함할 수 있다. 상기 필러는 금속산화물 또는 금속질화물일 수 있으나, 이에 한정되는 것은 아니다. 하나의 예시에서, 상기 필러는 CaO, CaF2, MgO, ZrO2, TiO2, SiO2, In2O3, SnO2, CeO2, BaO, Ga2O3, ZnO, Sb2O3, NiO 및 Al2O3로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 또한, 하나의 예시에서, 유전체층으로 사용하는 코팅에 상기 필러를 사용하는 경우, 필요에 따라 상기 필러의 표면을 처리하여 접착력을 개선할 수 있다. 예를 들어, 에폭시 실란, 아크릴 실란 또는 비닐 실란 등을 표면처리할 수 있다. 상기 필러는 0.1nm 내지 150nm, 0.1nm 내지 100nm, 1nm 내지 90nm, 1nm 내지 70nm, 또는 1nm 내지 50nm의 입경을 가질 수 있다. 상기 크기로 제어함으로써, 필름의 투명성뿐만 아니라, 본 출원에서 원하는 굴절률을 만족시킬 수 있다.
상기 제1유전체층 또는 제2유전체층은 열경화, 광경화 또는 이들의 조합으로 경화될 수 있으며, 필요에 따라 열개시 산촉매(thermal acid generator)나 광개시 산촉매(photo acid generator)를 추가로 포함할 수 있다.
열을 사용하여 경화를 진행하는 경우, 기재층의 내열성을 고려하여야 하며, 비정질 기재층의 경우는 유리전이온도 이하를 사용하여야 하고, 결정성이 있는 경우에는 유리전이온도보다 높은 온도의 사용이 가능하다. 예를 들어, COP(cyclo olefin copolymer)의 경우 120℃ 이하, PC(polycarbonate)의 경우 130℃ 이하, PET(poly(ethylene terephthalate))의 경우 130℃ 이하, PEN(polyethylenenaphthalate)의 경우 150℃ 이하가 바람직하다.
본 출원은 또한, 전술한 배리어 필름의 제조 방법에 관한 것이다. 예시적인 제조 방법은 기재층 상에 제1유전체층, 굴절률이 1.65 이상인 무기물층 및 제2유전체층을 순차로 적층하는 단계를 포함할 수 있다. 또한, 상기 제1유전체층, 무기물층 및 제2유전체층은 하기 일반식 1을 만족할 수 있고, 상기 제1유전체층의 두께는 100nm 미만이고, 상기 제2유전체층의 두께는 상기 제1유전체층의 두께 이상일 수 있다.
[일반식 1]
n2 n1 < ni
상기 일반식 1에서 n1은 제1유전체층의 굴절률이고, n2는 제2유전체층의 굴절률이며, ni는 무기물층의 굴절률이다.
상기 기재층 상에 제1유전체층, 무기물층 및 제2유전체층을 순차적으로 형성하는 방법으로는 진공 증발법, 스터링법, 원자층 증착법, 이온 도금법, 도공법 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니며, 당업계에 알려져 있는 일반적인 방법을 사용할 수 있다.
본 출원에 따른 배리어 필름은 유기 혹은 무기 발광체, 디스플레이 장치, 태양광 발전 소자 등에 적용되어, 수분이나 산소 등 화학물질들을 효과적으로 차단하여 내부의 전자 소자를 보호하고, 동시에 우수한 광학특성을 유지할 수 있다.
도 1은 본 출원에 따른 예시적인 배리어 필름을 나타내는 도면이다.
[부호의 설명]
10: 배리어 필름
11: 제2유전체층
12: 무기물층
13: 제1유전체층
14: 기재층
이하, 본 출원에 따른 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
PC(polycarbonate)필름 (두께 100㎛, 굴절률 1.61) 상에 아크릴수지에 금속산화물 나노 입자(이산화티타늄)가 포함된 코팅액(TYT65, 도요잉크사)을 사용하여 굴절률 1.65인 제1유전체층을 40nm 두께로 형성하였다. 구체적으로, 상기 코팅층은 메이어 바(meyer bar)로 코팅액을 PC필름 위에 도포하고 100℃에서 약 2분간 건조하고, 코팅용 자외선을 0.5 J/cm2의 강도로 조사하여 경화시켜 형성하였다. 이렇게 코팅된 필름 위에 무기물층으로서 굴절률 2.0의 20nm 두께 아연주석 산화물을 3 mTorr의 아르곤 분위기에서 스퍼터링으로 적층하였다. 이 증착층 위에 펜타에리트리톨 트리아크릴레이트와 메틸에톡시 실란을 40:60의 비율(중량비)로 사용하여 제작한 코팅액을 사용하여 굴절률 1.48인 제2유전체층을 91nm 두께로 형성하여 배리어 필름을 제조하였다. 구체적으로, 상기 코팅액에 사용된 펜타에리트리톨 트리아크릴레이트 총량 가운데 절반은 아이소시아토 트리데톡시실란과 반응물을 사용하였다. 상기 펜타에리트리톨 트리아크릴레이트와 메톡시 실란의 혼합물을 실라놀 대비 물 2당량과 고형분 대비 1.5 중량부의 0.1 N 염산을 사용하여 상온에서 30시간 동안 수화반응을 진행하여 코팅액을 제조하였다. 이 코팅액을 메이어 바를 사용하여 PC 필름위에 도포하고 상온에서 3분간 건조하고 100℃에서 1분간 건조하여 제2유전체층을 형성하였다.
비교예 1
제1유전체층의 두께를 91nm로 형성하고, 제2유전체층의 두께를 40nm로 형성한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 배리어 필름을 제조하였다.
비교예 2
펜타에리트리톨 트리아크릴레이트와 메틸에톡시 실란을 40:60의 비율(중량비)로 사용하여 제작한 코팅액을 사용한 굴절률 1.48인 유전체층(두께: 40nm)을 제1유전체층으로 하고, 아크릴수지에 금속산화물 나노 입자가 포함된 코팅액(TYT65, 도요잉크사)을 사용한 굴절률 1.65인 유전체층(두께: 91nm)을 제2유전체층으로 한 것을 제외하고, 실시예 1과 동일한 방법으로 배리어 필름을 제조하였다.
실시예 2
제1유전체층의 두께를 20nm로 형성하고, 제2유전체층의 두께를 100nm로 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 배리어 필름을 제조하였다.
비교예 3
제2유전체층을 사용하지 않은 것을 제외하고, 실시예 2와 동일한 방법으로 배리어 필름을 제조하였다.
실시예 3
기재층으로 PET(poly(ethylene terephthalate))필름 (두께 50㎛, 굴절률 1.64)을 사용하고, 제1유전체층의 두께를 40nm로 형성하고, 제2유전체층의 두께를 100nm로 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 배리어 필름을 제조하였다.
실시예 4
기재층으로 COP(cyclo olefin copolymer)필름 (두께 50㎛, 굴절률 1.53)을 사용하고, 제1유전체층의 두께를 35nm로 형성하고, 제2유전체층의 두께를 960nm로 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 배리어 필름을 제조하였다.
비교예 4
PC필름 (두께 100㎛, 굴절률 1.61) 상에 펜타에리트리톨 트리아크릴레이트와 메틸에톡시 실란을 40:60의 비율(중량비)로 사용하여 제작한 코팅액을 사용하여 굴절률 1.48인 제1유전체층을 0.1㎛ 두께로 형성하였다. 이렇게 코팅된 필름 위에 3 mTorr의 아르곤 분위기에서 스퍼터링 기법을 사용하여 무기물층으로서 굴절률 2.0인 아연주석 산화물층을 약 20nm 두께로 적층하였다. 이 증착층 위에 상기 코팅액을 사용하여 0.26㎛ 두께의 제2유전체층을 형성하여 배리어 필름을 제조하였다.
실시예 5
제1유전체층을 75nm 두께로 형성하고, 제2유전체층을 75nm 두께로 형성한 것을 제외하고, 실시예 4와 동일한 방법으로 배리어 필름을 제조하였다.
1. 굴절률 및 두께의 측정
본 출원의 실시예 및 비교예에 따른 제1유전체층, 제2유전체층, 및 무기물층은 하기의 방법으로 굴절률 및 두께를 측정하였다.
굴절률을 측정하기 위한 시료는 Si 기판 위에 유전체층 혹은 무기물층을 형성하여 준비하였다. 상기 시료를 엘립소메터 (J.A. Woolam Co 사 M2000U 모델)을 사용하여 분석하여 굴절률을 구하였다.
기재층 위에 코팅된 층들의 두께는 전자주사현미경 (히타치사 S4800)으로 관찰하여 측정하였다.
2. 평균 광투과도 측정
본 출원의 실시예 및 비교예에 따라 제조한 배리어 필름의 광투과 스펙트럼은 시마쯔 UV3600으로 평가(380 내지 780nm 사이의 광투과도 평균)하였다.
3. 수분 투과도 측정
상기 실시예 및 비교예에 따라 제조한 배리어 필름들의 수분투과도는 Lyssy사의 L80으로 30℃ 및 100% R.H. 하에서 평가하였다.
4. 황색도 및 CIE 값 측정
상기 실시예 및 비교예에 따라 제조한 배리어 필름들의 황색도(ASTM E313에 따름) 및 CIE 색좌표에서의 a* 및 b*를 시마쯔에서 제공한 유틸리티를 사용하여 광투과 스펙트럼에서 구하였다.
표 1
평균광투과도(%) a* b* 황색도 수분투과도(g/m2 day)
실시예 1 90.7 -0.7 0.2 0.0 < 0.03
실시예 2 90.8 -1.0 1.3 1.8 < 0.03
실시예 3 91.7 -0.9 1.2 1.6 < 0.03
실시예 4 91.1 -0.7 -0.4 -1.3 < 0.03
실시예 5 90.2 -0.7 -0.4 -1.3 < 0.03
비교예 1 85.7 -0.1 1.3 2.5 < 0.03
비교예 2 87.5 -0.2 -1.2 -2.5 < 0.03
비교예 3 84.5 -0.1 2.9 5.6 < 0.03
비교예 4 86.6 -0.6 -2.5 -5.5 < 0.03

Claims (17)

  1. 기재층, 제1유전체층, 굴절률이 1.65 이상인 무기물층 및 제2유전체층을 순차로 포함하고, 상기 제1유전체층의 두께는 100nm 미만이고, 상기 제2유전체층의 두께는 상기 제1유전체층의 두께 이상이며, 하기 일반식 1을 만족하는 배리어 필름:
    [일반식 1]
    n2 n1 < ni
    상기 일반식 1에서 n1은 제1유전체층의 굴절률이고, n2는 제2유전체층의 굴절률이며, ni는 무기물층의 굴절률이다.
  2. 제 1 항에 있어서, 하기 일반식 4를 만족하는 배리어 필름:
    [일반식 4]
    0.01 ≤ d1/d2 ≤ 1
    상기 일반식 4에서 d1은 상기 제1유전체층의 두께이고, d2는 상기 제2유전체층의 두께이다.
  3. 제 1 항에 있어서, 제2유전체층의 두께 d2는 10nm 내지 1㎛인 배리어 필름.
  4. 제 1 항에 있어서, 제1유전체층의 굴절률 n1 및 제2유전체층의 굴절률 n2는 하기 일반식 2를 만족하는 배리어 필름:
    [일반식 2]
    0.5 ≤ (n2 - 1) / (n1 - 1) ≤ 1.
  5. 제 1 항에 있어서, 제1유전체층의 굴절률 n1 및 무기물층의 굴절률 ni는 하기 일반식 3을 만족하는 배리어 필름:
    [일반식 3]
    0.3 ≤ (n1 - 1) / (ni - 1) ≤ 0.95.
  6. 제 1 항에 있어서, 기재층의 굴절률은 1.45 내지 1.75인 배리어 필름.
  7. 제 1 항에 있어서, 기재층의 굴절률 ns와 무기물층의 굴절률 ni는 하기 일반식 5를 만족하는 배리어 필름:
    [일반식 5]
    ns < ni.
  8. 제 1 항에 있어서, 기재층의 굴절률 ns와 제1유전체층의 굴절률 n1이 하기 일반식 6을 만족하는 배리어 필름:
    [일반식 6]
    0.5 ≤ ns / n1 ≤ 1.5.
  9. 제 1 항에 있어서, 제1유전체층의 굴절률 n1 또는 제2유전체층의 굴절률 n2는 1.35 내지 1.9인 배리어 필름.
  10. 제 1 항에 있어서, ASTM E313에 따른 황색도가 -2.0 내지 2.0인 배리어 필름.
  11. 제 1 항에 있어서, 무기물층은 Al, Zr, Ti, Hf, Ta, In, Sn, Zn 및 Si로 이루어진 군으로부터 선택된 하나 이상의 금속 산화물 또는 질화물인 배리어 필름.
  12. 제 1 항에 있어서, 무기물층은 아연 주석 산화물인 배리어 필름.
  13. 제 1 항에 있어서, 제1유전체층 또는 제2유전체층은 유기 또는 유기-무기 복합층인 배리어 필름.
  14. 제 13 항에 있어서, 제1유전체층 또는 제2유전체층은 아크릴계 수지, 우레탄계 수지, 멜라민 수지, 알키드 수지, 에폭시계 수지, 실록산계폴리머 및 하기 화학식 1로 표시되는 유기 실란 화합물로 이루어진 군으로부터 1종 이상을 포함하는 배리어 필름:
    [화학식 1]
    Figure PCTKR2015000530-appb-I000003
    화학식 1에서, X는 수소, 할로겐, 알콕시기, 아실옥시기, 알킬카보닐기, 알콕시카보닐기 또는 -N(R2)2이고, 상기에서 R2는 수소 또는 알킬기이며, R1은, 알킬기, 알케닐기, 알키닐기, 아릴기, 아릴알킬기, 알킬아릴기, 아릴알케닐기, 알케닐아릴기, 아릴알키닐기, 알키닐아릴기, 할로겐, 아미노기, 아마이드기, 알데히드기, 알킬카보닐기, 카르복시기, 머캅토기, 시아노기, 하이드록시기, 알콕시기, 알콕시카보닐기, 설포닐기, 포스포릴기(phosphoryl group), 아크릴로일옥시기, 메타크릴로일옥시기 또는 에폭시기이고, Q는 단일 결합, 산소 원자 또는 -N(R2)-이며, 상기에서 R2는 수소 원자 또는 알킬기이며, m은 1 내지 3의 범위 내의 수이다.
  15. 제 13 항에 있어서, 제1유전체층 또는 제2유전체층은 하기 화학식 2로 표시되는 금속알콕사이드 화합물로 이루어진 군으로부터 1종 이상을 포함하는 배리어 필름:
    [화학식 2]
    Figure PCTKR2015000530-appb-I000004
    화학식 2에서 M은 알루미늄, 지르코늄 및 티타늄으로 이루어진 군으로부터 선택되는 어느 하나의 금속이고, R3는 할로겐, 알킬기, 알콕시기, 아실옥시기 또는 하이드록시기이며, z는 3 또는 4이다.
  16. 제 13 항에 있어서, 제1유전체층 또는 제2유전체층은 필러를 추가로 포함하는 배리어 필름.
  17. 기재층 상에 하기 일반식 1을 만족하는, 제1유전체층, 굴절률이 1.65 이상인 무기물층 및 제2유전체층을 순차로 적층하는 단계를 포함하는 제 1 항에 따른 배리어 필름의 제조방법:
    [일반식 1]
    n2 n1 < ni
    상기 일반식 1에서 n1은 제1유전체층의 굴절률이고, n2는 제2유전체층의 굴절률이며, ni는 무기물층의 굴절률이다.
PCT/KR2015/000530 2014-01-17 2015-01-19 배리어 필름 및 그 제조 방법 WO2015108385A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580001842.1A CN105636775B (zh) 2014-01-17 2015-01-19 阻挡膜及制备该阻挡膜方法
US14/911,441 US10196492B2 (en) 2014-01-17 2015-01-19 Barrier film and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0006133 2014-01-17
KR20140006133 2014-01-17
KR10-2014-0114251 2014-08-29
KR1020140114251A KR20150086158A (ko) 2014-01-17 2014-08-29 배리어 필름 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2015108385A1 true WO2015108385A1 (ko) 2015-07-23

Family

ID=53543203

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2015/000529 WO2015108384A1 (ko) 2014-01-17 2015-01-19 배리어 필름 및 그 제조 방법
PCT/KR2015/000530 WO2015108385A1 (ko) 2014-01-17 2015-01-19 배리어 필름 및 그 제조 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000529 WO2015108384A1 (ko) 2014-01-17 2015-01-19 배리어 필름 및 그 제조 방법

Country Status (5)

Country Link
US (2) US10196492B2 (ko)
KR (3) KR20150086158A (ko)
CN (2) CN105636775B (ko)
TW (1) TWI644799B (ko)
WO (2) WO2015108384A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000296A1 (en) 2018-06-28 2020-01-02 Yangtze Memory Technologies Co., Ltd. Method of forming staircase structures for three-dimensional memory device double-sided routing
WO2020000289A1 (en) 2018-06-28 2020-01-02 Yangtze Memory Technologies Co., Ltd. Staircase structures for three-dimensional memory device double-sided routing
KR102168964B1 (ko) 2018-11-30 2020-10-22 에스제이나노텍 주식회사 눈부심 방지 기능을 갖는 고투명 배리어 필름 및 그 제조방법
CN111668285B (zh) * 2020-07-13 2023-09-05 武汉华星光电半导体显示技术有限公司 Oled显示装置及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264274A (ja) * 2001-03-13 2002-09-18 Toppan Printing Co Ltd 透明ガスバリア性積層フィルム
KR20120077643A (ko) * 2010-12-30 2012-07-10 제일모직주식회사 가스 배리어 필름
JP2013067146A (ja) * 2011-09-26 2013-04-18 Fujifilm Corp バリア性積層体、ガスバリアフィルムおよびこれらを用いたデバイス
JP2013067109A (ja) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd ガスバリア性フィルム、ガスバリア層、装置、及びガスバリア性フィルムの製造方法
KR20130091281A (ko) * 2012-02-07 2013-08-16 주식회사 엘지화학 가스 차단성 필름 및 그 제조방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510723A (zh) * 2002-06-03 2004-07-07 ϣ 电子器件制造
JP4052021B2 (ja) 2002-06-04 2008-02-27 帝人デュポンフィルム株式会社 配向ポリエステルフィルムおよびそれを用いた積層フィルム
DE602005014199D1 (de) * 2004-02-06 2009-06-10 Lg Chemical Ltd Kunststoffträger mit mehrlagiger struktur und verfahren zu dessen herstellung
US20080226924A1 (en) * 2004-03-31 2008-09-18 Yasushi Okubo Transparent Conductive Film, Method For Producing Transparent Conductive Film and Organic Electroluminescent Device
US7811669B2 (en) 2004-08-17 2010-10-12 Dai Nippon Printing Co., Ltd. Gas barrier laminated film and process for producing the same
JP5271575B2 (ja) 2007-03-20 2013-08-21 富士フイルム株式会社 反射防止フィルム、偏光板、および画像表示装置
EP2020442A1 (en) 2007-08-03 2009-02-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Enhancement of protein production in eukaryotic cells
JP2010027429A (ja) * 2008-07-22 2010-02-04 Fujifilm Corp 有機電界発光パネル及びその製造方法
US7863694B2 (en) * 2008-10-14 2011-01-04 Xerox Corporation Organic thin film transistors
CN102264056B (zh) * 2010-05-28 2014-03-05 华为技术有限公司 策略控制方法、系统和相关装置
JP5595190B2 (ja) * 2010-08-31 2014-09-24 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
WO2012067153A1 (ja) * 2010-11-17 2012-05-24 横浜ゴム株式会社 シリコーン樹脂組成物、これを用いる、シリコーン樹脂含有構造体、光半導体素子封止体、シリコーン樹脂組成物の使用方法
WO2012157960A2 (ko) * 2011-05-16 2012-11-22 주식회사 엘지화학 다층 플라스틱 기판 및 이의 제조방법
JP5749344B2 (ja) * 2011-09-08 2015-07-15 リンテック株式会社 変性ポリシラザンフィルム、および、ガスバリアフィルムの製造方法
JP5477351B2 (ja) * 2011-09-26 2014-04-23 凸版印刷株式会社 ガスバリア積層体およびその製造方法
JP5907778B2 (ja) * 2012-03-30 2016-04-26 三菱樹脂株式会社 ガスバリア積層フィルムの製造方法
BR112014030056A2 (pt) * 2012-05-31 2017-08-08 Bayer Materialscience Ag película plástica revestida com óxido de zinco-estanho que possui propriedades de absorção óptica melhoradas.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264274A (ja) * 2001-03-13 2002-09-18 Toppan Printing Co Ltd 透明ガスバリア性積層フィルム
KR20120077643A (ko) * 2010-12-30 2012-07-10 제일모직주식회사 가스 배리어 필름
JP2013067109A (ja) * 2011-09-22 2013-04-18 Dainippon Printing Co Ltd ガスバリア性フィルム、ガスバリア層、装置、及びガスバリア性フィルムの製造方法
JP2013067146A (ja) * 2011-09-26 2013-04-18 Fujifilm Corp バリア性積層体、ガスバリアフィルムおよびこれらを用いたデバイス
KR20130091281A (ko) * 2012-02-07 2013-08-16 주식회사 엘지화학 가스 차단성 필름 및 그 제조방법

Also Published As

Publication number Publication date
KR101624830B1 (ko) 2016-05-26
TWI644799B (zh) 2018-12-21
CN105636775A (zh) 2016-06-01
KR20150086205A (ko) 2015-07-27
CN105579228A (zh) 2016-05-11
US20160200886A1 (en) 2016-07-14
WO2015108384A1 (ko) 2015-07-23
CN105636775B (zh) 2018-03-13
KR20150086158A (ko) 2015-07-27
US10196492B2 (en) 2019-02-05
US10077347B2 (en) 2018-09-18
TW201542381A (zh) 2015-11-16
US20160194752A1 (en) 2016-07-07
CN105579228B (zh) 2017-06-09
KR101624829B1 (ko) 2016-05-26
KR20150086204A (ko) 2015-07-27

Similar Documents

Publication Publication Date Title
WO2012157960A2 (ko) 다층 플라스틱 기판 및 이의 제조방법
WO2011142622A2 (ko) 다층구조의 투명 전도성 필름 및 이의 제조방법
WO2015108385A1 (ko) 배리어 필름 및 그 제조 방법
WO2011068388A2 (ko) 베리어 필름 및 이를 포함하는 전자 장치
KR102108560B1 (ko) 배리어 필름의 제조 방법
KR101631331B1 (ko) 복합 무기물 및 이를 포함하는 베리어 필름
WO2017119680A1 (ko) 유-무기 접착 조성물, 이를 포함하는 가스 배리어성 필름 및 그 제조방법
WO2014092344A1 (ko) 저굴절층 코팅용 조성물 및 이를 포함하는 투명 도전성 필름
KR101557180B1 (ko) 광 특성이 우수한 전도성 필름
WO2015167274A1 (ko) 배리어 필름 및 그 제조 방법
WO2020085751A1 (ko) 배리어 필름
WO2020085747A1 (ko) 배리어 필름
KR101371867B1 (ko) 광 특성이 우수한 투명 전도성 필름 및 이의 제조방법
EP3355317B1 (en) Conductive light-transmissive film
WO2020085749A1 (ko) 배리어 필름
KR101699151B1 (ko) 다층구조의 투명 전도성 필름 및 이의 제조방법
WO2020085750A1 (ko) 배리어 필름
WO2017196034A1 (ko) 도전성 투광 필름
WO2019107892A1 (ko) 배리어 필름
KR20180034019A (ko) 투명 전도성 필름 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911441

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737084

Country of ref document: EP

Kind code of ref document: A1