WO2015137761A1 - 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재 - Google Patents

졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재 Download PDF

Info

Publication number
WO2015137761A1
WO2015137761A1 PCT/KR2015/002442 KR2015002442W WO2015137761A1 WO 2015137761 A1 WO2015137761 A1 WO 2015137761A1 KR 2015002442 W KR2015002442 W KR 2015002442W WO 2015137761 A1 WO2015137761 A1 WO 2015137761A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating material
conductive heat
graphene
solution
composite ceramic
Prior art date
Application number
PCT/KR2015/002442
Other languages
English (en)
French (fr)
Inventor
박기홍
Original Assignee
주식회사 에코인프라홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코인프라홀딩스 filed Critical 주식회사 에코인프라홀딩스
Publication of WO2015137761A1 publication Critical patent/WO2015137761A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Definitions

  • the present invention relates to a conductive heat-resistant graphene coating material and a method of manufacturing the same.
  • next-generation LED lighting Due to the miniaturization, high integration, high performance, and high speed in next-generation LED lighting, electric, electronic and communication devices such as LED, mobile phones, laptops, and tablet PCs, performances such as electromagnetic shielding performance and heat dissipation characteristics are required.
  • the LED light source emits 80% of energy as heat
  • a heat dissipation structure is essential, and efficient heat dissipation in electronic parts embedded in electronic devices such as next-generation electronic devices and displays requiring miniaturization, slimming, and weight reduction is required.
  • a heat dissipation material having high thermal conductivity is required, as well as a heat dissipation material having an electromagnetic shielding function.
  • the electromagnetic shielding material forms of conductive mesh, conductive fiber, and conductive rubber made by adding metals such as iron, copper, and nickel to the plastic are used, but since the plastic is not conductive, it is basically an electronic component for shielding electromagnetic waves. Poor compatibility with such materials.
  • a composite material by adding a filler having excellent conductivity, and a metal powder or carbon fiber having excellent electrical conductivity is dispersed in a polymer such as silicone rubber, polyurethane, polycarbonate, and epoxy resin. Methods and the like are used.
  • a polymer such as silicone rubber, polyurethane, polycarbonate, and epoxy resin.
  • carbon nanotubes have been proposed as electromagnetic wave shielding materials.
  • the volumetric electrical resistance is increased to reduce electromagnetic wave shielding effects.
  • Carbon nanotubes are difficult to disperse with polymers.
  • a heat dissipation coating material in which a pigment having excellent thermal emissivity is mixed with a polymer resin in an infrared wavelength region such as carbon black or titania has been proposed, but in order to obtain sufficient heat dissipation characteristics, a large amount of pigment must be included, so that the thickness of the coating film must be increased. There is a problem that the rain rises and the electrical resistance increases.
  • graphene also has a problem in that it is difficult to apply as a coating material composition because of poor dispersibility in water or solvent. Accordingly, studies are being conducted to apply graphene oxide to coating materials. Although the oxidized form of graphene has excellent dispersibility in water or solvents, there is a problem in that graphene's original chemical structure (ie, sp 2 structure) is lost and thus it is difficult to obtain desired performance. Therefore, there is a limit that the coating material to which the graphene oxide is applied further undergo a reduction process.
  • ceramic coating materials are used in various fields, such as coating materials for electronic products, construction paints, waterproofing and anticorrosive paints, heavy anticorrosive paints, special functional paints, oil resistant paints, and tile paints.
  • Various performances such as heat resistance, corrosion resistance, durability, hardness, saline resistance, adhesion, saline resistance, solvent resistance and chemical resistance are required. Therefore, research is being conducted to develop a ceramic coating material optimized for application in a specific field or a multifunctional ceramic coating material having improved performance by using various ceramic and metal materials.
  • Korean Patent Publication No. 10-585992 discloses an Al 2 O 3 -ZrO 3 composite ceramic powder prepared using the solping method, but in this document, the porous body obtained by foaming the composite ceramic powder is homogeneous. It has only been disclosed that it has one pore and can be suitably used as a variety of filter materials by this property, and there is no disclosure regarding the improvement of the performance of the composite ceramic powder for use as a coating material.
  • Korean Patent Publication No. 10-1214713 discloses a method for preparing a lanthanum-strontium-cobalt-iron metal compound using a sol-gel method, and a lanthanum-strontium-cobalt-iron metal compound prepared by the method includes a fuel cell electrolyte, a negative electrode / It is disclosed that it can be used for anode thin film production, micro sensor, porous ceramic thin film production and the like.
  • the technique disclosed in this document is for the purpose of improving the electrical conductivity only, and has not been related to the improvement of other functionalities as a coating material in addition to the electrical conductivity.
  • Korean Patent Publication No. 10-1322442 discloses alumina-titanium oxide-zirconia molten particles which have no cracks upon sintering, and which are excellent in corrosion resistance, chemical resistance, and the like. Was prepared by simple mixing, melting, cooling, and powdering. In this document, only the performance of the composite metal molten particles as a sintered body is disclosed, and the performance improvement and the possibility of use as a coating material have not been disclosed.
  • Korean Patent Publication No. 10-0450225 discloses hydrohydrolysis of a solution containing any one of metal ions of titanium, zirconium, and aluminum to form an amorphous hydroxide gel, which is then redispersed in water to hydrothermal treatment.
  • the present invention discloses an ultrafine porous oxide powder prepared by cooling, separating, and drying the same, but the method disclosed in this document relates only to the production of one type of metal oxide powder, and not to the production of a composite metal oxide powder.
  • the present invention relates to a very fine porous oxide powder for producing a filter or a membrane, and thus has no relation to the improvement of functionality as a coating material of a composite ceramic.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-585992 (June 2006)
  • Patent Document 2 Republic of Korea Patent Registration No. 10-1214173 (2012.12.21 notification)
  • Patent Document 3 Republic of Korea Patent Publication No. 10-1322442 (2013.10.25 announcement)
  • Patent Document 4 Republic of Korea Patent Publication No. 10-0450225 (2004.09.24 announcement)
  • the present invention is to provide a conductive heat-resistant graphene coating material that can form a coating layer excellent in mechanical properties and chemical resistance properties, in particular excellent in electrical conductivity and heat dissipation characteristics.
  • the present invention provides a method for producing a conductive heat-resistant graphene coating material that can form a coating layer having excellent mechanical and chemical resistance properties, particularly in electrical conductivity and heat dissipation properties, during coating using the sol-gel method and graphene oxide. I would like to.
  • the present inventors have studied to provide a composite ceramic having improved performance required as a coating material, and as a result, by modifying the conventionally known sol-gel method from aluminum alkoxide, titanium alkoxide and zirconium alkoxide, heat resistance, corrosion resistance, It is possible to manufacture a multicomponent composite ceramic having excellent versatility as a coating material such as durability, hardness, saline resistance, adhesion, saline resistance, solvent resistance, and chemical resistance, and a composite comprising alumina, titania, and zirconia thus obtained.
  • coating materials containing ceramics are excellent in overall heat resistance, corrosion resistance, durability, hardness, saline resistance, adhesion, saline resistance, solvent resistance and chemical resistance, and particularly excellent in ultra high temperature heat resistance and high corrosion resistance (the present inventors). And Applicant's Patent Application No. 10-2014-0021423). Furthermore, the present inventors apply the graphene oxide sol obtained in a large amount by a simple method to the above-described coating material, compared to the conventionally known method for producing graphene oxide.
  • the coating layer having excellent chemical properties as well as excellent electrical conductivity and heat dissipation properties is formed, and surprisingly, when forming the coating layer with the coating material according to the present invention, oxides on the coating layer containing graphene and composite metal oxides,
  • the present invention has been completed by confirming that residues of oxidants, other by-products, etc. are floating, and that the superconducting thin film can be formed by removing the floating layer by a simple polishing operation.
  • the present invention comprises a composite ceramic comprising (A) graphene oxide sol, (B) alumina, titania and zirconia, (C) colloidal silica, (D) peptizing agent and (E) silane coupling agent It provides a conductive heat dissipation graphene coating material.
  • the present invention is a conductive heat-resistant graphene coating material, conductive heat radiation, characterized in that containing 5 to 10% by weight of the composite ceramic comprising the (B) alumina, titania and zirconia relative to the total weight of the composition. It provides a graphene coating.
  • the present invention provides a conductive heat-resistant graphene coating material, characterized in that the pH is 9 to 11 conductive heat-resistant graphene coating material.
  • the present invention is a conductive heat-resistant graphene coating material, a composite ceramic comprising 20 to 30% by weight of the (A) graphene oxide sol based on the total weight of the composition, (B) alumina, titania and zirconia 5 to 10% by weight, 50 to 70% by weight of the (C) colloidal silica, 4 to 7% by weight of the (D) peptizing agent and 1 to 3% by weight of the (E) silane coupling agent. It provides a graphene coating.
  • the present invention provides a conductive heat-resistant graphene coating material, characterized in that the separation of the thin film layer containing the graphene and the floating layer containing impurities appear after coating and drying.
  • the present invention is the conductive heat-resistant graphene coating material, wherein the layer separation of the composite ceramic comprising the (A) graphene oxide sol and the (B) alumina, titania and zirconia at pH 9 to 11 It provides a conductive heat-resistant graphene coating material, characterized in that by.
  • the present invention is a conductive heat-resistant graphene coating material, the (A) graphene oxide sol conductive graphite, characterized in that obtained by mixing the graphite or graphite in an organic solvent, after hydrolysis, centrifugation. Provide a coating material.
  • the present invention is a conductive heat-resistant graphene coating material, wherein the (B) the conductive heat-resistant graphene coating material, characterized in that the composite ceramic comprising alumina, titania and zirconia is produced by the method comprising the following steps: Provides:
  • step (4) heating the solution peptized in step (4) while heating for at least 5 hours
  • step (6) cooling the solution heated in step (5) at room temperature, and then stirring and gelling, and
  • the present invention provides a conductive heat-resistant graphene coating material, wherein the (D) peptizing agent is a 7: 3 mixed solution of nitric acid and aqueous ammonia solution.
  • the present invention is the conductive heat-resistant graphene coating material, wherein the (E) silane coupling agent is alkyl silane, alkoxy silane, amino silane, epoxy silane, acrylic silane, mercapto silane, fluorine silane, methoxy silane, vinyl
  • the (E) silane coupling agent is alkyl silane, alkoxy silane, amino silane, epoxy silane, acrylic silane, mercapto silane, fluorine silane, methoxy silane, vinyl
  • the conductive heat dissipating graphene coatings selected from the group consisting of silane, phenyl silane, chloro silane, and silazane.
  • the present invention as the conductive heat-resistant graphene coating material, liquid crystal display device, mobile devices, electronic devices or parts of household goods, buildings and construction materials, vehicles and ships, planar heating element, heating film, heating plate, heating board, Provided is a conductive heat-resistant graphene coating material for use in coating of freeze protection pipes, heating heating pipes, hot air fans or evaporation chambers.
  • the present invention provides a method for producing a conductive heat-resistant graphene coating material comprising the following steps:
  • step (3) adjusting the pH of the solution to 9 to 11 during the stirring process of step (2);
  • the present invention provides a method for producing a conductive heat-resistant graphene coating material, further comprising the step of centrifuging the solution following the step (5).
  • the present invention is characterized in that it comprises the step of applying the conductive heat-resistant graphene coating material described above and drying to separate the thin film layer containing graphene and the floating layer containing impurities and removing the floating layer by polishing. It provides a method of forming a conductive heat dissipation graphene thin film layer.
  • the present invention is a method for forming a conductive heat-resistant graphene thin film layer, wherein the layer separation is a composite ceramic comprising the (A) graphene oxide sol and (B) alumina, titania and zirconia at pH 9 to 11 It provides a method of forming a conductive heat-resistant graphene thin film layer by combining.
  • the conductive heat-resistant graphene coating material according to the present invention not only has excellent electrical conductivity and heat dissipation characteristics, but also has high temperature and heat resistance up to 2000 ° C., and an oxidation preventing function and an electromagnetic wave to suppress oxidation of metals and nonmetals at high temperatures. It is a multifunctional inorganic heat dissipating graphene coating material having a shielding function and a function to prevent corruption due to bacteria.
  • the conductive heat-resistant graphene coating material according to the present invention not only has excellent electrical conductivity and thermal conductivity, but also has excellent mechanical and chemical properties such as high temperature heat resistance, pencil hardness, high corrosion resistance, hydrophilicity and stain resistance.
  • oxides, residues of oxidants, other by-products and the like are suspended on a coating layer containing graphene and a composite metal oxide, and the superconducting thin film is easily removed by polishing. Can be formed.
  • the conductive heat-resistant graphene coating material according to the present invention is LED and next-generation electronic material package and various liquid crystal display devices such as TVs, computer monitors, mobile phones, mobile devices such as mobile phones, laptops, tablet PCs, gas ranges, heaters, fans
  • liquid crystal display devices such as TVs, computer monitors, mobile phones, mobile devices such as mobile phones, laptops, tablet PCs, gas ranges, heaters, fans
  • the conductive heat-resistant graphene coating material according to the present invention can be coated on almost all materials such as metal, nonmetal, plastic polymer material, FRP (fiber reinforced plastics), fabrics and fibers, leather, film, glass, concrete, wood, It has high electrical conductivity and can be applied to various materials such as high-temperature planar heating element, heating film, heating plate, heating board (tile, marble, etc.), freeze protection pipe, heating heating pipe.
  • the conductive heat-dissipating graphene coating material absorbs microwaves, so that instantaneous heat is easily generated up to 1000 ° C., and may be applied to materials such as drying, hot air, and evaporation chambers.
  • 1 is a view showing a manufacturing process of a multifunctional composite ceramic using the sol-gel method according to the present invention.
  • FIG. 2 is a photograph of a multifunctional composite ceramic using the sol-gel method according to the present invention.
  • FIG 3 is a view showing a manufacturing process of a high temperature heat resistance and high corrosion resistance thin film coating material of the sol-gel method according to the present invention.
  • Figure 4 is a view showing the manufacturing process of the graphene oxide and graphene oxide sol according to the present invention.
  • FIG. 5 is a view showing the entire process of manufacturing a conductive heat-resistant graphene coating material according to the present invention.
  • FIG. 6 is a view showing a photograph (a) and a photograph (b) of a polishing operation before polishing after coating and drying the specimen with the conductive heat-resistant graphene coating material of Example 1 according to the present invention.
  • the conductive heat-resistant graphene coating according to the present invention is a composite ceramic comprising (A) graphene oxide sol, (B) alumina, titania and zirconia, (C) colloidal silica, (D) peptizing agent and (E) silane A composite ceramic comprising a coupling agent, and more specifically, the composite ceramic comprising 20 to 30% by weight of the (A) graphene oxide sol and (B) alumina, titania and zirconia based on the total weight of the composition is 5 to 10
  • the (C) colloidal silica may include 50 to 70% by weight
  • the (D) peptizing agent may include 4 to 7% by weight
  • the (E) silane coupling agent may include 1 to 3% by weight.
  • Graphene includes monolayer graphene or multilayer graphene having two or more layers and 100 layers or less, and single layer graphene refers to a monoatomic layer of carbon molecules having a ⁇ bond.
  • Graphene oxide refers to a compound in which the graphene is oxidized.
  • Graphene is known to have a very high physical and chemical stability, is more than 100 times higher electrical conductivity than copper, more than 100 times faster electron mobility than silicon, and more than 2 times higher thermal conductivity than diamond.
  • graphene oxide is a polar substance having a functional group such as an epoxy group, a carbonyl group, a carboxyl group, a hydroxyl group and the like, it is excellent in dispersibility in a solvent, but is required to be reduced to graphene again in order to obtain a desired performance.
  • the dispersibility problem can be solved.
  • a large number of oxides remain in the stacked graphene oxide, performance as graphene cannot be sufficiently exhibited. That is, by-products may be generated during the oxidation / reduction process of graphene, thereby degrading the performance of the finally formed coating layer.
  • the graphene oxide is included in the coating composition at pH 9 to 11 together with the composite ceramic, colloidal silica, peptizing agent and silane coupling agent comprising alumina, titania and zirconia, thereby improving mechanical and chemical resistance properties. Improve electrical conductivity and heat dissipation without compromising
  • the coating composition according to the present invention a separate reduction process is not required to obtain desired graphene performance.
  • by-products generated in the manufacturing process of the graphene oxide is suspended above the superconducting thin film coating layer to be finally formed, and can be easily removed by a simple polishing operation by the separation of the film and oxide containing graphene. This is believed to be due to the pH and the interaction with the composite ceramic. Therefore, the conductive heat-dissipating graphene coating material according to the present invention has the advantage that it can produce a large amount of graphene coating material containing graphene at a low cost.
  • graphene oxide may be used in the form of a sol solution containing graphene oxide.
  • a graphene oxide sol solution obtained by mixing a graphite material (graphite material) with an organic solvent, hydrolyzing and centrifuging, can be used.
  • graphite materials refer to any material, including graphite, including any form obtainable from a variety of naturally occurring materials, from fossil fuels to sugars, using commercially available ones, or by conventional methods known in the art It can manufacture and use.
  • the organic solvent may be used at least one of a solvent commonly used in the art, preferably methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, sec-butanol, isobutanol, ter-butanol. And most preferably isopropyl alcohol is used.
  • a solvent commonly used in the art preferably methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, sec-butanol, isobutanol, ter-butanol. And most preferably isopropyl alcohol is used.
  • an oxidizing agent may be further included as necessary to accelerate the oxidation reaction.
  • 0.1 to 10 times the weight of the mixed solution obtained above was added to induce a hydrolysis reaction, and then centrifuged at a speed of 6000 rpm to 20,000 rpm for 30 minutes to 2 hours to disperse the graphene oxide.
  • a pin sol solution can
  • the graphene oxide sol is included in 20 to 30% by weight based on the total weight of the coating material composition. If the content of graphene oxide sol is less than 20% by weight, the electrical conductivity and thermal conductivity is lowered, if it is more than 30% by weight the viscosity is high to obtain a uniform coating layer, the chemical resistance is lowered.
  • Alumina refers to an oxide of aluminum or aluminum oxide (Al 2 O 3 )
  • titania refers to an oxide of titanium or titanium (TiO 2 )
  • zirconia refers to an oxide of zirconium or zirconium oxide (ZrO 2 ).
  • alumina, titania and zirconia may each be used by commercially available products in the art, or may be prepared and used by conventional methods known in the art.
  • the composite ceramic including (B) alumina, titania, and zirconia may be prepared by a method comprising the following steps:
  • step (4) heating the solution peptized in step (4) while heating for at least 5 hours
  • step (6) cooling the solution heated in step (5) at room temperature, and then stirring and gelling, and
  • the present inventors have improved the composite ceramics obtained by producing a composite gel from aluminum alkoxide, titanium alkoxide and zirconium alkoxide by using a conventional sol-gel method. It was confirmed to have a performance. This is believed to be due to the reorganization of the structure and structure of the metal oxide components constituting the composite ceramic during peptizing and secondary gelation processes.
  • the aluminum alkoxide is represented by the general formula Al (OR) 3 , wherein the R group is not particularly limited as long as the aluminum alkoxide can be hydrolyzed, and the R group may be independently linear or branched. And may be a saturated or unsaturated alkyl group or an alkylester group, or an allyl group.
  • the carbon chain formed from R may contain chemical bonds such as carbonyl, ether, ester, amido, sulfido, sulfinyl, sulfonyl or imino. Carbon number of a carbon chain is 1-16 pieces, Preferably it is 1-8 pieces, More preferably, it is 1-4 pieces. Most preferably aluminum isopropoxide is used in the present invention.
  • the titanium alkoxide is represented by the general formula Ti (OR ′) 4 , wherein the R ′ group is not particularly limited as long as the titanium alkoxide can be hydrolyzed, and the R ′ group may be independently linear or branched, and may also be saturated or unsaturated. It may be an alkyl group or an alkylester group, or an allyl group.
  • the carbon chain formed from R ' may contain chemical bonds such as carbonyl, ether, ester, amido, sulfido, sulfinyl, sulfonyl or imino. Carbon number of a carbon chain is 1-16 pieces, Preferably it is 1-8 pieces, More preferably, it is 1-4 pieces. Most preferably titanium isopropoxide is used in the present invention.
  • the zirconium alkoxide is represented by the general formula Zr (OR ') 4 , wherein the R' group is not particularly limited as long as the zirconium alkoxide can be hydrolyzed, and the R 'group may be independently linear or branched, and may also be saturated or unsaturated. It may be an alkyl group or an alkylester group, or an allyl group.
  • the carbon chain formed from R ' may contain chemical bonds such as carbonyl, ether, ester, amido, sulfido, sulfinyl, sulfonyl or imino. Carbon number of a carbon chain is 1-16 pieces, Preferably it is 1-8 pieces, More preferably, it is 1-4 pieces. Most preferably zirconium propoxide is used in the present invention.
  • the aluminum alkoxide, titanium alkoxide and zirconium alkoxide can be used commercially available products in the art, it can also be manufactured and used directly by methods known in the art.
  • the organic solvent used in step (1) may be an alcohol having 1 to 9 carbon atoms, preferably a lower alcohol having 1 to 4 carbon atoms.
  • one or more of methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, sec-butanol, isobutanol, ter-butanol may be used, and more preferably, a solvation reaction by hydrolysis.
  • isopropyl alcohol is used for the aluminum alkoxide and titanium alkoxide
  • n-propyl alcohol is used for the zirconium alkoxide.
  • the aluminum alkoxide is 40 to 100 parts by weight
  • the titanium alkoxide is 80 to 150 parts by weight
  • the zirconium alkoxide is used in 70 to 120 parts by weight.
  • the molar ratio of aluminum oxide: titanium oxide: zirconium oxide in the final composite ceramic is 30:40:30.
  • the organic solvent is used in an amount of 1 to 5 times, preferably 1 to 2 times the weight of the metal alkoxide.
  • step (1) most preferably, 40 to 80 parts by weight of aluminum isopropoxide is added to 40 to 160 parts by weight of isopropyl alcohol, and 90 to 270 parts by weight of titanium isopropoxide
  • Each metal alkoxide solution is prepared by adding to an isopropyl alcohol and adding 80-120 parts by weight of zirconium propoxide to 80-160 parts by weight of n-propyl alcohol to dissolve.
  • the mixed solution is prepared by mixing the aluminum alkoxide solution, titanium alkoxide solution and zirconium alkoxide solution prepared above. (Step (2) above)
  • water is added to the previously prepared mixed solution to induce hydrolysis and gelation by stirring at a high speed of 900 to 1,500 rpm, preferably at 1,000 rpm for 20 to 30 minutes.
  • the amount of water added may be appropriately determined in consideration of the molar ratio of the alkoxide group in the metal alkoxide. If necessary, the reaction rate can be controlled by adding an appropriate acid or base.
  • an acid such as hydrochloric acid, perchloric acid, nitric acid, sulfuric acid or an organic acid such as acetic acid, lactic acid, tartaric acid, maleic acid, citric acid, glycolic acid is added, preferably nitric acid is added.
  • the pH is adjusted to 3-4 and stirred at a medium speed of 300 to 600 rpm, preferably at 500 rpm and heated to 300 to 400 ° C. for at least 5 hours. This results in peptization of the solution that gelled in the previous step.
  • Steps (4) and (5) By adding acid to the gelled solution in step (3), the structure and structure of the metal oxide components constituting the composite ceramic are changed to stabilize the metal composite. Is considered.
  • the peptized sol solution is then cooled to room temperature and dried by holding at 200-500 rpm in a mechanical stirrer. This causes the sol solution to gel again.
  • Step (6) Then, after drying for 30 minutes to 2 hours, preferably about 1 hour while maintaining a 60 to 80 °C in a gel state, at least 3 hours while maintaining 600 to 800 °C in an electric furnace, Preferably, the mixture is calcined for at least 5 hours to obtain a high-purity multifunctional multicomponent composite ceramic powder having an average particle diameter of 10 to 20 nm.
  • the steps (4) to (6) the structure of the metal oxide components constituting the composite ceramic is changed so that the performance of the coating material of the composite ceramic which is finally formed by organic bonding of the metal particles. It is considered to be improved.
  • the method for producing a multifunctional multicomponent composite ceramic powder according to the present invention may further include grinding the composite ceramic obtained in step (7).
  • the multifunctional multicomponent composite ceramic powder produced by the above-described manufacturing method is believed to have a basic composition of Al 2 O 3 -TiO 2 -ZrO 3 , but has been conventionally prepared by a special treatment (process) in composition and manufacturing of the component. It is presumed to have a structure different from that of the Al 2 O 3 -TiO 2 -ZrO 3 metal composite.
  • the composite ceramic powder prepared by the above-described method has a stable structure capable of exhibiting excellent high temperature heat resistance, excellent pencil hardness, high corrosion resistance, excellent hydrophilicity and stain resistance by physicochemical action with colloidal silica, peptizing agent and silane coupling agent. It is believed to form and also exhibits electrical conductivity and thermal conductivity while working organically with the graphene oxide sol dispersed in the coating composition to maintain mechanical and chemical resistance properties.
  • the composite ceramic including alumina, titania and zirconia is included in an amount of 5 to 10% by weight based on the total weight of the coating material composition.
  • the content of the composite ceramic is less than 5% by weight, physical properties such as durability, hardness, chemical resistance, heat resistance, and corrosion resistance are lowered.
  • the content of the composite ceramic is more than 10% by weight, the stability of the sol-type coating material composition is lowered, and the electrical conductivity and thermal conductivity are lowered. Indicates.
  • Colloidal silica refers to the colloidal state of the negatively charged amorphous silica (SiO 2 ) particles in water.
  • the colloidal silica may be used by commercially available products in the art, or manufactured and used by conventional methods known in the art.
  • the colloidal silica may be one obtained by further adding water and / or an organic solvent to a commercially available product, wherein the amount of the water and / or the organic solvent added is 0.5 to 1, respectively, based on the colloidal silica product weight. Can be used as the weight of a pear.
  • the organic solvent is not particularly limited, and organic solvents commonly used in the art, such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, sec-butanol, isobutanol and ter-butanol Lower alcohols of 1 to 4 and the like may be used, and preferably isopropyl alcohol may be used.
  • colloidal silica is transparent or milky in appearance, and the silica fine particles of the silica sol generally have a spherical structure.
  • the silica particles of the silica sol are spherical, -SiOH groups and -OH ions are present on the particle surface, have a double electric layer structure by alkali ions, and the silica sol is stable due to the repulsive force between the same negatively charged particles. Keep it.
  • the electrochemical state is changed, the particles are entangled with each other and the viscosity is increased to cause a reaction such as gelation and aggregation.
  • colloidal silica is organically bonded by physicochemical action with composite ceramics, peptizers and silane coupling agents to exhibit high temperature heat resistance and high corrosion resistance, and is believed to stabilize the graphene oxide sol dispersed in the coating composition.
  • the colloidal silica is included in 50 to 70% by weight relative to the total weight of the coating composition. If it is out of the above range, the state of the coating material composition and physical properties such as heat resistance and corrosion resistance are reduced.
  • the peptizing agent refers to a substance which disperses the aggregate to make a stable colloidal solution.
  • the peptizing agent is used for peptizing the gelled solution by mixing the colloidal silica and the composite ceramic.
  • Peptides that can be used in the present invention include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid and organic acids such as acetic acid, lactic acid, tartaric acid, maleic acid, citric acid and glycolic acid.
  • an amine base may be used as the alkaline peptizing agent, and such amine bases include alkyl amines, arylamines, and the like.
  • a mixed solution of nitric acid and aqueous ammonia more preferably a mixed solution of 7: 3 ratio of nitric acid and aqueous ammonia can be used.
  • the peptizing agent is included in 4 to 7% by weight based on the total weight of the coating material composition. If the content of the peptizing agent is less than 4% by weight, it is impossible to obtain a stable coating composition in the form of a sol, and it becomes difficult to separate graphene from the graphene oxide sol, thereby weakening the action of other components in the coating composition. If it is more than 7% by weight, the bond between the silica particles and the metal composite ceramic in the coating composition is weakened, and the physical properties such as hardness, heat resistance, chemical resistance, and corrosion resistance are lowered, and the oxidation process is continued to generate a large amount of oxide, making it difficult to separate the graphene film. Can lose.
  • the silane coupling agent is composed of an alkoxy functional group on one side and an epoxy or amine functional group on the other side, and the alkoxy group of the silane coupling agent forms a hydrogen bond with the hydroxyl group on the surface of the silica particle after hydrolysis, and the epoxy or amine group is formed on the polymer film surface.
  • the carbonyl group, carbon double bond and the like By reacting with the carbonyl group, carbon double bond and the like to bond the silica particles and the polymer film to act as a binder.
  • the silane coupling agent compound includes alkyl silane, alkoxy silane, amino silane, epoxy silane, acrylic silane, mercapto silane, fluorine silane, methoxy silane, vinyl silane, phenyl silane, chloro silane and silazane.
  • alkyl silane alkoxy silane, amino silane, epoxy silane, acrylic silane, mercapto silane, fluorine silane, methoxy silane, vinyl silane, phenyl silane, chloro silane and silazane.
  • One or more selected from the group can be used.
  • APS aminopropyltriethoxysilane
  • GPS glycidoxypropyltrimethoxysilane
  • MTMS methyltrimethoxysilane
  • GTMS glycidoxyprefiltrimethoxysilane
  • MPTMS methacryloxyprefill Trimethoxysilane
  • ethyltriethoxysilane ethyltriisopropoxysilane, ethyltributoxysilane, butyltrimethoxysilane, tetraethylolsosilicate, methyltrimethoxysilane, propyltriethoxysilane
  • Gamma-aminopropyltrimethoxysilane gamma-glycidyloxypropyltrimethoxysilane
  • gamma-glycidyloxypropyltriethoxysilane dimethyldimethoxysilane, diethyldiethoxysilane
  • the silane coupling agent is included in 1 to 3% by weight based on the total weight of the coating material composition. If the content of the silane coupling agent is less than 1% by weight, sufficient bonding strength cannot be achieved, and the bond between the graphene oxide sol, silica particles, and the metal composite ceramic dispersed in the coating composition is weakened, thereby resulting in hardness, heat resistance, chemical resistance, and corrosion resistance. Degrades. On the other hand, when the content of the silane coupling agent is more than 3% by weight, the coating material is gelled, and the stability as the coating material composition is lowered.
  • the conductive heat-resistant graphene coating material composition according to the present invention additives such as pH regulators, impact modifiers, water repellents, antibacterial agents, mold release agents, heat stabilizers, antioxidants, light stabilizers, colorants, stabilizers, pigments, dyes and opacifiers according to the purpose and use It may further include.
  • additives such as pH regulators, impact modifiers, water repellents, antibacterial agents, mold release agents, heat stabilizers, antioxidants, light stabilizers, colorants, stabilizers, pigments, dyes and opacifiers according to the purpose and use It may further include.
  • the conductive heat-resistant graphene coating material according to the present invention is maintained in a stable sol-type coating composition in the pH range of 9 to 11, by promoting the bonding of the graphene and the composite ceramic impurity including the graphene layer and other by-products such as oxide Since the separation of the floating layer is promoted, it is possible to adjust the pH range of the coating material composition to 9 to 11 using an appropriate pH adjusting agent.
  • This pH control is a coating agent composition in a weak base such as ammonia, strong bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, strong acids such as acetic acid, etc., strong acids such as hydrochloric acid, nitric acid, sulfuric acid, etc. In consideration of the components and concentrations contained therein can be appropriately selected.
  • the additive is contained in 0.01 to 10% by weight can express the physical properties required in the present invention, more preferably 0.1 to 5% by weight.
  • the present invention relates to a method for producing a conductive heat-resistant graphene coating material comprising the following steps:
  • step (3) adjusting the pH of the solution to 9 to 11 during the stirring process of step (2);
  • the composite ceramic is added in a ratio of weight ratio of 1: 0.1 to 1: 0.25 with respect to colloidal silica, and the organic solvent in a ratio of weight ratio of 1: 0.5 to 1: 1 with respect to colloidal silica.
  • the organic solvent may be an organic solvent commonly used in the art, there is no particular limitation, for example methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, sec-butanol, isobutanol, Lower alcohols having 1 to 4 carbon atoms such as ter-butanol may be used, and isopropyl alcohol may be preferably used.
  • step (2) the peptizing agent is added in a ratio of the weight ratio of 1: 0.1 to 1: 0.25 with respect to the solution obtained in step (1).
  • step (3) pH adjustment is performed by adding ammonia water to the solution being stirred.
  • the silane coupling agent is added in a ratio of the weight ratio of 1: 0.1 to 1: 0.15 with respect to the solution obtained in the step (3). If the content of the silane coupling agent is less than 1: 0.1, sufficient bonding strength may not be obtained. If the content of the silane coupling agent is greater than 1: 0.15, gelation may proceed to obtain a stable coating material composition.
  • the graphene oxide sol solution is added in a ratio of the weight ratio of 80:20 to 70:30 (coating material: graphene oxide sol) to the solution obtained in the step (4). It may be stirred for 10 minutes to 3 hours at 300 to 1,000 rpm to help disperse the graphene oxide sol solution and bond with the composite ceramic. If the content of graphene oxide sol is less than 20% by weight, sufficient electrical conductivity and thermal conductivity may not be obtained, and if it is more than 30% by weight, the mechanical properties of the coating material are lowered.
  • the solution obtained in the step (5) is centrifuged for 10 minutes to 1 hour at a speed of 6000rpm to 20,000rpm to mix the graphene and the composite ceramic, and the separation of impurities consisting of other by-products such as oxide Can improve.
  • step (3) adjusting the pH of the solution to 9 to 11 during the stirring process of step (2);
  • step (6) optionally, including the step of centrifuging the solution obtained in step (5),
  • the graphene oxide 20 to 30% by weight of the graphene oxide, 5 to 10% by weight of a composite ceramic comprising the alumina, titania and zirconia, 50 to 70% by weight of the colloidal silica, and 4 to 7% by weight of the peptizing agent, based on the total weight of the composition. It relates to a method for producing a conductive heat-resistant graphene coating material to include% and 1 to 3% by weight of the silane coupling agent.
  • graphite graphite
  • isopropyl alcohol 200 g was added to 400 g of isopropyl alcohol and stirred at 2000 rpm to slowly induce the oxidation reaction.
  • 150 ml of water was added thereto, stirred at 2000 rpm, and hydrolyzed, followed by centrifugation at 12,000 rpm for 30 minutes to obtain 650 g of a graphene oxide sol solution.
  • a composite ceramic powder comprising alumina, titania and zirconia was prepared as follows.
  • aluminum isopropoxide was added to 100 g of isopropyl alcohol, 100 g of titanium isopropoxide was added to 200 g of isopropyl alcohol, and 90 g of zirconium propoxide was added to 180 g of n-propyl alcohol to dissolve.
  • aluminum isopropoxide solution, titanium isopropoxide solution and zirconium propoxide solution were mixed.
  • 500 ml of water was added to the mixed solution, and the mixture was stirred at 1,000 rpm for 30 minutes to induce gelation.
  • Nitric acid was added to the gelled mixed solution to adjust the pH to 3-4, transferred to a reflux flask, and heated at 300-400 ° C. for 6 hours while stirring at a medium speed of 500 rpm.
  • silica solution 200 g
  • colloidal silica solution 100 ml of water were mixed and stirred for 30 minutes to proceed with hydrolysis.
  • Silica-sol was prepared by accelerating hydrolysis by adding 100 ml of isopropyl alcohol to the solution being hydrolyzed.
  • 15 g of the composite ceramic powder prepared in (1) was mixed with respect to 100 g of the prepared silica sol, and dispersed at a high speed of 1000 rpm or more for 1 hour.
  • a solution obtained by mixing nitric acid (HNO 3 ) and aqueous ammonia (NH 4 OH) at 7: 3 was prepared as a peptizing agent.
  • 10 g of the previously prepared peptizing agent was added to the silica sol coating solution during the hydrolysis stirring process.
  • the pH of the solution was adjusted to 2, 3, 7, 9 and 11, respectively, in order to check the state of the solution according to pH.
  • 3 g of aminopropyltrethoxysilane (APS) was added as a silane coupling agent and stirred at a high speed of 1000 rpm to prepare a coating solution.
  • the coating solution below pH 9 was found to be unsuitable as a coating material due to the gelation during stirring due to the addition of the silane coupling agent.
  • the coating solution without the silane coupling agent maintained the sol state, but poor adhesion to the film or plastics.
  • a conductive heat-resistant graphene coating material was prepared in the same manner as described in Example 1, except that the amount of each component in Example 1 was adjusted as shown in Table 1 below.
  • Example 1 the composition and amount of the components were adjusted as shown in the following [Table 2], and the coating material was prepared in the same manner as described in Example 1, except that the aluminum oxide, titanium oxide or zirconium oxide powder was simply mixed. Was prepared.
  • Comparative Example 7 the composition gelled during mixing and stirring, making it difficult to apply as a coating material.
  • Example 1 the coating material of Comparative Example 8 was prepared in the same manner as in Example 1, except that 43 g of graphene powder was added instead of the graphene oxide sol solution. This coating material is difficult to use as a coating material because the dispersion of graphene in the coating solution is not sufficient.
  • the coating material prepared from the sol-gel method and the graphene oxide sol according to the present invention showed good glossiness of 28 or more, high pencil hardness of 6H or more, and excellent electrical conductivity of about 0.2 ⁇ or less.
  • the thermal conductivity was very high, 145W / m ⁇ K or more, excellent adhesion, heat resistance and chemical resistance, and showed a good electromagnetic shielding effect.
  • Comparative Examples 1 to 6 all showed poor electrical conductivity. This is considered to be because impurities such as an oxide are contained in a large amount in the graphene layer.
  • all of the comparative examples without using the composite ceramic according to the present invention showed poor salt water resistance, and one or more characteristics of heat resistance, chemical resistance, and solvent resistance were poor.
  • the coating material according to the present invention which combines the composite ceramic coating material and the graphene oxide sol, was able to form a thin film coating layer having excellent physical and chemical characteristics, in particular, excellent thermal conductivity and electrical conductivity.
  • Forming a thin film layer having low electrical resistance and high thermal conductivity by combining the composite ceramic coating material and graphene oxide according to the present invention is bundled together in the process of separating and synthesizing the ceramic coating material and graphene, and the oxide is separated into the surface layer to obtain pure graphene. It is believed that this is because the pin content is high.
  • the thermal conductivity is about 2 times improved. Therefore, it was found that the preferred coating thickness of the conductive heat-resistant graphene coating material according to the present invention is 20 to 40 ⁇ m.
  • the electromagnetic shielding performance was found to increase with increasing graphene content.
  • An ultra high temperature heat resistance test was further performed on the aluminum specimen prepared by coating with the coating solution of Example 1. Specifically, after the temperature was raised at a rate of 300 ° C./hr in a carbon heater furnace and maintained for a predetermined time, peeling of the coating layer was observed after repeating the cooling process at a rate of 400 ° C./hr twice.
  • the coating layer formed of the coating solution according to the present invention did not exhibit cracking or peeling up to about 2000 ° C., and surface change and slight cracking phenomenon began to appear when the temperature was raised above 2000 ° C. Therefore, it was confirmed that the coating layer formed of the coating solution according to the present invention exhibits heat resistance at very high temperature up to 2000 ° C.
  • the conductive heat-resistant graphene coating material according to the present invention is LED and next-generation electronic material package and various liquid crystal display devices such as TVs, computer monitors, mobile phones, mobile devices such as mobile phones, laptops, tablet PCs, gas ranges, heaters, fans, refrigerators It can be applied in various fields of industrial products such as parts of household goods such as iron, iron, building and building materials, vehicles and ships, and also metal, nonmetal, plastic polymer material, FRP, fabric and fiber, leather, It can be coated on almost all materials such as film, glass, concrete, wood, etc., and has high electrical conductivity, so it is a high temperature plane heating element, heating film, heating sheet, heating board (tile, marble, etc.), freeze protection pipe, It can be applied to various materials such as heating pipes for heating.
  • the conductive heat-dissipating graphene coating material absorbs microwaves, so that instantaneous heat is easily generated up to 1000 ° C., and may be applied to materials such as drying, hot air, and evaporation chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 (A) 산화 그래핀 졸, (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹, (C) 콜로이드 실리카, (D) 해교제 및 (E) 실란 커플링제를 포함하는 전도성 방열 그래핀 코팅재를 제공한다. 본 발명에 따른 전도성 방열 그래핀 코팅재는 전기전도성, 특히 열전도성이 뛰어날 뿐 아니라, 고온 내열성, 연필경도, 고 내식성, 친수성 및 내오염성 등 기계적 특성 및 내화학적 특성이 전반적으로 우수하다.

Description

졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
본 발명은 전도성 방열 그래핀 코팅재 및 이의 제조방법에 관한 것이다.
LED, 휴대폰, 노트북, 태블릿PC 등과 같은 차세대 LED조명, 전기, 전자 및 통신기기에 있어서 소형화, 고집적화, 고성능화 및 고속화 등으로 인하여 전자파 차폐 성능 및 방열 특성과 같은 성능이 요구되고 있다. 특히, LED 광원은 에너지의 80%를 열로 방출하는 관계로 방열구조가 필수적이며, 소형화, 슬림화, 경량화가 요구되는 차세대 전자소자 및 디스플레이 등 전자제품 기기에 내장된 전자부품 내에서 발생하는 열을 효율적으로 제거하기 위하여는 열전도도가 높은 방열소재가 요구될 뿐 아니라, 전자파 차폐기능을 갖는 방열소재가 요구된다.
통상 전자파 차폐재로서 플라스틱에 철, 구리, 니켈 등과 같은 금속류를 첨가하여 제작된 도전성 메쉬, 도전성 섬유, 도전성 고무 등의 형태가 사용되고 있으나, 플라스틱은 전도성을 띄지 못하기 때문에 기본적으로 전자파 차폐를 위한 전자부품 등의 소재로 적합성이 떨어진다. 이를 해결하기 위하여 전도성이 우수한 필러를 첨가하여 복합재를 제조하고자 하는 연구가 진행되고 있으며, 실리콘 고무, 폴리우레탄, 폴리카보네이트, 에폭시 수지 등의 고분자에 전기전도성이 우수한 금속분말 또는 탄소섬유 등을 분산시키는 방법 등이 사용되고 있다. 그러나, 충분한 전자파 차폐 효과를 얻기 위해서는 과량의 금속분말을 고분자 수지에 분산시켜야 하기 때문에 충격강도를 비롯한 기계적 물성이 저하된다는 문제가 있다.
한편, 전자파 차폐재로서 탄소나노튜브가 제안되고 있으나, 탄소나노튜브를 고분자와 혼합하면 체적전기저항이 높아져 전자파 차폐효과가 저하되며, 탄소나노튜브는 고분자와의 분산이 어렵기 때문에 복합재료로서 적용하는데 제약이 있다. 또한, 카본블랙 또는 티타니아와 같은 적외선 파장영역에서 열방사율이 우수한 안료를 고분자 수지에 혼합한 방열 코팅재가 제안되었으나, 충분한 방열 특성을 얻기 위해서는 안료가 다량 포함되어야 하기 때문에, 도막 두께를 두껍게 해야 하며 제조비가 상승하고, 전기 저항이 증가한다는 문제가 있다.
한편, 코팅재의 열전도성과 전기전도성을 개선하기 위하여, 흑연 입자를 이용한 복합 코팅재의 개발이 연구되고 있다. 그러나, 흑연 입자는 용매나 타 입자와의 분산성이 떨어져 기본적으로 코팅재 재료로서 적합하지 못하며, 그 안에 철, 납, 동 등과 같은 불순물을 함유하고 있기 때문에 코팅재로서 성능 저하를 야기할 수 있다는 문제가 있다.
최근에는 열전도성과 전기전도성이 뛰어난 그래핀을 이용한 복합 코팅재의 개발이 활발히 이루어지고 있다. 그러나, 그래핀 역시 물이나 용매에 대한 분산성이 열악하기 때문에 코팅재 조성물로서 적용하기 어렵다는 문제가 있다. 이에 따라, 산화 그래핀을 코팅재에 적용하고자 하는 연구가 진행되고 있다. 그래핀의 산화된 형태는 물이나 용매에 대한 분산성이 우수하지만, 그래핀 본래의 화학 구조(즉, sp2 구조)가 상실되어 원하는 성능을 얻기 어렵다는 문제가 있다. 따라서, 산화 그래핀을 적용한 코팅재는 추가로 환원과정을 거쳐야 한다는 한계가 있다. 그러나, 일반적으로 산화 그래핀을 기재에 도포하고 후처리 공정으로 환원할 경우 적층된 산화 그래핀에 다수의 산화물이 잔존할 수 밖에 없어 그래핀으로서 성능을 다하지 못한다. 즉, 그래핀의 산화/환원 과정에서 발생하는 기타 부산물이 코팅층의 성능을 저하시킨다는 문제가 있으며, 더욱이, 산화 그래핀의 화학적 환원은 그래핀의 본래 화학 구조를 완전하게 복원시키지 못하여 홀 형태의 상당한 결함이 있는 그래핀 구조를 포함시켜, 환원 동안 본래의 구조가 완전히 복구되지 않아 목적하는 기계적, 전기적 특성을 감소시킨다는 문제가 있다. 따라서, 그래핀 제조시 산화물과 불순물을 분리하는 방식과 순수 그래핀을 확보할 수 있는 대량 생산기술 확보가 시급한 실정이다.
또한, 현재까지 그래핀 소자를 코팅 처리하기 위한 코팅재 개발에 있어서 유기 또는 유/무기 복합형 코팅재를 사용함으로써 고열이 발생하는 LED 및 전자소자, 발전기, 자동차엔진 등에 사용할 수 없는 방열 코팅소자가 대부분이었다. 따라서, 차세대 LED 및 전자소자 패키지, 발전기, 자동차엔진 등에 사용할 수 있는 초전도성과 고열에 견딜 수 있는 내열성을 지닌 방열소재의 개발이 시급한 실정이다.
한편, 세라믹 코팅재는 전자제품용 코팅재를 포함하여 건축용 도료, 방수·방식용 도료, 중방식용 도료, 특수 기능성 도료, 내유성 도료, 타일용 도료 등 다양한 분야에서 사용되고 있으며, 이에 따라, 세라믹 코팅재에 대하여, 내열성, 내식성, 내구성, 경도성, 내염수성, 부착성, 내염수성, 내용제성 및 내화학성 등 다양한 성능이 요구된다. 따라서, 다양한 세라믹과 금속 소재를 이용하여, 특정 분야에서의 적용을 위해 최적화된 세라믹 코팅재나 보다 성능이 개선된 다기능성 세라믹 코팅재를 개발하기 위한 연구가 계속되고 있다.
이와 관련하여, 대한민국 등록특허공보 제10-585992호에는 졸겝법을 이용하여 제조된 Al2O3-ZrO3 복합 세라믹 분말이 개시되어 있으나, 본 문헌에는 상기 복합 세라믹 분말을 발포시켜 얻어진 다공질체가 균질한 기공을 가지며, 이러한 특성에 의하여 각종 필터 재료로 적합하게 사용될 수 있음이 개시되어 있을 뿐, 코팅재로서의 사용을 위한 복합 세라믹 분말의 성능 개선에 관하여는 개시된 바 없었다.
또한, 대한민국 등록특허공보 제10-1214713호에는 졸겔법을 이용한 란탄-스트론튬-코발트-철 금속 화합물의 제조방법 및 그 방법으로 제조된 란탄-스트론튬-코발트-철 금속 화합물이 연료전지 전해질, 음극/양극 박막 제조, 마이크로 센서, 다공성 세라믹 박막 제조 등에 사용될 수 있음이 개시되어 있다. 그러나, 본 문헌에 개시된 기술은 전기전도성의 향상만을 목적으로 한 것으로, 전기전도성 이외에 코팅재로서 다른 기능성 향상과는 무관한 것이었다.
또한, 대한민국 등록특허공보 제10-1322442호에는 소결시 균열이 없으며, 부식성, 저항성, 내화학성이 우수한 알루미나-티타늄옥사이드-지르코니아 용융입자가 개시되어 있으나, 본 문헌에 개시된 복합 금속 용융입자는 금속 원료를 단순 혼합하고, 용융한 후 냉각시켜, 분말화하여 제조된 것으로, 본 문헌에서는 복합 금속 용융입자의 소결체로서의 성능만 개시하고 있을 뿐, 코팅재로서 성능 개선 및 사용 가능성에 대하여는 개시된 바 없었다.
또한, 대한민국 등록특허공보 제10-0450225호에는 티타늄, 지르코늄, 알루미늄 중 어느 한 금속이온을 함유한 용액을 열가수분해하여 비정질의 수산화염 겔을 형성시킨 뒤 이 겔을 물에 재분산하여 수열처리한 후 냉각, 분리, 건조하여 제조한 극미세 다공질 산화물 분말을 개시하고 있으나, 본 문헌에 개시된 방법은 한 종류의 금속 산화물 분말의 제조에 관한 것일 뿐 복합 금속 산화물 분말의 제조에 관한 것이 아니며, 또한, 필터 또는 멤브레인의 제조를 위한 극미세 다공질 산화물 분말에 관한 것이므로, 복합 세라믹의 코팅재로서 기능성 향상과는 무관한 것이었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허공보 제10-585992호(2006.06.01공고)
(특허문헌 2) 대한민국 등록특허공보 제10-1214173호(2012.12.21공고)
(특허문헌 3) 대한민국 등록특허공보 제10-1322442호(2013.10.25공고)
(특허문헌 4) 대한민국 등록특허공보 제10-0450225호(2004.09.24공고)
본 발명은 코팅시 기계적 특성 및 내화학적 특성이 우수하며, 특히 전기전도성 및 방열 특성이 우수한 코팅층을 형성할 수 있는 전도성 방열 그래핀 코팅재를 제공하고자 한다.
또한, 본 발명은 졸겔법과 산화 그래핀을 이용한, 코팅시 기계적 특성 및 내화학적 특성이 우수하며, 특히 전기전도성 및 방열 특성이 우수한 코팅층을 형성할 수 있는 전도성 방열 그래핀 코팅재의 제조방법을 제공하고자 한다.
상기 과제를 해결하고자, 본 발명자는 코팅재 재료로서 요구되는 개선된 성능을 갖는 복합 세라믹을 제공하기 위하여 연구한 결과, 종래 알려진 졸겔법을 변형하여 알루미늄 알콕사이드, 티타늄 알콕사이드 및 지르코늄 알콕사이드로부터, 내열성, 내식성, 내구성, 경도성, 내염수성, 부착성, 내염수성, 내용제성 및 내화학성 등 코팅재로서 우수한 다기능성을 갖는 다성분계 복합 세라믹을 제조할 수 있으며, 이렇게 얻어진 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹을 함유한 코팅재가 내열성, 내식성, 내구성, 경도성, 내염수성, 부착성, 내염수성, 내용제성 및 내화학성 등이 전반적으로 뛰어나고, 특히 초고온 내열성 및 고 내식성이 우수한 것을 확인한 바 있다(본 발명자 및 출원인의 특허출원 제10-2014-0021423호 참조). 더 나아가, 본 발명자는 전술한 코팅재에 기존에 알려진 산화 그래핀의 제조방법에 비하여 간단한 방법에 의하여 대량으로 얻어지는 산화 그래핀 졸을 적용하는 경우, 산화 그래핀의 별도의 환원과정 없이 기계적 특성 및 내화학적 특성이 우수할 뿐 아니라 전기전도성과 방열 특성이 우수한 코팅층이 형성되는 것을 확인하였으며, 또한, 놀랍게도 본 발명에 따른 코팅재로 코팅층을 형성시, 그래핀과 복합 금속 산화물을 함유하여 이루어지는 코팅층 위에 산화물, 산화제의 잔유물, 기타 부산물 등이 부유하여, 간단한 폴리싱(polishing) 작업에 의해 상기 부유층을 제거함으로써 초전도성 박막을 형성할 수 있음을 확인하여 본 발명을 완성하였다.
이에 따라, 본 발명은 (A) 산화 그래핀 졸, (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹, (C) 콜로이드 실리카, (D) 해교제 및 (E) 실란 커플링제를 포함하는 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 조성물 총 중량에 대해 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹이 5 내지 10중량%로 함유된 것을 특징으로 하는 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, pH가 9 내지 11인 것을 특징으로 하는 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 조성물 총 중량에 대해 상기 (A) 산화 그래핀 졸이 20 내지 30중량%, 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹이 5 내지 10중량%, 상기 (C) 콜로이드 실리카가 50 내지 70중량%, 상기 (D) 해교제가 4 내지 7중량% 및 상기 (E) 실란 커플링제가 1 내지 3중량%로 함유된 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 도포 및 건조 후 그래핀을 함유한 박막층과 불순물을 함유한 부유층의 층분리가 나타나는 것을 특징으로 하는 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 상기 층분리가 pH 9 내지 11에서 상기 (A) 산화 그래핀 졸과 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹의 결합에 의한 것을 특징으로 하는 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 상기 (A) 산화 그래핀 졸이 흑연 또는 그라파이트를 유기용매에 혼합하고, 가수분해한 후, 원심분리하여 얻어지는 것을 특징으로 하는 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹이 하기의 단계를 포함하는 방법으로 제조되는 것을 특징으로 하는 전도성 방열 그래핀 코팅재를 제공한다:
(1) 알루미늄 알콕사이드, 티타늄 알콕사이드 및 지르코늄 알콕사이드를 각각 유기 용매에 용해하는 단계,
(2) 상기 (1) 단계에서 제조된 알루미늄 알콕사이드 용액, 티타늄 알콕사이드 용액 및 지르코늄 알콕사이드 용액을 혼합하는 단계,
(3) 상기 (2) 단계에서 제조된 혼합 용액에 물을 첨가하고 교반하여 용액을 겔화하는 단계,
(4) 상기 (3) 단계에서 제조된 겔화된 용액에 산을 첨가하여 해교하는 단계,
(5) 상기 (4) 단계에서 해교된 용액을 교반하면서 5시간 이상 가열하는 단계,
(6) 상기 (5) 단계에서 가열된 용액을 실온에서 냉각시킨 후, 교반하여 겔화하는 단계, 및
(7) 겔 상태로 60~80℃ 유지하면서 건조시킨 후 600~800℃로 5시간 이상 소성하는 단계.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 상기 (D) 해교제가 질산과 암모니아수의 7:3 혼합 용액인 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 상기 (E) 실란 커플링제가 알킬 실란, 알콕시 실란, 아미노 실란, 에폭시 실란, 아크릴 실란, 메르캅토 실란, 불소 실란, 메타크록시 실란, 비닐 실란, 페닐 실란, 클로로 실란 및 실라잔으로 이루어진 군으로부터 선택되는 하나 이상인 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재로서, 액정 디스플레이 장치, 모바일 기기, 전자기기 또는 생활용품의 부품, 건축물 및 건축자재, 차량 및 선박, 면상 발열체, 발열 필름, 발열 장판, 발열보드, 동파방지 파이프, 난방용 발열파이프, 열풍기 또는 증발챔버의 코팅을 위하여 사용하기 위한 전도성 방열 그래핀 코팅재를 제공한다.
또한, 본 발명은 하기의 단계를 포함하는, 상기한 전도성 방열 그래핀 코팅재의 제조방법을 제공한다:
(1) 콜로이드 실리카, 및 티타니아, 알루미나 및 지르코니아를 포함하여 구성되는 복합 세라믹을 유기용매에 첨가하고 교반하는 단계,
(2) 상기 (1) 단계에서 얻어진 용액에 해교제를 첨가하고 교반하는 단계,
(3) 상기 (2) 단계의 교반 과정 중 용액의 pH 를 9 내지 11로 조정하는 단계,
(4) 상기 (3) 단계에서 얻어진 용액에 실란 커플링제를 첨가하고 교반하는 단계, 및
(5) 상기 (4) 단계에서 얻어진 용액에 산화 그래핀 졸 용액을 첨가하고 교반하는 단계.
또한, 본 발명은 상기 전도성 방열 그래핀 코팅재의 제조방법으로서, 상기 (5) 단계에 이어 용액을 원심분리하는 단계를 더 포함하는 것을 특징으로 하는 전도성 방열 그래핀 코팅재의 제조방법을 제공한다.
또한, 본 발명은 상기한 전도성 방열 그래핀 코팅재를 도포한 후 건조시켜 그래핀을 함유한 박막층과 불순물을 함유한 부유층을 층분리시키는 단계 및 폴리싱하여 상기 부유층을 제거하는 단계를 포함하는 것을 특징으로 하는 전도성 방열 그래핀 박막층의 형성방법을 제공한다.
또한, 본 발명은 전도성 방열 그래핀 박막층의 형성방법으로서, 상기한 층분리가 pH 9 내지 11에서 상기 (A) 산화 그래핀 졸과 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹의 결합에 의한 것을 특징으로 하는 전도성 방열 그래핀 박막층의 형성방법을 제공한다.
종래의 방열 코팅재는 유기 또는 유/무기 복합형 방열 코팅재가 대부분으로서, LED 및 자동차 엔진과 발전기, 로켓추진체 등 고열이 발생하는 최첨단 장비에 사용이 불가능하다는 한계가 있었다. 그러나, 본 발명에 따른 전도성 방열 그래핀 코팅재는 우수한 전기전도성 및 방열 특성을 가질 뿐 아니라, 최대 2000℃의 고온 내열성을 가지며, 초고온에서 금속 및 비금속이 부식하는 산화 현상을 억제하는 산화 방지 기능과 전자파 차폐 기능, 세균에 의한 부패 방지 기능을 갖는 다기능성 무기 방열 그래핀 코팅재이다.
본 발명에 따른 전도성 방열 그래핀 코팅재는 전기전도성 및 열전도성이 뛰어날 뿐 아니라, 고온 내열성, 연필경도, 고 내식성, 친수성 및 내오염성 등 기계적 특성 및 내화학적 특성이 우수하다. 특히, 본 발명에 따른 코팅재로 코팅층을 형성시, 그래핀과 복합 금속 산화물을 함유하여 이루어지는 코팅층 위에 산화물, 산화제의 잔유물, 기타 부산물 등이 부유하여, 폴리싱 작업에 의해 손쉽게 부유층을 제거함으로써 초전도성 박막을 형성할 수 있다. 따라서, 본 발명에 따른 전도성 방열 그래핀 코팅재는 LED 및 차세대 전자소재 패키지와 TV, 컴퓨터 모니터, 휴대폰 등과 같은 각종 액정 디스플레이 장치나, 휴대폰, 노트북, 태블릿PC 등과 같은 모바일 기기, 가스레인지, 히터, 선풍기, 냉장고, 다리미 등과 같은 생활용품의 부품, 건축물 및 건축자재, 차량 및 선박 등 각종 산업용품의 분야에 있어서, 전자파 차폐 성능 내지 방열 특성의 요구에 따라 다양하게 적용될 수 있다. 또한, 본 발명에 따른 전도성 방열 그래핀 코팅재는 금속, 비금속, 플라스틱 폴리머 소재, FRP(섬유 강화 플라스틱)류, 직물 및 섬유, 가죽, 필름, 유리, 콘크리트, 목재 등 거의 모든 소재에 코팅이 가능하며, 높은 전기전도성을 갖고 있어 전류방출시 고온의 면상 발열체, 발열 필름, 발열 장판, 발열보드(타일, 대리석 등), 동파방지 파이프, 난방용 발열파이프 등 다양한 소재에도 적용될 수 있다. 특히, 전도성 방열 그래핀 코팅재는 마이크로웨이브를 흡수하여 순간 발열이 1000℃까지 쉽게 이루어져 건조 및 열풍기, 증발챔버 등의 소재로 적용될 수 있다.
도 1은 본 발명에 따른 졸겔법을 이용한 다기능성 복합 세라믹의 제조 공정을 나타낸 도이다.
도 2는 본 발명에 따른 졸겔법을 이용한 다기능성 복합 세라믹의 제조사진이다.
도 3은 본 발명에 따른 졸겔 방식의 고온 내열성 및 고 내식성 박막코팅재의 제조 공정을 나타낸 도이다.
도 4는 본 발명에 따른 산화 그래핀의 제조와 산화 그래핀 졸의 제조 공정을 나타낸 도이다.
도 5는 본 발명에 따른 전도성 방열 그래핀 코팅재의 제조의 전체 공정을 나타낸 도이다.
도 6은 본 발명에 따른 실시예 1의 전도성 방열 그래핀 코팅재로 시편을 코팅·건조한 후 폴리싱 작업 전 사진(a)과 일부 폴리싱 작업을 한 사진(b)을 나타낸 도이다.
본 발명에 따른 전도성 방열 그래핀 코팅재는 (A) 산화 그래핀 졸, (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹, (C) 콜로이드 실리카, (D) 해교제 및 (E) 실란 커플링제를 포함하며, 보다 구체적으로, 조성물 총 중량에 대해 상기 (A) 산화 그래핀 졸은 20 내지 30중량%, 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹은 5 내지 10중량%, 상기 (C) 콜로이드 실리카는 50 내지 70중량%, 상기 (D) 해교제는 4 내지 7중량% 및 상기 (E) 실란 커플링제는 1 내지 3중량%를 포함할 수 있다.
이하, 본 발명의 전도성 방열 그래핀 코팅재를 성분별로 상세히 설명한다.
(A) 산화 그래핀 졸
그래핀은 단층의 그래핀, 또는 2층 이상 100층 이하의 다층 그래핀을 포함하며, 단층 그래핀은 π 결합을 갖는 1원자층의 탄소 분자 시트를 말한다. 산화 그래핀은 상기 그래핀이 산화된 화합물을 말한다. 그래핀은 물리적, 화학적 안정성이 매우 높으며, 구리보다 100배 이상 전기전도성이 우수하고, 실리콘 보다 100배 이상 전자 이동성이 빠르며, 다이아몬드 보다 2배 이상 열전도성이 높은 것으로 알려져 있다.
한편, 산화 그래핀은 에폭시기, 카르보닐기, 카르복실기, 히드록실기 등과 같은 관능기를 갖는 극성 물질이기 때문에 용매에 대한 분산성은 우수하지만, 원하는 성능을 얻기 위하여는 다시 그래핀으로 환원시킬 것이 요구된다. 산화 그래핀을 기재에 도포한 후 후처리 공정으로 환원할 경우 분산성 문제는 해결할 수 있지만, 적층된 산화 그래핀에 다수의 산화물이 잔존할 수 밖에 없어 그래핀으로서의 성능을 충분히 발휘할 수 없다. 즉, 그래핀의 산화/환원 과정에서 부산물이 발생하여 최종적으로 형성되는 코팅층의 성능을 저하시킬 수 있으며, 또한, 산화 그래핀의 화학적 환원은 그래핀의 본래 화학 구조를 완전하게 복원시키지 못하여 홀 형태의 상당한 결함이 있는 그래핀 구조를 포함시켜, 환원 동안 본래의 구조가 완전히 복구되지 않아 목적하는 기계적, 전기적 특성을 감소시킨다는 문제가 있다.
본 발명에 있어서, 산화 그래핀은 코팅재 조성물 내에 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹, 콜로이드 실리카, 해교제 및 실란 커플링제와 함께 pH 9 내지 11에서 포함됨으로써 기계적 특성 및 내화학적 특성을 훼손하지 않으면서 전기전도성 및 방열 특성을 향상시킨다. 특히, 본 발명에 따른 코팅재 조성물에 있어서는 원하는 그래핀 성능을 얻기 위하여 별도의 환원과정이 요구되지 않는다. 또한, 산화 그래핀의 제조 과정에서 발생하는 부산물 등은 최종 형성되는 초전도성 박막 코팅층 상부에 부유하여, 그래핀을 함유한 막과 산화물 등의 층분리가 이루어져 간단한 폴리싱 작업에 의해 손쉽게 제거될 수 있다. 이는 복합 세라믹과의 상호작용 및 pH에 기인하는 것으로 여겨진다. 따라서, 본 발명에 따른 전도성 방열 그래핀 코팅재는 저비용으로 그래핀을 함유한 그래핀 코팅재를 대량으로 생산할 수 있다는 장점이 있다.
본 발명에서, 산화 그래핀은 산화 그래핀을 함유한 졸 용액의 형태로 사용할 수 있다. 바람직하게는, 흑연 재료(그라파이트 재료)를 유기용매에 혼합하고, 가수분해한 후, 원심분리하여 얻어지는 산화 그래핀 졸 용액을 사용할 수 있다. 흑연 재료는 그라파이트를 포함한 임의의 재료를 말하며, 화석 연료부터 당까지 다양한 천연에 존재하는 재료로부터 얻을 수 있는 임의의 형태를 포함하고, 상업적으로 판매되는 것을 사용하거나, 당 분야에 알려진 통상의 방법으로 제조하여 사용할 수 있다. 상기 유기용매는 당 분야에서 통상적으로 사용되는 용매, 바람직하게는, 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, n-부탄올, sec-부탄올, 이소부탄올, ter-부탄올 중 하나 이상을 사용할 수 있으며, 가장 바람직하게는 이소프로필알코올이 사용된다. 흑연을 유기용매에 혼합하는 경우, 산화 반응을 가속화하기 위하여 필요에 따라 산화제를 더 포함시킬 수 있다. 이어서, 앞서 얻어진 혼합 용액의 0.1배 내지 10배 중량의 물을 첨가하여 가수분해 반응을 유도한 후, 6000rpm 내지 20,000rpm의 속도로 30분 내지 2시간 동안 원심분리하여 산화 그래핀이 분산된 산화 그래핀 졸 용액을 얻을 수 있다. 상기 원심분리에 의하여 그래핀 층과 산화물 층의 층분리가 이루어지는 것으로 여겨진다. 상기 방법에 의하면 산화 그래핀이 분산된 졸 용액을 대량으로 신속하게 얻을 수 있다.
본 발명에 있어서, 산화 그래핀 졸은 코팅재 조성물 총 중량에 대하여 20 내지 30중량%로 포함된다. 산화 그래핀 졸의 함량이 20중량% 미만이면 전기전도성 및 열전도성이 저하되며, 30중량% 초과이면 점도가 높아져서 균일한 코팅층을 얻을 수 없으며, 내화학적 특성이 저하된다.
(B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹
알루미나는 알루미늄의 산화물 또는 산화 알루미늄(Al2O3)을 말하며, 티타니아는 티타늄의 산화물 또는 (이)산화 티타늄(TiO2)을 말하고, 지르코니아는 지르코늄의 산화물 또는 산화 지르코늄(ZrO2)을 말한다. 본 발명에 있어서, 알루미나, 티타니아 및 지르코니아는 각각 당 분야에서 상업적으로 판매되는 제품을 사용하거나, 당 분야에 알려진 통상의 방법으로 제조하여 사용할 수 있다.
바람직하게는, 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹은 하기의 단계를 포함하는 방법으로 제조된 것을 사용할 수 있다:
(1) 알루미늄 알콕사이드, 티타늄 알콕사이드 및 지르코늄 알콕사이드를 각각 유기 용매에 용해하는 단계,
(2) 상기 (1) 단계에서 제조된 알루미늄 알콕사이드 용액, 티타늄 알콕사이드 용액 및 지르코늄 알콕사이드 용액을 혼합하는 단계,
(3) 상기 (2) 단계에서 제조된 혼합 용액에 물을 첨가하고 교반하여 용액을 겔화하는 단계,
(4) 상기 (3) 단계에서 제조된 겔화된 용액에 산을 첨가하여 해교하는 단계,
(5) 상기 (4) 단계에서 해교된 용액을 교반하면서 5시간 이상 가열하는 단계,
(6) 상기 (5) 단계에서 가열된 용액을 실온에서 냉각시킨 후, 교반하여 겔화하는 단계, 및
(7) 겔 상태로 60~80℃ 유지하면서 1시간 건조시킨 후 600~800℃로 5시간 이상 소성하는 단계.
본 발명자는 종래의 졸겔법을 이용하여 알루미늄 알콕사이드, 티타늄 알콕사이드 및 지르코늄 알콕사이드로부터 복합 세라믹을 제조함에 있어서 1차 겔 형성 후 산을 첨가하여 해교시킨 후 다시 겔화를 진행시켜 얻어진 복합 세라믹이 코팅재로서 보다 개선된 성능을 가지는 것을 확인하였다. 이는 복합 세라믹을 구성하는 금속 산화물 성분들의 조직 및 구조가 해교 및 2차 겔화 과정에서 재조직화됨에 기인하는 것으로 여겨진다.
상기 (1) 단계에 있어서, 상기 알루미늄 알콕사이드는 일반식 Al(OR)3으로 표시되며, 여기서 R 기는, 알루미늄 알콕사이드가 가수분해될 수 있는 것이면 특별히 제한하지 않고, R 기는 독립적으로 직쇄 또는 분지쇄일 수 있으며, 또한 포화 또는 불포화 알킬기 또는 알킬에스테르기, 또는 알릴기일 수 있다. R로부터 형성된 탄소쇄는 카르보닐, 에테르, 에스테르, 아미도, 술피도, 술피닐, 술포닐 또는 이미노 등의 화학결합을 함유할 수 있다. 탄소쇄의 탄소수는 1~16개, 바람직하게는 1~8개, 더욱 바람직하게는 1~4개이다. 본 발명에 있어서 가장 바람직하게는 알루미늄 이소프로폭사이드가 사용된다.
상기 티타늄 알콕사이드는 일반식 Ti(OR')4로 표시되며, 여기서 R'기는 티타늄 알콕사이드가 가수분해될 수 있는 것이면 특별히 제한하지 않고, R'기는 독립적으로 직쇄 또는 분지쇄일 수 있으며, 또한 포화 또는 불포화 알킬기 또는 알킬에스테르기, 또는 알릴기일 수 있다. R'로부터 형성된 탄소쇄는 카르보닐, 에테르, 에스테르, 아미도, 술피도, 술피닐, 술포닐 또는 이미노 등의 화학결합을 함유할 수 있다. 탄소쇄의 탄소수는 1~16개, 바람직하게는 1~8개, 더욱 바람직하게는 1~4개이다. 본 발명에 있어서 가장 바람직하게는 티타늄 이소프로폭사이드가 사용된다.
상기 지르코늄 알콕사이드는 일반식 Zr(OR")4로 표시되며, 여기서 R"기는 지르코늄 알콕사이드가 가수분해될 수 있는 것이면 특별히 제한하지 않고, R"기는 독립적으로 직쇄 또는 분지쇄일 수 있으며, 또한 포화 또는 불포화 알킬기 또는 알킬에스테르기, 또는 알릴기일 수 있다. R"로부터 형성된 탄소쇄는 카르보닐, 에테르, 에스테르, 아미도, 술피도, 술피닐, 술포닐 또는 이미노 등의 화학결합을 함유할 수 있다. 탄소쇄의 탄소수는 1~16개, 바람직하게는 1~8개, 더욱 바람직하게는 1~4개이다. 본 발명에 있어서 가장 바람직하게는 지르코늄 프로폭사이드가 사용된다.
상기 알루미늄 알콕사이드, 티타늄 알콕사이드 및 지르코늄 알콕사이드는 당 분야에서 상업적으로 판매되는 제품을 사용할 수 있으며, 또한 당 분야에 알려진 방법으로 직접 제조하여 사용할 수 있다.
상기 (1) 단계에서 사용되는 유기용매로는 탄소수 1 내지 9의 알코올, 바람직하게는 탄소수 1 내지 4의 저급 알코올을 사용할 수 있다. 바람직하게는, 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, n-부탄올, sec-부탄올, 이소부탄올, ter-부탄올 중 하나 이상을 사용할 수 있으며, 더욱 바람직하게는, 가수분해에 의한 졸화 반응의 효율을 높이기 위하여, 상기 알루미늄 알콕사이드 및 티타늄 알콕사이드에 대하여는 이소프로필알코올이 사용되며, 상기 지르코늄 알콕사이드에 대하여는 n-프로필알코올이 사용된다.
상기 (1) 단계에서, 상기 알루미늄 알콕사이드는 40 내지 100중량부, 상기 티타늄 알콕사이드는 80 내지 150중량부, 상기 지르코늄 알콕사이드는 70 내지 120중량부로 사용된다. 최종 생성된 복합 세라믹 내 알루미늄 산화물:티타늄 산화물:지르코늄 산화물의 몰비가 30:40:30 이도록 사용되는 것이 가장 바람직하다. 또한, 상기 유기용매는 금속 알콕사이드의 중량에 대하여 1배 내지 5배의 양, 바람직하게는 1배 내지 2배의 양으로 사용된다.
상기 (1) 단계에 있어서, 가장 바람직하게는 40 내지 80중량부의 알루미늄 이소프로폭사이드를 40 내지 160중량부의 이소프로필 알코올에 첨가하고, 90 내지 135중량부의 티타늄 이소프로폭사이드를 90 내지 270중량부의 이소프로필 알코올에 첨가하고, 80 내지 120중량부의 지르코늄 프로폭사이드를 80 내지 160중량부의 n-프로필알코올에 첨가하여 용해시켜 각각의 금속 알콕사이드 용액을 제조한다.
이어서, 앞서 제조된 알루미늄 알콕사이드 용액, 티타늄 알콕사이드 용액 및 지르코늄 알콕사이드 용액을 혼합하여 혼합 용액을 제조한다. (상기 (2) 단계)
다음으로, 앞서 제조된 혼합 용액에 물을 첨가하여 가수분해를 유도하고 900 내지 1,500rpm의 고속으로, 바람직하게는 1,000rpm으로 20 내지 30분간 교반하여 겔화시킨다. (상기 (3) 단계) 첨가되는 물의 양은 금속 알콕사이드 중 알콕사이드 그룹의 몰비를 고려하여 적절히 결정될 수 있다. 필요에 따라, 적절한 산 또는 염기의 첨가에 의하여 반응속도를 조절할 수 있다. 가수분해에 의해 수산화물의 생성과 함께 알코올이 추출된다. 따라서, Al-Ti-Zr 고분자는 주위의 알코올 등의 액상을 포획하여 겔화가 진행된다.
앞서 제조된, 겔화된 혼합 용액에 산, 예컨대, 염산, 과염소산, 질산, 황산과 같은 무기산 또는 아세트산, 락트산, 타르타르산, 말레산, 시트르산, 글리콜산과 같은 유기산을 첨가하여, 바람직하게는 질산을 첨가하여 pH 를 3 내지 4로 조정하고 300 내지 600rpm의 중속으로, 바람직하게는 500rpm으로 교반하며 300 내지 400℃로 5시간 이상 가열한다. 이에 의하여 전 단계에서 겔화되었던 용액의 해교가 일어난다. (상기 (4) 단계 및 (5) 단계) 상기 (3) 단계에서 겔화된 용액에 산을 첨가하여 해교시킴으로써 복합 세라믹을 구성하는 금속 산화물 성분들의 조직 및 구조가 변화되어 금속 복합체의 안정화가 일어나는 것으로 여겨진다.
이어서, 해교된 졸 용액을 실온으로 냉각한 후 기계식 교반기에서 200 내지 500rpm으로 교반하며 유지시켜 건조시킨다. 이에 의해 졸 용액은 다시 겔화된다. (상기 (6) 단계) 그런 다음, 겔 상태로 60 내지 80℃를 유지시키며 30분 내지 2시간, 바람직하게는 약 1시간 동안 건조시킨 후, 전기로에서 600 내지 800℃를 유지하면서 3시간 이상, 바람직하게는 5시간 이상 소성하여 10~20nm의 평균 입경을 갖는 고순도의 다기능성 다성분계 복합 세라믹 분말을 수득한다. (상기 (7) 단계)
상기한 일련의 과정, 특히 상기 (4) 내지 (6) 단계에 의하여, 복합 세라믹을 구성하는 금속 산화물 성분들의 조직이 변화되어 각 금속입자들이 유기적으로 결합하여 최종 생성되는 복합 세라믹의 코팅재로서 성능이 향상되는 것으로 여겨진다. 필요한 경우, 본 발명에 따른 다기능성 다성분계 복합 세라믹 분말의 제조방법은 상기 (7) 단계에서 얻어진 복합 세라믹을 분쇄하는 단계를 더 포함할 수 있다.
상술한 제조방법에 의해 제조된 다기능성 다성분계 복합 세라믹 분말은 Al2O3-TiO2-ZrO3 의 기본 구성을 가질 것으로 여겨지나, 그 성분의 조성 및 제조 상 특별한 처리(공정)에 의하여 종래의 Al2O3-TiO2-ZrO3 금속 복합체와는 상이한 구조를 가지는 것으로 추측된다. 상술한 방법으로 제조된 복합 세라믹 분말은 콜로이드 실리카, 해교제 및 실란 커플링제와의 물리화학적 작용에 의하여 보다 우수한 고온 내열성, 우수한 연필경도, 고 내식성, 우수한 친수성 및 내오염성을 나타낼 수 있는 안정한 구조를 형성하는 것으로 여겨지며, 또한, 코팅재 조성물 내 분산된 산화 그래핀 졸과 유기적으로 작용하여 기계적 특성 및 내화학적 특성을 유지하면서 전기전도성 및 열전도성을 나타내는 것으로 여겨진다.
본 발명에 있어서, 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹은 코팅재 조성물 총 중량에 대하여 5 내지 10중량%로 포함된다. 복합 세라믹의 함량이 5중량% 미만이면 내구성, 내경도성, 내화학성, 내열성 및 내식성 등의 물성이 저하되며, 10중량% 초과이면 졸 형태의 코팅재 조성물의 안정성이 저하되며, 전기전도성 및 열전도성의 저하를 나타낸다.
(C) 콜로이드 실리카
콜로이드 실리카(colloid silica)는 음(-)전하를 띠는 무정질 실리카(SiO2) 미립자가 수중에서 콜로이드 상태를 이룬 것을 말한다. 본 발명에 있어서, 콜로이드 실리카는 당 분야에서 상업적으로 판매되는 제품을 사용하거나, 당 분야에 알려진 통상의 방법으로 제조하여 사용할 수 있다. 또한, 본 발명에 있어서 콜로이드 실리카는 시판되는 제품에 물 및/또는 유기 용매를 더 첨가한 것을 사용할 수 있으며, 여기서, 첨가되는 물 및/또는 유기용매의 양은 콜로이드 실리카 제품 중량에 대하여 각각 0.5 내지 1배의 중량으로 사용될 수 있다. 상기 유기용매에는 특별한 제한은 없으며, 당 분야에서 통상 사용되는 유기용매, 예컨대, 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, n-부탄올, sec-부탄올, 이소부탄올, ter-부탄올과 같은 탄소수 1 내지 4의 저급 알코올 등이 사용될 수 있으며, 바람직하게는 이소프로필알코올이 사용될 수 있다.
콜로이드 실리카는 외관상 투명하거나 유백색을 띄며, 실리카 졸의 실리카 미립자는 일반적으로 구형의 구조로 이루어진다. 실리카 졸의 실리카 입자는 구형이고, -SiOH 그룹과 -OH 이온이 입자표면에 존재하며, 알칼리 이온에 의해 이중전기층 구조를 가지고, 같은 음전하를 띤 입자들 사이의 반발력 때문에 실리카 졸은 안정된 상태를 유지한다. 이러한 전기화학적 상태가 변화되면 입자들이 서로 얽히고 점도가 상승하여 겔화, 응집 등의 반응이 일어나게 된다. 본 발명에서, 콜로이드 실리카는 복합 세라믹, 해교제 및 실란 커플링제와의 물리화학적 작용에 의하여 유기적으로 결합하여 고온 내열성 및 고 내식성을 나타내며, 코팅재 조성물 내 분산된 산화 그래핀 졸을 안정화하는 것으로 여겨진다.
본 발명에 있어서, 콜로이드 실리카는 코팅재 조성물 총 중량에 대하여 50 내지 70중량%로 포함된다. 상기 범위를 벗어나게 되면 코팅재 조성물의 상태 및, 내열성 및 내식성 등 물성이 저하된다.
(D) 해교제
해교제는 응집체를 분산시켜 안정한 콜로이드 용액으로 만드는 물질을 말하며, 본 발명에 있어서, 해교제는 콜로이드 실리카와 복합 세라믹의 혼합에 의하여 겔화된 용액의 해교를 위하여 사용된다.
본 발명에서 사용할 수 있는 해교제는 질산, 염산 및 황산과 같은 무기산 및 아세트산, 락트산, 타르타르산, 말레산, 시트르산, 글리콜산과 같은 유기산이 있다. 또한, 알칼리성 해교제로서 아민 염기가 사용될 수 있으며, 이러한 아민 염기로는 알킬 아민, 아릴아민 등이 있다. 본 발명에 있어서, 바람직하게는 질산과 암모니아수의 혼합 용액, 더 바람직하게는 질산과 암모니아수의 7:3 비율의 혼합 용액이 사용될 수 있다.
본 발명에 있어서, 해교제는 코팅재 조성물 총 중량에 대하여 4 내지 7중량%로 포함된다. 해교제의 함량이 4중량% 미만이면 졸 형태의 안정한 코팅재 조성물을 얻을 수 없으며, 산화 그래핀 졸에서 그래핀 분리가 어려워져 코팅재 조성물 내 다른 성분과의 작용이 약화된다. 7중량% 초과이면 코팅 조성물 내 실리카 입자와 금속 복합 세라믹 간의 결합이 약해져 경도성, 내열성, 내화학성, 내식성 등의 물성이 저하되며, 산화 과정이 지속되어 산화물이 다량 발생되어 그래핀 막 분리가 어려워질 수 있다.
(E) 실란 커플링제
실란 커플링제는 한쪽은 알콕시 관능기와 다른 한쪽은 에폭시 또는 아민 관능기로 구성되어 있으며, 실란 커플링제의 알콕시기는 가수분해된 후 실리카 입자 표면의 수산기와 수소결합을 형성하고, 에폭시 또는 아민기는 고분자 필름 표면의 카르보닐기, 탄소 이중결합 등과 반응하여 결합함으로써 실리카 입자와 고분자 필름을 강하게 연결하는 결합제 역할을 한다.
본 발명에서 상기 실란 커플링제 화합물로는 알킬 실란, 알콕시 실란, 아미노 실란, 에폭시 실란, 아크릴 실란, 메르캅토 실란, 불소 실란, 메타크록시 실란, 비닐 실란, 페닐 실란, 클로로 실란 및 실라잔으로 이루어진 군으로부터 선택된 하나 이상이 사용될 수 있다. 구체적인 예로서 아미노프로필트리에톡시실란(APS), 글리시독시프로필트리메톡시실란(GPS), 메틸트리메톡시실란(MTMS), 글리시독시프리필트리메톡시실란(GPTMS), 메타크릴옥시프리필트리메톡시실란(MPTMS), 에틸트리에톡시실란, 에틸트리이소프록폭시실란, 에틸트리부톡시실란, 부틸트리메톡시실란, 테트라에틸올소실리케이트, 메틸트리메톡시실란, 프로필트리에톡시실란, 감마-아미노프로필트리메톡시실란, 감마-글리시딜록시프로필트리메톡시실란, 감마-글리시딜록시프로필트리에톡시실란, 디메틸디메톡시실란, 디에틸디에톡시실란, 프로필트리메톡시실란, 감마-아미노프로필트리에톡시실란, 디메틸디에톡시실란, 테트라메톡시실란, 테트라에톡시실란, 페닐트리메톡시실란, 테트라프로폭시실란, 테트라이소프로록시실란, 테트라-n-부톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메틸트리부톡시실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 트리플루오르메틸트리메톡시실란, 트리플루오르메틸트리에톡시실란, 트리플루오르프로필트리메톡시실란, 트리플루오르프로필트리에톡시실란, 노나플루오르부틸에틸트리메톡시실란, 노나플루오르부틸에틸트리에톡시실란, 노나플루오르헥실트리메톡시실란, 노나플루오르헥실트리에톡시실란, 헵타데카플루오르데실트리메톡시 실란, 헵타데카플루오르데실트리에톡시실란, 헵타테카플루오르데실트리이소프로필실란, 3-트리메톡시실릴프로필펜타데카플루오르옥테이트, 3-트리에톡시실릴프로필펜타데카플루오르옥테이트, 3-트리메톡시실릴프로필펜타데카플루오르옥틱아미드, 3-트리에톡시실릴프로필펜타데카플루오르옥틱아미드, 2-트리메톡시시릴에틸펜타데카플루오르데실술피드, 2-트리에톡시실릴에틸펜타데카플루오르데실술피드, 펜타플루오르페닐트리메톡시실란, 펜타플루오르페닐트리에톡시실란, 4-(퍼플루오르토릴)트리메톡시실란, 4-(퍼플루오르토릴)트리에톡시실란, 디메톡시비스(펜타플루오르페닐)실란, 디에톡시비스(4-펜타플루오르토릴)실란 등이 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 실란 커플링제는 코팅재 조성물 총 중량에 대하여 1 내지 3중량%로 포함된다. 실란 커플링제의 함량이 1중량% 미만이면 충분한 결합력을 달성하지 못하며, 코팅재 조성물 내 분산된 산화 그래핀 졸, 실리카 입자 및 금속 복합 세라믹 간의 결합이 약해져 경도성, 내열성, 내화학성, 내식성 등 물성이 저하된다. 한편, 실란 커플링제의 함량이 3중량% 초과이면 코팅재가 겔화되어 코팅재 조성물로서 안정성이 저하된다.
(F) 기타 첨가제
본 발명에 전도성 방열 그래핀 코팅재 조성물에는, 목적 및 용도에 따라 pH 조절제, 충격보강제, 발수제, 향균제, 이형제, 열안정제, 산화방지제, 광안정제, 착색제, 안정제, 안료, 염료 및 불투명화제 등의 첨가제를 추가로 포함할 수 있다.
특히, 본 발명에 따른 전도성 방열 그래핀 코팅재는 pH 9 내지 11의 범위에서 안정한 졸 형태의 코팅재 조성물로 유지되며, 그래핀과 복합 세라믹의 결합을 촉진하여 그래핀 층과 산화물 등 기타 부산물을 포함한 불순물로 된 부유층의 층분리가 촉진되므로, 적절한 pH 조절제를 이용하여 코팅재 조성물의 pH 범위를 9 내지 11로 조정할 수 있다. 이러한 pH 조절은 당 분야에서 일반적으로 사용되는 pH 조절제, 예컨대, 염산, 질산, 황산 등과 같은 강산, 아세트산 등과 같은 약산, 수산화나트륨, 수산화칼륨, 수산화칼슘 등과 같은 강염기, 암모니아, 아민류와 같은 약염기 중 코팅재 조성물 내 함유되는 성분과 농도 등을 고려하여 적절히 선택하여 사용할 수 있다.
본 발명에 있어서, 첨가제는 0.01 내지 10중량%로 포함되는 것이 본 발명에서 요구되는 물성을 발현할 수 있어 바람직하며, 더 바람직하게는 0.1 내지 5중량%로 포함되는 것이 좋다.
이하에서는 본 발명에 따른 전도성 방열 그래핀 코팅재의 제조방법에 대해서 설명한다.
본 발명은 이하의 단계를 포함하는 전도성 방열 그래핀 코팅재의 제조방법에 관한 것이다:
(1) 콜로이드 실리카, 및 티타니아, 알루미나 및 지르코니아를 포함하여 구성되는 복합 세라믹을 유기용매에 첨가하고 교반하는 단계,
(2) 상기 (1) 단계에서 얻어진 용액에 해교제를 첨가하고 교반하는 단계,
(3) 상기 (2) 단계의 교반 과정 중 용액의 pH 를 9 내지 11로 조정하는 단계,
(4) 상기 (3) 단계에서 얻어진 용액에 실란 커플링제를 첨가하고 교반하는 단계,
(5) 상기 (4) 단계에서 얻어진 용액에 산화 그래핀 졸 용액을 첨가하는 단계, 및
(6) 필요에 따라, 상기 (5) 단계에서 얻어진 용액을 원심분리하는 단계.
상기 (1) 단계에서, 상기 복합 세라믹은 콜로이드 실리카에 대하여 1:0.1 내지 1:0.25의 중량비의 비율로 첨가되며, 상기 유기용매는 콜로이드 실리카에 대하여 1:0.5 내지 1:1의 중량비의 비율로 첨가된다. 상기 유기용매는 당 분야에서 통상적으로 사용되는 유기용매가 사용될 수 있으며, 특별한 제한은 없으나, 예를 들어 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, n-부탄올, sec-부탄올, 이소부탄올, ter-부탄올과 같은 탄소수 1 내지 4의 저급 알코올을 사용할 수 있으며, 바람직하게는 이소프로필알코올을 사용할 수 있다.
상기 (2) 단계에서, 해교제는 상기 (1) 단계에서 얻어진 용액에 대하여 1:0.1 내지 1:0.25의 중량비의 비율로 첨가된다.
상기 (3) 단계에서, pH 조정은 교반 중인 용액에 암모니아수를 첨가하여 수행한다.
상기 (4) 단계에서, 실란 커플링제는 상기 (3) 단계에서 얻어진 용액에 대하여 1:0.1 내지 1:0.15의 중량비의 비율로 첨가된다. 실란 커플링제의 함량이 1:0.1 미만이면 충분한 결합력을 얻을 수 없으며, 1:0.15 초과이면 겔화가 진행되어 안정한 코팅재 조성물을 얻을 수 없다.
상기 (5) 단계에서, 산화 그래핀 졸 용액은 상기 (4) 단계에서 얻어진 용액에 대하여 80:20 내지 70:30(코팅재:산화 그래핀 졸)의 중량비의 비율로 첨가된다. 산화 그래핀 졸 용액의 분산 및 복합 세라믹과의 결합을 돕기 위해 300 내지 1,000rpm으로 10분 내지 3시간 동안 교반할 수 있다. 산화 그래핀 졸의 함량이 20중량% 미만이면 충분한 전기전도성 및 열전도성을 얻을 수 없으며, 30중량% 초과이면 코팅재의 기계적 특성이 저하된다.
상기 (6) 단계에서, 상기 (5) 단계에서 얻어진 용액을 6000rpm 내지 20,000rpm의 속도로 10분 내지 1시간 동안 원심분리하여 그래핀과 복합 세라믹의 혼합, 및 산화물 등 기타 부산물로 이루어지는 불순물의 분리를 향상시킬 수 있다.
또한, 본 발명은
(1) 콜로이드 실리카, 및 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹을 유기용매에서 첨가하고 교반하는 단계,
(2) 상기 (1) 단계에서 얻어진 용액에 해교제를 첨가하고 교반하는 단계,
(3) 상기 (2) 단계의 교반 과정 중 용액의 pH 를 9 내지 11로 조정하는 단계,
(4) 상기 (3) 단계에서 얻어진 용액에 실란 커플링제를 첨가하고 교반하는 단계,
(5) 상기 (4) 단계에서 얻어진 용액에 산화 그래핀 졸 용액을 혼합하는 단계, 및
(6) 필요에 따라, 상기 (5) 단계에서 얻어진 용액을 원심분리하는 단계를 포함하되,
조성물 총 중량에 대하여 상기 산화 그래핀 20 내지 30중량%, 상기 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹 5 내지 10중량%, 상기 콜로이드 실리카 50 내지 70중량%, 상기 해교제 4 내지 7중량% 및 상기 실란 커플링제 1 내지 3중량%를 포함하도록 하는 전도성 방열 그래핀 코팅재의 제조방법에 관한 것이다.
이하, 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예
실시예 1
(1) 산화 그래핀 졸의 제조
흑연(그라파이트) 200g을 이소프로필알코올 400g에 첨가하고 2000rpm으로 교반하여 산화반응을 천천히 유도하였다. 여기에 물 150ml을 첨가하고 2000rpm으로 교반하여 가수분해시킨 후, 12,000rpm으로 30분간 원심분리하여 산화 그래핀 졸 용액 650g을 수득하였다.
(2) 복합 세라믹 분말의 제조
알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹 분말을 다음과 같이 제조하였다.
알루미늄 이소프로폭사이드 60g을 이소프로필 알코올 100g에 첨가하고, 티타늄 이소프로폭사이드 100g을 이소프로필 알코올 200g에 첨가하고, 지르코늄 프로폭사이드 90g을 n-프로필알코올 180g에 첨가하여 용해시켰다. 이렇게 제조된 알루미늄 이소프로폭사이드 용액, 티타늄 이소프로폭사이드 용액 및 지르코늄 프로폭사이드 용액을 혼합하였다. 상기 혼합 용액에 물 500ml 첨가하고, 1,000rpm으로 30분간 교반하여 겔화를 유도하였다. 겔화된 혼합 용액에 질산을 첨가하여 pH를 3 내지 4로 조정하고, 환류 플라스크에 옮겨 500rpm의 중속으로 교반하면서 300 내지 400℃를 유지하며 6시간 가열하였다. 이어서, 실온으로 냉각시킨 후 400rpm으로 교반하며 유지시켰다. 겔 상태로 60 내지 80℃를 유지시키며 1시간 건조시킨 후, 전기로에서 800℃로 4시간 소성하여 10~20nm의 평균 입경을 갖는 다성분계 복합 세라믹 분말을 235g 수득하였다.
(3) 초고온 내열성 및 고 내식성 박막 코팅재의 제조
콜로이드 실리카 용액 200g과 물 100ml을 혼합하여 30분간 교반하여 가수분해를 진행시켰다. 가수분해 중인 용액에 이소프로필알코올을 100ml 첨가하여 가수분해를 가속화하여 실리카 졸(silica-sol)을 제조하였다.
상기 제조된 실리카 졸 100g에 대하여 상기 (1)에서 제조한 복합 세라믹 분말 15g을 혼합하여 1000rpm 이상의 고속으로 1시간 동안 분산시켰다.
이와는 별도로 해교제로서 질산(HNO3)과 암모니아수(NH4OH)를 7:3으로 혼합한 용액을 준비하였다. 상기 실리카 졸 코팅 용액의 안정화를 위하여, 상기 가수분해 교반 과정 중인 실리카 졸 코팅 용액에 대하여, 앞서 준비된 해교제를 10g 첨가하였다. 이때 pH에 따른 용액의 상태를 확인하기 위하여 용액의 pH를 2, 3, 7, 9, 11로 각각 조정하였다. 이어서, 실란 커플링제로서 아미노프로필트레톡시실란(APS) 3g을 첨가하고, 1000rpm의 고속으로 교반하여 코팅 용액을 제조하였다. pH 9 미만의 코팅 용액은 실란 커플링제의 첨가로 인해 교반 과정에서 겔화가 진행되어 코팅재로서 부적합 것으로 나타났다. 한편, 실란 커플링제가 미첨가된 코팅 용액은 졸 상태를 유지하였으나, 필름이나 플라스틱류에 대한 점착력이 열악하였다.
(4) 전도성 방열 그래핀 코팅재의 제조
상기 (3)에서 제조한 코팅재 128g(pH 9인 것)에 상기 (1)에서 제조한 산화 그래핀 졸 용액 43g을 혼합하고 500rpm으로 1시간 교반한 후, 12,000rpm으로 30분간 원심분리하여 전도성 방열 그래핀 코팅재 171g을 수득하였다.
실시예 2 내지 6
상기 실시예 1에 있어서 각 성분의 양을 하기 [표 1]과 같이 조정한 것을 제외하고, 상기 실시예 1에 기재된 것과 동일한 방법으로 전도성 방열 그래핀 코팅재를 제조하였다.
표 1
Figure PCTKR2015002442-appb-T000001
비교예 1 내지 7
상기 실시예 1에 있어서 성분의 조성 및 양을 하기 [표 2]와 같이 조정하고, 산화 알루미늄, 산화 티타늄 또는 산화 지르코늄 분말을 단순 혼합하는 것을 제외하고, 상기 실시예 1에 기재된 것과 동일한 방법으로 코팅재를 제조하였다. 비교예 7의 경우, 혼합 및 교반과정에서 조성물이 겔화되어 코팅재로서 적용하기 곤란하였다.
표 2
Figure PCTKR2015002442-appb-T000002
비교예 8
실시예 1에 있어서, 산화 그래핀 졸 용액 대신 그래핀 분말을 43g 첨가한 것을 제외하고 실시예 1과 동일한 방법으로 본 비교예 8의 코팅재를 제조하였다. 본 코팅재는 코팅 용액 내 그래핀의 분산이 충분하지 않아 코팅재로 사용이 곤란하였다.
시험예
시험예 1. 물성 평가
표면에 이물질 등을 제거한 알루미늄 시편(가로 3㎝, 세로 7㎝, 두께 0.2㎝)을 준비하였다. 준비된 알루미늄 시편에, 앞서 상기 실시예 1 내지 6, 및 비교예 1 내지 6, 8 및 9에서 제조된 코팅재 조성물을 건조 도막 두께 기준으로 20㎛ 도장하고, 오븐에서 250℃의 온도로 30분간 열 경화하여 시편을 제작하였다. 제작된 시편을 마른 헝겊으로 폴리싱하였다. 본 발명의 실시예 1 내지 6은 가열 건조 후 그래핀 박막층과 산화물 등 불순물로 된 부유층의 층분리가 뚜렷이 나타났으며, 부유층은 폴리싱에 의하여 쉽게 제거되었다(도 6 참조). 그러나, 비교예의 시편에서는 층분리가 명확히 나타나지 않았다. 한편, 도막 두께에 따른 열전도성의 변화를 평가하기 위하여 20㎛ 두께의 코팅층을 1층 더 형성시킨 시편을 준비하였다. 이렇게 준비된 시편에 대하여 다음과 같이 물성을 평가하였다. (물성시험방법은 [표 3]에 기재하고, 물성시험결과는 [표 4] 및 [표 5]에 기재하였다.)
표 3
Figure PCTKR2015002442-appb-T000003
표 4
Figure PCTKR2015002442-appb-T000004
표 5
Figure PCTKR2015002442-appb-T000005
상기 [표 4]에 나타난 바와 같이, 본 발명에 따른 졸겔법과 산화 그래핀 졸을 제조된 코팅재는 28 이상의 양호한 광택도, 6H 이상의 높은 연필경도를 나타냈으며, 약 0.2Ω 이하의 우수한 전기전도성을 나타냈으며, 특히 열전도성이 145W/m·K 이상으로 매우 높았으며, 부착성, 내열성 및 내화학성이 우수하고, 양호한 전자파 차폐효과를 나타내었다. 그러나, 상기 [표 5]에 나타난 바와 같이, 비교예 1 내지 6은 모두 전기전도성이 불량한 것으로 나타났다. 이는 산화물 등 불순물이 그래핀 층에 다량 함유되었기 때문인 것으로 여겨진다. 또한, 본 발명에 따른 복합 세라믹을 사용하지 않은 비교예들은 모두 내염수성이 열악한 것으로 나타났으며, 내열성, 내화학성, 내용제성 중 하나 이상의 특성이 열악한 것으로 나타났다.
즉, 복합 세라믹 코팅재와 산화 그래핀 졸을 결합시킨 본 발명에 따른 코팅재에 의하여 물리적, 내화학적 특성이 두루 뛰어나고, 특히 열전도성 및 전기전도성이 뛰어난 박막 코팅층을 형성할 수 있었다. 본 발명에 따른 복합 세라믹 코팅재와 산화 그래핀의 결합에 의하여 전기저항성이 낮고 열전도율이 높은 박막층을 형성하게 되는 것은 세라믹 코팅재와 그래핀이 분리·합성되는 과정에서 하나로 묶이고 산화물은 표층으로 분리되어 순수 그래핀 함량이 높아지기 때문인 것으로 여겨진다. 한편, 1차 코팅 후 폴리싱 작업을 통해 산화물을 제거한 후 2차 코팅을 할 경우 열전도성이 약 2배 가량 향상되었다. 따라서, 본 발명에 따른 전도성 방열 그래핀 코팅재의 바람직한 도포 두께는 20~40㎛임을 발견하였다. 또한, 전자파 차폐성능은 그래핀 함량 증가에 따라 높아지는 것을 발견하였다.
시험예 2. 고온 내열성 평가
상기 실시예 1의 코팅 용액으로 코팅하여 준비한 알루미늄 시편에 대하여 추가로 초고온 내열성 시험을 수행하였다. 구체적으로, 카본 히터 로(爐)에서 300℃/hr의 속도로 승온하여 소정 시간 유지한 후, 400℃/hr의 속도로 냉각시키는 과정을 2회 반복한 후의 코팅층의 박리를 관찰하였다. 본 발명에 따른 코팅 용액으로 형성된 코팅층은 최대 약 2000℃까지 균열이나 박리를 나타내지 않았으며, 2000℃ 이상 승온시 표면의 변화와 약간의 균열 현상이 나타나기 시작하였다. 따라서, 본 발명에 따른 코팅 용액으로 형성된 코팅층이 2000℃까지의 초고온에서 내열성을 나타냄을 확인하였다.
본 발명에 따른 전도성 방열 그래핀 코팅재는 LED 및 차세대 전자소재 패키지와 TV, 컴퓨터 모니터, 휴대폰 등과 같은 각종 액정 디스플레이 장치나, 휴대폰, 노트북, 태블릿PC 등과 같은 모바일 기기, 가스레인지, 히터, 선풍기, 냉장고, 다리미 등과 같은 생활용품의 부품, 건축물 및 건축자재, 차량 및 선박 등 각종 산업용품의 분야에 있어서 다양하게 적용될 수 있으며, 또한, 금속, 비금속, 플라스틱 폴리머 소재, FRP류, 직물 및 섬유, 가죽, 필름, 유리, 콘크리트, 목재 등 거의 모든 소재에 코팅이 가능하며, 높은 전기전도성을 갖고 있어 전류방출시 고온의 면상 발열체, 발열 필름, 발열 장판, 발열보드(타일, 대리석 등), 동파방지 파이프, 난방용 발열파이프 등 다양한 소재에 적용될 수 있다. 특히, 전도성 방열 그래핀 코팅재는 마이크로웨이브를 흡수하여 순간 발열이 1000℃까지 쉽게 이루어져 건조 및 열풍기, 증발챔버 등의 소재로 적용될 수 있다.

Claims (15)

  1. (A) 산화 그래핀 졸, (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹, (C) 콜로이드 실리카, (D) 해교제 및 (E) 실란 커플링제를 포함하는 전도성 방열 그래핀 코팅재.
  2. 제 1 항에 있어서,
    조성물 총 중량에 대해 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹이 5 내지 10중량%로 함유된 것을 특징으로 하는 전도성 방열 그래핀 코팅재.
  3. 제 1 항에 있어서,
    pH가 9 내지 11인 것을 특징으로 하는 전도성 방열 그래핀 코팅재.
  4. 제 1 항에 있어서,
    조성물 총 중량에 대해 상기 (A) 산화 그래핀이 20 내지 30중량%, 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹이 5 내지 10중량%, 상기 (C) 콜로이드 실리카가 50 내지 70중량%, 상기 (D) 해교제가 4 내지 7중량% 및 상기 (E) 실란 커플링제가 1 내지 3중량%로 함유된 전도성 방열 그래핀 코팅재.
  5. 제 1 항에 있어서,
    도포 및 건조 후 그래핀을 함유한 박막층과 불순물을 함유한 부유층의 층분리가 나타나는 것을 특징으로 하는 전도성 방열 그래핀 코팅재.
  6. 제 5 항에 있어서,
    층분리는 pH 9 내지 11에서 상기 (A) 산화 그래핀 졸과 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹의 결합에 의한 것을 특징으로 하는 전도성 방열 그래핀 코팅재.
  7. 제 1 항에 있어서,
    상기 (A) 산화 그래핀 졸이 흑연 또는 그라파이트를 유기용매에 혼합하고, 가수분해한 후, 원심분리하여 얻어지는 것을 특징으로 하는 전도성 방열 그래핀 코팅재.
  8. 제 1 항에 있어서,
    상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹이 하기의 단계를 포함하는 방법으로 제조되는 것을 특징으로 하는 전도성 방열 그래핀 코팅재:
    (1) 알루미늄 알콕사이드, 티타늄 알콕사이드 및 지르코늄 알콕사이드를 각각 유기 용매에 용해하는 단계,
    (2) 상기 (1) 단계에서 제조된 알루미늄 알콕사이드 용액, 티타늄 알콕사이드 용액 및 지르코늄 알콕사이드 용액을 혼합하는 단계,
    (3) 상기 (2) 단계에서 제조된 혼합 용액에 물을 첨가하고 교반하여 용액을 겔화하는 단계,
    (4) 상기 (3) 단계에서 제조된 겔화된 용액에 산을 첨가하여 해교하는 단계,
    (5) 상기 (4) 단계에서 해교된 용액을 교반하면서 5시간 이상 가열하는 단계,
    (6) 상기 (5) 단계에서 가열된 용액을 실온에서 냉각시킨 후, 교반하여 겔화하는 단계, 및
    (7) 겔 상태로 60~80℃ 유지하면서 건조시킨 후 600~800℃로 5시간 이상 소성하는 단계.
  9. 제 1 항에 있어서,
    상기 (D) 해교제가 질산과 암모니아수의 7:3 혼합 용액인 전도성 방열 그래핀 코팅재.
  10. 제 1 항에 있어서,
    상기 (E) 실란 커플링제가 알킬 실란, 알콕시 실란, 아미노 실란, 에폭시 실란, 아크릴 실란, 메르캅토 실란, 불소 실란, 메타크록시 실란, 비닐 실란, 페닐 실란, 클로로 실란 및 실라잔으로 이루어진 군으로부터 선택되는 하나 이상인 전도성 방열 그래핀 코팅재.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    액정 디스플레이 장치, 모바일 기기, 전자기기 또는 생활용품의 부품, 건축물 및 건축자재, 차량 및 선박, 면상 발열체, 발열 필름, 발열 장판, 발열보드, 동파방지 파이프, 난방용 발열파이프, 열풍기 또는 증발챔버의 코팅을 위하여 사용하기 위한 전도성 방열 그래핀 코팅재.
  12. 하기의 단계를 포함하는, 제 1 항 내지 제 10 항 중 어느 한 항의 전도성 방열 그래핀 코팅재의 제조방법:
    (1) 콜로이드 실리카, 및 티타니아, 알루미나 및 지르코니아를 포함하여 구성되는 복합 세라믹을 유기용매에 첨가하고 교반하는 단계,
    (2) 상기 (1) 단계에서 얻어진 용액에 해교제를 첨가하고 교반하는 단계,
    (3) 상기 (2) 단계의 교반 과정 중 용액의 pH 를 9 내지 11로 조정하는 단계,
    (4) 상기 (3) 단계에서 얻어진 용액에 실란 커플링제를 첨가하고 교반하는 단계, 및
    (5) 상기 (4) 단계에서 얻어진 용액에 산화 그래핀 졸 용액을 첨가하고 교반하는 단계.
  13. 제 12 항에 있어서,
    상기 (5) 단계에 이어 용액을 원심분리하는 단계를 더 포함하는 것을 특징으로 하는 전도성 방열 그래핀 코팅재의 제조방법.
  14. 제 1 항 내지 제 10 항 중 어느 한 항의 전도성 방열 그래핀 코팅재를 도포한 후 건조시켜 그래핀을 함유한 박막층과 불순물을 함유한 부유층을 층분리시키는 단계 및 폴리싱하여 상기 부유층을 제거하는 단계를 포함하는 것을 특징으로 하는 전도성 방열 그래핀 박막층의 형성방법.
  15. 제 14 항에 있어서,
    층분리는 pH 9 내지 11에서 상기 (A) 산화 그래핀 졸과 상기 (B) 알루미나, 티타니아 및 지르코니아를 포함하여 구성되는 복합 세라믹의 결합에 의한 것을 특징으로 하는 전도성 방열 그래핀 박막층의 형성방법.
PCT/KR2015/002442 2014-03-14 2015-03-13 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재 WO2015137761A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140030101A KR101424089B1 (ko) 2014-03-14 2014-03-14 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
KR10-2014-0030101 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137761A1 true WO2015137761A1 (ko) 2015-09-17

Family

ID=51743152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002442 WO2015137761A1 (ko) 2014-03-14 2015-03-13 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재

Country Status (2)

Country Link
KR (1) KR101424089B1 (ko)
WO (1) WO2015137761A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195170A1 (en) * 2017-04-21 2018-10-25 The Regents Of The University Of California Methods and applications for conductive graphene inks
CN109140385A (zh) * 2018-10-15 2019-01-04 华域视觉科技(上海)有限公司 一种具有抗聚焦散热功能的车灯零件及其制备方法
CN109233368A (zh) * 2018-08-03 2019-01-18 四川省思硕教育科技有限公司 机箱散热器用高效耐热散热涂层
CN109777358A (zh) * 2019-03-15 2019-05-21 哈尔滨工业大学 一种石墨烯基防/除冰一体化褶皱薄膜及其制备方法
WO2019109393A1 (zh) * 2017-12-07 2019-06-13 吴子享 一种硅烷化石墨烯抗锈溶胶及其制备方法
CN110305580A (zh) * 2019-05-06 2019-10-08 吉林大学 一种石墨烯基疏水型防腐蚀涂料及其制备方法和应用
CN111451107A (zh) * 2020-04-08 2020-07-28 四川轻化工大学 一种高附着高耐蚀氟化石墨烯涂层的制备方法
US11214692B2 (en) 2017-12-04 2022-01-04 Hamilton Sundstrand Corporation Increasing anti-corrosion through nanocomposite materials
CN114405790A (zh) * 2021-12-22 2022-04-29 中微纳新能源科技(东莞)有限公司 一种通过纳米沉积石墨烯涂层提高导热散热的方法
CN115044868A (zh) * 2022-05-27 2022-09-13 东北大学 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
CN115466531A (zh) * 2022-10-19 2022-12-13 深圳前海石墨烯产业有限公司 去除羰基氧化石墨烯陶瓷涂料及其制备方法和用途
CN115521707A (zh) * 2022-09-21 2022-12-27 宁波虔宁特种合金有限公司 一种甩带炉铜辊涂层及其制备方法
CN116042027A (zh) * 2023-01-08 2023-05-02 江苏考普乐新材料股份有限公司 一种用于航空航天装备耐温型涂料
CN117038152A (zh) * 2023-09-05 2023-11-10 智先生电器(江苏)股份有限公司 导电浆料制备工艺及采用该导电浆料的红外发热体制备方法
CN117466629A (zh) * 2023-12-27 2024-01-30 富优特(山东)新材料科技有限公司 一种石墨烯增强氧化铝陶瓷及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534296B1 (ko) * 2014-10-23 2015-07-06 주식회사 에코인프라홀딩스 졸겔법과 그래핀을 이용한 초전도성 방열 접착제의 제조방법 및 동 방법으로 제조된 초전도성 그래핀 방열 접착제
KR101523327B1 (ko) * 2014-10-23 2015-05-27 주식회사 에코인프라홀딩스 졸겔법을 이용한 불연성 단열 코팅 접착제의 제조방법 및 동 방법으로 제조된 불연성 단열 코팅 접착제
CN105195407B (zh) * 2015-08-22 2018-05-11 江苏万源新材料有限公司 一种铝基石墨烯水性丙烯酸树脂复合材料及其制备方法
KR101765587B1 (ko) 2015-08-25 2017-08-07 현대자동차 주식회사 산화 그래핀 함유 유-무기 하이브리드 코팅막, 및 이의 제조 방법
KR101742955B1 (ko) * 2015-11-27 2017-06-05 주식회사 상보 배리어 필름 제조방법 및 배리어 필름
CN105860939B (zh) * 2016-03-30 2019-04-30 深圳市深瑞墨烯科技有限公司 高导热石墨烯薄膜的制备方法及基于该薄膜的散热方法
KR102550303B1 (ko) * 2017-02-28 2023-07-03 서울대학교산학협력단 발열 시스템 및 발열체
WO2018224337A1 (en) 2017-06-09 2018-12-13 Arcelik Anonim Sirketi A cooking accessory
CN107140954B (zh) * 2017-07-01 2020-04-28 兰州理工大学 氧化石墨烯均匀分散增强氧化铝复合材料的制备方法
KR102145901B1 (ko) * 2018-06-18 2020-08-19 김백진 열전 소자 모듈
CN112500145A (zh) * 2019-05-17 2021-03-16 哈尔滨工业大学(威海) 一种石墨烯介电常数调控方法
CN111549991A (zh) * 2020-05-12 2020-08-18 山东中亿烯创新材料科技有限公司 一种石墨烯发热墙板模块生产工艺
KR20220154623A (ko) 2021-05-12 2022-11-22 주식회사 케이비엘러먼트 전기 절연성 및 수지 혼용성이 개선된 그래핀-세라믹 방열 소재
KR20220154622A (ko) 2021-05-12 2022-11-22 주식회사 케이비엘러먼트 전기 절연성 및 수지 혼용성이 개선된 그래핀-세라믹 방열 소재의 제조 방법
CN113629350B (zh) * 2021-08-06 2022-07-12 江苏正力新能电池技术有限公司 一种动力电池导热涂层隔膜及其制备方法
KR102402167B1 (ko) * 2021-11-09 2022-05-30 주식회사 지디원 그래핀이 함유된 가죽용 코팅제
KR20240072770A (ko) 2022-11-17 2024-05-24 재단법인 한국탄소산업진흥원 실리카 나노막 코팅된 그래핀 충전재 및 그 제조 방법
KR20240072771A (ko) 2022-11-17 2024-05-24 재단법인 한국탄소산업진흥원 알루미나 절연막 코팅된 그래핀 충전재 및 그 제조 방법
CN116676000A (zh) * 2023-06-09 2023-09-01 安徽宇航派蒙健康科技股份有限公司 散热涂料及其制备方法和发热装置
CN116804131B (zh) * 2023-06-26 2024-08-16 深圳前海石墨烯产业有限公司 高导热铝基体无机陶瓷涂料及其制备方法和用途
CN116874286B (zh) * 2023-06-29 2024-10-18 苏州朗缪尔科技有限公司 一种过渡金属基陶瓷涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100079046A (ko) * 2008-12-30 2010-07-08 남동진 실록산계 방열 수지 조성물
KR101035011B1 (ko) * 2010-01-19 2011-05-17 한국전기연구원 방열 코팅제 및 이를 이용한 방열판
KR20120039799A (ko) * 2010-10-18 2012-04-26 한국전기연구원 환원그래핀의 안정적 분산용액 제조방법 및 이에 의해 제조된 환원그래핀 분산용액
KR101184443B1 (ko) * 2010-10-15 2012-09-20 주식회사 썬닉스 방열코팅용 조성물 및 이를 이용한 반도체 제조 장치
KR101218508B1 (ko) * 2012-01-17 2013-01-03 인하대학교 산학협력단 세라믹-탄소 복합체 및 그 제조방법
KR101243944B1 (ko) * 2010-11-02 2013-03-13 한국전기연구원 분산성이 개선된 방열 코팅용 습식복합소재 및 이를 이용한 방열 코팅용 습식복합코팅막

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960012722B1 (ko) * 1994-01-31 1996-09-24 금호석유화학 주식회사 알루미나-지르코니아 복합 분체의 제조방법
KR101635835B1 (ko) * 2009-08-11 2016-07-05 한국세라믹기술원 그래핀 산화물의 코팅방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100079046A (ko) * 2008-12-30 2010-07-08 남동진 실록산계 방열 수지 조성물
KR101035011B1 (ko) * 2010-01-19 2011-05-17 한국전기연구원 방열 코팅제 및 이를 이용한 방열판
KR101184443B1 (ko) * 2010-10-15 2012-09-20 주식회사 썬닉스 방열코팅용 조성물 및 이를 이용한 반도체 제조 장치
KR20120039799A (ko) * 2010-10-18 2012-04-26 한국전기연구원 환원그래핀의 안정적 분산용액 제조방법 및 이에 의해 제조된 환원그래핀 분산용액
KR101243944B1 (ko) * 2010-11-02 2013-03-13 한국전기연구원 분산성이 개선된 방열 코팅용 습식복합소재 및 이를 이용한 방열 코팅용 습식복합코팅막
KR101218508B1 (ko) * 2012-01-17 2013-01-03 인하대학교 산학협력단 세라믹-탄소 복합체 및 그 제조방법

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195170A1 (en) * 2017-04-21 2018-10-25 The Regents Of The University Of California Methods and applications for conductive graphene inks
IL270080B2 (en) * 2017-04-21 2024-02-01 Univ California Methods and uses for conductive graphene inks
IL270080B1 (en) * 2017-04-21 2023-10-01 Univ California Methods and uses for conductive graphene inks
US11299645B2 (en) 2017-04-21 2022-04-12 The Regents Of The University Of California Methods and applications for conductive graphene inks
US11214692B2 (en) 2017-12-04 2022-01-04 Hamilton Sundstrand Corporation Increasing anti-corrosion through nanocomposite materials
WO2019109393A1 (zh) * 2017-12-07 2019-06-13 吴子享 一种硅烷化石墨烯抗锈溶胶及其制备方法
CN109233368A (zh) * 2018-08-03 2019-01-18 四川省思硕教育科技有限公司 机箱散热器用高效耐热散热涂层
CN109140385B (zh) * 2018-10-15 2023-09-01 华域视觉科技(上海)有限公司 一种具有抗聚焦散热功能的车灯零件及其制备方法
CN109140385A (zh) * 2018-10-15 2019-01-04 华域视觉科技(上海)有限公司 一种具有抗聚焦散热功能的车灯零件及其制备方法
CN109777358A (zh) * 2019-03-15 2019-05-21 哈尔滨工业大学 一种石墨烯基防/除冰一体化褶皱薄膜及其制备方法
CN109777358B (zh) * 2019-03-15 2021-07-30 哈尔滨工业大学 一种石墨烯基防/除冰一体化褶皱薄膜及其制备方法
CN110305580A (zh) * 2019-05-06 2019-10-08 吉林大学 一种石墨烯基疏水型防腐蚀涂料及其制备方法和应用
CN110305580B (zh) * 2019-05-06 2021-06-15 吉林大学 一种石墨烯基疏水型防腐蚀涂料及其制备方法和应用
CN111451107A (zh) * 2020-04-08 2020-07-28 四川轻化工大学 一种高附着高耐蚀氟化石墨烯涂层的制备方法
CN114405790A (zh) * 2021-12-22 2022-04-29 中微纳新能源科技(东莞)有限公司 一种通过纳米沉积石墨烯涂层提高导热散热的方法
CN115044868A (zh) * 2022-05-27 2022-09-13 东北大学 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
CN115044868B (zh) * 2022-05-27 2023-08-08 东北大学 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
CN115521707A (zh) * 2022-09-21 2022-12-27 宁波虔宁特种合金有限公司 一种甩带炉铜辊涂层及其制备方法
CN115466531A (zh) * 2022-10-19 2022-12-13 深圳前海石墨烯产业有限公司 去除羰基氧化石墨烯陶瓷涂料及其制备方法和用途
CN115466531B (zh) * 2022-10-19 2023-06-30 深圳前海石墨烯产业有限公司 去除羰基氧化石墨烯陶瓷涂料及其制备方法和用途
CN116042027A (zh) * 2023-01-08 2023-05-02 江苏考普乐新材料股份有限公司 一种用于航空航天装备耐温型涂料
CN117038152A (zh) * 2023-09-05 2023-11-10 智先生电器(江苏)股份有限公司 导电浆料制备工艺及采用该导电浆料的红外发热体制备方法
CN117466629A (zh) * 2023-12-27 2024-01-30 富优特(山东)新材料科技有限公司 一种石墨烯增强氧化铝陶瓷及其制备方法

Also Published As

Publication number Publication date
KR101424089B1 (ko) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2015137761A1 (ko) 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
WO2015126216A1 (ko) 졸겔법을 이용하여 제조된 복합 세라믹, 이를 함유하는 초고온 내열성 및 고 내식성을 갖는 박막 코팅재 및 이의 제조방법
WO2013009150A9 (ko) 높은 광추출 성능을 갖는 무기미립자 산란막
CA1212969A (en) Carbon-containing monolithic glasses prepared by a sol-gel process
CN105440284B (zh) 一种无色透明耐高温聚酰亚胺纳米复合薄膜的制备方法
JP5074012B2 (ja) 機能強化型窒化ホウ素組成物及びそれで作った組成物
WO2016129874A1 (ko) 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
KR102119371B1 (ko) 실리카질막의 형성 방법 및 동 방법으로 형성된 실리카질막
WO2012018242A2 (ko) 탄소소재를 이용한 고효율 방열도료 조성물
WO2011133000A2 (en) Super-hydrorepellent coating composition, super-hydrorepellent coating layer including cured product of the super-hydrorepellent coating composition, and heat exchanger including the super-hydrorepellent coating layer
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
WO2014069808A1 (ko) 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용하여 표면 에너지가 조절된 반사 방지 필름
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2019069495A1 (ja) 塗液、塗膜の製造方法及び塗膜
WO2017171217A1 (ko) 저분진 고단열 에어로겔 블랭킷의 제조방법
CN112759388A (zh) 一种采用溶胶-凝胶法制备ZrO2-SiO2二元混合溶胶涂层的方法
WO2017159968A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
WO2024181754A1 (ko) 전기습윤용 절연막
WO2021139215A1 (zh) 一种自修复或可重复使用的制品及其制备方法与应用
CN112250047A (zh) 一种氮化铝粉体的抗水解改性方法
JP5967890B2 (ja) 膜状の無機材料
WO2015182878A9 (ko) 중공실리카 입자의 제조방법, 중공실리카 입자 및 그를 포함하는 조성물 및 단열 시트
WO2019112393A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
KR102476238B1 (ko) 티타니아 나노졸 제조방법 및 티타니아 나노졸에 기초한 고굴절 박막 제조방법
WO2019083136A1 (ko) 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15761991

Country of ref document: EP

Kind code of ref document: A1