WO2019083136A1 - 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법 - Google Patents

자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법

Info

Publication number
WO2019083136A1
WO2019083136A1 PCT/KR2018/008772 KR2018008772W WO2019083136A1 WO 2019083136 A1 WO2019083136 A1 WO 2019083136A1 KR 2018008772 W KR2018008772 W KR 2018008772W WO 2019083136 A1 WO2019083136 A1 WO 2019083136A1
Authority
WO
WIPO (PCT)
Prior art keywords
sol
polyurea
group
organic solvent
nanohybrid
Prior art date
Application number
PCT/KR2018/008772
Other languages
English (en)
French (fr)
Inventor
이대호
한세원
한진아
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2019083136A1 publication Critical patent/WO2019083136A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • C08G18/837Chemically modified polymers by silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a cured product of a volatile oil-based polyurea / sol-gel silica nanohybrid and a process for producing the same, and more particularly, to a process for producing a silica particle curing agent by a sol- Sol-gel silica nanohybrid cured product having improved thermal, mechanical and electrical insulation properties by forming a network structure on the basis of the cured product of the cured product.
  • Polymer resins are widely used in various industries because they are lightweight and easy to mold and exhibit a wide variety of properties depending on the molecular structure. Since they are relatively weak in strength compared with inorganic materials, they are less robust and easily broken by external impact. . In order to overcome these disadvantages, there have been a lot of studies to enhance the physical properties through compounding and hybridization with inorganic materials. On the other hand, so-called self-valuable oil-based polymers Attempts have been made recently to develop materials.
  • Self-healing is a principle in which a reactive monomer in a microcapsule flows out of a microcapsule when the microcapsule is destroyed by an external impact, and then the microcapsule is filled with a crack, and then the microcapsule is solidified through the reaction. In this case, there is an advantage of recovering up to a relatively large scale damage, but the physical properties of the polymer material are lowered and the self-healing phenomenon is only one-time.
  • a polymer substance having a molecular structure capable of multiple hydrogen bonding such as urea is capable of intermolecular reversible bonding, so that the self-healing phenomenon can repeatedly occur unlike a capsule.
  • reversible binding active self-healing substances have the advantage of being repetitively self-healing, but in order to have such properties, they must have molecular fluidity and thus be made of low-strength elastomers such as gels or rubbers. In this way, since the strength of the material itself is weak, it is limited to be utilized in various industrial fields. In order for these active self-healing substances to be more actively used, adjustment of the mechanical strength is required.
  • an object of the present invention is to provide a silica particle curing agent which is prepared by a sol-gel method and hybridized with a polyurea-based polymer material to form a network structure, thereby improving the thermal, mechanical and electrical insulation properties, Sol-gel silica nanohybrid cured product of the present invention.
  • a method of manufacturing a semiconductor device comprising: preparing a precursor solution containing an alkoxysilane and an organic solvent; Introducing a catalyst into the precursor solution to synthesize a silica sol through a sol-gel reaction from the alkoxysilane; An interface-curable surface treatment of the silica sol to synthesize an organic solvent-dispersed nanosilica curing agent; A step of preparing a polyurea / sol-gel silica nanohybrid resin by adding the nanosilica curing agent to a polyurea synthesis process to prepare a cured product of a volatile polyurea / sol-gel silica nanohybrid ≪ / RTI >
  • alkoxysilane is selected from the group consisting of trivalent alkoxysilane, tetraalkoxysilane, and mixtures thereof
  • the trivalent alkoxysilane is selected from the group consisting of trimethoxysilane, triethoxysilane, triethoxysilane, tri-n-propoxysilane, triisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and the like.
  • the tetraalkoxysilane is selected from the group consisting of phenyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and mixtures thereof, wherein the tetraalkoxysilane is selected from the group consisting of tetramethoxysilane, tetra But are not limited to, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, Is selected from Triton phenoxy silane (Tetraphenoxysilane), tetra-acetoxy-silane (Tetraacethoxysilane) the group consisting of mixture thereof is preferred.
  • the organic solvent may be an alcohol organic solvent, a non-alcohol organic solvent, or a mixed organic solvent.
  • the alcohol organic solvent may be selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol, Isopropyl alcohol, butyl alcohol, tert-butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof, and is selected from the group consisting of isopropyl alcohol, butyl alcohol, ,
  • the non-alcohol organic solvent is preferably selected from the group consisting of an aromatic organic solvent, an aliphatic organic solvent, an alicyclic organic solvent, and a mixture thereof.
  • the catalyst may be selected from the group consisting of ammonium hydroxide, ammonium chloride, methylamine, triethanolamine, tripentylamine, trimethylamine, diethanolamine, , Ethanolamine, and mixtures thereof.
  • the interfacial surface-hardening surface treatment for the silica sol it is preferable to subject the silica sol to surface treatment with a silane capable of chemically bonding with a monomer synthesizing urea or urea, and the process of synthesizing the polyurea is preferably a process It is preferable to prepare a second monomer having a first monomer and a diamine group in an organic solvent, and to introduce the nanosilica curing agent in the process.
  • the step of synthesizing the polyurea may be performed by reacting the first monomer and the second monomer in a solvent and then introducing the nanosilica curing agent or by mixing the first monomer and the second monomer and the nanosilica curing agent simultaneously in a solvent To synthesize the polyurea.
  • the first monomer having a diisocyanate group is preferably selected from the group consisting of methylene diphenyl diisocyanate, toluene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, methylene bis (Cyclohexylisocyanate), diisocyanatoaphthalene, xylene diisocyanate, diisocyanato dimethylbiphenyl, and isocyanate-modified polydimethylsiloxane (silicone), which are known in the art.
  • the second monomer having the diamine group is selected from the group consisting of aromatic diamines, aliphatic, alicyclic and alicyclic diisocyanates, and mixtures thereof, and the second monomer having the diamine group is selected from the group consisting of phenylene diamine, methylene diamine, Ethylene diamine, 6-methyl-1,3,5-triazine-2,4-diamine, diaminobipyridyl, Diamino bipyridyl, diaminopyrimidine, bis (aminophenyl) sulfone, diaminodiphenyl ether, diaminodiphenyl methane, hexamethylene diamine, aliphatic, alicyclic, and silicon-containing di (meth) acrylates containing diamine, bis (aminoethoxy) ethane, bis (aminopropyl) tetramethyldisiloxane, and amine modified polydimethylsiloxane An
  • the molar ratio of the first monomer to the second monomer is 1 to 1.5.
  • the above-mentioned object is also achieved by a process for the preparation of a silica sol which is formed through a sol-gel reaction and comprises an interfacial hardening surface treated silica sol; And a polyurea which is mixed with the silica sol.
  • the cured product of the present invention is obtained by a cured product of a volatile oil-based polyurea / sol-gel silica nanohybrid.
  • the polyurea / sol-gel nanohybrid cured product to which the sol-gel nano-silica type curing agent is applied is improved to provide an effect of improving physical properties over conventional polyurea.
  • the polyurea / sol-gel nanohybrid cured product to be produced has the effect of recovering mechanical self-healing and thus electric insulation performance at the time of cracking.
  • FIG. 1 is a flowchart of a method for producing a self-oiling, oily polyurea / sol-gel nanohybrid cured product according to an embodiment of the present invention
  • FIG. 2 is a photograph showing the volatility of a polyurea according to an embodiment of the present invention
  • FIG. 3 is a photograph showing the volatility of polyurea and polyurea / sol-gel silica nanohybrid cures according to an embodiment of the present invention.
  • the nanohybrid cured product according to the present invention is formed through a sol-gel reaction and comprises an interfacial hardening surface-treated silica sol; And a polyurea mixed with the silica sol and having a volatility oily property.
  • a precursor solution is prepared for the nanohybrid cured product (S1).
  • a precursor solution containing an alkoxysilane corresponding to a precursor of silica (SiO 2 ) and an organic solvent is prepared.
  • the precursor, alkoxysilane is selected from the group consisting of trialkoxysilane, tetraalkoxysilane, and mixtures thereof, wherein the trialkoxysilane is selected from the group consisting of trimethoxysilane, triethoxysilane, tri- Tri-n-propoxysilane, triisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltrimethoxysilane, phenyltrimethoxysilane, phenyltrimethoxysilane, It is preferably selected from the group consisting of Phenyltriethoxysilane, 3-Glycidoxypropyltrimethoxysilane, and mixtures thereof.
  • the tetraalkoxysilane is preferably selected from the group consisting of tetramethoxysilane, tetraethoxysilane, Tetraethoxysilane, Tetrapropoxysilane, Tetraisopropoxysilane, Tetrabotoxysilane, Tetrabutoxysilane, it is preferably selected from the group consisting of tetraethoxysilane, tetraphenoxysilane, tetraacetoxysilane, and mixtures thereof.
  • the organic solvent may be an alcohol organic solvent, a non-alcohol organic solvent or a mixed organic solvent.
  • the alcohol organic solvent may be selected from the group consisting of methyl alcohol, ethyl alcohol, propyl alcohol ), Isopropyl alcohol, butyl alcohol, tert-butyl alcohol, pentyl alcohol, benzyl alcohol, and mixtures thereof.
  • the non-alcoholic organic solvent may be an organic solvent selected from the group consisting of an aromatic organic solvent, an aliphatic organic solvent, an alicyclic organic solvent, and a mixture thereof.
  • the stirring temperature is from 5 to 100 ⁇ , more preferably from 30 to 100 ⁇ .
  • the temperature is preferably gradually increased from room temperature to a desired temperature.
  • the stirring temperature is lower than 5 ° C, the solvent may freeze depending on the type of the solvent. If the stirring temperature exceeds 100 ° C, the solvent may evaporate depending on the solvent. Therefore, the temperature at which stirring is performed is most preferably from 5 to 100 ⁇ . Wherein 30 to 60 parts by weight of alkoxysilane is added to 100 parts by weight of the organic solvent.
  • a catalyst is added to the precursor solution to synthesize silica sol (S2).
  • a catalyst is added to a precursor solution in which alkoxysilane and an organic solvent are mixed to synthesize a silica sol from alkoxysilane.
  • the catalyst may be selected from the group consisting of ammonia hydroxide, ammonium chloride, methylamine, triethanolamine, tripentylamine, trimethylamine, diethanolamine, ethanol
  • a basic catalyst such as ethanolamine and the like may be used and diluted with distilled water and an organic solvent to form a catalyst solution.
  • the sol-gel reaction is initiated by mixing such a catalyst solution with the precursor solution, and the sol-gel reaction is preferably carried out at a temperature of 5 to 100 ° C. It is preferable to measure the solid content in real time during the sol-gel reaction and to continue the reaction until there is no further change.
  • An organic solvent-dispersed nanosilica curing agent is synthesized by surface-curing the surface treatment of the silica sol (S3).
  • the dispersion is re-dispersed in an organic solvent to synthesize an organic solvent-dispersed nanosilica curing agent.
  • the surface-curable surface treatment material uses a silane which can chemically bond with a monomer for synthesizing a urea group or urea and can be an amino group, an epoxide group, a carboxylic acid group, it is preferable to use a silane having a functional group selected from the group consisting of an acid anhydride group, an isocyanate group, a hydroxyl group, a thiol group, an acid chloride, and a mixture thereof.
  • the silane having a functional group may be selected from the group consisting of N- (beta-aminoethyl) -gammaaminopropylmethyldimethoxysilane, N- (aminopropyl trimethoxysilane) But are not limited to, aminopropyl triethoxysilane, glycidoxypropyl trimethoxysilane, glycidoxypropyl triethoxysilane, gamma-isocyanatopropyl trimethoxysilane, But are not limited to, gamma-isocyanatopropyl triethoxysilane, hydroxymethyl triethoxysilane, hydroxyethylaminopropyl triethoxysilane, hydroxyethyl-N -Hydroxyethyl-N-methylaminopropyl trimethoxysilane, 3-triethoxysilylpropyl trimethoxysilane,
  • the interfacial-hardening surface treatment is preferably carried out by diluting with an organic solvent used in the production of polyurea.
  • the organic solvent is selected from the group consisting of N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, DMAc, toluene, xylene, and mixtures thereof.
  • various solvents having a boiling point higher than that of water may be used while dissolving the polyurea.
  • the interfacial-curable surface-treated silica sol is then redispersed in an organic solvent having affinity for polyurea by removing moisture and catalyst.
  • the presence of water and a catalyst may cause side reactions of isocyanate and amines monomers, which are monomers for urea synthesis.
  • water is preferably removed in the step of adding the sol-gel nano silica hardener. Moisture and catalysts can be removed using a solvent boiling point difference using a rotary evaporator.
  • a polyurea / sol-gel silica nanohybrid resin is prepared through a nanosilica curing agent (S4).
  • the nanosilica curing agent prepared in step S3 is added to the polyurea synthesis process to prepare a polyurea / sol-gel silica nanohybrid resin.
  • the synthesis of polyurea is a process for preparing a first monomer having a diisocyanate group and a second monomer having a diamine group in an organic solvent, and a nano silica hybridizer is prepared by introducing a nano silica hardener therein.
  • the diisocyanate group is selected from the group consisting of methylene diphenyl diisocyanate, toluene diisocyanate, hexamethylenediisocyanate, isophorone diisocyanate, methylene bis (cyclohexyl isocyanate) alicyclic, alicyclic or cycloaliphatic compounds including cyclohexylisocyanate, cyclohexylisocyanate, diisocyanatoaphthalene, xylene diisocyanate, diisocyanato dimethylbiphenyl, and isocyanate-modified polydimethylsiloxane (silicone) And a silicone-based diisocyanate, and mixtures thereof.
  • the diamine group may also be selected from the group consisting of phenylene diamine, methylene diamine, ethylenediamine, 6-methyl-1,3,5-triazine-2,4-diamine, 3,5-triazine-2,4-diamine, diamino bipyridyl, diaminopyrimidine, bis (aminophenyl) sulfone, diaminodiphenyl ether, ether, diaminodiphenyl methane, hexamethylene diamine, bis (aminoethoxy) ethane, bis (aminopropyl) tetramethyldisiloxane, amine modification It is preferably selected from the group consisting of aromatic, aliphatic, alicyclic, and silicone-based diisocyanates including polydimethylsiloxane (silicon), and mixtures thereof.
  • the organic solvent may be selected from the group consisting of N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylformamide, It is preferably one selected from the group consisting of N, N-dimethylacetamide, DMAc, tetrahydrofuran, toluene and xylene, and mixtures thereof.
  • NMP N-methylpyrrolidone
  • DMF N-dimethylformamide
  • N-dimethylformamide N-dimethylformamide
  • It is preferably one selected from the group consisting of N, N-dimethylacetamide, DMAc, tetrahydrofuran, toluene and xylene, and mixtures thereof.
  • the first monomer and / Various solvents capable of dissolving the second monomer can be used.
  • the condensation polymerization reaction temperature of the first monomer and the second monomer is preferably 25 to 150 ° C.
  • a nanosilica curing agent is added, or the first monomer and the second monomer and the nanosilica curing agent simultaneously react with each other in a solvent to form a cured polyurea / sol- A silica hybrid cured product can be prepared. It is more preferable to simultaneously prepare the first monomer, the second monomer, and the nanosilica curing agent.
  • an isocyanate reactive curing agent containing a trivalent hydroxyl group such as triethanol amine or tributanol amine, or an isocyanate reactive curing agent including melamine, triaminopyridine, trisaminoethyl
  • An isocyanate reactive curing agent having a trivalent amine group such as amine (Tris (aminoethyl) amine, bis (hexamethylene) triamine), or diethylenetriamine is used together with a nano silica type curing agent to cure The density can be further adjusted.
  • the molar ratio of the first monomer to the second monomer is preferably 1 to 1.5, and the nano-silica hardener is preferably used in an amount of 1 to 30 parts by weight based on the monomer.
  • the amount of the nano-silica hardener is less than 1 part by weight, improvement of the physical properties of the polyurea is hardly expected.
  • the first monomer and the second monomer are not limited in the use of the above-mentioned monomers.
  • the glass transition temperature of the final formed resin including the flexible monomer such as a silicone monomer or an alicyclic monomer It is preferable to adjust the temperature to below the desired temperature.
  • the content of the flexible monomer is small, the strength of the finally formed resin is too strong and the temperature required for self-healing is high.
  • the content of the flexible monomer is too large, the initial physical properties of the resin are poor.
  • the flexible monomer suitably adjusts the glass transition temperature in accordance with the use environment of the prepared resin and the cured product and the external temperature.
  • the polyurea / sol-gel silica nanohybrid cured product is prepared by coating or molding the nanohybrid resin (S5).
  • the polyurea / sol-gel silica nanohybrid resin prepared through step S2 is coated or molded and dried to finally produce a cured polyurea / sol-gel silica nano hybrid. That is, the polyurea / sol-gel silica nanohybrid resin is coated or molded according to the purpose and then dried to prepare a final cured product.
  • the drying temperature is preferably at or above the boiling point of the organic solvent or at or above the nanosilica interface curing reaction temperature.
  • the drying temperature is preferably in the range of 100 to 250 ° C. If the drying temperature is less than 100 ° C, the organic solvent removal time is long, and if the heat treatment is performed at a temperature exceeding 250 ° C, the formed film may be deteriorated.
  • the polyurea / sol-gel silica nanohybrid cured product prepared by this method exhibits properties in which the physical properties and self-value properties are controlled according to the content of the nano silica hardener. Therefore, it is possible to provide a variety of electric products such as motor coils, display protective coatings, actuators, It can be used as an insulating part for electronic use.
  • Isophorone diisocyanate and amine-modified silicone were dissolved in N-methylpyrrolidone and toluene under a nitrogen atmosphere, and the reaction was carried out at room temperature for about 10 hours to obtain a polyurea resin.
  • the obtained polyurea resin was coated on an aluminum sheet to a thickness of 15 to 30 ⁇ by a spin-coating method and dried at 200 ⁇ for 1 hour to prepare a polyurea film.
  • High - purity silica sol was surface - modified with interfacial hardening organosilane. (N, N'-methylpyrrolidone) solution in an amount of 1 to 30% by weight based on the solid content of silica, and then adding n-propyltrimethoxysilane (PTTMS), 3-glycidylpropyltrimethoxysilane (GPTMS) and 3-aminopropyltriethoxysilane And the mixture was stirred for about 20 hours.
  • N N'-methylpyrrolidone
  • GPTMS and APTES were used to induce the curing reaction on the surface of silica particles of isocyanate and amines monomers which are monomers for polyurea synthesis, and PTMS was used for stability of solvent dispersion of silica sol. After that, residual water, ammonia and alcohol were removed using a rotary evaporator to synthesize an organic solvent-dispersed nanosilica curing agent.
  • the nanosilica curing agent dispersed in NMP was further diluted in toluene and reacted with isophorone diisocyanate and amine-modified silicone. And reacted at room temperature for about 10 hours to obtain a polyurea / sol-gel silica nanohybrid resin.
  • the obtained polyurea / sol-gel silica nano hybrid resin was coated on an aluminum sheet to a thickness of 20 to 50 ⁇ by a spin coating method and dried at 200 ⁇ for 1 hour to finally prepare a cured polyurea / sol-gel silica nanohybrid Respectively.
  • the self-value analysis of the film was performed in the same manner as described in the comparative example.
  • the cured product of the examples was confirmed to have a self-healing oil at which the scratches disappeared and the self-healing was completed at 120 ° C starting from 100 ° C.
  • the electrical insulation properties of the films prepared in the comparative examples and the examples were evaluated. After the initial breakdown voltage was measured, the breakdown voltage after the scratch was compared with the breakdown voltage after self - healing, and the recovery performance of the electric insulation strength by self - healing was analyzed. As shown in Table 1, after the scratch, the insulation performance was drastically lowered, but most of the initial insulation performance recovered as the self-healing occurred. It was also confirmed that the cured polyurea / sol-gel silica nanohybrid cured in Example of the present invention had excellent insulation performance and a higher volatility than polyurea of pure comparative example with insulation performance. When silica was 5 wt% rather than 10 wt% It was found that the performance was better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은, 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법에 있어서, 알콕시실란(alkoxysilane)과 유기용매를 포함하는 전구체 용액을 준비하는 단계와; 상기 전구체 용액에 촉매를 투입하여 상기 알콕시실란으로부터 졸-겔 반응을 통해 실리카졸을 합성하는 단계와; 상기 실리카졸에 계면경화성 표면처리하여 유기용매분산 나노실리카 경화제를 합성하는 단계와; 상기 나노실리카 경화제를 폴리우레아를 합성하는 과정에 투입하여 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조하는 단계를 포함하는 것을 기술적 요지로 한다. 이에 의해 졸-겔 나노실리카형 경화제를 적용한 폴리우레아/졸-겔 나노하이브리드 경화물을 제조함으로써, 기존 폴리우레아보다 물성이 향상되는 효과를 제공한다. 또한, 나노실리카 표면처리시 계면 경화형 표면처리제 구조 및 함량 조절을 통하여 경화도 조절이 용이하므로 소재의 물성과 자가치유성을 조절할 수 있는 효과를 얻을 수 있다. 뿐만 아니라 제조되는 폴리우레아/졸-겔 나노하이브리드 경화물은 크랙 발생시 기계적 자가치유 및 이에 따라 전기절연성능이 회복되는 효과를 얻을 수 있다.

Description

자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법
본 발명은 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 졸-겔 방법에 의하여 실리카 입자 경화제를 제조하고, 이를 폴리우레아 기반 고분자 소재와 하이브리드화하여 네트워크 구조를 형성함으로써 열적, 기계적, 전기절연 물성이 향상된 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물을 제조하는 방법에 관한 것이다.
고분자 수지는 가볍고 성형이 용이하며 분자구조에 따라 매우 다양한 물성을 나타내므로 각종 산업에서 널리 활용되고 있는데, 무기소재에 비하여 상대적으로 강도가 약하기 때문에 견고성이 떨어지고 외부 충격에 의하여 파괴되기 쉽기 때문에 장기신뢰성은 저하되는 단점이 있다. 이러한 단점을 극복하기 위하여 무기소재와 복합화 및 하이브리드화를 통하여 물성을 강화하려는 연구가 꾸준히 이루어지고 있는 반면, 한편으로는 파괴 발생시 스스로 치유되는 성질을 도입하여 물성이 저절로 회복되는, 이른바 자가치유성 고분자 소재를 개발하려는 시도가 최근 활발히 이루어지고 있다.
이러한 자가치유성 재료 개발은 종래기술 '대한민국특허청 등록특허 제10-1566859호 자가치유 성능을 가진 중방식 도장재 및 이를 이용한 도포방법'과 같이 고반응성 액상 단량체를 캡슐화한 마이크로 캡슐을 고분자 소재에 혼합하여 사용하는 개념으로 연구가 시작되었다. 자가치유는 외부 충격에 의해 파괴가 일어날 때 마이크로 캡슐 내부 반응성 단량체가 흘러나와 크랙(crack)을 메우게 되고, 이후 반응을 통하여 고체화되면서 파괴가 회복되는 원리이다. 이러한 경우, 비교적 큰 스케일의 데미지(damage)까지 회복되는 장점이 있지만, 고분자 소재의 물성이 저하되고 자가치유 현상이 일회성에 그치는 단점이 있다.
마이크로 캡슐에 의한 수동적 자가치유(extrinsic self-healing)와 다르게, 외부 다른 물질의 첨가없이 자체 소재물질이 가역적으로 회복되는 능동적 자가치유(intrinsic self-healing) 성질을 가지는 소재에 대한 개발이 최근 보다 활발히 이루어지고 있다. 예를 들어, 우레아(urea)와 같은 다중 수소결합이 가능한 분자구조를 지니는 고분자 물질은 분자간 가역적 결합이 가능하기 때문에, 캡슐과는 달리 자가치유 현상이 반복적으로 계속 일어날 수 있게 된다.
이러한 가역결합성 능동형 자가치유 물질은 반복적으로 스스로 회복되는 장점이 있지만, 이러한 성질을 가지기 위해서는 분자적 유동성을 가져야되고, 따라서 겔 혹은 고무와 같은 낮은 강도의 탄성체로 만들어지게 된다. 이와 같이 소재 자체 강도가 약하기 때문에 다양한 산업분야에 활용되기에 한계성을 지닌다. 이러한 능동형 자가치유 물질이 보다 적극적으로 활용되려면 기계적 강도의 조절이 요구된다.
따라서 본 발명의 목적은, 졸-겔 방법에 의하여 실리카 입자 경화제를 제조하고, 이를 폴리우레아 기반 고분자 소재와 하이브리드화하여 네트워크 구조를 형성함으로써 열적, 기계적, 전기절연 물성이 향상된 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물을 제조하는 방법을 제공하는 것이다.
상기한 목적은, 알콕시실란(alkoxysilane)과 유기용매를 포함하는 전구체 용액을 준비하는 단계와; 상기 전구체 용액에 촉매를 투입하여 상기 알콕시실란으로부터 졸-겔 반응을 통해 실리카졸을 합성하는 단계와; 상기 실리카졸에 계면경화성 표면처리하여 유기용매분산 나노실리카 경화제를 합성하는 단계와; 상기 나노실리카 경화제를 폴리우레아를 합성하는 과정에 투입하여 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조하는 단계를 포함하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법에 의해서 달성된다.
여기서, 상기 알콕시실란은, 3가 알콕시실란, 4가 알콕시실란 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 3가 알콕시실란은, 트리메톡시실란(Trimethoxysilane), 트리에톡시실란(Triethoxysilane), 트리-n-프로폭시실란(Tri-n-propoxysilane), 트리이소프로폭시실란(Triisopropoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 4가 알콕시실란은, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
또한, 상기 유기용매는, 알콜계 유기용매, 비알콜계 유기용매 또는 혼합된 유기용매이며, 상기 알콜계 유기용매는, 메틸알콜(Methyl alcohol), 에틸알콜(Ethyl alcohol), 프로필알콜(Propyl alcohol), 이소프로필알콜(Isopropyl alcohol), 부틸알콜(Butyl alcohol), t-부틸알콜(tert-Butyl alcohol), 펜틸알콜(Pentyl alcohol), 벤질알콜(Benzyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 비알콜계 유기용매는, 방향족 유기용매, 지방족 유기용매, 지환족 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
상기 촉매는, 수산화암모늄(Ammonium hydroxide), 염화암모늄(Ammonium chloride), 메틸아민(Methyl amine), 트리에탄올아민(Triethanolamine), 트리펜틸아민(Tripentylamine), 트리메틸아민(Trimethylamine), 디에탄올아민(Diethnaolamine), 에탄올아민(Ethanolamine) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
상기 실리카졸에 계면경화성 표면처리는, 우레아기 또는 우레아를 합성하는 단량체와 화학결합이 가능한 실란류를 상기 실리카졸에 표면처리하는 것이 바람직하며, 상기 폴리우레아를 합성하는 과정은, 디이소시아네이트기를 갖는 제1단량체와 디아민기를 갖는 제2단량체를 유기용매 하에서 제조하며, 이 과정 중 상기 나노실리카 경화제를 투입하는 것이 바람직하다.
상기 폴리우레아를 합성하는 과정은, 상기 제1단량체 및 상기 제2단량체를 용매 하에서 반응시킨 후 상기 나노실리카 경화제를 투입하거나, 또는 상기 제1단량체 및 상기 제2단량체와 상기 나노실리카 경화제를 동시에 용매 하에서 반응하여 상기 폴리우레아를 합성하는 것이 바람직하다.
상기 디이소시아네이트기를 갖는 상기 제1단량체는, 메틸렌디페닐디이소시아네이트(Methylene diphenyl diiocyanate), 톨루엔디이소시아네이트(Toluene diisocyanate), 헥사메틸렌디이소시아네이트(Hexamethylenediisocyanate), 이소포론디이소시아네이트(Isophorone diisocyanate), 메틸렌비스(시클로헥실이소시아네이트) (Methylene(cyclohexylisocyanate)), 디이소시아나토나프탈렌(Diisocyanatonaphthalene), 크실렌 디이소시아네이트(Xylene diisocyanate), 디이소시아나토 디메틸바이페닐(Diisocyanato dimethylbiphenyl), 이소시아네이트 변성 폴리디메틸실록산(실리콘, silicone)을 포함하는 방향족, 지방족, 지환족 및 실리콘계 디이소시아네이트로 이루어진 군 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 디아민기를 갖는 상기 제2단량체는, 페닐렌디아민(Phenylene diamine), 메틸렌디아민(Methylene diamine), 에틸렌디아민(Ethylene diamine), 6-메틸-1,3,5-트리아진-2,4-디아민(6-Methyl-1,3,5-triazine-2,4-diamine), 디아미노 바이피리딜(Diamino bipyridyl), 디아미노피리미딘(Diaminopyrimidine), 비스아미노페닐술폰(Bis(aminophenyl)sulfone), 디아미노디페닐 에테르(Diaminodiphenyl ether), 디아미노디페닐메탄(Diaminodiphenyl methane), 헥사메틸렌디아민(Hexamethylene diamine), 비스아미노에톡시에탄 (Bis(aminoethoxy)ethane), 비스아미노프로필테트라디실록산(Bis(aminopropyl)tetramethyldisiloxane), 아민변성 폴리디메틸실록산(실리콘)을 포함하는 방향족, 지방족, 지환족, 실리콘계 디이소시아네이트로 이루어진 군 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
상기 제1단량체와 상기 제2단량체의 몰비율은 1 내지 1.5이며, 상기 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조하는 단계에서, 트리에탄올아민(Triethanol amine), 트리부탄올아민(Tributanol amine)의 3가 히드록시기를 포함하는 이소시아네이트 반응형 경화제, 또는 멜라민(Melamine), 트리아미노피리딘(Triaminopyridine), 트리스아미노에틸아민(Tris(aminoethyl)amine), 비스헥사메틸렌트리아민(Bis(hexamethylene)triamine), 디에틸렌트리아민(Diethylenetriamine)의 3가 아민기를 지니는 이소시아네이트 반응형 경화제를 추가하는 것이 바람직하다.
상기한 목적은 또한, 졸-겔 반응을 통해 형성되며, 계면경화성 표면처리된 실리카졸과; 상기 실리카졸과 혼합되는 폴리우레아를 포함하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물에 의해서 달성된다.
상술한 본 발명의 구성에 따르면, 졸-겔 나노실리카형 경화제를 적용한 폴리우레아/졸-겔 나노하이브리드 경화물을 제조함으로써, 기존 폴리우레아보다 물성이 향상되는 효과를 제공한다.
또한, 나노실리카 표면처리시 계면 경화형 표면처리제 구조 및 함량 조절을 통하여 경화도 조절이 용이하므로 소재의 물성과 자가치유성을 조절할 수 있는 효과를 얻을 수 있다.
뿐만 아니라 제조되는 폴리우레아/졸-겔 나노하이브리드 경화물은 크랙 발생시 기계적 자가치유 및 이에 따라 전기절연성능이 회복되는 효과를 얻을 수 있다.
도 1은 본 발명의 실시예에 따른 자가치유성 폴리우레아/졸-겔 나노하이브리드 경화물을 제조하는 방법의 순서도이고,
도 2는 본 발명의 실시예에 따른 폴리우레아의 자가치유성을 보여주는 사진이고,
도 3은 본 발명의 실시예에 따른 폴리우레아 및 폴리우레아/졸-겔 실리카 나노하이브리드 경화물의 자가치유성을 보여주는 사진이다.
이하 본 발명에 따른 졸-겔 나노실리카 경화제를 이용한 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법을 도면을 통해 상세히 설명한다.
본 발명에 따른 나노하이브리드 경화물은 졸-겔 반응을 통해 형성되며, 계면경화성 표면처리된 실리카졸과; 상기 실리카졸과 혼합되어 자가치유성을 지니는 폴리우레아를 포함한다.
이와 같은 나노하이브리드 경화물은 도 1에 나타낸 바와 같이 먼저, 전구체 용액을 준비한다(S1).
실리카(silica, SiO2)의 전구체에 해당하는 알콕시실란(alkoxysilane)과 유기용매를 포함하는 전구체 용액을 준비한다. 전구체인 알콕시 실란은 3가 알콕시 실란, 4가 알콕시 실란 및 이의 혼합으로 이루어진 군으로부터 선택되며, 여기서 3가 알콕시 실란은, 트리메톡시실란(Trimethoxysilane), 트리에톡시실란(Triethoxysilane), 트리-n-프로폭시실란(Tri-n-propoxysilane), 트리이소프로폭시실란(Triisopropoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane) 및 이의 혼합으로 이루어진 군으로부터 선택된 것이 바람직하며, 4가 알콕시 실란은, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)및 이의 혼합으로 이루어진 군에서 선택되는 것이 바람직하다.
여기서, 유기용매는 알콜계 유기용매, 비알콜계 유기용매 또는 혼합된 유기용매를 사용할 수 있는데, 알콜계 유기용매는, 메틸알콜(Methyl alcohol), 에틸알콜(Ethyl alcohol), 프로필알콜(Propyl alcohol), 이소프로필알콜(Isopropyl alcohol), 부틸알콜(Butyl alcohol), t-부틸알콜(tert-Butyl alcohol), 펜틸알콜(Pentyl alcohol), 벤질알콜(Benzyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택 가능하며, 비알콜계 유기용매는, 방향족 유기용매, 지방족 유기용매, 지환족 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택되는 유기용매를 사용할 수 있다.
유기용매에 3가 알콕시 실란 또는 4가 알콕시 실란을 첨가한 실란혼합물을 형성한 후, 유기용매에 알콕시 실란이 일정하게 분산되도록 교반을 수행한다. 교반 온도는 5 내지 100℃에서 이루어지며, 더욱 바람직하게는 30 내지 100℃에서 이루어지는 것이다. 실온보다 고온에서 교반이 이루어질 경우 실온으로부터 원하는 온도로 점진적으로 승온되는 것이 바람직하다. 교반 온도가 5℃ 미만일 경우 용매의 종류에 따라 용매가 얼어버릴 수 있으며, 교반온도가 100℃를 초과할 경우 용매에 따라 증발하는 경우가 있을 수 있다. 따라서 교반이 이루어지는 온도는 5 내지 100℃가 가장 적당하다. 여기서 유기용매의 100중량부에 대해 알콕시 실란은 30 내지 60중량부가 첨가된다.
전구체 용액에 촉매를 투입하여 실리카졸을 합성한다(S2).
알콕시 실란과 유기용매가 혼합된 전구체 용액에 촉매를 투입하여 알콕시 실란으로부터 실리카졸을 합성한다. 촉매는 수산화암모늄(Ammonium hydroxide), 염화암모늄(Ammonium chloride), 메틸아민(Methyl amine), 트리에탄올아민(Triethanolamine), 트리펜틸아민(Tripentylamine), 트리메틸아민(Trimethylamine), 디에탄올아민(Diethnaolamine), 에탄올아민(Ethanolamine) 등과 같은 염기성 촉매를 사용하며, 이를 증류수와 유기용매에 희석시켜 촉매용액을 형성할 수 있다.
이와 같은 촉매용액을 전구체 용액과 혼합함으로써 졸-겔 반응이 시작되며, 졸-겔 반응은 5 내지 100℃의 온도에서 이루어지는 것이 바람직하다. 졸-겔 반응 중 실시간으로 고형분을 측정하여 더 이상 변화가 없을 때까지 반응을 지속하여 완료하는 것이 바람직하다.
실리카졸에 계면경화성 표면처리하여 유기용매분산 나노실리카 경화제를 합성한다(S3).
S2 단계를 통해 제조된 실리카졸(silica sol)에 계면경화성 표면처리를 수행한 후, 이를 유기용매에 재분산하여 유기용매분산 나노실리카 경화제를 합성한다.
계면경화성 표면처리 물질은 우레아(urea)기 또는 우레아를 합성하는 단량체와 화학결합이 가능한 실란류를 사용하며, 아민(amino)기, 에폭시(epoxide)기, 카르복시(carboxylic acid)기, 산무수(acid anhydride)기, 이소시아네이트(isocyanate)기, 하이드록시(hydroxyl)기, 티올(thiol)기, 산염화물(acid chloride) 및 이의 혼합으로 이루어진 군으로부터 선택된 관능기를 가지는 실란류를 사용하는 것이 바람직하다.
여기서 관능기를 갖는 실란은 N-(베타-아미노에틸)-감마아미노프로필메틸 디메톡시실란(N-(Beta-aminoethyl) gammaaminopropylmethyl dimethoxysilane), 아미노프로필트리메톡시실란(Aminopropyl trimethoxysilane), 아미노프로필트리에톡시실란(Aminopropyl triethoxysilane), 글리시독시프로필트리메톡시실란(Glycidoxypropyl trimethoxysilane), 글리시독시프로필트리에톡시실란(Glycidoxypropyl triethoxysilane), 감마-이소시아네이토프로필트리메톡시실란(Gamma-isocyanatopropyl trimethoxysilane), 감마-이소시아네이토프로필트리에톡시실란(Gamma-isocyanatopropyl triethoxysilane), 히드록시메틸트리에톡시실란(Hydroxymethyl triethoxysilane), 히드록시에틸아미노프로필트리에톡시실란(Hydroxyethylaminopropyl triethoxysilane), ,히드록시에틸-N-메틸아미노프로필트리메톡시실란(Hydroxyethyl-N-methylaminopropyl trimethoxysilane), 3-트리에톡실릴프로필수씨닉언하이드라이드(3-(Triethoxysilyl)propylsuccinic anhydride), 3-머캅토프로필트리메톡시실란(3-Mercaptopropyltrimethoxysilane), 3-머캅토프로필트리에톡시실란(3-Mercaptopropyltriethoxysilane) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
계면경화성 표면처리는 폴리우레아 제조시 사용하는 유기용매에 희석하여 투입하는 것이 바람직하다. 유기용매는 N-메틸피롤리돈(N-Methylpyrrolidone), N,N-디메틸포름아마이드(N,N-Dimethylformamide, DMF), N,N-디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), 톨루엔(toluene), 크실렌(xylene) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하며, 이 이외에도 폴리우레아를 용해시키면서 물보다 비점이 높은 다양한 용매를 사용할 수 있다.
계면경화성 표면처리된 실리카졸은 이후 수분 및 촉매를 제거하여 폴리우레아와 친화성이 있는 유기용매에 재분산하는 것이 바람직하다. 수분 및 촉매 존재시 우레아 합성용 단량체인 이소시아네이트 및 아민류 단량체의 부반응을 야기할 수 있다. 특히 이소시아네이트는 물과 반응하여 우레아 구조가 생성되기 때문에 본 발명의 목적상, 졸-겔 나노실리카 경화제를 투입하는 단계에서는 물을 제거하는 것이 바람직하다. 수분 및 촉매는 진공증류장치(rotary evaporator)를 이용하여 용매 간 비점차이를 이용하여 제거할 수 있다.
나노실리카 경화제를 통해 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조한다(S4).
S3 단계를 통해 제조된 나노실리카 경화제를 폴리우레아 합성하는 과정에 투입하여 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조한다. 폴리우레아의 합성은 디이소시아네이트기를 갖는 제1단량체와 디아민기를 갖는 제2단량체를 유기용매 하에서 제조하는 과정으로, 이 과정 중 나노실리카 경화제를 투입하여 나노하이브리드 수지를 제조한다.
여기서 디이소시아네이트기는 메틸렌디페닐디이소시아네이트(Methylene diphenyl diiocyanate), 톨루엔디이소시아네이트(Toluene diisocyanate), 헥사메틸렌디이소시아네이트(Hexamethylenediisocyanate), 이소포론디이소시아네이트(Isophorone diisocyanate), 메틸렌비스(시클로헥실이소시아네이트) (Methylene(cyclohexylisocyanate)), 디이소시아나토나프탈렌(Diisocyanatonaphthalene), 크실렌 디이소시아네이트(Xylene diisocyanate), 디이소시아나토 디메틸바이페닐(Diisocyanato dimethylbiphenyl), 이소시아네이트 변성 폴리디메틸실록산(실리콘, silicone)을 포함하는 방향족, 지방족, 지환족 및 실리콘계 디이소시아네이트로 이루어진 군 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
또한 디아민기는 페닐렌디아민(Phenylene diamine), 메틸렌디아민(Methylene diamine), 에틸렌디아민(Ethylene diamine), 6-메틸-1,3,5-트리아진-2,4-디아민(6-Methyl-1,3,5-triazine-2,4-diamine), 디아미노 바이피리딜(Diamino bipyridyl), 디아미노피리미딘(Diaminopyrimidine), 비스아미노페닐술폰(Bis(aminophenyl)sulfone), 디아미노디페닐 에테르(Diaminodiphenyl ether), 디아미노디페닐메탄(Diaminodiphenyl methane), 헥사메틸렌디아민(Hexamethylene diamine), 비스아미노에톡시에탄 (Bis(aminoethoxy)ethane), 비스아미노프로필테트라디실록산(Bis(aminopropyl)tetramethyldisiloxane), 아민변성 폴리디메틸실록산(실리콘)을 포함하는 방향족, 지방족, 지환족, 실리콘계 디이소시아네이트로 이루어진 군 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.
유기용매는 제1단량체 및 제2단량체가 용해 가능한 용매인 N-메틸피롤리돈(N-Methylpyrrolidone, NMP), N,N-디메틸포름아마이드(N,N-Dimethylformamide, DMF), N,N-디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), 테트라히드로퓨란(tetrahydrofuran), 톨루엔(toluene), 크실렌(xylene) 로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하며, 이 이외에도 제1단량체 및 제2단량체를 용해시킬 수 있는 다양한 용매를 사용할 수 있다. 제1단량체와 제2단량체의 축합중합반응 온도는 25 내지 150℃가 바람직하다.
제1단량체 및 제2단량체를 용매하에서 반응시킨 후 나노실리카 경화제를 투입하거나, 제1단량체 및 제2단량체와 나노실리카 경화제를 동시에 용매하에서 반응하여 나노실리카 표면에서 경화된 폴리우레아/졸-겔 나노실리카 하이브리드 경화물을 제조할 수 있다. 바람직하게는 제1단량체, 제2단량체 및 나노실리카 경화제를 동시에 투입하여 제조하는 것이 보다 바람직하다.
또한, 나노실리카형 경화제 이외에도 트리에탄올아민(Triethanol amine), 트리부탄올아민(Tributanol amine) 등의 3가 히드록시기를 포함하는 이소시아네이트 반응형 경화제, 또는 멜라민(Melamine), 트리아미노피리딘(Triaminopyridine), 트리스아미노에틸아민(Tris(aminoethyl)amine), 비스헥사메틸렌트리아민(Bis(hexamethylene)triamine), 디에틸렌트리아민(Diethylenetriamine) 등의 3가 아민기를 지니는 이소시아네이트 반응형 경화제를 나노실리카형 경화제와 함께 사용하여 경화밀도를 추가로 조절할 수 있다.
제1단량체와 제2단량체의 몰비율은 1 내지 1.5인 것이 바람직하며, 나노실리카 경화제는 단량체 대비 1 내지 30중량부를 사용하는 것이 바람직하다. 나노실리카 경화제가 1 중량부 이하에서는 폴리우레아의 물성향상을 기대하기 힘들며, 나노실리카 경화제가 30중량부 이상에서는 자가치유성이 저하되기 때문에 상기 함량을 사용하는 것이 적절하다.
제1단량체와 제2단량체는 상기에 언급한 단량체 사용에 제한이 없으나, 저온에서 자가치유성을 부여하기 위하여 실리콘계 단량체, 지환족 단량체 등의 유연성 단량체를 포함하여 최종 형성되는 수지의 유리전이온도를 사용하고자 하는 온도 이하로 조절하는 것이 바람직하다. 유연성 단량체 함량이 적은 경우 최종 형성되는 수지의 강도가 지나치게 강하여 자가치유에 필요한 온도가 높아지는 단점이 있고, 유연성 단량체 함량이 지나치게 많은 경우 수지의 초기 물성이 취약한 단점이 있다. 이러한 점을 고려하여 상기 유연성 단량체는 제조된 수지 및 경화물의 사용 환경 및 외부 온도에 맞게 유리전이온도를 적절히 조절하는 것이 바람직하다.
나노하이브리드 수지를 코팅 또는 몰딩하여 폴리우레아/졸-겔 실리카 나노하이브리드 경화물을 제조한다 (S5).
S2 단계를 통해 제조된 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 코팅 또는 몰딩 후 건조하여 최종적으로 폴리우레아/졸-겔 실리카 나노하이브리드 경화물을 제조한다. 즉 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 목적에 맞게 코팅하거나 몰딩하고, 이후 건조하여 최종 경화물을 제조한다. 건조 온도는 유기용매의 비점 이상이거나, 나노실리카 계면경화반응 온도 이상에서 실시하는 것이 바람직하다. 건조 온도는 100 내지 250℃ 범위에서 열처리하는 것이 바람직한데, 100℃ 미만에서는 유기용매 제거 시간이 오래 걸리게 되며, 250℃ 초과하는 범위에서 오래 열처리하는 경우 형성된 필름의 열화가 일어날 가능성이 있다.
이러한 방법에 의해 제조된 폴리우레아/졸-겔 실리카 나노하이브리드 경화물은 나노실리카 경화제 함량에 따라 물성 및 자가치유성이 조절되는 특성을 나타내므로 모터코일, 디스플레이 보호코팅, 액츄에이터, 유연기판 등 다양한 전기전자용 절연부품으로의 활용이 가능하다.
이하에서는 본 발명의 실시예를 좀 더 상세하게 설명한다.
<비교예> : 자가치유성 폴리우레아 제조
이소포론 디이소시아네이트(Isophorone diisocyanate)와 아민변성 실리콘을 질소 분위기 하에서 N-메틸피롤리돈 및 톨루엔에 용해하여 반응시켰으며, 이때 상온에서 10시간 가량 교반 반응을 통해 폴리우레아 수지를 얻었다. 얻어진 폴리우레아 수지를 스핀코팅(spin-coating) 방법으로 알루미늄 시트(Al sheet)에 15 내지 30㎛ 두께로 코팅하였고, 이를 200℃에서 1시간 동안 건조하여 폴리우레아 필름을 제조하였다.
제조된 폴리우레아 필름에 razor blade를 사용하여 0.5N 수직하중 조건에서 표면 스크래치를 형성시켰고, 건조 오븐에 두어 온도별로 자가치유성을 관찰하였다. 각 해당 온도에서 10분씩 건조 오븐에 두었으며, 이후 도 2에 도시된 광학현미경을 통하여 초기 발생된 스크래치가 사라지는 것으로 자가치유성을 분석하였다.
<실시예> : 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조
트리에톡시실란 100중량부와 에탄올 350중량부를 혼합하여 60℃에서 30분 가량 교반한 뒤, 증류수 15 내지 35중량부 및 에탄올아민 1 내지 10중량부를 혼합한 수용액을 투입하여 반응시켰다. 이후 반응전환율이 80% 이상의 고형분이 얻어질 때까지 반응온도를 60℃로 유지하여 고순도 나노실리카졸을 얻었다.
고순도 실리카졸을 계면경화성 유기실란으로 표면개질 하였다. PTMS(phenyltrimethoxysilane), GPTMS(3-glycidylpropyltrimethoxysilane) 및 APTES(3-aminopropyltriethoxysilane)를 실리카 고형분 대비 1 내지 30중량%에 해당하는 함량으로 NMP(N,N'-methylpyrrolidone) 용액에 용해시킨 후 나노실리카졸에 주입시키고 이를 20시간 가량 교반하였다. GPTMS 및 APTES는 폴리우레아 합성용 단량체인 이소시아네이트 및 아민류 단량체의 실리카 입자 표면에서 경화반응을 유도하기 위하여 사용되었고, PTMS는 실리카졸의 용매 분산 안정성을 위하여 사용하였다. 이후 rotary evporator를 사용하여 잔존 수분, 암모니아 및 알콜을 제거하여 유기용매 분산 나노실리카 경화제를 합성하였다.
NMP에 분산된 나노실리카 경화제를 톨루엔에 추가로 희석한 후, 이소포론 디이소시아네이트(Isophorone diisocyanate)와 아민변성 실리콘과 함께 반응시켰다. 상온에서 10시간 가량 반응하여 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 얻었다.
얻어진 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 스핀코팅 방법으로 알루미늄 시트에 20 내지 50㎛ 두께로 코팅하였고, 200℃에서 1시간 건조하여 최종적으로 폴리우레아/졸-겔 실리카 나노하이브리드 경화물을 제조하였다. 도 3에 도시된 바와 같이 제조된 필름의 자가치유성 분석은 비교예에서 기술한 방법과 동일하게 실시하였다. 실시예의 경화물은 비교예와 마찬가지로 스크래치가 사라지는 자가치유성을 확인하였고, 100℃부터 시작되어 120℃에서 자가치유가 완결되는 것을 확인하였다.
<전기절연강도 회복 성능 평가>
비교예 및 실시예에서 제조된 필름의 전기절연특성을 평가하였다. 초기 절연파괴전압을 측정한 후, 스크래치 발생 후와 자가치유 후의 절연파괴전압을 비교하여 자가치유에 의한 전기절연강도의 회복성능을 분석하였다. 표 1에 나타낸 바와 같이 스크래치 이후에는 절연성능이 급격히 저하되나, 자가치유가 되면서 초기 절연성능 값이 대부분 회복되는 것을 알 수 있다. 또한 절연성능이 순수한 비교예의 폴리우레아보다 실시예의 폴리우레아/졸-겔 실리카 나노하이브리드 경화물이 절연성능이 매우 우수하면서도 자가치유성을 동시에 갖는 것을 확인할 수 있었으며, 실리카가 10wt% 보다는 5wt%일때 절연성능이 좀 더 우수한 것을 알 수 있었다.
비교예 실시예 (5wt%) 실시예 (10wt%)
초기 절연파괴전압(kV/10㎛) 0.67 1.17 0.99
스크래치 발생 후 0.25 0.31 0.75
자가치유 후 0.66 1.09 0.95
회복율(초기/치유 후, %) 99% 93% 96%

Claims (11)

  1. 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법에 있어서,
    알콕시실란(alkoxysilane)과 유기용매를 포함하는 전구체 용액을 준비하는 단계와;
    상기 전구체 용액에 촉매를 투입하여 상기 알콕시실란으로부터 졸-겔 반응을 통해 실리카졸을 합성하는 단계와;
    상기 실리카졸에 계면경화성 표면처리하여 유기용매분산 나노실리카 경화제를 합성하는 단계와;
    상기 나노실리카 경화제를 폴리우레아를 합성하는 과정에 투입하여 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조하는 단계를 포함하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  2. 제 1항에 있어서,
    상기 알콕시실란은, 3가 알콕시실란, 4가 알콕시실란 및 이의 혼합으로 이루어진 군으로부터 선택되며,
    상기 3가 알콕시실란은, 트리메톡시실란(Trimethoxysilane), 트리에톡시실란(Triethoxysilane), 트리-n-프로폭시실란(Tri-n-propoxysilane), 트리이소프로폭시실란(Triisopropoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane) 및 이의 혼합으로 이루어진 군으로부터 선택되며,
    상기 4가 알콕시실란은, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  3. 제 1항에 있어서,
    상기 유기용매는, 알콜계 유기용매, 비알콜계 유기용매 또는 혼합된 유기용매이며,
    상기 알콜계 유기용매는, 메틸알콜(Methyl alcohol), 에틸알콜(Ethyl alcohol), 프로필알콜(Propyl alcohol), 이소프로필알콜(Isopropyl alcohol), 부틸알콜(Butyl alcohol), t-부틸알콜(tert-Butyl alcohol), 펜틸알콜(Pentyl alcohol), 벤질알콜(Benzyl alcohol) 및 이의 혼합으로 이루어진 군으로부터 선택되며,
    상기 비알콜계 유기용매는, 방향족 유기용매, 지방족 유기용매, 지환족 유기용매 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  4. 제 1항에 있어서,
    상기 촉매는, 수산화암모늄(Ammonium hydroxide), 염화암모늄(Ammonium chloride), 메틸아민(Methyl amine), 트리에탄올아민(Triethanolamine), 트리펜틸아민(Tripentylamine), 트리메틸아민(Trimethylamine), 디에탄올아민(Diethnaolamine), 에탄올아민(Ethanolamine) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  5. 제 1항에 있어서,
    상기 실리카졸에 계면경화성 표면처리는, 우레아기 또는 우레아를 합성하는 단량체와 화학결합이 가능한 실란류를 상기 실리카졸에 표면처리하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  6. 제 1항에 있어서,
    상기 폴리우레아를 합성하는 과정은, 디이소시아네이트기를 갖는 제1단량체와 디아민기를 갖는 제2단량체를 유기용매 하에서 제조하며, 이 과정 중 상기 나노실리카 경화제를 투입하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  7. 제 6항에 있어서,
    상기 폴리우레아를 합성하는 과정은,
    상기 제1단량체 및 상기 제2단량체를 용매 하에서 반응시킨 후 상기 나노실리카 경화제를 투입하거나, 또는 상기 제1단량체 및 상기 제2단량체와 상기 나노실리카 경화제를 동시에 용매 하에서 반응하여 상기 폴리우레아를 합성하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  8. 제 6항에 있어서,
    상기 디이소시아네이트기를 갖는 상기 제1단량체는, 메틸렌디페닐디이소시아네이트(Methylene diphenyl diiocyanate), 톨루엔디이소시아네이트(Toluene diisocyanate), 헥사메틸렌디이소시아네이트(Hexamethylenediisocyanate), 이소포론디이소시아네이트(Isophorone diisocyanate), 메틸렌비스(시클로헥실이소시아네이트) (Methylene(cyclohexylisocyanate)), 디이소시아나토나프탈렌(Diisocyanatonaphthalene), 크실렌 디이소시아네이트(Xylene diisocyanate), 디이소시아나토 디메틸바이페닐(Diisocyanato dimethylbiphenyl), 이소시아네이트 변성 폴리디메틸실록산(실리콘, silicone)을 포함하는 방향족, 지방족, 지환족 및 실리콘계 디이소시아네이트로 이루어진 군 및 이의 혼합으로 이루어진 군으로부터 선택되며,
    상기 디아민기를 갖는 상기 제2단량체는, 페닐렌디아민(Phenylene diamine), 메틸렌디아민(Methylene diamine), 에틸렌디아민(Ethylene diamine), 6-메틸-1,3,5-트리아진-2,4-디아민(6-Methyl-1,3,5-triazine-2,4-diamine), 디아미노 바이피리딜(Diamino bipyridyl), 디아미노피리미딘(Diaminopyrimidine), 비스아미노페닐술폰(Bis(aminophenyl)sulfone), 디아미노디페닐 에테르(Diaminodiphenyl ether), 디아미노디페닐메탄(Diaminodiphenyl methane), 헥사메틸렌디아민(Hexamethylene diamine), 비스아미노에톡시에탄 (Bis(aminoethoxy)ethane), 비스아미노프로필테트라디실록산(Bis(aminopropyl)tetramethyldisiloxane), 아민변성 폴리디메틸실록산(실리콘)을 포함하는 방향족, 지방족, 지환족, 실리콘계 디이소시아네이트로 이루어진 군 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  9. 제 6항에 있어서,
    상기 제1단량체와 상기 제2단량체의 몰비율은 1 내지 1.5인 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  10. 제 1항에 있어서,
    상기 폴리우레아/졸-겔 실리카 나노하이브리드 수지를 제조하는 단계에서, 트리에탄올아민(Triethanol amine), 트리부탄올아민(Tributanol amine)의 3가 히드록시기를 포함하는 이소시아네이트 반응형 경화제, 또는 멜라민(Melamine), 트리아미노피리딘(Triaminopyridine), 트리스아미노에틸아민(Tris(aminoethyl)amine), 비스헥사메틸렌트리아민(Bis(hexamethylene)triamine), 디에틸렌트리아민(Diethylenetriamine)의 3가 아민기를 지니는 이소시아네이트 반응형 경화제를 추가하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 제조방법.
  11. 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물에 있어서,
    졸-겔 반응을 통해 형성되며, 계면경화성 표면처리된 실리카졸과;
    상기 실리카졸과 혼합되는 폴리우레아를 포함하는 것을 특징으로 하는 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물.
PCT/KR2018/008772 2017-10-27 2018-08-02 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법 WO2019083136A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0140936 2017-10-27
KR1020170140936A KR102364516B1 (ko) 2017-10-27 2017-10-27 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2019083136A1 true WO2019083136A1 (ko) 2019-05-02

Family

ID=66247548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008772 WO2019083136A1 (ko) 2017-10-27 2018-08-02 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR102364516B1 (ko)
WO (1) WO2019083136A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483772A (zh) * 2019-09-10 2019-11-22 常熟理工学院 一种具有自愈合能力的聚硫脲及其制备方法
CN115558071A (zh) * 2022-09-30 2023-01-03 武汉工程大学 一种自修复聚氨酯复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265599A (ja) * 2001-03-08 2002-09-18 Hiroshi Okamoto シロキサン結合を有するポリイミド組成物およびその製造方法
KR101595041B1 (ko) * 2015-09-16 2016-02-17 (주)중앙J.S.K건설 난연성 폴리우레아, 그 폴리우레아 제조방법 및 그 폴리우레아를 이용한 방수 공법
KR101597683B1 (ko) * 2014-09-17 2016-02-25 한국전기연구원 말단에 수산기 또는 에테르기를 가지는 변성폴리아미드이미드를 이용한 세라믹졸 나노하이브리드 소재 및 이의 제조방법
KR101604444B1 (ko) * 2014-09-17 2016-03-17 한국전기연구원 올리고머로 표면개질된 실리카 나노입자를 포함하는 유무기 나노 하이브리드 코팅제, 수지 및 그 제조방법
KR101614073B1 (ko) * 2014-03-13 2016-04-20 조광페인트주식회사 난연 폴리우레아 코팅 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339633B (zh) 2013-06-26 2018-09-11 沃尔沃建造设备有限公司 用于控制工程机械的发动机的rpm的装置和方法
KR101566859B1 (ko) 2015-04-07 2015-11-06 부림산업개발(주) 자가치유 성능을 가진 중방식 도장재 및 이를 이용한 도포방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265599A (ja) * 2001-03-08 2002-09-18 Hiroshi Okamoto シロキサン結合を有するポリイミド組成物およびその製造方法
KR101614073B1 (ko) * 2014-03-13 2016-04-20 조광페인트주식회사 난연 폴리우레아 코팅 조성물
KR101597683B1 (ko) * 2014-09-17 2016-02-25 한국전기연구원 말단에 수산기 또는 에테르기를 가지는 변성폴리아미드이미드를 이용한 세라믹졸 나노하이브리드 소재 및 이의 제조방법
KR101604444B1 (ko) * 2014-09-17 2016-03-17 한국전기연구원 올리고머로 표면개질된 실리카 나노입자를 포함하는 유무기 나노 하이브리드 코팅제, 수지 및 그 제조방법
KR101595041B1 (ko) * 2015-09-16 2016-02-17 (주)중앙J.S.K건설 난연성 폴리우레아, 그 폴리우레아 제조방법 및 그 폴리우레아를 이용한 방수 공법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483772A (zh) * 2019-09-10 2019-11-22 常熟理工学院 一种具有自愈合能力的聚硫脲及其制备方法
CN115558071A (zh) * 2022-09-30 2023-01-03 武汉工程大学 一种自修复聚氨酯复合材料及其制备方法和应用
CN115558071B (zh) * 2022-09-30 2023-07-25 武汉工程大学 一种自修复聚氨酯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
KR102364516B1 (ko) 2022-02-18
KR20190047263A (ko) 2019-05-08

Similar Documents

Publication Publication Date Title
CN104072781B (zh) 一种分子结构中SiH2和SiH1比例可控的全氢聚硅氮烷和由其制备的疏水透明高硬度涂层及其合成方法
CN107987278B (zh) 一种苯并环丁烯官能化有机硅树脂及其制备方法
KR101454402B1 (ko) 4가 알콕시 실란으로부터 고온 반응 조건을 이용하여 고순도 실리카 졸을 제조하는 방법 및 이 방법에 의해 제조된 유기용매 분산 고순도 실리카 졸
KR101878478B1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
KR19990023401A (ko) 다공성 실리카 피막 형성용 도포액, 도포된 기재 및 단섬유실리카
CN110527300B (zh) 一种具有互穿网络结构的高强度环氧-硅橡胶改性材料
CN114746366B (zh) 分散在含氮溶剂中的含铝硅溶胶、和树脂组合物
EP2957601A1 (en) Resin composition and method for producing same, and highly thermally conductive resin molded article
WO2019083136A1 (ko) 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법
KR101530998B1 (ko) 졸겔 기법을 이용한 에폭시-실리카 나노입자 하이브리드 수지 및 이의 제조방법과, 이를 이용한 고분산 에폭시-무기 나노/마이크로 입자 하이브리드 수지 및 이의 제조방법
CN111499877A (zh) 一种有机硅改性的环氧树脂的制备方法
JP2009235238A (ja) 水性塗料組成物、有機無機複合塗膜及び金属アルコキシド縮合物分散体及びその製造方法
CN106750329B (zh) 高抗水性氟硅改性环氧树脂的制备方法
WO2013137604A1 (ko) 하이브리드 패키징 소재 제조방법
CN109957261B (zh) 用于形成二氧化硅层的组合物、二氧化硅层以及电子装置
WO2018043987A1 (ko) 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법
CN112194981A (zh) 一种低温反应型耐高温涂料及其制备方法
KR101407617B1 (ko) 자기 치유 능력이 있는 열경화성 코팅 조성물, 코팅 필름 및 코팅 필름의 제조 방법
CN1329438C (zh) 用于提高固化材料耐磨性和耐候性的环氧树脂固化剂
WO2024109020A1 (zh) 一种聚脲组合物及其制备方法和应用
KR102567622B1 (ko) 절연특성이 향상된 에폭시-실리카 나노하이브리드 수지, 수지 제조방법 및 에폭시 수지용 전압안정제
WO2019022545A1 (ko) 무용매 타입의 열경화성 유무기 하이브리드 절연소재
KR101604444B1 (ko) 올리고머로 표면개질된 실리카 나노입자를 포함하는 유무기 나노 하이브리드 코팅제, 수지 및 그 제조방법
KR20090073155A (ko) 포스포네이트 작용성 입자를 함유하는 조성물
KR20190114491A (ko) 일액형 발수 코팅액 제조방법 및 이의 발수 코팅 필름 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869669

Country of ref document: EP

Kind code of ref document: A1