WO2018043987A1 - 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법 - Google Patents

실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법 Download PDF

Info

Publication number
WO2018043987A1
WO2018043987A1 PCT/KR2017/009234 KR2017009234W WO2018043987A1 WO 2018043987 A1 WO2018043987 A1 WO 2018043987A1 KR 2017009234 W KR2017009234 W KR 2017009234W WO 2018043987 A1 WO2018043987 A1 WO 2018043987A1
Authority
WO
WIPO (PCT)
Prior art keywords
siloxane
alcohol
water
coating material
silica
Prior art date
Application number
PCT/KR2017/009234
Other languages
English (en)
French (fr)
Inventor
강동준
박효열
임현균
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2018043987A1 publication Critical patent/WO2018043987A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to a silica-siloxane nanohybrid coating material and a method for manufacturing the same, and more particularly, to remove water, which is a solvent used in the manufacturing process, and then to substitute a separate organic solvent, and to mix an organic binder.
  • the present invention relates to a silica-siloxane nanohybrid coating material and a method of manufacturing the same, which are simple to process and can be directly applied to a water-dispersible coating material containing water.
  • inorganic materials have excellent physical properties such as corrosion resistance, chemical resistance, abrasion resistance, heat resistance, high hardness, moisture and gas barrier properties, and sealing or packaging materials such as structural materials, protective coating materials, abrasive materials, shielding and barrier films, and the like. It is actively used in the same field.
  • the application range of inorganic materials having such excellent physical properties is required to electric, electronic, informational, and energy materials, and active research for the application of such inorganic materials is also in progress.
  • the manufactured inorganic material is difficult to manufacture a thick film due to the brittleness of the material itself and there are many limitations in applying a simple wet process.
  • inorganic nanosols that can be wet-processed without deteriorating the existing physical properties and applying them to inorganic wet materials.
  • Existing inorganic nanosol was generally used as a structural material, and mixed with a polymer resin, such as an organic binder, to form an organic-inorganic hybrid material, and a film was manufactured by wet coating to improve mechanical, thermal, and chemical properties of the inorganic material. .
  • this method requires additional processes such as volatilization of polar solvent and organic solvent replacement for mixing inorganic nanosol and organic binder, and surface treatment process for stability of solution after mixing inorganic nanosol and organic binder.
  • the inorganic nanosol having a hydrophilic surface not only causes problems such as agglomeration of inorganic matters and bubbles in the mixing process with the hydrophobic organic resin by the hydrophilic surface, but also an organic resin in the final forming and coating film. There is a limit in expecting improved mechanical properties because the chemical cross-linking with is not made.
  • the organic resin is not included, and a coating material that can be coated immediately without forming an aqueous dispersion without requiring a separate organic solvent replacement is required.
  • the above object is a step of removing the water, which is a solvent used in the manufacturing process, replacing a separate organic solvent, and a process of mixing the organic binder, and thus, the process is simple, and the water is dispersed in water. It is to provide a silica-siloxane nanohybrid coating material and a method for manufacturing the coating material can be applied directly to the coating.
  • the above object is to prepare a water dispersion nano silica sol and siloxane; Surface modifying the water-dispersible nano silica sol; It is achieved by a method for producing a silica-siloxane nanohybrid coating material comprising the step of obtaining a coating material by mixing the surface-modified water dispersion nano silica sol and siloxane.
  • the water-dispersed nano-silica sol is a trivalent alkoxy silane or a tetravalent alkoxy silane is added to an alcohol solvent that can be mixed with water to form a silane mixture, and then the trivalent alkoxy silane or the fourth solvent in an alcohol solvent.
  • the trivalent alkoxy silane refers to a silane containing three hydroxyl groups (-OH), trimethoxysilane, triethoxysilane (Triethoxysilane ), Tri-n-propoxysilane, Triisopropoxysilane, Methyltrimethoxysilane, Methyltriethoxysilane, Methyltriethoxysilane, Phenyltrimethoxysilane ( Phenyltrimethoxysilane), Phenyltriethoxysilane (Phenyltriethoxysilane), 3-glycidoxypropyltrimethoxysilane (3-Glycidoxypropyltrimethoxysilane), and a mixture thereof.
  • Alkoxy silane is a silane containing four hydroxyl groups (-OH), tetramethoxysilane, Tetraethoxysilane, Tetrapropoxysilane, Tetraisopropoxysilane, Tetraisopropoxysilane , Tetrabutoxysilane (Tetrabutoxysilane), tetraphenoxysilane (Tetraphenoxysilane), tetraacetoxysilane (Tetraacethoxysilane) It is preferable that it is one selected from the group consisting of and a mixture thereof.
  • the above objectives also include siloxanes; Water dispersion nano silica sol each having a different size and mixed with the siloxane; Alcohol-based solvents that can be mixed with water and a solvent comprising water; and the solvent is also achieved by a silica-siloxane nanohybrid coating material characterized in that it does not contain an organic solvent.
  • the alcohol solvent is methyl alcohol (ethyl alcohol), ethyl which can be mixed with water Ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, tert-butyl alcohol, pentyl alcohol, benzyl alcohol alcohol) and mixtures thereof.
  • the process of replacing the separate organic solvent after removing water that is a solvent used in the manufacturing process and the process of mixing the organic binder is also simple, the process is simple, It is possible to obtain an effect that can be directly applied to the coating material dispersed in the coating.
  • FIG. 1 is a flow chart of a silica-siloxane nanohybrid coating material manufacturing method according to an embodiment of the present invention.
  • the silica-siloxane nanohybrid coating material includes water-dispersible nano-silica sol having different sizes, siloxane, and an alcohol-based solvent and water which can be mixed with water as a solvent. Possible coating materials.
  • a water-dispersed nano silica sol and a siloxane are prepared (S1).
  • An alcohol-based solvent that can be mixed with water is prepared as a solvent for synthesizing the water-dispersed nano silica sol.
  • a trivalent alkoxy silane or a tetravalent alkoxy silane is added to the alkoxysilane used to form a silica sol to form a silane mixture, followed by stirring to uniformly disperse the alkoxy silane in an alcohol solvent.
  • Stirring temperature is made in the temperature which heats an alcoholic solvent at 40-100 degreeC. If the stirring temperature is less than 40 °C takes a long time to mix the silica sol, if it exceeds 100 °C may be evaporated depending on the alcohol solvent.
  • the alkoxy silane uses a trivalent alkoxy silane or a tetravalent alkoxy silane, and can also be used by mixing these two.
  • the trivalent alkoxy silane refers to a silane containing three hydroxyl groups (-OH), trimethoxysilane, triethoxysilane, tri-n-propoxysilane (Tri-n- propoxysilane, Triisopropoxysilane, Methyltrimethoxysilane, Methyltriethoxysilane, Phenyltrimethoxysilane, Phenyltriethoxysilane, 3- Glycidoxy propyltrimethoxysilane (3-Glycidoxypropyltrimethoxysilane) is preferably selected from the group consisting of a group and mixtures thereof, tetravalent alkoxy silane is a silane containing four hydroxyl groups (-OH), tetrameth Tetramethoxysilane, Tetraethoxysilane, Tetrapropoxysilane, Tetraisopropoxysilane, Tetrabutoxysilane, Tetrabutoxysilane, Te
  • the alcohol solvent used as the solvent is methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, t-butyl alcohol (tert -butyl alcohol), pentyl alcohol (pentyl alcohol), benzyl alcohol (benzyl alcohol) is preferably selected from the group consisting of and a mixture thereof.
  • Such silica sol is prepared to have a different size and then mixed with each other.
  • the siloxane prepared in this step is prepared by mixing a trivalent alkoxy silane or a tetravalent alkoxy silane with a catalyst, similar to the nano silica sol, and the kind of the trivalent alkoxy silane or the tetravalent alkoxy silane is the same as described above.
  • the catalyst may be selected from an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous nitric acid solution, or an aqueous solution of phosphoric acid, and the reaction proceeds in the presence of water without using a separate organic solvent.
  • the surface-modified nano silica sol is dispersed (S2).
  • the aqueous acid solution may be selected from hydrochloric acid solution, sulfuric acid solution, nitric acid solution or phosphoric acid solution, but is not limited thereto.
  • the silanes used for the surface modification may use 1 to trivalent silanes, wherein the 1 to trivalent silanes material refers to at least one of alkoxy silanes, alkyl siloxanes, and alkyl silazanes.
  • the alkoxy silanes can be used at least one selected from aliphatic, alicyclic and aromatic including phenyltrialkoxysilane, methyltrialkoxysilane, ethyltrialkoxysilane.
  • alkyl siloxanes such as hexaalkylsiloxane, tetraalkylsiloxane or alkyl silazanes such as hexaalkylsilazane and tetraalkylsilazane may be specified.
  • the coating material is obtained by mixing the water dispersion nano silica sol and the siloxane (S3).
  • the coating material is obtained by mixing the siloxane prepared in step S1 with the surface-modified water-dispersed nano silica sol in step S2.
  • the water-dispersed nano-silica sol does not remove the alcohol solvent and water used in the process S1 and S2 and does not include a separate organic solvent.
  • the siloxane also includes water and does not include a separate organic solvent, so that the water is mixed with each other without the solvent removal process when the nano-silica sol and siloxane are mixed.
  • the mixed water dispersion nano silica sol and siloxane may be present in a uniformly dispersed state in a water solvent, and such a coating material may be directly coated on a glass or metal substrate.
  • a commercial nano silica sol having a different size of 12 nm, 20 nm, and 60 nm, respectively, is mixed at a ratio of 5: 3: 2 to prepare a mixed nano silica sol.
  • the same amount of ethanol and methyltrimethoxysilane (MTMS) equivalent to 20% by weight of the mixed silica silica sol is mixed. .
  • the siloxane to be mixed with the water-dispersed nano silica sol prepared in Example 1 was prepared.
  • organosilane used for the siloxane preparation MTMS and MPTMS used for surface treatment in Example 1 were used, and an aqueous hydrochloric acid solution was used as a catalyst for the reaction.
  • Mixing ratio of MPTMS and MTMS was applied in a molar ratio of 7: 3, and added in a molar ratio of silane to which an aqueous hydrochloric acid solution was applied, and then reacted at 400 rpm for 24 hours to finally prepare a methyl-methacryl oligosiloxane solution.
  • the nano silica sol and the siloxane prepared in Example 1 and Example 2 were mixed at various mixing ratios to measure the transmittance, adhesion, hardness (glass substrate) and surface roughness of the coating film.
  • the transmittance was UV-Vis spectrometer
  • the adhesive force was tape test according to ASTM standard
  • the hardness was pencil hardness meter (ASTM)
  • the surface roughness was Atomic Force Microscopy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은, 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법에 있어서, 수분산 나노 실리카졸 및 실록산을 준비하는 단계와; 상기 수분산 나노 실리카졸을 표면개질하는 단계와; 표면개질된 상기 수분산 나노 실리카졸 및 실록산을 혼합하여 코팅소재를 얻는 단계를 포함하는 것을 기술적 요지로 한다. 이에 의해 제조 공정 중 사용되는 용매인 물을 제거한 후 별도의 유기용매를 치환하는 공정과, 유기바인더를 혼합하는 공정 또한 거치지 않아 공정이 간단하며, 물이 포함된 상태인 수분산된 코팅소재를 코팅에 바로 적용가능한 효과를 얻을 수 있다.

Description

실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법
본 발명은 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법에 관한 것으로, 더욱 상세하게는 제조 공정 중 사용되는 용매인 물을 제거한 후 별도의 유기용매를 치환하는 공정과, 유기바인더를 혼합하는 공정 또한 거치지 않아 공정이 간단하며, 물이 포함된 상태인 수분산된 코팅소재를 코팅에 바로 적용가능한 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법에 관한 것이다.
일반적으로 무기물은 내부식성, 내화학성, 내마모성, 내열특성, 고경도, 수분 및 가스의 차단성과 같은 우수한 물성을 지니고 있어 구조재료, 보호용 코팅재료, 연마재료, 차폐 및 차단막과 같은 실링 또는 패키징 재료와 같은 분야에서 활발하게 활용되어 지고 있다. 이러한 우수한 물성을 지니는 무기물의 적용범위가 전기전자, 정보용, 에너지 소재로까지 요구되어 지고 있고, 이러한 무기물의 적용을 위한 활발한 연구도 진행 중에 있다. 하지만 무기물의 제조를 위해서는 고가의 고온 공정 또는 건식 공정이 요구될 뿐 아니라, 제조된 무기물은 소재 자체의 취성으로 인해 후막을 제조하기가 힘들고 간단한 습식공정을 적용하는데 많은 한계점이 있다. 이러한 한계점들을 극복하기 위해 최근에 무기물의 기존 물성 저하 없이 습식공정이 가능한 콜로이드상의 무기물 나노졸에 관한 제조연구 및 무기물 습식소재로의 적용을 위한 분산연구가 많이 진행되고 있다. 기존 무기물 나노졸은 일반적으로 구조용 재료로 많이 활용되었으며, 유기바인더 등인 고분자 수지와 혼합하여 유무기 하이브리드 소재를 형성시킨 후 습식 코팅을 통해 막을 제조하여 무기물의 기계적, 열적, 화학적 물성을 향상시킬 수 있었다.
그러나 이러한 상기 방법은 무기물 나노졸과 유기 바인더와의 혼합을 위해 극성용매의 휘발 및 유기용매 치환과 같은 공정들이 추가적으로 필요하며, 무기 나노졸과 유기 바인더의 혼합 후 용액을 안정성을 위한 표면처리 공정이 추가적으로 요구되어 무기물 나노졸의 안정성 확보에 많은 한계가 있는 실정이다. 또한 친수성의 표면을 가지는 무기물 나노졸의 경우 친수성 표면에 의해 소수성을 가지는 유기수지와의 혼합 과정에서 무기물의 응집 문제, 기포 발생과 같은 문제점을 야기시킬 뿐 아니라, 최종적인 성형 및 코팅막에서의 유기수지와의 화학적 가교가 이루어지지 않아 보다 향상된 기계적인 물성을 기대하는데 한계가 있는 실정이다.
따라서 이러한 한계를 개선하기 위하여 유기수지를 포함하지 않으며, 수분산 형태를 이뤄 별도의 유기용매 치환 또한 필요로 하지 않고 바로 코팅할 수 있는 코팅소재가 필요한 실정이다.
따라서 상기한 목적은, 제조 공정 중 사용되는 용매인 물을 제거한 후 별도의 유기용매를 치환하는 공정과, 유기바인더를 혼합하는 공정 또한 거치지 않아 공정이 간단하며, 물이 포함된 상태인 수분산된 코팅소재를 코팅에 바로 적용가능한 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법을 제공하는 것이다.
상기한 목적은, 수분산 나노 실리카졸 및 실록산을 준비하는 단계와; 상기 수분산 나노 실리카졸을 표면개질하는 단계와; 표면개질된 상기 수분산 나노 실리카졸 및 실록산을 혼합하여 코팅소재를 얻는 단계를 포함하는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재 제조방법에 의해서 달성된다.
여기서, 상기 수분산 나노 실리카졸은, 물과 혼합이 가능한 알콜계 용매에 3가 알콕시 실란 또는 4가 알콕시 실란을 첨가하여 실란혼합물을 형성한 후, 알콜계 용매에 상기 3가 알콕시 실란 또는 상기 4가 알콕시 실란이 일정하게 분산되도록 교반을 수행하여 얻어지며, 3가 알콕시 실란은 하이드록시기(-OH)가 3개 포함된 실란을 말하며, 트리메톡시실란(Trimethoxysilane), 트리에톡시실란(Triethoxysilane), 트리-n-프로폭시실란(Tri-n-propoxysilane), 트리이소프로폭시실란(Triisopropoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종이며, 4가 알콕시 실란은 하이드록시기(-OH)가 4개 포함된 실란이며, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.
상기한 목적은 또한, 실록산과; 각각 다른 사이즈를 가지며 상기 실록산과 혼합되는 수분산 나노 실리카졸과; 물과 혼합이 가능한 알콜계 용매 및 물을 포함하는 용매;로 이루어지며, 상기 용매는 유기용매를 포함하지 않는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재에 의해서도 달성된다.
여기서, 상기 실록산과 상기 수분산 나노 실리카졸은 실록산 : 수분산 나노 실리카졸 = 9:1 내지 6:4 중량비로 혼합되며, 상기 알콜계 용매는 물과 혼합이 가능한 메틸알콜(methyl alcohol), 에틸알콜(ethyl alcohol), 프로필알콜(propyl alcohol), 이소프로필알콜(isopropyl alcohol), 부틸알콜(butyl alcohol), t-부틸알콜(tert-butyl alcohol), 펜틸알콜(pentyl alcohol), 벤질알콜(benzyl alcohol)로 이루어진 군 및 이의 혼합물 군에서 선택되는 것이 바람직하다.
상술한 본 발명의 구성에 따르면, 제조 공정 중 사용되는 용매인 물을 제거한 후 별도의 유기용매를 치환하는 공정과, 유기바인더를 혼합하는 공정 또한 거치지 않아 공정이 간단하며, 물이 포함된 상태인 수분산된 코팅소재를 코팅에 바로 적용가능한 효과를 얻을 수 있다.
도 1은 본 발명의 실시예에 따른 실리카-실록산 나노하이브리드 코팅소재 제조방법의 순서도이다.
이하 본 발명의 실시예에 따른 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법을 도면을 통해 상세히 설명한다.
실리카-실록산 나노하이브리드 코팅소재는 각각 다른 사이즈를 가진 수분산 나노 실리카졸과, 실록산을 포함하며 용매로는 물과 혼합이 가능한 알콜계 용매 및 물을 포함하여 유기용매를 포함하지 않고 코팅에 바로 적용 가능한 코팅소재이다.
실리카-실록산 나노하이브리드 코팅소재 제조방법으로는 먼저, 수분산 나노 실리카졸 및 실록산을 준비한다(S1).
수분산 나노 실리카졸을 합성하기 위한 용매로 물과 혼합이 가능한 알콜계 용매를 준비한다. 여기에 실리카졸을 형성하기 위해 사용되는 알콕시 실란(alkoxysilane)으로 3가 알콕시 실란 또는 4가 알콕시 실란을 첨가하여 실란혼합물을 형성한 후, 알콜계 용매에 알콕시 실란인 일정하게 분산되도록 교반을 수행한다. 교반 온도는 40 내지 100℃에서 알콜계 용매를 가열하는 온도 내에서 이루어진다. 교반 온도가 40℃ 미만일 경우 실리카졸을 혼합하는 데 시간이 많이 소요되며, 100℃를 초과할 경우 알콜계 용매에 따라 증발하는 경우가 있을 수 있다.
알콜계 용매의 100중량부에 대해 알콕시 실란은 10 내지 30중량부가 첨가된다. 알콕시 실란은 3가 알콕시 실란 또는 4가 알콕시 실란을 사용하며, 이 둘을 혼합하여서도 사용 가능하다.
여기서 3가 알콕시 실란은 하이드록시기(-OH)가 3개 포함된 실란을 말하며, 트리메톡시실란(Trimethoxysilane), 트리에톡시실란(Triethoxysilane), 트리-n-프로폭시실란(Tri-n-propoxysilane), 트리이소프로폭시실란(Triisopropoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하며, 4가 알콕시 실란은 하이드록시기(-OH)가 4개 포함된 실란이며, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.
용매로 사용되는 알콜계 용매는 메틸알콜(methyl alcohol), 에틸알콜(ethyl alcohol), 프로필알콜(propyl alcohol), 이소프로필알콜(isopropyl alcohol), 부틸알콜(butyl alcohol), t-부틸알콜(tert-butyl alcohol), 펜틸알콜(pentyl alcohol), 벤질알콜(benzyl alcohol)로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것이 바람직하다.
이와 같은 실리카졸은 각각 다른 사이즈를 갖도록 제조한 후 이를 혼합하게 된다. 여기서 각각 다른 사이즈의 실리카졸은 구체적으로 12nm, 20nm, 60nm로 이루어진 수분산 나노실리카졸을 준비하는 것이 바람직하다.
또한 본 단계에서 준비되는 실록산은 나노 실리카졸과 마찬가지로 3가 알콕시 실란 또는 4가 알콕시 실란을 촉매와 혼합하여 제조되며, 3가 알콕시 실란 또는 4가 알콕시 실란의 종류는 상기에 기재된 종류와 동일하다. 여기서 촉매는 염산 수용액, 황산 수용액, 질산 수용액 또는 인산 수용액 중에 선택 가능하며, 별도의 유기용매를 사용하지 않고 물이 존재하는 상태에서 반응이 진행된다.
수분산 나노 실리카졸을 표면개질한다(S2).
준비된 수분산 나노 실리카졸 및 실록산 중 수분산 나노 실리카졸을 표면개질하는 단계를 진행한다. 수분산 나노 실리카졸의 표면개질을 위해 희석된 산 수용액을 통해 pH를 산성으로 맞춘 다음, 나노 실리카졸의 10 내지 30중량%에 해당되는 실란류 물질을 사용하여 나노 실리카졸을 표면개질한다. 여기서 산 수용액은 염산 수용액, 황산 수용액, 질산 수용액 또는 인산 수용액 중에 선택 가능하나 이에 한정되지는 않는다.
표면개질에 사용되는 실란류는 1 내지 3가 실란류를 사용할 수 있는데, 여기서 1 내지 3가의 실란류 물질은 알콕시 실란류, 알킬 실록산류, 알킬 실라잔류 중 적어도 어느 하나를 말한다.
알콕시 실란류는, 페닐트리알콕시실란(phenyltrialkoxysilane), 메틸트리알콕시실란(methyltrialkoxysilane), 에틸트리알콕시실란(ethyltrialkoxysilane)을 포함한 지방족, 지환족 및 방향족으로부터 선택된 1종 이상을 사용할 수 있다. 이 이외에도 헥사알킬실록산(hexaalkylsiloxane), 테트라알킬실록산(tetraalkylsiloxane)과 같은 알킬 실록산류 또는 헥사알킬실라잔(hexaalkylsilazane), 테트라알킬실라잔(tetraalkylsilazane)과 같은 알킬 실라잔류가 사양될 수 있다.
수분산 나노 실리카졸 및 실록산을 혼합하여 코팅소재를 얻는다(S3).
S1 단계를 통해 준비된 실록산과 S2 단계를 통해 표면개질된 수분산 나노 실리카졸을 혼합하여 코팅재료를 얻는다. 이때 수분산 나노 실리카졸은 S1 및 S2 과정에서 사용된 알코올계 용매 및 물을 제거하지 않은 상태이며 별도의 유기용매를 포함하고 있지 않다. 또한 실록산의 경우에도 물을 포함하며 별도의 유기용매를 포함하고 있지 않기 때문에 이러한 수분산 나노 실리카졸과 실록산을 혼합할 때 용매 제거과정을 거치지 않아도 서로 용이하게 혼합된다. 이렇게 혼합된 수분산 나노 실리카졸 및 실록산은 물 용매 하에서 균일하게 분산된 상태로 존재할 수 있으며, 이러한 코팅소재는 유리 또는 금속 기판에 바로 코팅이 가능하다.
이때 실록산과 수분산 나노 실리카졸은 실록산 : 수분산 나노 실리카졸 = 9:1 내지 6:4 중량비로 혼합되는 것이 바람직하다. 혼합비율이 9:1 미만일 경우 수분산 나노 실리카졸의 함량이 작아 나노 실리카졸에 의한 경도 및 표면조도 증가 효과를 얻을 수 없으며, 6:4를 초과할 경우 나노 실리카졸의 함량 증가에 따른 접착력 감소 효과가 있기 때문에 이는 코팅소재료 사용하기 부적절 하다.
이와 같은 코팅소재 제조방법을 다음과 같은 실시예를 통해 좀 더 상세히 설명한다.
<실시예 1>
12nm, 20nm, 60nm의 각각 다른 사이즈를 지니는 상용 수분산 나노 실리카졸을 5:3:2의 비율로 혼합하여 혼합된 나노 실리카졸을 제조한다. 그 후 입자 표면처리를 위해 희석된 염산 수용액으로 pH를 3.0으로 맞춘 다음, 혼합 제조된 나노 실리카졸 양의 20중량%에 해당되는 메틸트리메톡시실란(methyltrimethoxysilane, MTMS)과 동량의 에탄올을 혼합한다. 이를 혼합된 나노 실리카졸에 혼합한 후 20시간 동안 400rpm으로 교반하면서 반응을 실시하였다. 1차 MTMS 반응 후 2차로 메타아크릴프로필트리메톡시실란(metaacrylpropyltrimethoxysilane, MPTMS)을 혼합된 나노 실리카졸에 50%에 해당되는 양을 추가 투입하여 20시간 동안 400rpm으로 추가반응을 실시하였다. 이때 MTMS와 동량의 에탄올을 함께 넣어 교반 반응을 원활하게 진행하였다. 최종적으로 MTMS가 1, 2차로 처리된 수분산 나노 실리카졸을 제조하였다.
<실시예 2>
실시예 1에서 제조된 수분산 나노 실리카졸과 혼합할 실록산을 제조하였다. 실록산 제조를 위해 사용한 유기실란은 실시예 1에서 표면처리를 위해 사용한 MTMS와 MPTMS를 사용하였으며, 반응을 위한 촉매로 염산 수용액을 동일하게 사용하였다. MPTMS와 MTMS의 혼합 비율은 몰비로 7 : 3을 적용하였고, 염산 수용액을 적용한 실란 대비 3몰비만큼 넣은 후 24시간 동안 400rpm에서 반응하여 최종적으로 메틸-메타아크릴 올리고실록산 용액을 제조하였다.
<실시예 3>
실시예 1과 실시예 2에서 제조된 나노 실리카졸과 실록산을 다양한 혼합비로 혼합하여 투과도, 접착력, 경도(유리기판) 및 코팅막의 표면조도를 측정한 결과 값을 아래 표 1에 나타내었다. 투과도는 UV-Vis 분광계를 활용하였고, 접착력은 ASTM 규격에 따른 테입테스트, 경도는 연필경도계(ASTM)를 활용하였고, 표면조도는 Atomic Force Microscopy를 활용하였다. 실록산과 실리카나노졸의 비율은 다음과 같이 올리고실록산 : 나노 실리카졸 = 10:0, 9:1, 8:2, 7:3, 6:4로 제조하였다. 이와 같은 비율로 올리고실록산과 나노 실리카졸을 혼합한 후 유리기판 위에 스핀코팅을 수행하고, 150℃에서 60min 가량 열처리 한 후 두께 10㎛의 코팅막을 제조하였다.
10:0 9:1 8:2 7:3 6:4
투과도(%) 91 91 90 90 90
접착력(B) 5 5 5 4 3
경도(H) 4 5 6 8 9
표면조도(nm) 1.5 1.35 1.45 1.45 1.65
표 1에 나타난 바와 같이 나노 실리카졸의 혼합으로 다른 물성의 저하 없이 경도의 상승을 나노 실리카졸의 함량 증대와 함께 꾀할 수 있음을 확인할 수 있었다. 또한 나노 실리카졸의 혼합량에 따라 투과도는 전혀 영향이 없는 것으로 보아 분산은 균일하게 이루어졌음을 확인할 수 있었고, 나노 실리카졸의 함량이 과하게 투입될 때에는 접착력의 문제가 있으므로 적절한 함량의 제어가 필요함을 확인할 수 있었다.

Claims (6)

  1. 실리카-실록산 나노하이브리드 코팅소재 제조방법에 있어서,
    수분산 나노 실리카졸 및 실록산을 준비하는 단계와;
    상기 수분산 나노 실리카졸을 표면개질하는 단계와;
    표면개질된 상기 수분산 나노 실리카졸 및 실록산을 혼합하여 코팅소재를 얻는 단계를 포함하는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재 제조방법.
  2. 제 1항에 있어서,
    상기 수분산 나노 실리카졸은,
    물과 혼합이 가능한 알콜계 용매에 3가 알콕시 실란 또는 4가 알콕시 실란을 첨가하여 실란혼합물을 형성한 후, 알콜계 용매에 상기 3가 알콕시 실란 또는 상기 4가 알콕시 실란이 일정하게 분산되도록 교반을 수행하여 얻어지는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재 제조방법.
  3. 제 2항에 있어서,
    3가 알콕시 실란은 하이드록시기(-OH)가 3개 포함된 실란을 말하며, 트리메톡시실란(Trimethoxysilane), 트리에톡시실란(Triethoxysilane), 트리-n-프로폭시실란(Tri-n-propoxysilane), 트리이소프로폭시실란(Triisopropoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 메틸트리에톡시실란(Methyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 페닐트리에톡시실란(Phenyltriethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종이며,
    4가 알콕시 실란은 하이드록시기(-OH)가 4개 포함된 실란이며, 테트라메톡시실란(Tetramethoxysilane), 테트라에톡시실란(Tetraethoxysilane), 테트라프로폭시실란(Tetrapropoxysilane), 테트라이소프로폭시실란(Tetraisopropoxysilane), 테트라부톡시실란(Tetrabutoxysilane), 테트라페녹시실란(Tetraphenoxysilane), 테트라아세톡시실란(Tetraacethoxysilane)으로 이루어진 군 및 이의 혼합물 군에서 선택된 1종인 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재 제조방법.
  4. 실리카-실록산 나노하이브리드 코팅소재에 있어서,
    실록산과;
    각각 다른 사이즈를 가지며 상기 실록산과 혼합되는 수분산 나노 실리카졸과;
    물과 혼합이 가능한 알콜계 용매 및 물을 포함하는 용매;로 이루어지며,
    상기 용매는 유기용매를 포함하지 않는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재.
  5. 제 4항에 있어서,
    상기 실록산과 상기 수분산 나노 실리카졸은 실록산 : 수분산 나노 실리카졸 = 9:1 내지 6:4 중량비로 혼합되는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재.
  6. 제 4항에 있어서,
    상기 알콜계 용매는 물과 혼합이 가능한 메틸알콜(methyl alcohol), 에틸알콜(ethyl alcohol), 프로필알콜(propyl alcohol), 이소프로필알콜(isopropyl alcohol), 부틸알콜(butyl alcohol), t-부틸알콜(tert-butyl alcohol), 펜틸알콜(pentyl alcohol), 벤질알콜(benzyl alcohol)로 이루어진 군 및 이의 혼합물 군에서 선택되는 것을 특징으로 하는 실리카-실록산 나노하이브리드 코팅소재.
PCT/KR2017/009234 2016-09-02 2017-08-24 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법 WO2018043987A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0113395 2016-09-02
KR1020160113395A KR20180026259A (ko) 2016-09-02 2016-09-02 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018043987A1 true WO2018043987A1 (ko) 2018-03-08

Family

ID=61301106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009234 WO2018043987A1 (ko) 2016-09-02 2017-08-24 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20180026259A (ko)
WO (1) WO2018043987A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200140509A (ko) * 2019-06-07 2020-12-16 한국전기연구원 고내열 나노하이브리드 실록산 절연소재 및 이의 제조방법
KR102309484B1 (ko) * 2019-11-26 2021-10-07 창원대학교 산학협력단 고기능성 유/무기 하이브리드 코팅제 제조방법
KR102413669B1 (ko) * 2021-11-10 2022-06-28 한국도시재생기술(주) 나노 크기의 실리카 분산체를 함유한 세라믹 코팅제의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093298A (ko) * 2004-03-18 2005-09-23 엘지전자 주식회사 비점착성 코팅막 형성을 위한 코팅 조성물, 이의 제조방법및 이를 이용하는 표면 처리방법
KR20100114648A (ko) * 2009-04-16 2010-10-26 두산인프라코어 주식회사 강화입자를 포함하는 코팅용 조성물에 의하여 코팅된 부시 및 그 제조방법
KR20140067501A (ko) * 2012-11-26 2014-06-05 한국전기연구원 4가 알콕시 실란으로부터 고온 반응 조건을 이용하여 고순도 실리카 졸을 제조하는 방법 및 이 방법에 의해 제조된 유기용매 분산 고순도 실리카 졸
KR101522144B1 (ko) * 2014-12-03 2015-05-20 최용만 내식성 및 세정성이 우수한 친환경 하이브리드 코팅제의 제조방법
KR20160014971A (ko) * 2014-07-30 2016-02-12 한국전기연구원 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050093298A (ko) * 2004-03-18 2005-09-23 엘지전자 주식회사 비점착성 코팅막 형성을 위한 코팅 조성물, 이의 제조방법및 이를 이용하는 표면 처리방법
KR20100114648A (ko) * 2009-04-16 2010-10-26 두산인프라코어 주식회사 강화입자를 포함하는 코팅용 조성물에 의하여 코팅된 부시 및 그 제조방법
KR20140067501A (ko) * 2012-11-26 2014-06-05 한국전기연구원 4가 알콕시 실란으로부터 고온 반응 조건을 이용하여 고순도 실리카 졸을 제조하는 방법 및 이 방법에 의해 제조된 유기용매 분산 고순도 실리카 졸
KR20160014971A (ko) * 2014-07-30 2016-02-12 한국전기연구원 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법
KR101522144B1 (ko) * 2014-12-03 2015-05-20 최용만 내식성 및 세정성이 우수한 친환경 하이브리드 코팅제의 제조방법

Also Published As

Publication number Publication date
KR20180026259A (ko) 2018-03-12

Similar Documents

Publication Publication Date Title
US10738201B2 (en) Anti-soiling compositions comprising silica nanoparticles and functional silane compounds and coated articles thereof
JP5635129B2 (ja) オリゴマーのシロキサノールで官能化された金属酸化物の組成物およびその使用
WO2018043987A1 (ko) 실리카-실록산 나노하이브리드 코팅소재 및 그 제조방법
CN111518456B (zh) 渗透型防水耐碱涂料及其制备方法
DE10330020A1 (de) Hochgefüllte Silan-Zubereitung
KR101454402B1 (ko) 4가 알콕시 실란으로부터 고온 반응 조건을 이용하여 고순도 실리카 졸을 제조하는 방법 및 이 방법에 의해 제조된 유기용매 분산 고순도 실리카 졸
KR101401754B1 (ko) 초발수성 코팅용액 조성물 및 코팅 조성물의 제조방법
CN101817980A (zh) 一种氧化硅超疏水薄膜的溶胶凝胶制备方法
US7993707B2 (en) Production of coated substrates
JP2009235238A (ja) 水性塗料組成物、有機無機複合塗膜及び金属アルコキシド縮合物分散体及びその製造方法
CN113122081B (zh) 一种透明、高硬、可多功能集成的自修复涂料及其制备方法与应用
CN103596669B (zh) 杂化封装材料制造方法
CN103304149A (zh) 一种在玻璃表面构筑疏水涂层的方法及涂层物质
KR20130034693A (ko) 고순도 중공 실리카 나노분말의 제조방법 및 동 나노분말을 포함하는 저반사 코팅막
KR102284041B1 (ko) 내스크래치성이 우수한 친수성 코팅 조성물
CN114746366B (zh) 分散在含氮溶剂中的含铝硅溶胶、和树脂组合物
JP5754884B2 (ja) リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子およびその製造方法、該リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
CA2708581A1 (en) Sol-gel process with an encapsulated catalyst
KR101615550B1 (ko) 분리형 유/무기 하이브리드형 보호 코팅제 조성물 및 이를 피막한 코팅 제품
WO2019083136A1 (ko) 자가치유성 폴리우레아/졸-겔 실리카 나노하이브리드 경화물 및 그 제조방법
JP5534758B2 (ja) リン含有五酸化アンチモン微粒子および該微粒子を含む透明導電性被膜形成用塗布液ならびに透明導電性被膜付基材
KR101444820B1 (ko) 유연 에너지소자의 절연 및 부식방지용 하이브리드 패키징 소재 제조방법
KR102476238B1 (ko) 티타니아 나노졸 제조방법 및 티타니아 나노졸에 기초한 고굴절 박막 제조방법
KR20190011558A (ko) 발수성 코팅제 및 그 제조 방법
JP2008274242A (ja) 水性塗料組成物、有機無機複合塗膜、シラン縮合物分散体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846912

Country of ref document: EP

Kind code of ref document: A1