CN115044868A - 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法 - Google Patents

一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法 Download PDF

Info

Publication number
CN115044868A
CN115044868A CN202210594764.2A CN202210594764A CN115044868A CN 115044868 A CN115044868 A CN 115044868A CN 202210594764 A CN202210594764 A CN 202210594764A CN 115044868 A CN115044868 A CN 115044868A
Authority
CN
China
Prior art keywords
dimensional material
resistant coating
coating
layer
composite hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210594764.2A
Other languages
English (en)
Other versions
CN115044868B (zh
Inventor
王维静
于庆河
郝雷
米菁
吕铮
刘蔚
李世杰
刘皓
李衫衫
李志念
蒋利军
罗熳
王磊
李腾飞
叶建华
蒋立武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youyan Guangdong New Material Technology Research Institute
University of Science and Technology Beijing USTB
Northeastern University China
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
Youyan Guangdong New Material Technology Research Institute
University of Science and Technology Beijing USTB
Northeastern University China
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youyan Guangdong New Material Technology Research Institute, University of Science and Technology Beijing USTB, Northeastern University China, GRIMN Engineering Technology Research Institute Co Ltd filed Critical Youyan Guangdong New Material Technology Research Institute
Priority to CN202210594764.2A priority Critical patent/CN115044868B/zh
Publication of CN115044868A publication Critical patent/CN115044868A/zh
Application granted granted Critical
Publication of CN115044868B publication Critical patent/CN115044868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及阻氢涂层领域,具体涉及一种氧化物陶瓷与二维材料复合阻氢涂层,包括从内到外依次包覆在基体上的锆与氧化钇稳定氧化锆共沉积层、氧化铝掺杂二维材料中间层、以及氧化铝陶瓷层。本发明公开的复合阻氢涂层最内层为金属单体与氧化陶瓷的共沉积层,与基体材料之间是以金属‑金属的方式进行结合的,热膨胀系数差异性小,可以有效改善结合强度,提高阻氢涂层的抗冷热冲击性能;将二维材料与氧化物陶瓷材料相结合,二维正六边形氧化石墨烯等二维材料的存在可以填补氧化物陶瓷材料生成过程中的缺陷,此外二维材料极强的阻挡性能可有效增强氧化物陶瓷涂层的氢渗透阻挡性能。

Description

一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
技术领域
本发明涉及阻氢涂层技术领域,具体涉及一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法。
背景技术
在临氢环境下,像石油加氢裂解,核聚变等领域,氢作为原料之一,因其原子半径极小,因而在金属结构材料中具有极强的渗透能力,这不仅会导致结构材料发生氢脆,而且高的扩散速率也容易产生氢原料的浪费。针对上述存在的问题,目前最有效的解决方案是在结构材料表面制备改性涂层——阻氢涂层,用来抑制或减缓氢的渗透速率。
阻氢涂层结构通常由基体和涂层两部分组成。目前常用的基体材料为低活性马氏体、奥氏体等不锈钢,近几年逐渐应用于高温合金领域。已研制出的高性能阻氢涂层主要包括Al2O3、ZrO2、Cr2O3、Er2O3、Y2O3等,其中Al2O3陶瓷涂层因其良好的高温稳定性和优异的阻氢性能被广泛应用。但是,Al2O3陶瓷涂层一方面因为热膨胀系数较低,在使用过程中,尤其是在高温环境下,比较容易脱落;另一方面,由于陶瓷材料本身的塑性,使得Al2O3陶瓷涂层在沉积过程中总是不可避免地会伴随产生一些微观缺陷,使涂层的阻氢能力和稳定性都会下降。石墨烯等二维材料具有质轻、化学热稳定性高、机械强度大等优点,且二维材料对分子、原子和离子等粒子具有很强的阻挡特性,被称作是一种优异的不可渗透性薄膜。北京航空航天大学(CN 106283052 A)和内蒙古工业大学(CN 214422533 U)分别采用二维材料阻氢涂层,但在涂层设计中,二维材料通常与氧化物涂层或硅碳化合物等进行逐层堆垛叠加,由于二维材料与氧化物或其他阻氢涂层在结构和热膨胀系数方面存在差异,层间结合力较差,在使用过程中容易发生剥落现象。
发明内容
针对现有技术存在的问题,本发明提供了一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法,具体包括以下内容:
一种氧化物陶瓷与二维材料复合阻氢涂层,包括从内到外依次包覆在基体上的锆与氧化钇稳定氧化锆共沉积层、氧化铝掺杂二维材料中间层、以及氧化铝陶瓷层;需要说明的是,在本发明中,锆与氧化钇稳定氧化锆共沉积层可以用xZr-(1-x)YSZ表示,其中x表示锆在所述共沉积层中所占的质量百分比;氧化铝掺杂二维材料中间层可以用yTDM@(1-y)Al2O3表示,其中二维材料(Two Dimensional Material)用TDM表示,y表示二维材料在所述中间层中所占的质量百分比。
具体地,所述复合阻氢涂层的总厚度不超过10μm。
具体地,所述复合阻氢涂层的总厚度为0.1μm-1μm。
具体地,所述氧化铝陶瓷层的厚度占复合阻氢涂层总厚度的1/4-1/2。
具体地,所述氧化铝陶瓷层的厚度占复合阻氢涂层总厚度的1/3。
具体地,所述基体为马氏体或奥氏体不锈钢或高温合金。
具体地,所述的二维材料为氧化石墨烯GO、六方氮化硼h-BN和二硫化钼MoS2中的一种或多种混合。
具体地,所述锆与氧化钇稳定氧化锆共沉积层中锆的质量百分比为0-50wt.%。
具体地,氧化铝掺杂二维材料中间层中二维材料的质量百分比为0-10wt.%。
一种氧化物陶瓷与二维材料复合阻氢涂层的制备方法,包括以下步骤:
(1)将基体表面抛光至粗糙度为0.1μm-2μm;
(2)在步骤(1)处理完的基体上,采用共溅射沉积法制备锆与氧化钇稳定氧化锆共沉积层;
(3)在步骤(2)制备的涂层上,采用溶胶凝胶法制备氧化铝掺杂二维材料中间层;
(4)对步骤(3)制备的涂层样品,在Ar气氛中进行热处理,热处理的温度为700-1100℃;
(5)在步骤(4)处理后的涂层上,采用射频磁控溅射法制备氧化铝陶瓷涂层,得到氧化物陶瓷与二维材料复合阻氢涂层。
本发明的有益效果:
(1)本发明公开的复合阻氢涂层最内层的xZr-(1-x)YSZ层为金属单体与氧化陶瓷的共沉积层,该层涂层与基体材料之间是以金属-金属的方式进行结合的,热膨胀系数差异性小,可以有效改善结合强度,提高阻氢涂层的抗冷热冲击性能;
(2)本发明将二维材料与氧化物陶瓷材料相结合,二维正六边形氧化石墨烯等二维材料的存在可以填补氧化物陶瓷材料生成过程中的缺陷,并且二维材料的在氧化物陶瓷层中的掺杂,使得涂层中用以捕获氢的单位陷阱密度增大,从而可有效增强氧化物陶瓷涂层体系的氢渗透阻挡性能;
(3)本发明公开的涂层从内到外依次包覆在基体上的锆与氧化钇稳定氧化锆共沉积层、氧化铝掺杂二维材料中间层、以及氧化铝陶瓷层,多层的复合涂层结构一方面可以提高涂层的阻氢能力,另一方面可以提高涂层的使用寿命,外层涂层受到损伤时,内层涂层还可以有效地起到阻氢的作用。
附图说明
图1为本发明公开的氧化物陶瓷与二维材料复合阻氢涂层的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
一种氧化物陶瓷与二维材料复合阻氢涂层,包括从内到外依次包覆在基体上的锆与氧化钇稳定氧化锆共沉积层、氧化铝掺杂二维材料中间层、以及氧化铝陶瓷层;需要说明的是,在本发明中,锆与氧化钇稳定氧化锆共沉积层可以用xZr-(1-x)YSZ表示,其中x表示锆在所述共沉积层中所占的质量百分比;氧化铝掺杂二维材料中间层可以用yTDM@(1-y)Al2O3表示,其中TDM表示二维材料,y表示二维材料在所述中间层中所占的质量百分比。
具体地,所述复合阻氢涂层的总厚度不超过10μm,例如可以是9μm、8μm、7μm、5μm、2μm等,所述总厚度优选为0.1μm-1μm,具体可以是0.1μm、0.2μm、0.3μm、0.5μm、0.8μm、或者1μm。
具体地,所述氧化铝陶瓷层的厚度占复合阻氢涂层总厚度的1/4-1/2,优选为占复合阻氢涂层总厚度的1/3。
具体地,所述基体为马氏体或奥氏体不锈钢或高温合金。
具体地,所述的二维材料为氧化石墨烯GO、六方氮化硼h-BN或二硫化钼MoS2中的一种或多种混合。
具体地,所述锆与氧化钇稳定氧化锆共沉积层中锆的质量百分比为0-50wt.%,例如,锆的质量百分比可以是0wt.%、1wt.%、2wt.%、3wt.%、5wt.%、7wt.%、9wt.%、10wt.%、20wt.%、30wt.%、40wt.%、50wt.%等。
具体地,氧化铝掺杂二维材料中间层中二维材料的质量百分比为0-10wt.%,例如,二维材料的质量百分比可以是0wt.%、1wt.%、2wt.%、3wt.%、5wt.%、7wt.%、9wt.%、10wt.%等。
一种本发明公开的氧化物陶瓷与二维材料复合阻氢涂层的制备方法,包括以下步骤:
(1)将基体表面抛光至粗糙度为0.1μm-2μm,具体可以是0.1μm、0.5μm、1.5μm、2μm等;
(2)在步骤(1)处理完的基体上,采用共溅射沉积法制备锆与氧化钇稳定氧化锆共沉积层;
(3)在步骤(2)制备的涂层上,采用溶胶凝胶法制备氧化铝掺杂二维材料中间层;
(4)对步骤(3)制备的涂层样品,在Ar气氛中在700℃-1100℃进行高温热处理;具体温度可以是700℃、800℃、900℃、950℃、1000℃、1050℃、1100℃等;
(5)在步骤(4)处理后的涂层上,采用射频磁控溅射法制备氧化铝陶瓷涂层,得到氧化物陶瓷与二维材料复合阻氢涂层。
实施例1
316L SS/0.3wt.%Zr-0.7wt.%YSZ/0.1wt.%GO@0.9wt.%Al2O3/Al2O3复合阻氢涂层及其制备方法:
(1)选用316L不锈钢作为基体,将基体单面抛光至粗糙度为1.5μm,清洗吹干待用;
(2)采用金属锆(Zr)靶和氧化钇稳定氧化锆(YSZ)靶,通过磁控溅射的方法制备0.3wt.%Zr-0.7wt.%YSZ底层,两个靶材均采用射频电源供电,Ar作为起辉气体。当背底真空优于2.0×10-4Pa后,在溅射室中采用Ar等离子体清洗靶材10min。同时溅射Zr靶和YSZ靶材共沉积0.3wt.%Zr-0.7wt.%YSZ,涂层沉积压力0.5Pa,Zr靶溅射功率100W,YSZ靶溅射功率200W,靶基距100mm,沉积时间2h;
(3)在第(2)步基础上采用溶胶凝胶方法制备中间层0.1wt.%GO@0.9wt.%Al2O3层。将0.1mg氧化石墨烯纳米片超声分散于50ml去离子水中,得到氧化石墨烯溶液,然后将氧化石墨烯分散体与氧化铝溶胶凝胶溶液特定比例混合。将混合液在转速为3000rpm/min,在步骤(2)制得样品表面涂覆30s,最后在1000℃Ar气氛下热处理2h,形成稳定的0.1wt.%GO@0.9wt.%Al2O3涂层;
(4)将第(3)步得到的样品至于磁控溅射室中,调整溅射功率为250W,溅射气压为0.5Pa,靶基距为100mm,沉积2h得到316L SS/0.3wt.%Zr-0.7wt.%YSZ/0.1wt.%GO@0.9wt.%Al2O3/Al2O3复合阻氢涂层,其结构布设图如图1所示。
所制备的复合阻氢涂层总厚度为1.2μm,在700℃渗透温度下,316L SS/0.3wt.%Zr-0.7wt.%YSZ/0.1wt.%GO@0.9wt.%Al2O3/Al2O3复合阻氢涂层的阻氢性能是316L不锈钢基体的600多倍,并对实施例1制备涂层进行高温热冲击循环测试,从室温→700℃高温→室温为一个循环,50次循环后,涂层依旧保持完整,未出现开裂和剥落现象。
实施例2
304SS/0.1wt.%Zr-0.9wt.%YSZ/0.3h-BN@0.7wt.%Al2O3/Al2O3复合阻氢涂层及其制备方法:
(1)选用304不锈钢作为基体,将基体单面抛光至粗糙度为1.5μm,清洗吹干待用;
(2)采用金属锆(Zr)靶和氧化钇稳定氧化锆(YSZ)靶,通过磁控溅射的方法制备0.1wt.%Zr-0.9wt.%YSZ底层,两个靶材均采用射频电源供电,Ar作为起辉气体。当背底真空优于2.0×10-4Pa后,在溅射室中采用Ar等离子体清洗靶材10min。随后溅射Zr靶和YSZ靶材共沉积0.1wt.%Zr-0.9wt.%YSZ层,涂层沉积压力0.5Pa,Zr靶溅射功率50W,YSZ靶溅射功率250W,靶基距100mm,沉积时间2h;
(3)在第(2)步基础上采用溶胶凝胶方法制备中间层0.3h-BN@0.7wt.%Al2O3层。将0.3mg六方氮化硼(h-BN)纳米片超声分散于50ml去离子水中,得到六方氮化硼溶液,然后将六方氮化硼分散体与氧化铝溶胶凝胶溶液按照特定比例混合,磁力搅拌5h得到h-BN与Al2O3混合液。将混合液在转速为3000rpm/min,在步骤(2)制得样品表面涂覆30s,最后,在1000℃Ar气氛下热处理2h,形成稳定的0.3h-BN@0.7wt.%Al2O3涂层;
(4)将第(3)步得到的样品至于磁控溅射室中,调整溅射功率为250W,溅射气压为0.5Pa,靶基距为100mm,沉积2h得到304SS/0.1wt.%Zr-0.9wt.%YSZ/0.3h-BN@0.7wt.%Al2O3/Al2O3复合阻氢涂层。
所制备的复合涂层总厚度约为900nm,在700℃渗透温度下,304SS/0.1wt.%Zr-0.9wt.%YSZ/0.3h-BN@0.7wt.%Al2O3/Al2O3复合阻氢涂层的阻氢性能是304不锈钢基体的800多倍,并对实施例2制备涂层进行高温热冲击循环测试,从室温→700℃高温→室温为一个循环,50次循环后,涂层依旧保持完整,未出现开裂和剥落现象,且氢渗透阻挡性能稳定在300h以上。
实施例3
GH4099/0.2wt.%Zr-0.8wt.%YSZ/0.3h-MoS2@0.7wt.%Al2O3/Al2O3复合阻氢涂层及其制备:
(1)选用GH4099镍基高温合金作为基体,将基体单面抛光至粗糙度为1.5μm,清洗吹干待用;
(2)采用金属锆(Zr)靶和氧化钇稳定氧化锆(YSZ)靶,通过磁控溅射的方法制备0.2wt.%Zr-0.8wt.%YSZ底层,两个靶材均采用射频电源供电,Ar作为起辉气体。当背底真空优于2.0×10-4Pa后,在溅射室中采用Ar等离子体清洗靶材10min。随后溅射Zr靶和YSZ靶材共沉积0.2wt.%Zr-0.8wt.%YSZ层,涂层沉积压力0.5Pa,Zr靶溅射功率80W,YSZ靶溅射功率250W,靶基距100mm,沉积时间2h;
(3)在第(2)步基础上采用溶胶凝胶方法制备中间层0.3h-MoS2@0.7wt.%Al2O3层。将0.3mg二硫化钼(MoS2)纳米片超声分散于50ml去离子水中,得到二硫化钼分散体,然后将二硫化钼分散体与氧化铝溶胶凝胶溶液按照特定比例混合,磁力搅拌5h得到MoS2与Al2O3混合液。将混合液在转速为3000rpm/min,在步骤(2)制得样品表面涂覆30s,最后,在1000℃Ar气氛下热处理2h,形成稳定的0.3h-MoS2@0.7wt.%Al2O3涂层;
(4)将第(3)步得到的样品至于磁控溅射室中,调整溅射功率为250W,溅射气压为0.5Pa,靶基距为100mm,沉积2h得到GH4099/0.2wt.%Zr-0.8wt.%YSZ/0.3h-MoS2@0.7wt.%Al2O3/Al2O3复合阻氢涂层。
所制备的复合涂层总厚度约为1μm,在700℃渗透温度下,GH4099/0.2wt.%Zr-0.8wt.%YSZ/0.3h-MoS2@0.7wt.%Al2O3/Al2O3复合阻氢涂层的阻氢性能是GH4099基体的1500多倍,并对实施例3制备涂层进行高温热冲击循环测试,从室温→1000℃高温→室温为一个循环,50次循环后,涂层依旧保持完整,且氢渗透阻挡性能稳定在500h以上。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,包括从内到外依次包覆在基体上的锆与氧化钇稳定氧化锆共沉积层、氧化铝掺杂二维材料中间层、以及氧化铝陶瓷层。
2.根据权利要求1所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述复合阻氢涂层的总厚度不超过10μm。
3.根据权利要求2所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述复合阻氢涂层的总厚度为0.1μm-1μm。
4.根据权利要求1所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述氧化铝陶瓷层的厚度占复合阻氢涂层总厚度的1/4-1/2。
5.根据权利要求4所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述氧化铝陶瓷层的厚度占复合阻氢涂层总厚度的1/3。
6.根据权利要求1所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述基体为马氏体或奥氏体不锈钢或高温合金。
7.根据权利要求1所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述的二维材料为氧化石墨烯GO、六方氮化硼h-BN和二硫化钼MoS2中的一种或多种混合。
8.根据权利要求1所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,所述锆与氧化钇稳定氧化锆共沉积层中锆的质量百分比为0-50wt.%。
9.根据权利要求1所述的一种氧化物陶瓷与二维材料复合阻氢涂层,其特征在于,氧化铝掺杂二维材料中间层中二维材料的质量百分比为0-10wt.%。
10.一种权利要求1-9任一项所述的氧化物陶瓷与二维材料复合阻氢涂层的制备方法,其特征在于,包括以下步骤:
(1)将基体表面抛光至粗糙度为0.1μm-2μm;
(2)在步骤(1)处理完的基体上,采用共溅射沉积法制备锆与氧化钇稳定氧化锆共沉积层;
(3)在步骤(2)制备的涂层上,采用溶胶凝胶法制备氧化铝掺杂二维材料中间层;
(4)对步骤(3)制备的涂层样品,在Ar气氛中进行热处理,热处理的温度为700-1100℃;
(5)在步骤(4)处理后的涂层上,采用射频磁控溅射法制备氧化铝陶瓷涂层,得到氧化物陶瓷与二维材料复合阻氢涂层。
CN202210594764.2A 2022-05-27 2022-05-27 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法 Active CN115044868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210594764.2A CN115044868B (zh) 2022-05-27 2022-05-27 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210594764.2A CN115044868B (zh) 2022-05-27 2022-05-27 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN115044868A true CN115044868A (zh) 2022-09-13
CN115044868B CN115044868B (zh) 2023-08-08

Family

ID=83158776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210594764.2A Active CN115044868B (zh) 2022-05-27 2022-05-27 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN115044868B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651519A (zh) * 2022-12-29 2023-01-31 有研工程技术研究院有限公司 一种输氢管道用复合抗氢渗透涂层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711541A (zh) * 2013-12-11 2015-06-17 北京有色金属研究总院 一种氧化锆和氧化铝梯度复合涂层及其制备方法
WO2015137761A1 (ko) * 2014-03-14 2015-09-17 주식회사 에코인프라홀딩스 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
CN106283052A (zh) * 2016-08-23 2017-01-04 北京航空航天大学 一种二维材料调控硅碳复合结构阻氢涂层及其制备方法
CN109699114A (zh) * 2019-02-18 2019-04-30 中国科学院合肥物质科学研究院 一种多层复合中子靶及其制备方法
CN110551984A (zh) * 2019-09-23 2019-12-10 有研工程技术研究院有限公司 一种复合阻氢涂层及其制备方法
CN113046695A (zh) * 2019-12-27 2021-06-29 有研工程技术研究院有限公司 一种钇/氧化钇复合阻氢涂层
CN113122842A (zh) * 2019-12-30 2021-07-16 有研工程技术研究院有限公司 一种复合阻氢涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711541A (zh) * 2013-12-11 2015-06-17 北京有色金属研究总院 一种氧化锆和氧化铝梯度复合涂层及其制备方法
WO2015137761A1 (ko) * 2014-03-14 2015-09-17 주식회사 에코인프라홀딩스 졸겔법과 산화 그래핀을 이용한 전도성 방열 그래핀 코팅재의 제조방법 및 동 방법으로 제조된 전도성 방열 그래핀 코팅재
CN106283052A (zh) * 2016-08-23 2017-01-04 北京航空航天大学 一种二维材料调控硅碳复合结构阻氢涂层及其制备方法
CN109699114A (zh) * 2019-02-18 2019-04-30 中国科学院合肥物质科学研究院 一种多层复合中子靶及其制备方法
CN110551984A (zh) * 2019-09-23 2019-12-10 有研工程技术研究院有限公司 一种复合阻氢涂层及其制备方法
CN113046695A (zh) * 2019-12-27 2021-06-29 有研工程技术研究院有限公司 一种钇/氧化钇复合阻氢涂层
CN113122842A (zh) * 2019-12-30 2021-07-16 有研工程技术研究院有限公司 一种复合阻氢涂层及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEIJING WANG, ET AL: "Preparation of Al2O3/Y2O3 composite coating for deuterium permeation reduction", JOURNAL OF RARE EARTHS, pages 1 - 6 *
王维静: "复合陶瓷涂层界面结构研究及阻氢性能评价", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
王维静: "复合陶瓷涂层界面结构研究及阻氢性能评价", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 8, 15 August 2019 (2019-08-15), pages 37 - 38 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651519A (zh) * 2022-12-29 2023-01-31 有研工程技术研究院有限公司 一种输氢管道用复合抗氢渗透涂层及其制备方法

Also Published As

Publication number Publication date
CN115044868B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN102400099B (zh) 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
CN111424242B (zh) 一种抗cmas双层结构防护涂层、热障涂层多层结构及其制备方法
CN106884132A (zh) 一种高温热障涂层材料
CN105734500B (zh) 一种具有复合结构的抗高温氧化热障涂层及其制备方法
Li et al. Oxidation behavior and Cr-Zr diffusion of Cr coatings prepared by atmospheric plasma spraying on zircaloy-4 cladding in steam at 1300° C
CN102732883A (zh) 一种弥散贵金属微粒增韧复合热障涂层及制备方法
CN101497998A (zh) 铱铝高温抗氧化涂层的制备方法
CN115044868B (zh) 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
CN109609952A (zh) 一种超极限镁合金及其制备方法
CN109487196A (zh) 一种超极限镍合金及其制备方法
CN114657509A (zh) 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法
CN102925871A (zh) 一种复合热障涂层及其制备方法
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
Fang et al. Thermal cycling behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coating with La0. 8Ba0. 2TiO3− δ top layer
CN109023203A (zh) 稳定结晶态六铝酸盐热障涂层的制备方法
CN103343379A (zh) 一种T91钢表面复合电镀Ni/CrAl/Y2O3梯度镀层的方法
CN105039957B (zh) 一种在锆合金基体表面制备包含h‑Zr3O相的致密氧化锆涂层的方法
CN105274474B (zh) 一种耐高温多层太阳能选择性吸收涂层及其制备方法
CN111155052A (zh) 一种Er2O3涂层的制备方法及应用
CN113073285B (zh) 一种热障涂层及其制备方法和应用
CN115142018A (zh) 一种耐高温液态铅/铅铋合金腐蚀的高熵合金涂层及其制备方法
CN115216754A (zh) 一种新型多主元非晶阻氢同位素涂层及其制备方法
CN114368969A (zh) TiSi2掺杂Gd2Zr2O7陶瓷材料、制备方法及热障涂层
Dong et al. Preparation and characterization of aluminide/zirconia composite coatings by a three-step combined process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant