CN114657509A - 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法 - Google Patents

一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法 Download PDF

Info

Publication number
CN114657509A
CN114657509A CN202210305440.2A CN202210305440A CN114657509A CN 114657509 A CN114657509 A CN 114657509A CN 202210305440 A CN202210305440 A CN 202210305440A CN 114657509 A CN114657509 A CN 114657509A
Authority
CN
China
Prior art keywords
layer
ceramic
metal
target
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210305440.2A
Other languages
English (en)
Inventor
宋忠孝
魏泽宇
朱晓东
钱旦
王永静
孙军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210305440.2A priority Critical patent/CN114657509A/zh
Publication of CN114657509A publication Critical patent/CN114657509A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于新材料技术领域,且公开了一种耐液态铅铋合金腐蚀的陶瓷‑金属多层复合涂层,包括陶瓷层与金属层,该所述陶瓷层为SiC材料制成,所述金属层为Al‑Cr或Al‑Si二元合金制成,所述陶瓷层与金属层厚度比值为0.2:2,且二者总层数为2~40。本发明通过使用金属层打底,提高了涂层与基材之间的结合力;金属层与陶瓷层组成多层结构,并通过调节金属‑陶瓷层厚度比,可有效地调节涂层力学性能,降低涂层内应力并使层间结合提高,避免在高温铅铋环境下,涂层的陶瓷层和金属层之间发生脱落,同时涂层具有较好的韧性,能够提高抗冲刷能力;使用磁控溅射方法制备金属‑陶瓷复合涂层能简化制备过程、全程无污染,节约了成本,提高了使用效率。

Description

一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制 备方法
技术领域
本发明属于新材料技术领域,具体为一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法。
背景技术
铅铋快堆是“第四代”先进核能系统之一,在第四代候选堆型中潜力巨大,是核能发展的重要方向之一。然而,高温液态铅铋腐蚀性强,当温度高于500℃,长期运行过程中反应堆结构材料将与高温液态铅铋直接接触,会产生溶解腐蚀、氧化腐蚀、金属表面冲蚀、重金属扩散等一系列化学物理反应而被严重破坏,从而影响核反应堆的运行稳定性。目前的解决方法除了开发合适的结构材料外,使用涂层材料也是解决关键部件腐蚀的一个重要解决方案。表面涂层技术是金属材料腐蚀防护最简单有效、应用最广的方法,它能有效地将基材和表面涂层特点充分结合起来,发挥两类材料的综合优势,赋予材料表面新的性能,同时又能满足设备对材料结构性能(强度、韧性等)和环境性能(耐磨、耐蚀、耐高温、亲/疏水性等)的使用需要。
陶瓷材料因具有较高的硬度和高温强度、良好的耐高温性能和导热性能、优越的耐腐蚀性等特点而作为涂层材料用于高温防腐,目前常用的陶瓷涂层主要有氧化物(ZrO2、Al2O3、Y2O3等)、碳化物(SiC)和氮化物(TiAlN、TiN)等。在上述陶瓷材料中,SiC涂层氧化时生成的SiO2能阻碍基材继续氧化,是耐高温液态铅铋腐蚀性能比较好的涂层材料之一,但由于金属基材与SiC涂层的热膨胀系数相差很大,且陶瓷涂层和金属基材之间存在陶瓷相与金属相形成的突变界面,加之物相晶体学性质差异大,膜基界面结合强度低,在外力或热应力作用下易导致涂层的整体脱落。一些金属涂层,如FeCrAl等虽然与金属基材结合较好,但在与高温液态铅铋合金接触时易发生溶解、反应、氧化开裂而导致失效。如能将金属与陶瓷材料的优点结合起来形成复合涂层,将能够更好地发挥涂层材料耐液态铅铋合金腐蚀的优点。
本发明利用磁控溅射技术在金属表面制备金属-陶瓷多层涂层,其中金属为铝基合金,陶瓷层为碳化硅,两者均具有良好的耐液态铅铋合金腐蚀能力,涂层底部铝基合金层不仅可以提高膜基界面结合,也通过形成成分梯度降低涂层与基材间的内应力;金属层的引入可显著降低陶瓷层内应力,避免涂层开裂,大幅度提升多层涂层的层间强度和断裂韧性,进而提高多层涂层的综合力学性能。目前采用磁控溅射陶瓷-金属多层涂层用于耐液态铅铋合金腐蚀的研究尚未有报道。
发明内容
本发明的目的在于提供一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法,以解决上述背景技术中提出的问题。
为了实现上述目的,本发明提供如下技术方案:一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层,包括陶瓷层与金属层,该所述陶瓷层为SiC材料制成,所述金属层为Al-Cr或Al-Si二元合金制成,所述陶瓷层与金属层厚度比值为0.2:2,且二者总层数为2~40,所述金属层的单层厚度为50nm~2μm,所述陶瓷层的单层厚度为50nm~1μm。
本申请还提出了一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,具体操作步骤如下:
S1、将金属基材抛光清洗后,装于真空室内磁控溅射设备工件转架上,将单质Si靶和Al-Cr合金靶或Al-Si合金靶分别置于磁控溅射真空腔内的靶位上;
S2、向真空室内通入氩气并对基材表面进行辉光溅射清洗;
S3、向真空室内通入氩气,溅射合金靶,沉积金属层;
S4、向真空室内通入甲烷或乙炔等烃类气体作为主要的反应气体,溅射单质Si靶,沉积SiC陶瓷层;
S5、反复交替沉积金属层和陶瓷层,制备一定厚度比和层数的金属-陶瓷涂层。
优选的,所述S1步骤中使用靶材单质靶为Si靶,合金靶为Al-Cr、Al-Si靶,其中主要元素含量不低于99%。
优选的,所述步骤S1中金属基材包含但不限于奥氏体不锈钢、耐热钢、低活化马氏体钢、高温合金等。
优选的,所述步骤S2中磁控溅射设备真空室抽气到气压低于0.005Pa后,通入氩气,控制气压为0.4~2.0Pa,基材施加-200~900V偏压,辉光溅射清洗基材不少于5min。
优选的,所述步骤S3中磁控溅射制备金属层工艺参数如下:基材温度25~500℃,真空室本底气压在0.005Pa以下,通入氩气,气压为0.1~1Pa,溅射合金靶,单靶溅射功率50~300W,沉积时间10~120min。
优选的,所述步骤S4中陶瓷层所涉及的磁控溅射方法为反应溅射,工艺参数如下:真空室通入氩气,气压为0.1~1Pa,按照制备陶瓷层的需要通入甲烷或乙炔等含碳反应气体,反应气体的流量控制在5~50ml/min,溅射Si靶在基材表面镀SiC层,单个Si靶溅射功率100~300W,沉积时间20~120min。
优选的,所述步骤S5中陶瓷层与金属层厚度比为0.2~2,总层数2~40,其中金属层的单层厚度为50nm~2μm,陶瓷层的单层厚度为50nm~1μm。
本发明的有益效果如下:
1、本发明通过使用金属层打底,提高了涂层与基材之间的结合力;金属层与陶瓷层组成多层结构,并通过调节金属-陶瓷层厚度比,可有效地调节涂层力学性能,降低涂层内应力并使层间结合提高,避免在高温铅铋环境下,涂层的陶瓷层和金属层之间发生脱落,同时涂层具有较好的韧性,能够提高抗冲刷能力;使用磁控溅射方法制备金属-陶瓷复合涂层能简化制备过程、全程无污染,节约了成本,提高了使用效率。
附图说明
图1为本发明涂层结构图;
图2为本发明陶瓷金属多层膜涂层截面扫描电镜图像。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
步骤1将Si靶与合金Al-Cr靶分别置于磁控溅射真空腔内的靶位上,将316L奥氏体不锈钢金属基材清洗并干燥后放入真空磁控溅射设备工件转架上。
步骤2将磁控溅射设备真空室抽气到气压低于5×10-3Pa后,通入氩气,控制气压为0.4Pa,基材施加-900V偏压,辉光溅射清洗基材,时间为10min。
步骤3向真空室内通入氩气,开启Al-Cr合金靶,控制工作气压为0.1Pa,基材温度25℃,调节溅射功率为300W,溅射时间60min,获得2μm厚的Al-Cr合金打底层。
步骤4关闭Al-Cr合金靶,开启Si靶,并向真空室内通入甲烷,甲烷的流量控制在50ml/min,在Al-Cr合金层表面沉积SiC层,Si靶溅射功率300W,溅射时间120min,获得1μm厚的SiC层。镀膜结束后,停止通气,保持真空状态,随炉冷却至室温后取出试样。
实施例二
步骤1将Si靶与合金Al-Si靶分别置于磁控溅射真空腔内的靶位上,将T91耐热钢金属基材清洗并干燥后放入真空磁控溅射设备工件转架上。
步骤2将磁控溅射设备真空室抽气到气压低于5×10-3Pa后,通入氩气,控制气压为1.0Pa,基材施加-700V偏压,辉光溅射清洗基材,时间为10min。
步骤3向真空室内通入氩气,开启Al-Si合金靶,控制工作气压为0.4Pa,基材温度100℃,调节溅射功率150W,溅射时间15min,获得250nm厚的Al-Si合金打底层。
步骤4关闭Al-Si合金靶,开启Si靶,并向真空室内通入甲烷,甲烷的流量控制在5ml/min;在Al-Si合金层表面沉积SiC层,溅射功率100W,溅射时间20min,获得50nm厚的SiC层。
步骤5依次重复步骤3与步骤4,制备陶瓷层和金属层厚度比为0.2,总数为30层陶瓷-金属多层膜。镀膜结束后,停止通气,保持真空状态,随炉冷却至室温后取出试样。
实施例三
步骤1将Si靶与合金Al-Cr合金靶分别置于磁控溅射真空腔内的靶位上,将CLAM低活化马氏体钢金属基材清洗并干燥后放入真空磁控溅射设备工件转架上。
步骤2将磁控溅射设备真空室抽气到气压低于5×10-3Pa后,通入氩气,控制气压为1.5Pa,基材施加-500V偏压,辉光溅射清洗基材,时间为10min。
步骤3向真空室内通入氩气,开启Al-Cr合金靶,控制工作气压为1.0Pa,基材温度300℃,调节溅射功率60W,溅射时间120min,获得800nm厚的Al-Cr合金打底层。
步骤4关闭Al-Cr合金靶,开启Si靶,并向真空室内通入乙炔,乙炔的流量控制在30ml/min;在Al-Cr合金层表面沉积SiC层,溅射功率250W,溅射时间120min,获得800nm厚的SiC层。
步骤5依次重复步骤3与步骤4,制备得到的陶瓷层和金属层厚度比为1,总层数为8层的陶瓷-金属多层膜。镀膜结束后,停止通气,保持真空状态,随炉冷却至室温后取出试样。
实施例四
步骤1将Si靶与合金Al-Cr合金靶分别置于磁控溅射真空腔内的靶位上,将15-15Ti高温合金金属基材清洗并干燥后放入真空磁控溅射设备工件转架上。
步骤2将磁控溅射设备真空室抽气到气压低于5×10-3Pa后,通入氩气,控制气压为2.0Pa,基材施加-200V偏压,辉光溅射清洗基材,时间为10min。
步骤3向真空室内通入氩气,开启Al-Cr合金靶,控制工作气压为0.8Pa,基材温度500℃,调节溅射功率50W,溅射时间10min,获得50nm厚的Al-Cr合金打底层。
步骤4关闭Al-Cr合金靶,开启Si靶,并向真空室内通入乙炔,乙炔的流量控制在15ml/min;在Al-Cr合金层表面沉积SiC层,溅射功率180W,溅射时间20min,获得100nm厚的SiC层。
步骤5依次重复步骤3与步骤4,制备得到的陶瓷层和金属层厚度比为2,总层数为30层的陶瓷-金属多层膜。镀膜结束后,停止通气,保持真空状态,随炉冷却至室温后取出试样。
如图1所示:1-基材,2-金属层,3-陶瓷层,在基材之上金属层与陶瓷层互相叠加,且叠加层数为2~40,图中h1单层厚度为50nm~2μm,h2单层厚度为50nm~1μm。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层,包括陶瓷层与金属层,其特征在于:该所述陶瓷层为SiC材料制成,所述金属层为Al-Cr或Al-Si二元合金制成,所述陶瓷层与金属层厚度比值为0.2:2,且二者总层数为2~40,所述金属层的单层厚度为50nm~2μm,所述陶瓷层的单层厚度为50nm~1μm。
2.一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:具体操作步骤如下:
S1、将金属基材抛光清洗后,装于真空室内磁控溅射设备工件转架上,将单质Si靶和Al-Cr合金靶或Al-Si合金靶分别置于磁控溅射真空腔内的靶位上;
S2、向真空室内通入氩气并对基材表面进行辉光溅射清洗;
S3、向真空室内通入氩气,溅射合金靶,沉积金属层;
S4、向真空室内通入甲烷或乙炔等烃类气体作为主要的反应气体,溅射单质Si靶,沉积SiC陶瓷层;
S5、反复交替沉积金属层和陶瓷层,制备一定厚度比和层数的金属-陶瓷涂层。
3.根据权利要求2所述的一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:所述S1步骤中使用靶材单质靶为Si靶,合金靶为Al-Cr、Al-Si靶,其中主要元素含量不低于99%。
4.根据权利要求2所述的一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:所述步骤S1中金属基材包含但不限于奥氏体不锈钢、耐热钢、低活化马氏体钢、高温合金。
5.根据权利要求2所述的一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:所述步骤S2中磁控溅射设备真空室抽气到气压低于0.005Pa后,通入氩气,控制气压为0.4~2.0Pa,基材施加-200~900V偏压,辉光溅射清洗基材不少于5min。
6.根据权利要求2所述的一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:所述步骤S3中磁控溅射制备金属层工艺参数如下:基材温度25~500℃,真空室本底气压在0.005Pa以下,通入氩气,气压为0.1~1Pa,溅射合金靶,单靶溅射功率50~300W,沉积时间10~120min。
7.根据权利要求2所述的一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:所述步骤S4中陶瓷层所涉及的磁控溅射方法为反应溅射,工艺参数如下:真空室通入氩气,气压为0.1~1Pa,按照制备陶瓷层的需要通入甲烷或乙炔等含碳反应气体,反应气体的流量控制在5~50ml/min,溅射Si靶在基材表面镀SiC层,单个Si靶溅射功率100~300W,沉积时间20~120min。
8.根据权利要求2所述的一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层制备方法,其特征在于:所述步骤S5中陶瓷层与金属层厚度比为0.2~2,总层数2~40,其中金属层的单层厚度为50nm~2μm,陶瓷层的单层厚度为50nm~1μm。
CN202210305440.2A 2022-03-25 2022-03-25 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法 Pending CN114657509A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210305440.2A CN114657509A (zh) 2022-03-25 2022-03-25 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210305440.2A CN114657509A (zh) 2022-03-25 2022-03-25 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN114657509A true CN114657509A (zh) 2022-06-24

Family

ID=82031343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210305440.2A Pending CN114657509A (zh) 2022-03-25 2022-03-25 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114657509A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115895387A (zh) * 2022-11-18 2023-04-04 浙江安胜科技股份有限公司 一种高寿命陶瓷涂层、制备方法及滚压轮
CN115928018A (zh) * 2022-11-29 2023-04-07 四川大学 耐液态铅/铅铋腐蚀的金属-陶瓷复合涂层的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516015B1 (zh) * 1971-06-02 1976-02-24
SE1430130A1 (sv) * 2014-09-14 2016-03-15 Blykalla Reaktorer Ab A steel for a lead cold reactor abstract
CN105525273A (zh) * 2015-12-02 2016-04-27 北京天瑞星光热技术有限公司 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法
CN107208231A (zh) * 2014-12-11 2017-09-26 山特维克知识产权股份有限公司 铁素体合金
WO2017192097A1 (en) * 2016-05-04 2017-11-09 Blykalla Reaktorer Stockholm Ab Pumps for hot and corrosive fluids
CN110499494A (zh) * 2019-09-05 2019-11-26 西安交通大学 一种以Zr为基底的Cr/Al单层膜及其制备方法
CN110760751A (zh) * 2019-10-09 2020-02-07 中国科学院金属研究所 一种提高马氏体耐热钢耐液态金属腐蚀的方法
CN112144008A (zh) * 2020-08-14 2020-12-29 中国科学院金属研究所 一种通过预氧化提高氧化物弥散强化钢耐高温液态金属腐蚀性能的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516015B1 (zh) * 1971-06-02 1976-02-24
SE1430130A1 (sv) * 2014-09-14 2016-03-15 Blykalla Reaktorer Ab A steel for a lead cold reactor abstract
CN107208231A (zh) * 2014-12-11 2017-09-26 山特维克知识产权股份有限公司 铁素体合金
CN105525273A (zh) * 2015-12-02 2016-04-27 北京天瑞星光热技术有限公司 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法
WO2017192097A1 (en) * 2016-05-04 2017-11-09 Blykalla Reaktorer Stockholm Ab Pumps for hot and corrosive fluids
CN110499494A (zh) * 2019-09-05 2019-11-26 西安交通大学 一种以Zr为基底的Cr/Al单层膜及其制备方法
CN110760751A (zh) * 2019-10-09 2020-02-07 中国科学院金属研究所 一种提高马氏体耐热钢耐液态金属腐蚀的方法
CN112144008A (zh) * 2020-08-14 2020-12-29 中国科学院金属研究所 一种通过预氧化提高氧化物弥散强化钢耐高温液态金属腐蚀性能的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENRICO MIORIN等: "Al rich PVD protective coatings:a promising approach to prevent T91 steel corrosion in stagnant liquid lead", 《SURFACE & COATINGS TECHNOLOGY》 *
戴达煌等: "《功能薄膜及其沉积制备技术》", 31 January 2013, 冶金工业出版社 *
雷曼等: "Al、(Al、Si)涂层的制备及其在550℃液态铅铋合金中的防腐蚀性能研究", 《核科学与工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115895387A (zh) * 2022-11-18 2023-04-04 浙江安胜科技股份有限公司 一种高寿命陶瓷涂层、制备方法及滚压轮
CN115928018A (zh) * 2022-11-29 2023-04-07 四川大学 耐液态铅/铅铋腐蚀的金属-陶瓷复合涂层的制备方法
CN115928018B (zh) * 2022-11-29 2023-07-21 四川大学 耐液态铅/铅铋腐蚀的金属-陶瓷复合涂层的制备方法

Similar Documents

Publication Publication Date Title
CN114657509A (zh) 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法
CN109666911B (zh) 核用锆合金包壳表面耐高温腐蚀的高熵合金涂层及其制备方法
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN114686810B (zh) 一种防腐防氢渗透涂层及其制备方法
CN108728793B (zh) 一种强韧耐蚀CrAlN/Cr2AlC多层膜涂层及其制备方法
CN114686814B (zh) 一种防腐防氢渗透涂层及其制备方法
CN108914111A (zh) 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用
CN102787300A (zh) 一种超临界水冷堆燃料包壳表面的Cr/CrAlN梯度涂层工艺
CN105734500A (zh) 一种具有复合结构的抗高温氧化热障涂层及其制备方法
CN109207953A (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN109306445A (zh) 钛或钛合金表面Ti-Al-C系MAX相涂层的制备方法
CN107604312A (zh) 一种表面为(Ti,Al)N多层隔热耐磨超厚涂层的活塞及其制备方法和应用
CN116926489A (zh) 一种核用锆合金表面梯度复合涂层的制备方法
CN115044868B (zh) 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
CN116043222A (zh) 一种含有多层结构的抗高温耐蚀防护涂层及其制备方法
CN112695282B (zh) 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用
CN112921299B (zh) 一种锆包壳表面复合膜层的制备方法
CN113186505B (zh) 一种在γ-TiAl合金表面WC涂层的方法
CN108300967A (zh) 耐高温低摩擦DLC/AlTiSiN多层复合涂层及其制备方法
CN113430488A (zh) 一种核反应堆燃料包壳纳米复合涂层及其制备方法
Gou et al. The oxidation behaviors of Cr2N and Cr/Cr2N multilayer coatings on Zircaloy-4 tubes in high temperature environment
CN115044875B (zh) 一种多层梯度复合阻氢涂层及其制备方法
CN118086834B (zh) 一种包含钼酸镍扩散障的导电叠层涂层及制备方法
CN116219376B (zh) 一种钽表面抗高温烧蚀涂层及其制备方法
Jin et al. Effect of bias voltage on high-temperature oxidation resistance and electrical properties of Mn-Co coating with metal interconnects for solid oxide fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220624