CN112921299B - 一种锆包壳表面复合膜层的制备方法 - Google Patents

一种锆包壳表面复合膜层的制备方法 Download PDF

Info

Publication number
CN112921299B
CN112921299B CN202110084963.4A CN202110084963A CN112921299B CN 112921299 B CN112921299 B CN 112921299B CN 202110084963 A CN202110084963 A CN 202110084963A CN 112921299 B CN112921299 B CN 112921299B
Authority
CN
China
Prior art keywords
coating
deposition
zirconium
cladding
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110084963.4A
Other languages
English (en)
Other versions
CN112921299A (zh
Inventor
李杨
李召峰
洪杨
吴晓宏
卢松涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110084963.4A priority Critical patent/CN112921299B/zh
Publication of CN112921299A publication Critical patent/CN112921299A/zh
Application granted granted Critical
Publication of CN112921299B publication Critical patent/CN112921299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/20Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种锆包壳表面复合膜层的制备方法,属于锆包壳防护涂层技术领域。本发明解决现有Cr涂层与锆合金基底表面结合不牢的问题。本发明采用原子层沉积技术与磁控溅射技术相结合的手段,在锆合金表面构筑梯度复合涂层,利用原子层沉积技术通过工艺参数来调控Al2O3涂层表面的微纳结构和相结构排列,有效提高其与Cr涂层间的界面结合力,并利用磁控溅射技术在Al2O3涂层上镀致密的Cr涂层,将致密的Cr涂层作为复合涂层最后一道屏障,并依靠氧化产物Cr2O3形成致密的保护膜,能够大幅度阻碍氧扩散至基体,降低包壳管的氧化速率,具有优异的抗高温水蒸气氧化性能。

Description

一种锆包壳表面复合膜层的制备方法
技术领域
本发明涉及一种锆包壳表面复合膜层的制备方法,属于锆包壳防护涂层技术领域。
背景技术
福岛核泄露事故后,耐事故燃料受到科研人员的高度重视。锆合金包壳是应用于核电反应堆芯的关键材料,被称为核反应堆的“第1道安全屏障”,其性能稳定和寿命提升是保证核反应堆芯安全性和可靠性的关键。
目前,在锆合金表面制备结合强度高的抗氧化涂层是重要的研究方向之一。但锆包壳涂层面临的技术挑战主要是涂层不改变燃料包壳的尺寸,且同时满足燃料包壳和组件的各种性能要求,如涂层具有高温抗氧化性能的事故容错能力,而且在长期运行过程中,涂层在腐蚀、蠕变和磨蚀条件下都应具有一定的稳定性。因此,在锆合金包壳表面制备涂层需要不断地探索、优化锆合金表面涂层制备技术,这对于提高核反应安全性能具有重要意义。
金属铬是一种极具发展前景的锆合金涂层候选材料,但常规工艺所制备的铬涂层存在与基体结合力差、厚度不均匀、致密度差等缺点,且相关结构设计、涂层性能、各种工况下的行为及变化机制还缺乏深入了解。亟需投入精力着重考察涂层与各种介质环境的反应机制、界面稳定性及制备工艺的优化等方面,为后期的实际应用提供指导。因此,提供一种锆包壳表面复合膜层的制备方法是十分必要的。
发明内容
本发明为了解决现有技术中Cr涂层与锆合金基底表面结合不牢的问题,提供一种锆包壳表面复合膜层的制备方法。
一种锆包壳表面复合膜层的制备方法,该方法包括以下步骤:
步骤1,利用原子层沉积技术在锆合金管壳上沉积Al2O3膜层;
步骤2,利用磁控溅射技术在Al2O3膜层上镀Cr涂层。
进一步地,步骤1的操作过程为:将锆合金管壳放在原子层沉积仪的沉积腔体内,将沉积腔体内抽至4×10-3Torr~6×10-3Torr,然后通入载气使沉积腔体压力为0.1Torr~0.2Torr,设置沉积腔体内温度为100℃~200℃,然后进行锆合金管壳表面Al2O3膜层原子层周期沉积生长,重复执行170~300个生长沉积周期,获得镀有Al2O3膜层的锆合金管壳。
更进一步地,每个原子层沉积生长周期的操作过程为:1)向原子层沉积仪的沉积腔体内以脉冲形式注入氧源,脉冲时间t1为0.02s~0.04s;2)打开进气阀、排气阀,利用氮气进行吹扫,吹扫时间t2为30s~60s;3)向原子层沉积仪的沉积腔体内以脉冲形式注入铝源,脉冲时间t3为0.2s~0.4s;4)打开进气阀、排气阀,利用氮气进行吹扫,吹扫时间t4为30s~60s,完成一个沉积生长周期。
更进一步地,铝源为三甲基铝,氧源为去离子水或臭氧。
更进一步地,载气是纯度为99.99%的氮气。
更进一步地,Al2O3膜层厚度为30~60nm。
进一步地,步骤2的操作过程为:以铬靶为靶材,氩气为工作气体,背底真空度为5×10-4Pa,溅射功率为50-200W,溅射压强为0.5-1.5Pa的条件下在锆合金管壳上沉积的Al2O3膜层上镀覆Cr涂层,溅射时间为1-3h。
更进一步地,铬靶材的尺寸为
Figure BDA0002907788560000021
更进一步地,靶距为100~200mm。
更进一步地,氩气的气体流量为20sccm。
本发明具有以下有益效果:本发明采用原子层沉积技术与磁控溅射技术相结合的手段,在锆合金表面构筑一种新型梯度复合涂层。具有以下优点:
(1)本发明首先利用原子层沉积技术在锆合金基底沉积Al2O3膜层,将具有较高的热传导系数的Al2O3层作为过渡层,更利于热量从包壳内部向外部传递,可大幅提高复合涂层整体的热稳定性;通过工艺参数来调控Al2O3涂层表面的微纳结构和相结构排列,有效提高其与Cr涂层之间的结合力,解决现有磁控溅射Cr涂层与锆合金基底表面结合不牢的问题。
(2)本发明利用磁控溅射技术在Al2O3涂层上镀致密的Cr涂层,将致密的Cr涂层作为复合涂层最后一道屏障,依靠氧化产物Cr2O3形成致密的保护膜,能够大幅度阻碍氧扩散至基体,降低包壳管的氧化速率,具有优异的抗高温水蒸气氧化性能。
(3)本发明依靠各膜层之间功能不同且相互协同,整体提高复合涂层的综合防护性能。
附图说明
图1为实施例1获得的复合膜层的扫描电镜图;
图2a为无膜层的锆合金管壳氧化后的照片;
图2b为实施例1获得的锆包壳表面复合膜层氧化后的照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明均为常规方法。所用材料、试剂、方法和仪器,未经特殊说明,均为本领域常规材料、试剂、方法和仪器,本领域技术人员均可通过商业渠道获得。
具体实施方式1:
(1)制备过渡层Al2O3膜层:
将锆合金管壳放在原子层沉积仪的沉积腔体内,将沉积腔体内抽至5×10-3Torr,再通入纯度为99.99%的氮气至腔体压力为0.15Torr,沉积腔体内温度为150℃,重复执行230个原子层沉积生长周期,获得镀有Al2O3膜层的锆合金管壳,其中Al2O3膜层厚度为30nm,Al2O3膜层表面微观结构为离散岛状分布结构。
其中,每个原子层沉积生长周期的操作过程为:1)向原子层沉积仪的沉积腔体内以脉冲形式注入氧源,脉冲时间t1为0.03s;2)打开进气阀、排气阀,利用氮气进行吹扫,吹扫时间t2为40s;3)向原子层沉积仪的沉积腔体内以脉冲形式注入三甲基铝作为铝源,脉冲时间t3为0.3s;4)打开进气阀、排气阀,利用氮气进行吹扫,吹扫时间t4为40s,完成一个沉积生长周期。
(2)制备功能金属层Cr涂层:
采用磁控溅射技术,以铬靶为靶材,背底真空度为5X10-4Pa,Ar气为工作气体,溅射功率为150W,溅射时间为45min,溅射压强为0.5Pa的条件下在步骤(1)制备的过渡层Al2O3膜层上镀覆功能金属层Cr涂层,即在锆合金管壳表面获得复合膜层,其中铬靶材的尺寸为
Figure BDA0002907788560000031
靶距为150mm,氩气的气体流量为20sccm。
本实施例在锆合金管壳表面获得复合膜层的扫描电镜图像如图1所示,由图1可知,复合膜层与锆合金管壳基底结合的很牢固,没有出现涂层开裂或脱落的现象。
为模拟核电运行时发生突发情况(地震、海啸)时会出现的冷却剂缺失事故,使用高温高压管式炉对本实施例获得的表面涂覆有复合膜层的锆合金管壳和未经过处理的锆合金管壳进行氧化处理,氧化处理条件为:60min升温至1000℃,然后在1000℃保温40min,自然冷却降温。氧化前后分别用高精度天平来称重,通过增重定性判断涂层抗氧化能力。经过氧化处理后的试样照片分别如图2a和图2b所示。由图2a可知,未经过处理的锆合金管壳氧化后表面腐蚀严重;而采用本申请的方法在锆合金管壳表面涂覆复合膜层以后,再经过氧化处理后,复合薄膜表面无腐蚀现象,复合膜层依然表现为良好的致密性,且可通过氧化增重数据看出,有镀层的锆合金管壳增重微乎其微,说明复合膜层对基底锆合金管壳材料有较好的保护作用。氧化增重数据如下表所示:
序号 样片种类 氧化前 氧化后 增重
1 无镀层 3.36817 3.41389 0.04572
2 有镀层 3.40204 3.40833 0.00629

Claims (8)

1.一种锆包壳表面复合膜层的制备方法,其特征在于,该方法包括以下步骤:
步骤1,利用原子层沉积技术在锆合金管壳上沉积Al2O3膜层;
步骤2,利用磁控溅射技术在Al2O3膜层上镀Cr涂层;
所述的步骤1的操作过程为:将锆合金管壳放在原子层沉积仪的沉积腔体内,将沉积腔体内抽至4×10-3Torr~6×10-3Torr,然后通入载气使沉积腔体压力为0.1Torr~0.2Torr,设置沉积腔体内温度为100℃~200℃,然后进行锆合金管壳表面的Al2O3膜层原子层周期沉积生长,重复执行170~300个生长沉积周期,获得镀有Al2O3膜层的锆合金管壳;
每个原子层沉积生长周期的操作过程为:1)向原子层沉积仪的沉积腔体内以脉冲形式注入氧源,脉冲时间t1为0.02s~0.04s;2)打开进气阀、排气阀,利用氮气进行吹扫,吹扫时间t2为30s~60s;3)向原子层沉积仪的沉积腔体内以脉冲形式注入铝源,脉冲时间t3为0.2s~0.4s;4)打开进气阀、排气阀,利用氮气进行吹扫,吹扫时间t4为30s~60s,完成一个沉积生长周期。
2.根据权利要求1所述的一种锆包壳表面复合膜层的制备方法,其特征在于,所述的铝源为三甲基铝,氧源为去离子水或臭氧。
3.根据权利要求1所述的一种锆包壳表面复合膜层的制备方法,其特征在于,所述的载气是纯度为99.99%的氮气。
4.根据权利要求1所述的一种锆包壳表面复合膜层的制备方法,其特征在于,所述的Al2O3膜层厚度为30~60nm。
5.根据权利要求1所述的一种锆包壳表面复合膜层的制备方法,其特征在于,所述的步骤2的操作过程为:以铬靶为靶材,氩气为工作气体,背底真空度为5×10-4Pa,溅射功率为50-200W,溅射压强为0.5-1.5Pa的条件下在锆合金管壳上沉积的Al2O3膜层上镀覆Cr涂层,溅射时间为1-3h。
6.根据权利要求5所述的一种锆包壳表面复合膜层的制备方法,其特征在于,铬靶材的尺寸为
Figure FDA0003492009560000011
7.根据权利要求5所述的一种锆包壳表面复合膜层的制备方法,其特征在于,靶距为100~200mm。
8.根据权利要求5所述的一种锆包壳表面复合膜层的制备方法,其特征在于,所述的氩气的气体流量为20sccm。
CN202110084963.4A 2021-01-20 2021-01-20 一种锆包壳表面复合膜层的制备方法 Active CN112921299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110084963.4A CN112921299B (zh) 2021-01-20 2021-01-20 一种锆包壳表面复合膜层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110084963.4A CN112921299B (zh) 2021-01-20 2021-01-20 一种锆包壳表面复合膜层的制备方法

Publications (2)

Publication Number Publication Date
CN112921299A CN112921299A (zh) 2021-06-08
CN112921299B true CN112921299B (zh) 2022-03-25

Family

ID=76164383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110084963.4A Active CN112921299B (zh) 2021-01-20 2021-01-20 一种锆包壳表面复合膜层的制备方法

Country Status (1)

Country Link
CN (1) CN112921299B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181932B (zh) * 2022-07-15 2023-06-16 上海大学 一种锆合金表面FeCrAl/Al2O3复合涂层及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410024A (zh) * 2015-08-03 2017-02-15 华邦电子股份有限公司 电阻式随机存取存储器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756111B1 (en) * 1999-06-21 2004-06-29 Sumitomo Electric Industries, Ltd. Coated hard alloy
KR100385857B1 (ko) * 2000-12-27 2003-06-02 한국전자통신연구원 SiGe MODFET 소자 제조방법
JP3865705B2 (ja) * 2003-03-24 2007-01-10 トーカロ株式会社 耐食性および耐熱性に優れる熱遮蔽皮膜被覆材並びにその製造方法
JP2009067613A (ja) * 2007-09-11 2009-04-02 Fujifilm Corp コア−シェル型金属酸化物微粒子及びその製造方法
DE102011053372A1 (de) * 2011-09-07 2013-03-07 Walter Ag Werkzeug mit chromhaltiger Funktionsschicht
KR101405396B1 (ko) * 2012-06-25 2014-06-10 한국수력원자력 주식회사 표면에 혼합층을 포함하는 코팅층이 형성된 지르코늄 합금 및 이의 제조방법
CN104032260B (zh) * 2013-03-08 2018-02-06 深圳富泰宏精密工业有限公司 壳体及其制作方法
US10060018B2 (en) * 2013-05-28 2018-08-28 Westinghouse Electric Company Llc Kinetically applied gradated Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or semi-amorphous stainless steel with nuclear grade zirconium alloy metal structure
US10276268B2 (en) * 2013-09-03 2019-04-30 Uchicago Argonne, Llc Coating of nuclear fuel cladding materials, method for coating nuclear fuel cladding materials
US9844923B2 (en) * 2015-08-14 2017-12-19 Westinghouse Electric Company Llc Corrosion and wear resistant coating on zirconium alloy cladding
JP6999810B2 (ja) * 2017-11-14 2022-01-19 コリア アトミック エナジー リサーチ インスティテュート 高温耐酸化性が向上されたジルコニウム合金被覆管及びその製造方法
CN108914039B (zh) * 2018-07-23 2021-02-02 陕西华秦科技实业股份有限公司 核用锆合金防护涂层材料及其制备方法
CN109943811B (zh) * 2019-04-04 2020-12-29 中国核动力研究设计院 一种用于锆合金包壳上涂层的制备方法
CN111847596A (zh) * 2019-04-26 2020-10-30 无锡小天鹅电器有限公司 一种电解电极及其制备方法、电解装置、衣物处理设备
CN110629176A (zh) * 2019-09-05 2019-12-31 西安交通大学 一种以Zr为基底的Cr-Al合金膜及其制备方法
CN110965035A (zh) * 2019-11-25 2020-04-07 中国科学院宁波材料技术与工程研究所 一种事故容错锆包壳管防护涂层及其制备方法与应用
CN112164479B (zh) * 2020-08-21 2022-05-10 上海核工程研究设计院有限公司 一种锆合金包壳管耐高温蒸汽腐蚀涂层

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410024A (zh) * 2015-08-03 2017-02-15 华邦电子股份有限公司 电阻式随机存取存储器

Also Published As

Publication number Publication date
CN112921299A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN108914111B (zh) 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用
CN109207953A (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN112921299B (zh) 一种锆包壳表面复合膜层的制备方法
CN115142028B (zh) 一种耐磨耐腐蚀Fe-Cr-Al复合涂层的制备方法
CN109868475A (zh) 核燃料包壳及其制备方法、核燃料组件
CN109355611A (zh) 一种用于锆合金包壳的复合陶瓷涂层制备方法
CN115305443B (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN115142018B (zh) 一种耐高温液态铅/铅铋合金腐蚀的高熵合金涂层及其制备方法
CN109943811A (zh) 一种用于锆合金包壳上涂层的制备方法
CN114657509A (zh) 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法
CN117230410A (zh) 一种锆合金表面磁控溅射FeCrAl/Cr复合涂层制备方法
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
CN104441821A (zh) 一种高温合金复合纳米晶涂层及其制备方法
CN114686862B (zh) 一种氧化铬和氧化锆复合涂层及其制备方法
CN112899682A (zh) 一种锆包壳防护涂层的制备方法
CN114657544B (zh) 一种镍基高温合金内腔表面的渗铝钴工艺及钴铝渗层
CN115044868B (zh) 一种氧化物陶瓷与二维材料复合阻氢涂层及其制备方法
CN113430488B (zh) 一种核反应堆燃料包壳纳米复合涂层及其制备方法
CN116043222A (zh) 一种含有多层结构的抗高温耐蚀防护涂层及其制备方法
CN110184604A (zh) 一种核反应堆用高硬度包覆层及其制备方法
CN112695282B (zh) 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用
CN112853287B (zh) 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法
CN116121700A (zh) 一种耐火元素掺杂的耐磨梯度HfMSiCN陶瓷层及其制备方法
CN109036589A (zh) 一种掺钽铀薄膜在黑腔上的应用
KR20240014490A (ko) 지르코늄 합금 핵연료 클래딩 상에 캐소드 아크 적용된 무작위 그레인 구조 코팅

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant