CN108914111B - 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用 - Google Patents

一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用 Download PDF

Info

Publication number
CN108914111B
CN108914111B CN201810737216.4A CN201810737216A CN108914111B CN 108914111 B CN108914111 B CN 108914111B CN 201810737216 A CN201810737216 A CN 201810737216A CN 108914111 B CN108914111 B CN 108914111B
Authority
CN
China
Prior art keywords
layer
hydrogen
chromium
iron
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810737216.4A
Other languages
English (en)
Other versions
CN108914111A (zh
Inventor
徐玉平
吕一鸣
周海山
罗广南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201810737216.4A priority Critical patent/CN108914111B/zh
Publication of CN108914111A publication Critical patent/CN108914111A/zh
Application granted granted Critical
Publication of CN108914111B publication Critical patent/CN108914111B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone

Abstract

本发明涉及一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用。该涂层可以利用冷喷涂、化学气相沉积、磁控溅射、热喷涂等方法在基体表面制备一层在一定比例内混合的铁铬铝合金层,然后通过热氧化的方式获得0.05‑1μm厚致密且与基底具有很好的结合强度,具有极佳阻氢渗透效果的α‑Al2O3氧化层,所有操作过程基体温度都可控制在800℃以下。本发明提供的阻氢渗透层除了具有极好的阻氢渗透效果,很强自愈合的能力以及耐腐蚀绝缘能力外最大的突出优点是还具有极佳的与基体的结合强度。该阻氢涂层可用于不锈钢结构件的阻氢渗透阻挡层,特别是聚变堆内包层部件表面的阻氢渗透阻挡层。

Description

一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法 和应用
技术领域
本发明涉及阻氢材料领域,具体涉及一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用。
背景技术
随着当今社会的高速发展,能源的需求越来越大,能源问题是目前社会关注的焦点。核聚变能由于其清洁安全的特性,越来越受到科学家们的重视,开始大力发展核聚变能。其中聚变反应的燃料为氢的同位素氘(D)和氚(T)。在自然界中T的含量非常少,几乎没有。现在世界上所拥有的绝大部分的T都是通过裂变堆反应产生的,因此T的价格非常的高昂(CANDU裂变堆生产的T,约30000美元/g)。T的运用除了需要考虑其价格高昂带来的经济性方面的问题,还需要考虑T所具有的放射性带来的安全性方面的问题。然而目前聚变堆中设计运用的包层结构材料主要以具有高的氢渗透率的钢铁,钒合金为主要候选结构材料。所以T在结构材料中的渗透滞留会带来很严重的T损失,T的不可控也会给聚变堆的安全运行产生威胁。
为了解决上述这些问题,现有的手段是在结构材料的表面制备一层具有高的阻氢能力的涂层。该涂层的成分一般是陶瓷材料,例如Al2O3和Cr2O3等材料。专利号CN105667009中,公布了一种Y2O3/Al2O3/Cr2O3复合梯度阻氢涂层及其制备方法,该工艺采用金属-有机化学气相沉积技术在钢表面分别制备Y2O3/Al2O3/Cr2O3多层复合梯度阻氢涂层。通过Cr2O3涂层作为中间层缓解热应力,然后沉积阻氢性能更佳的Al2O3涂层。该技术采用Cr2O3涂层作为氧化层与基体的结合层,并且氧化层是直接沉积在基体钢表面的,由于氧化物与钢基体热膨胀系数不匹配,必然导致结合强度不佳。同时由于该方法需要分多个步骤进行阻氢涂层的沉积,工艺繁琐,导致制备成本较高。专利号CN105154878A中,公布了一种α-Al2O3阻氢渗透耐腐蚀绝缘层的制备方法,该工艺首先在基体材料表面制备一层铬铝合金层,然后通过热氧化的方法制备出α-Al2O3阻氢渗透耐腐蚀绝缘层。该工艺可以在较低温度下制备出阻氢性能优良的α-Al2O3阻氢渗透耐腐蚀绝缘层。但由于钢中的主要成分为铁,铬铝合金层与基体材料钢的热膨胀系数不匹配,所以必然导致结合强度不是很优良。考虑到上述这些因素,以及在聚变堆中要耐受高能粒子的辐照等行为,涂层在长时间的使用下会面临失效的问题,所以涂层除了需要降低制备工艺的繁琐度和成本之外,涂层还需要具备高的结合强度以及一定的自修复的能力。
发明内容
鉴于以上内容,本发明提供了一种与基体结合良好、制备工艺简单、成本低廉的阻氢涂层材料。为了克服上述Y2O3/Al2O3/Cr2O3复合梯度阻氢涂层自身的缺点,本发明采用铁铬铝合金层作为过渡层,氧化铝作为阻氢涂层,制备复合梯度涂层,从而提高阻氢性能。
为达到上述目的,本发明采用以下技术方案:
一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层,该阻氢渗透耐腐蚀绝缘层由喷涂在基体材料表面的在一定比例内混合的铁铬铝合金涂层以及在铁铬铝涂层上形成的Al2O3阻氢层构成。
进一步地,所述Al2O3阻氢层为α-Al2O3阻氢层,所述α-Al2O3阻氢层通过铁铬铝涂层与基体相连,结合强度极佳。
进一步地,所述铁铬铝涂层中的铁铬铝组分可以为FeCr15Al7,FeCr20Al5或FeCr8Al5
进一步地,所述阻氢渗透耐腐蚀绝缘层的总厚度在10-200μm之间;其中,铁铬铝层厚度为9-199μm;α-Al2O3阻氢层厚度约为0.05-1μm。
进一步地,所述基体材料为钢或者钒合金。
本发明还提供了该氧化铝阻氢渗透耐腐蚀绝缘层的制备方法,首先在基体表面制备一定比例的铁铬铝涂层,之后空气或富氧氛围中的氧原子通过扩散与铁铬铝涂层中的铝元素反应生成Al2O3阻氢渗透层;具体步骤如下:
(1)将金属基体材料表面进行除油,清洗,抛光处理;
(2)利用冷喷涂、化学气相沉积、磁控溅射或热喷涂方法在基体表面制备一层在一定比例内混合的铁铬铝合金层;
(3)采用原位热氧化方法,通过700-800℃热氧化铁铬铝合金层,在铁铬铝层表面制备一层α-Al2O3阻氢渗透层。
进一步地,所述铁铬铝合金层可以通过分别制备铁铬铝层然后热处理获得,也可以通过直接喷涂铁铬铝合金粉获得。
另外,本发明还提供了上述的高结合强度α-Al2O3阻氢渗透耐腐蚀绝缘层在在聚变堆包层结构材料中的应用,即所述涂层的基体材料为聚变堆包层结构材料钢或者钒合金;在聚变堆包层结构材料钢或者钒合金表面施加铁铬铝和α-Al2O3涂层。
本发明的原理是利用喷涂镀膜技术在基体表面制备一层铁铬铝层,然后利用热氧化时氧化铬会优先形成,作为α-Al2O3在较低温度(800℃)形核时的模板,从而可以在较低温下形成α-Al2O3阻氢涂层。
本发明和现有技术成果相比,具有以下优点和突出性成果:首次在聚变堆包层结构材料表面实现了铁铬铝作为中间层,然后再表面低温(800℃)形成α-Al2O3阻氢渗透耐腐蚀绝缘层,而且该方法形成的阻氢涂层具有厚度可控,致密性高和阻氢性能优异的特点。
本发明α-Al2O3阻氢渗透耐腐蚀绝缘层由先通过冷喷涂、化学气相沉积、磁控溅射或热喷涂方法来制备铁铬铝层,再通过热氧化方法制备α-Al2O3阻氢层,获得厚度约为10-200μm的α-Al2O3的阻氢渗透耐腐蚀绝缘层;该阻氢涂层可用于不锈钢结构件的氢渗透阻挡,特别是聚变堆包层结构材料的氢渗透阻挡,该涂层能够有效降低氢气在钢和钒合金中的渗透率,并具备自修复以及高的结合强度,从而很好的达到阻氢渗透的目的。而且该阻氢涂层由于以与基体成分相似的铁铬铝作为过渡层,会具有高的结合强度,并且制备工艺简单且成本低廉,阻氢性能提高10000倍左右。
附图说明
图1 为涂有阻氢渗透耐腐蚀绝缘层的聚变堆包层结构材料结构示意图。
其中,1、α-Al2O3层;2、铁铬铝层;3、聚变堆包层结构材料。
具体实施方式
实施例1
制备厚度100μm的聚变堆包层结构材料用α-Al2O3阻氢渗透耐腐蚀绝缘层:
(1)将包层结构材料表面抛光至粗糙度1μm;
(2)采用冷喷涂的方法在聚变堆包层结构材料表面室温喷涂一层铁铬铝层;具体工艺参数为:喷涂温度为100℃,喷涂粉末为FeCr20Al5混合金属粉,铁铬铝层厚度约为100μm;
(3)采用原位热氧化的方法对合金涂敷样品热氧化制备α-Al2O3阻氢渗透层;具体工艺参数为:氧化温度为800℃,氧化氛围为大气氧化,氧化时间为8h,α-Al2O3阻氢涂层厚度约为120nm。
(4)最终获得厚度约为100μm的α-Al2O3阻氢渗透耐腐蚀绝缘层。
经过400-550℃温度范围内105Pa氘气相驱动渗透测试,其氘渗透率/扩散系数相比母材有约9000倍的降低。
实施例2
制备厚度10μm的聚变堆包层结构材料用α-Al2O3阻氢渗透耐腐蚀绝缘层:
(1)将包层结构材料表面抛光至粗糙度0.5μm;
(2)采用磁控溅射的方式用三靶溅射一层铁铬铝层;具体工艺参数为:溅射真空室真空度控制在10-4Pa范围,并选用纯度为99.99%的铁,铬,铝靶材,通过控制各靶材溅射时间获得10μm厚的FeCr15Al7混合金属层。
(3)采用原位热氧化的方法对合金涂敷样品热氧化制备α-Al2O3阻氢渗透层;具体工艺参数为:氧化温度为800℃,氧化氛围为大气氧化,氧化时间为8h,α-Al2O3阻氢涂层厚度约为110nm。
(4)最终获得厚度约为10μm的α-Al2O3阻氢渗透耐腐蚀绝缘层。
经过400-550℃温度范围内105Pa氘气相驱动渗透测试,其氘渗透率/扩散系数相比母材有约11000倍的降低。

Claims (4)

1.一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层的制备方法,其特征在于,该阻氢渗透耐腐蚀绝缘层由喷涂在基体材料表面的在一定比例内混合的铁铬铝合金涂层以及在铁铬铝涂层上形成的Al2O3阻氢层构成;
所述Al2O3阻氢层为α-Al2O3阻氢层,所述α- Al2O3阻氢层通过铁铬铝涂层与基体相连,结合强度极佳;
所述铁铬铝涂层中的铁铬铝组分可以为FeCr15Al7,FeCr20Al5或FeCr8Al5
所述阻氢渗透耐腐蚀绝缘层的总厚度在10-200μm之间;其中,铁铬铝层厚度为9-199μm;α- Al2O3阻氢层厚度为0.05-1μm;
具体的制备方法为:
首先在基体表面制备一定比例的铁铬铝涂层,之后空气或富氧氛围中的氧原 子通过扩散与铁铬铝涂层中的铝元素反应生成Al2O3阻氢渗透层;具体步骤如下:(1)将金属基体材料表面进行除油,清洗,抛光处理;(2)利用冷喷涂、化学气相沉积、磁控溅射或热喷涂方法在基体表面制备一层在一定比 例内混合的铁铬铝合金层;(3)采用原位热氧化方法,通过700-800℃热氧化铁铬铝合金层,在铁铬铝层表面制备一层α- Al2O3阻氢渗透层。
2.根据权利要求1所述的高结合强度氧化铝阻氢渗透耐腐蚀绝缘层的制备方法,其特征在于, 所述基体材料为钢或者钒合金,也可为其他涉氢储存输运材料。
3.根据权利要求1所述的高结合强度氧化铝阻氢渗透耐腐蚀绝缘层的制备方法,其特征在于,所述铁铬铝合金层可以通过分别制备铁铬铝层然后热处理获得,也可以通过直接喷涂铁铬铝合金粉获得。
4.如权利要求1-3任一项所述的高结合强度氧化铝阻氢渗透耐腐蚀绝缘层的制备方法所制备的高结合强度氧化铝阻氢渗透耐腐蚀绝缘层在聚变堆包层结构材料中的应用,即所述阻氢渗透耐腐蚀绝缘层的基体材料为聚变堆包层结构材料钢或者钒合金。
CN201810737216.4A 2018-07-02 2018-07-02 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用 Active CN108914111B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810737216.4A CN108914111B (zh) 2018-07-02 2018-07-02 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810737216.4A CN108914111B (zh) 2018-07-02 2018-07-02 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108914111A CN108914111A (zh) 2018-11-30
CN108914111B true CN108914111B (zh) 2021-03-02

Family

ID=64425170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810737216.4A Active CN108914111B (zh) 2018-07-02 2018-07-02 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108914111B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989044B (zh) * 2019-04-03 2021-09-21 华南理工大学 一种AlCr+α-Al2O3溅射靶材及制备与应用
CN110670040B (zh) * 2019-11-21 2022-04-05 中国工程物理研究院材料研究所 一种金属铀表面阻水阻氢Al/Al2O3复合镀层及其制备方法
CN113122842A (zh) * 2019-12-30 2021-07-16 有研工程技术研究院有限公司 一种复合阻氢涂层及其制备方法
CN111763898B (zh) * 2020-06-01 2021-10-01 武汉大学 一种电气绝缘设备金属表面处理防止c5f10o气体腐蚀的方法
US20230243040A1 (en) * 2020-07-29 2023-08-03 Massachusetts Institute Of Technology Compositions and methods for forming damage-resistant multilayered hydrogen permeation barriers
CN113929501B (zh) * 2021-10-08 2022-08-16 西安交通大学 一种氧化铝陶瓷表面耐闪络梯度复合涂层及其制备方法
CN113978056A (zh) * 2021-10-15 2022-01-28 北京科技大学 一种钒合金
CN116200743A (zh) * 2023-04-25 2023-06-02 鑫鹏源(聊城)智能科技有限公司 不锈钢基体用阻氢渗透的复合玻璃质壁垒层及其制备方法和应用
CN116200742A (zh) * 2023-04-25 2023-06-02 鑫鹏源(聊城)智能科技有限公司 钛合金基体用阻氢渗透的复合玻璃质壁垒层及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331631A (en) * 1979-11-28 1982-05-25 General Motors Corporation Enhanced oxide whisker growth on peeled Al-containing stainless steel foil
US9067282B2 (en) * 2013-05-14 2015-06-30 Caterpillar Inc. Remanufacturing cast iron component with steel outer layer and remanufactured component
CN105667009B (zh) * 2014-11-21 2017-12-26 北京有色金属研究总院 一种Y2O3/Al2O3/Cr2O3复合梯度阻氢涂层及其制备方法
CN105154878B (zh) * 2015-07-24 2019-03-19 中国科学院等离子体物理研究所 一种α-Al2O3阻氢渗透耐腐蚀绝缘层的制备方法

Also Published As

Publication number Publication date
CN108914111A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108914111B (zh) 一种高结合强度氧化铝阻氢渗透耐腐蚀绝缘层及其制备方法和应用
Sidelev et al. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings
CN107799185B (zh) 燃料包壳及燃料组件
Ko et al. Review of manufacturing technologies for coated accident tolerant fuel cladding
CN105729934A (zh) 一种M/MOx复合阻氢涂层及其制备方法
CN105734500B (zh) 一种具有复合结构的抗高温氧化热障涂层及其制备方法
EP0179704B1 (en) Hydrogen permeation protection for metals
CN110551984A (zh) 一种复合阻氢涂层及其制备方法
CN110184605A (zh) 一种核反应堆用材料外表面包覆层及其制备方法
CN110106467A (zh) 一种核反应堆用高效结合包覆层及其制备方法
CN113122842A (zh) 一种复合阻氢涂层及其制备方法
CN116968397B (zh) 一种防氚渗透的层状复合材料及其制备方法
US3018238A (en) Method of forming a fuel element for a nuclear reactor
Yeom et al. Recent advances of cold spray technology in nuclear energy applications
CN114686862B (zh) 一种氧化铬和氧化锆复合涂层及其制备方法
Tang et al. Metallic and ceramic coatings for enhanced accident tolerant fuel cladding
CN112921299B (zh) 一种锆包壳表面复合膜层的制备方法
CN109023363A (zh) 一种铁铝合金粘结层/氧化锆层复合阻氢涂层及其制备方法
CN115216754A (zh) 一种新型多主元非晶阻氢同位素涂层及其制备方法
Sun et al. Review on the Preparation and High-Temperature Oxidation Resistance of Metal Coating for Fuel Cladding Zirconium Alloys
Tang et al. Oxidation performance and failure behaviour of monolithic and coated ATF claddings under severe accident conditions
KR102320638B1 (ko) 복합 코팅층이 구비된 핵연료 피복관 및 이의 제조방법
Wang et al. Fabricating tritium permeation barrier for PFC with a new non-coating strategy
Wlodek Erosion resistant coatings for steam turbines
CN115679263A (zh) 一种核反应堆用耐蚀涂层、包壳材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant