WO2019069495A1 - 塗液、塗膜の製造方法及び塗膜 - Google Patents

塗液、塗膜の製造方法及び塗膜 Download PDF

Info

Publication number
WO2019069495A1
WO2019069495A1 PCT/JP2018/015703 JP2018015703W WO2019069495A1 WO 2019069495 A1 WO2019069495 A1 WO 2019069495A1 JP 2018015703 W JP2018015703 W JP 2018015703W WO 2019069495 A1 WO2019069495 A1 WO 2019069495A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
binder resin
coating liquid
coating
mass
Prior art date
Application number
PCT/JP2018/015703
Other languages
English (en)
French (fr)
Inventor
寛之 泉
竜也 牧野
智彦 小竹
慧 高安
海斗 小暮
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207007240A priority Critical patent/KR102583729B1/ko
Priority to JP2019546525A priority patent/JP7196854B2/ja
Priority to EP18864527.9A priority patent/EP3693425A4/en
Priority to US16/652,744 priority patent/US20200231834A1/en
Priority to CN201880064402.4A priority patent/CN111164167A/zh
Priority to TW107127825A priority patent/TWI780203B/zh
Publication of WO2019069495A1 publication Critical patent/WO2019069495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers

Definitions

  • the present invention relates to a coating solution, a method of producing a coating film, and a coating film.
  • Airgel is known as a material excellent in heat insulation, transparency and the like.
  • Methods of processing an airgel having such characteristics into particles and using it as a constituent material of a heat insulating material have been proposed (for example, Patent Documents 1 and 2).
  • Patent Document 1 proposes that particulate airgel be used as a filler between resin plates and the like that constitute a heat insulating window.
  • Patent Document 2 after preparing an aqueous dispersion containing airgel particles and organic fibers, the intermediate product obtained by evaporating water is further press-molded to produce a heat insulating material (molded body). It is shown.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel airgel particle-containing coating solution. Another object of the present invention is to provide a method for producing a coating film using the coating liquid, and a novel coating film.
  • the present invention provides a coating comprising airgel particles and a liquid medium.
  • the present invention provides a coating liquid comprising airgel particles having a specific surface area of 350 m 2 / g or less, a binder resin, and a liquid medium.
  • a coating liquid can obtain a good coating film unlike the thing containing the airgel particle obtained by a prior art.
  • the liquid medium can contain an organic solvent. Thereby, the dispersibility of the airgel particles can be further improved.
  • the binder resin may be epoxy resin, silicone resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, acrylic resin, polyvinyl chloride resin, polyacetic acid It can be at least one selected from the group consisting of vinyl resins, polyamide resins, polyimide resins, cellulose resins and polyvinyl resins. Thereby, the film formability can be further improved.
  • the present invention also provides a coating liquid comprising airgel particles, a binder resin, a fibrous substance having a fiber length of 1.5 mm or more, and a liquid medium.
  • a coating liquid can obtain the coating film which is excellent in heat insulation compared with the coating liquid obtained by a prior art.
  • the liquid medium can contain an organic solvent. Thereby, the dispersibility of airgel particles can be improved.
  • the fiber length of the fibrous substance can be 20 mm or less. Thereby, the dispersibility of the fibrous material can be improved.
  • the content of the fibrous substance having a fiber length of 1.5 mm or more can be 30% by mass or more based on the total mass of the fibrous substance in the coating liquid.
  • the present invention further provides a coating liquid comprising airgel particles, a liquid medium, a first binder resin, and a second binder resin having a lower solubility in the liquid medium than the first binder resin. According to such a coating liquid, a coating film excellent in coating film strength and adhesiveness can be obtained.
  • the liquid medium may be an aqueous solvent containing water.
  • the content of the second binder resin may be larger than the content of the first binder resin.
  • the first binder resin may be a cellulose resin.
  • the second binder resin may be a thermoplastic resin. This makes it easier to obtain a coating film having even better adhesion.
  • the second binder resin may be an acrylic resin.
  • the second binder resin may be a thermosetting resin, and the coating may further contain a curing agent. This makes it easy to obtain a coating film having even better coating film strength.
  • the second binder resin may be an epoxy resin, and at this time, the coating may further contain an epoxy resin curing agent.
  • the above coating solution may further contain a fibrous material. This makes it easy to obtain a coating film having even better coating film strength.
  • the viscosity may be 1000 mPa ⁇ s or more. Thereby, the film forming property can be further improved.
  • Each coating liquid of the present invention may contain at least one of organic fibers and inorganic fibers. This makes it easy to obtain a coating film having even better coating film strength.
  • the present invention also provides a method for producing a coated film, which comprises the step of removing a liquid medium from the coating solution.
  • the present invention further provides airgel particles having a specific surface area of 350 m 2 / g or less, and a coating film containing a binder resin or a cured product thereof, wherein the airgel particles, the binder resin or a cured product thereof, and the fiber length
  • a coating film comprising a fibrous material having a diameter of 1.5 mm or more is provided, the airgel particles, a first binder resin, and a second binder resin having a lower solubility in an aqueous solvent than the first binder resin And a cured product.
  • the coating film obtained by the production method of the present invention and the coating film of the present invention have good film quality.
  • a novel airgel particle-containing coating solution can be provided.
  • the present invention can also provide a method for producing a coating film using the coating solution, and a novel coating film (aerogel coating film).
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • a or B may contain any one of A and B, and may contain both.
  • the materials exemplified in this embodiment can be used singly or in combination of two or more unless otherwise specified.
  • ⁇ Aerogel> dry gel obtained by supercritical drying method for wet gel is aerogel, dry gel obtained by drying under atmospheric pressure is xerogel, and dry gel obtained by lyophilization is cryogel
  • the resulting low density dried gel is referred to as "aerogel” regardless of these drying techniques of the wet gel. That is, in the present embodiment, the “aerogel” is a gel in the broad sense “gel composed of a microporous solid in which the dispersed phase is a gas (a gel composed of a microporous solid in which the dispersed phase is a gas)” Means ".
  • the inside of the airgel has a mesh-like microstructure, and has a cluster structure in which a particle-like airgel component of about 2 to 20 nm is bonded. Between the frameworks formed by the clusters, there are pores less than 100 nm. Thus, the aerogel has a three-dimensionally formed fine porous structure.
  • the airgel which concerns on this embodiment is a silica airgel which has a silica as a main component, for example.
  • the silica aerogels include so-called organic-inorganic hybridised silica aerogels into which organic groups (such as methyl groups) or organic chains have been introduced.
  • Examples of the airgel according to the present embodiment include the following. By adopting these modes, it becomes easy to obtain an airgel excellent in heat insulation, flame retardancy, heat resistance and flexibility. By adopting each aspect, it is possible to obtain an airgel having thermal insulation, flame retardancy, heat resistance and flexibility according to each aspect.
  • the airgel which concerns on this embodiment can have a structure represented by following General formula (1).
  • the airgel which concerns on this embodiment can have a structure represented by following General formula (1a) as a structure containing the structure represented by Formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned.
  • p represents an integer of 1 to 50.
  • two or more R 1 s may be the same as or different from each other, and similarly, two or more R 2 s may be the same as or different from each other.
  • two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and the alkyl group is methyl And the like.
  • R 3 and R 4 each independently represent an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group, a propylene group, etc.
  • p may be 2 to 30, and may be 5 to 20.
  • the airgel according to the present embodiment can have a ladder-type structure including a support portion and a bridging portion, and the bridging portion can have a structure represented by the following general formula (2).
  • Heat resistance and mechanical strength can be improved by introducing such a ladder-type structure as an airgel component into the skeleton of the airgel.
  • the term “ladder type structure” refers to one having two struts (struts) and bridges connecting the struts (so-called “ladder”). It is.
  • the skeleton of the airgel may have a ladder structure, but the airgel may partially have a ladder structure.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same as or different from each other, and similarly, two or more R 6 s may be the same as each other May also be different.
  • silsesquioxane is a polysiloxane having a compositional formula: (RSiO 1.5 ) n and can have various skeleton structures such as a cage type, a ladder type, and a random type.
  • the structure of the cross-linked portion is -O-, but the airgel according to the present embodiment
  • the structure of the crosslinked portion is a structure (polysiloxane structure) represented by the above general formula (2).
  • the airgel of this embodiment may have a structure derived from silsesquioxane in addition to the structure represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder type structure It may have a ladder type structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group
  • a and c each independently represent an integer of 1 to 3000
  • b is 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned.
  • R 5 , R 6 , R 7 and R 8 (wherein R 7 and R 8 are only in the formula (3))
  • R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and examples of the alkyl group include a methyl group.
  • a and c can be independently 6 to 2000, but may be 10 to 1000.
  • b can be 2 to 30, but may be 5 to 20.
  • the airgel according to the present embodiment is at least selected from the group consisting of a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group. It may be a dry product of a wet gel which is a condensation product of a sol containing one (a product obtained by drying a wet gel produced from a sol: a dry product of a wet gel derived from a sol). The airgel described above may also be obtained by drying the wet gel produced from the sol containing the silicon compound and the like.
  • a polysiloxane compound As a silicon compound having a hydrolyzable functional group or a condensable functional group, a polysiloxane compound can be used. That is, the sol is at least selected from the group consisting of a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a polysiloxane compound having a hydrolyzable functional group.
  • One type of compound hereinafter sometimes referred to as "polysiloxane compound group" can be contained.
  • the functional groups in the polysiloxane compound are not particularly limited, and can be groups that react with each other or react with other functional groups.
  • the hydrolyzable functional group includes an alkoxy group.
  • Examples of the condensation functional group include a hydroxyl group, a silanol group, a carboxyl group and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • the polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group (a hydrolyzable functional group and a condensable group) different from the hydrolyzable functional group and the condensable functional group.
  • the polysiloxane compounds having these functional groups and reactive groups may be used alone or in combination of two or more.
  • these functional groups and reactive groups for example, as a group for improving the flexibility of airgel, alkoxy group, silanol group, hydroxyalkyl group etc. may be mentioned, and among these, alkoxy group and hydroxyalkyl group are The compatibility of the sol can be further improved.
  • the carbon number of the alkoxy group and the hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel is further improved. It may be 2 to 4 from the viewpoint.
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represent an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned.
  • two R 1a 's may be the same as or different from each other, and similarly, two R 2a' s may be the same as or different from each other.
  • two or more R 3a s may be the same as or different from each other.
  • two or more R 4a s may be the same as or different from each other.
  • R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and the like, and examples of the hydroxyalkyl group include a hydroxyethyl group, a hydroxypropyl group and the like.
  • examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • R 3a and R 4a each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and examples of the alkyl group include a methyl group.
  • n can be 2 to 30, but may be 5 to 20.
  • a commercial item can be used as a polysiloxane compound which has a structure represented by the said General formula (A), Compounds, such as X-22-160AS, KF-6001, KF-6002, KF-6003 (all are mentioned And Shin-Etsu Chemical Co., Ltd., XF42-B0970, Fluid OFOH 702-4%, etc. (all of which are manufactured by Momentive Performance Materials Japan LLC).
  • Compounds such as X-22-160AS, KF-6001, KF-6002, KF-6003 (all are mentioned And Shin-Etsu Chemical Co., Ltd., XF42-B0970, Fluid OFOH 702-4%, etc. (all of which are manufactured by Momentive Performance Materials Japan LLC).
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • m represent an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned.
  • two R 1b 's may be the same as or different from each other, and two R 2b' s may be the same as or different from one another, 3b may be the same or different.
  • m is an integer of 2 or more
  • two or more R 4b may be the same or different
  • two or more R 5b are also the same May also be different.
  • a wet gel (produced from a sol) which is a condensation product of a sol containing a polysiloxane compound having the above structure or a hydrolysis product thereof, it becomes easier to obtain a low thermal conductivity and a flexible airgel.
  • R 1b an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, etc. may be mentioned as R 1b , and the alkyl group or alkoxy group is a methyl group. , Methoxy group, ethoxy group and the like.
  • R 2b and R 3b each independently represent an alkoxy group having 1 to 6 carbon atoms, and the alkoxy group includes a methoxy group, an ethoxy group, and the like.
  • examples of R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and examples of the alkyl group include a methyl group and the like.
  • m can be 2 to 30, but may be 5 to 20.
  • the polysiloxane compound having a structure represented by the above general formula (B) can be obtained by appropriately referring to the production method reported in JP-A-2000-26609, JP-A-2012-233110, etc. .
  • the polysiloxane compound having the alkoxy group may be present as a hydrolysis product in the sol, and the polysiloxane compound having the alkoxy group and the hydrolysis product thereof are mixed. It may be Further, in the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or may be partially hydrolyzed.
  • hydrolysis products of the polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and the polysiloxane compound having a hydrolyzable functional group may be used alone or in combination of two or more. You may use it.
  • silicon compounds other than the above-mentioned polysiloxane compound can be used as the silicon compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the above silicon compound is a silicon compound having a hydrolyzable functional group or a condensable functional group (excluding a polysiloxane compound), and a silicon compound having the hydrolyzable functional group. At least one selected from the group consisting of hydrolysis products (hereinafter sometimes referred to as “silicon compound group”) is contained in addition to or in place of the aforementioned polysiloxane compound group. be able to. The number of silicon in the molecule in the silicon compound can be 1 or 2.
  • the silicon compound having a hydrolyzable functional group in the molecule is not particularly limited, and examples thereof include alkyl silicon alkoxides and the like.
  • the alkyl silicon alkoxide can have three or less hydrolyzable functional groups from the viewpoint of improving water resistance.
  • Examples of such alkyl silicon alkoxides include monoalkyl trialkoxysilanes, monoalkyl dialkoxysilanes, dialkyl dialkoxysilanes, monoalkyl monoalkoxysilanes, dialkyl monoalkoxysilanes, trialkyl monoalkoxysilanes, and the like.
  • Examples include methyltrimethoxysilane, methyldimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane and the like.
  • alkoxy groups such as a methoxy group and an ethoxy group, etc. are mentioned.
  • the silicon compound having a condensable functional group is not particularly limited, but silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, hexylsilane Examples include triol, octylsilanetriol, decylsilanetriol, trifluoropropylsilanetriol and the like.
  • the silicon compound having a hydrolyzable functional group or a condensable functional group is different from the hydrolyzable functional group and the condensable functional group from the above-mentioned reactive groups (a hydrolyzable functional group and a condensable functional group). It may further have a functional group which does not correspond to a group.
  • silicon compounds having a condensable functional group and having a reactive group vinylsilanetriol, 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl) ) 3-Aminopropylmethylsilanediol and the like can also be used.
  • bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, vinyltrimethoxysilane, etc. which are silicon compounds having three or less hydrolyzable functional groups at the molecular end, can also be used.
  • Silicon compounds having hydrolyzable functional groups or condensable functional groups excluding polysiloxane compounds
  • hydrolysis products of the silicon compounds having hydrolyzable functional groups alone or in combination You may mix and use the above.
  • the structures represented by the following general formulas (4) to (6) can be introduced into the skeleton of the airgel by using the above-mentioned silicon compound (excluding the polysiloxane compound).
  • the airgel according to the present embodiment can have any of these structures alone or in combination of two or more.
  • R 9 represents an alkyl group.
  • examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms, and examples of the alkyl group include methyl group.
  • R 10 and R 11 each independently represent an alkyl group.
  • examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms, and examples of the alkyl group include methyl group.
  • R 12 represents an alkylene group.
  • examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms, and examples of the alkylene group include ethylene group and hexylene group.
  • the airgel according to the present embodiment may further contain silica particles in addition to the airgel component from the viewpoint of further toughening and from the viewpoint of achieving further excellent heat insulation and flexibility.
  • An airgel containing an airgel component and silica particles can also be referred to as an airgel composite.
  • the airgel complex is considered to have a three-dimensionally fine porous structure, although the airgel component and the silica particles are complexed, but having a cluster structure characteristic of the airgel. .
  • An aerogel containing an aerogel component and silica particles comprises a hydrolyzate of the silicon compound having a hydrolyzable functional group or a condensable functional group and the silicon compound having a hydrolyzable functional group as described above. It can be said that the dry product of a wet gel which is a condensation product of a sol containing at least one selected from the group and silica particles. Therefore, the description of the first to third aspects can be applied to the airgel according to the present embodiment as appropriate.
  • the silica particles can be used without particular limitation, and examples thereof include amorphous silica particles and the like.
  • the amorphous silica particles include fused silica particles, fumed silica particles, colloidal silica particles and the like. Among these, colloidal silica particles have high monodispersity, and easily suppress aggregation in the sol.
  • the silica particles may be silica particles having a hollow structure, a porous structure or the like.
  • the shape of the silica particles is not particularly limited, and examples thereof include spheres, bowls, and associated types. Among these, use of spherical particles as the silica particles makes it easy to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles may be 1 nm or more, or 5 nm or more, from the viewpoint that it is easy to impart appropriate strength and flexibility to the airgel and airgel having excellent shrinkage resistance during drying can be easily obtained. It may be 20 nm or more.
  • the average primary particle diameter of the silica particles may be 500 nm or less, may be 300 nm or less, or 100 nm from the viewpoint that solid heat conduction of the silica particles is easily suppressed and an airgel having excellent thermal insulation properties is easily obtained. It may be the following. From these viewpoints, the average primary particle diameter of the silica particles may be 1 to 500 nm, 5 to 300 nm, or 20 to 100 nm.
  • the average particle size of the airgel component and the average primary particle size of the silica particles can be obtained by directly observing the airgel using a scanning electron microscope (hereinafter abbreviated as “SEM”).
  • SEM scanning electron microscope
  • the term "diameter” as used herein means the diameter when the cross section of the particle exposed to the cross section of the airgel is regarded as a circle.
  • the diameter when the cross section is regarded as a circle is the diameter of the true circle when the area of the cross section is replaced with a true circle of the same area.
  • yen is calculated
  • the average particle diameter of a silica particle can be measured also from a raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, for example, when colloidal silica particles having a solid concentration of about 5 to 40% by mass and dispersed in water are taken as an example, it was obtained by cutting a wafer with a patterned wiring into 2 cm square into a dispersion of colloidal silica particles. After soaking the chip for about 30 seconds, the chip is rinsed with pure water for about 30 seconds and blown dry with nitrogen.
  • the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, silica particles are observed at a magnification of 100,000 times, and an image is photographed. Twenty silica particles are arbitrarily selected from the obtained image, and the average of the particle sizes of those particles is taken as the average particle size.
  • the number of silanol groups per 1 g of the silica particles may be 10 ⁇ 10 18 particles / g or more, or 50 ⁇ 10 18 particles / g or more from the viewpoint of easily obtaining an airgel having excellent shrinkage resistance. And 100 ⁇ 10 18 pieces / g or more.
  • the number of silanol groups per 1 g of the silica particles may be 1,000 ⁇ 10 18 particles / g or less, or 800 ⁇ 10 18 particles / g or less, from the viewpoint of obtaining a homogeneous airgel easily, 700 ⁇ It may be 10 18 pieces / g or less.
  • the number of silanol groups per 1 g of the silica particles may be 10 ⁇ 10 18 to 1000 ⁇ 10 18 pieces / g, and may be 50 ⁇ 10 18 to 800 ⁇ 10 18 pieces / g. Or 100 ⁇ 10 18 to 700 ⁇ 10 18 pieces / g.
  • the content of the polysiloxane compound group contained in the above-mentioned sol (the content of the hydrolyzable functional group or the content of the polysiloxane compound having a condensable functional group, and the hydrolysis of the hydrolyzable functional group-containing polysiloxane compound
  • the total sum of the content of the product may be 5 parts by mass or more, or 10 parts by mass or more based on 100 parts by mass of the total amount of sol, from the viewpoint of easily obtaining good reactivity.
  • the content of the polysiloxane compound group contained in the sol may be 50 parts by mass or less, and 30 parts by mass or less based on 100 parts by mass of the total amount of sols, from the viewpoint of easily obtaining good compatibility. It may be. From these viewpoints, the content of the polysiloxane compound group contained in the sol may be 5 to 50 parts by mass, or 10 to 30 parts by mass with respect to 100 parts by mass of the total amount of the sol.
  • the silicon compound group (the content of the silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolyzable functional group)
  • the total content of hydrolysis products of silicon compounds having) may be 5 parts by mass or more, 10 parts by mass with respect to 100 parts by mass of the total amount of sols, from the viewpoint of easily obtaining good reactivity. It may be more than.
  • the content of the silicon compound group contained in the sol may be 50 parts by mass or less and 30 parts by mass or less with respect to 100 parts by mass of the total amount of sols, from the viewpoint of further obtaining good compatibility. May be From these viewpoints, the content of the silicon compound group contained in the sol may be 5 to 50 parts by mass, or 10 to 30 parts by mass.
  • the ratio of the content of the polysiloxane compound group to the content of the silicon compound group is 1: 1, from the viewpoint that good compatibility is more easily obtained. 0.5 or more may be sufficient and 1: 1 or more may be sufficient.
  • the ratio of the content of the polysiloxane compound group to the content of the silicon compound group may be 1: 4 or less, or even 1: 2 or less, from the viewpoint of facilitating further suppression of gel contraction. Good. From these viewpoints, the ratio of the content of the polysiloxane compound group to the content of the silicon compound group may be 1: 0.5 to 1: 4, and is 1: 1 to 1: 2, It is also good.
  • the content of the silica particles makes it easy to impart appropriate strength to the airgel, and from the viewpoint of easily obtaining an airgel having excellent shrinkage resistance during drying, the total amount of sol is 100 parts by mass On the other hand, it may be 1 part by mass or more, or 4 parts by mass or more.
  • the content of the silica particles may be 20 parts by mass or less with respect to 100 parts by mass of the total amount of sol from the viewpoint that solid heat conduction of the silica particles is easily suppressed and an airgel having excellent thermal insulation properties is easily obtained. It may be 15 parts by mass or less. From these viewpoints, the content of the silica particles may be 1 to 20 parts by mass, or 4 to 15 parts by mass with respect to 100 parts by mass of the total amount of the sol.
  • the airgel particles in this embodiment can be obtained, for example, by crushing bulk airgel as described later.
  • the specific surface area of the airgel particles can be 350 m 2 / g or less, but may be 300 m 2 / g or less, 250 m 2 / g or less, or 150 m 2 / g or less . Thereby, it is easy to prepare a coating liquid excellent in film forming property.
  • the lower limit of the specific surface area of the airgel particles is not particularly limited, but can be about 30 m 2 / g from the viewpoint of suppressing aggregation in the coating liquid and improving the filling rate.
  • There are various methods for adjusting the specific surface area of the airgel particles but, for example, adjusting the amount of the airgel component having a cross-linked structure represented by the general formula (2), adjusting the amount of silica particles Etc.
  • the specific surface area can be measured by the BET method.
  • a gas adsorption amount measuring device Autosorb-iQ (Autosorb is a registered trademark) manufactured by Cantachrome Instruments Japan Ltd.
  • the average particle diameter D50 of the airgel particles may be 1 to 1000 ⁇ m, but may be 3 to 700 ⁇ m, 5 to 500 ⁇ m, 10 to 100 ⁇ m, or 10 to 50 ⁇ m. May be When the average particle diameter D50 of the airgel particles is 1 ⁇ m or more, airgel particles having excellent dispersibility, handleability, and the like can be easily obtained. On the other hand, when the average particle diameter D50 is 1000 ⁇ m or less, airgel particles excellent in dispersibility are easily obtained.
  • the average particle size of the airgel particles can be appropriately adjusted according to the pulverizing method and conditions, the method of sieving, classification and the like.
  • the average particle size D50 of the airgel particles can be measured by a laser diffraction / scattering method. For example, it is added to a solvent (ethanol) so that the content of airgel particles is 0.05 to 5% by mass, and the airgel particles are dispersed by vibrating for 15 to 30 minutes with a 50 W ultrasonic homogenizer. Thereafter, about 10 mL of the dispersion is injected into a laser diffraction / scattering particle size distribution measuring apparatus, and the particle size is measured at 25 ° C. with a refractive index of 1.3 and an absorption of 0. Then, the particle diameter at an integrated value of 50% (volume basis) in this particle diameter distribution is taken as an average particle diameter D50.
  • Microtrac MT3000 product name, manufactured by Nikkiso Co., Ltd.
  • Microtrac MT3000 product name, manufactured by Nikkiso Co., Ltd.
  • the method for producing the airgel particles is not particularly limited, and can be produced, for example, by the following method.
  • the airgel particles of the present embodiment are a gel forming step and a wet gel forming step of gelling the sol obtained in the sol forming step and then maturing to obtain a wet gel, and the wet gel obtained in the wet gel forming step.
  • a manufacturing method mainly comprising washing and solvent replacement (if necessary), washing and solvent replacement, drying for washing and solvent replacement wet gel, and grinding the airgel obtained by the drying. It can be manufactured.
  • a manufacturing method mainly including a sol forming step, a wet gel forming step, a wet gel grinding step of grinding the wet gel obtained in the wet gel forming step, a washing and solvent substitution step, and a drying step.
  • the obtained airgel particles can be further aligned in size by sieving, classification and the like.
  • the dispersibility can be improved by adjusting the particle size.
  • the term "sol" means a state before the gelation reaction occurs, and in the present embodiment, the state in which the silicon compound and optionally the silica particles are dissolved or dispersed in a solvent.
  • wet gel refers to a gel solid in a wet state having no flowability while containing a liquid medium.
  • the sol formation step is a step of mixing a silicon compound and optionally silica particles (which may be a solvent containing silica particles) to perform a hydrolysis reaction, and then to form a sol.
  • an acid catalyst may be further added to the solvent to accelerate the hydrolysis reaction.
  • a surfactant, a thermally hydrolysable compound and the like can also be added to the solvent.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent.
  • the solvent for example, water or a mixture of water and an alcohol
  • the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like.
  • the alcohol having a low surface tension and a low boiling point methanol, ethanol, 2-propanol and the like can be mentioned in that the interfacial tension with the gel wall is reduced. You may use these individually or in mixture of 2 or more types.
  • the amount of alcohol when used as the solvent, may be 4 to 8 moles, but may be 4 to 6.5 with respect to 1 mole in total of the silicon compound group and the polysiloxane compound group. Or it may be 4.5 to 6 moles.
  • the amount of alcohol By setting the amount of alcohol to 4 mol or more, good compatibility can be further easily obtained, and by setting the amount to 8 mol or less, gel contraction can be further easily suppressed.
  • inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, etc .
  • acidic phosphoric acid Acidic phosphates such as aluminum, acidic magnesium phosphate, acidic zinc phosphate, etc .
  • Organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, azelaic acid Etc.
  • an organic carboxylic acid is mentioned as an acid catalyst which improves the water resistance of the airgel obtained more.
  • the organic carboxylic acid include acetic acid, but formic acid, propionic acid, oxalic acid, malonic acid and the like may be used. You may use these individually or in mixture of 2 or more types.
  • the hydrolysis reaction of a silicon compound can be promoted to obtain a sol in a shorter time.
  • the addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total of the polysiloxane compound group and the silicon compound group.
  • nonionic surfactants nonionic surfactants, ionic surfactants and the like can be used. You may use these individually or in mixture of 2 or more types.
  • nonionic surfactant for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene and the like can be used.
  • a compound containing a hydrophilic moiety such as polyoxyethylene and a hydrophobic moiety mainly composed of an alkyl group include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound containing a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether and block copolymers of polyoxyethylene and polyoxypropylene.
  • Examples of the ionic surfactant include cationic surfactants, anionic surfactants and amphoteric surfactants.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide, cetyltrimethylammonium chloride and the like, and examples of the anionic surfactant include sodium dodecyl sulfonate and the like.
  • an amphoteric surfactant an amino acid surfactant, a betaine surfactant, an amine oxide surfactant, etc. are mentioned.
  • Examples of amino acid surfactants include, for example, acyl glutamic acid.
  • Examples of betaine surfactants include lauryl dimethylaminoacetic acid betaine and stearyl dimethylaminoacetic acid betaine.
  • Examples of amine oxide surfactants include lauryldimethylamine oxide.
  • surfactants have the function of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing the phase separation in the wet gel formation step described later. It is believed that.
  • the amount of surfactant added depends on the type of surfactant or the type and amount of silicon compound. For example, 1 to 100 parts by mass with respect to 100 parts by mass in total of the polysiloxane compound group and the silicon compound group It can be done. The addition amount may be 5 to 60 parts by mass.
  • thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel formation step described later. Therefore, the thermohydrolyzable compound is not particularly limited as long as it is a compound that can make the reaction solution basic after hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N And acid amides such as methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly easy to obtain the above promoting effect.
  • the addition amount of the thermally hydrolysable compound is not particularly limited as long as it is an amount capable of sufficiently promoting the sol-gel reaction in the wet gel formation step described later.
  • the addition amount thereof can be 1 to 200 parts by mass with respect to 100 parts by mass of the total of the polysiloxane compound group and the silicon compound group.
  • the addition amount may be 2 to 150 parts by mass.
  • the hydrolysis in the sol formation step depends on the type and amount of silicon compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, 10 minutes to 24 minutes in a temperature environment of 20 to 60 ° C. It may be carried out for a time, or for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C.
  • the hydrolyzable functional group in the silicon compound is sufficiently hydrolyzed, and the hydrolysis product of the silicon compound can be more reliably obtained.
  • the temperature environment of the sol formation step may be adjusted to a temperature at which the hydrolysis of the thermally hydrolysable compound is suppressed to suppress the gelation of the sol. .
  • the temperature at this time may be any temperature that can suppress the hydrolysis of the thermally hydrolysable compound.
  • the temperature environment of the sol formation step can be 0 to 40 ° C., but may be 10 to 30 ° C.
  • the wet gel formation step is a step of gelling the sol obtained in the sol formation step and then ripening to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • carbonates such as calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate, silver (I) carbonate, etc .
  • Hydrogen carbonates such as calcium, potassium hydrogen carbonate, sodium hydrogen carbonate and ammonium hydrogen carbonate
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide
  • ammonium hydroxide, ammonium fluoride Ammonium compounds such as ammonium chloride and ammonium bromide
  • Basic phosphoric acid sodium salts such as sodium metaphosphate, sodium pyrophosphate and sodium polyphosphate
  • ammonium hydroxide (ammonia water) is high in volatility and less likely to remain in airgel particles after drying, so that it is difficult to impair water resistance, and is further excellent in economic point.
  • the above base catalysts may be used alone or in combination of two or more.
  • the dehydration condensation reaction or the dealcoholization condensation reaction of the silicon compound in the sol and the silica particles can be promoted, and gelation of the sol can be performed in a shorter time. Also, this makes it possible to obtain a wet gel with higher strength (rigidity).
  • ammonia since ammonia has high volatility and is unlikely to remain in airgel particles, use of ammonia as a base catalyst makes it possible to obtain airgel particles having more excellent water resistance.
  • the addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the polysiloxane compound group and the silicon compound group, but may be 1 to 4 parts by mass. By setting it as 0.5 mass part or more, gelation can be performed in a short time, and the fall of water resistance can be suppressed more by setting it as 5 mass parts or less.
  • the gelation of the sol in the wet gel formation step may be performed in a closed vessel so that the solvent and the base catalyst do not evaporate.
  • the gelling temperature may be 30-90 ° C., but may be 40-80 ° C.
  • the gelation temperature may be set to 30 ° C. or more, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained.
  • the gelation temperature to 90 ° C. or less, volatilization of the solvent (particularly alcohol) can be easily suppressed, and thus gelation can be performed while suppressing volumetric shrinkage.
  • Aging in the wet gel formation step may be performed in a closed vessel so that the solvent and the base catalyst do not evaporate. Aging strengthens the bonding of the components constituting the wet gel, and as a result, it is possible to obtain a wet gel having a high strength (rigidity) sufficient to suppress shrinkage upon drying.
  • the ripening temperature may be 30 to 90 ° C., but may be 40 to 80 ° C. By setting the aging temperature to 30 ° C. or higher, a wet gel having higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (particularly alcohol) is easily suppressed. And can be gelled while suppressing volume contraction.
  • the gelation of the sol and the subsequent aging may be performed in a series of continuous operations.
  • the gelation time and the aging time can be appropriately set by the gelling temperature and the aging temperature.
  • silica particles are contained in the sol, especially the gelation time can be shortened as compared with the case where they are not contained.
  • the reason is presumed to be that the silanol group or reactive group possessed by the silicon compound in the sol forms a hydrogen bond or a chemical bond with the silanol group of the silica particle.
  • the gelling time may be 10 to 120 minutes, but may be 20 to 90 minutes. By setting the gelation time to 10 minutes or more, it becomes easy to obtain a homogeneous wet gel, and by setting the gelation time to 120 minutes or less, it is possible to simplify the drying step from the washing and solvent substitution steps described later.
  • the total time of the gelation time and the aging time can be 4 to 480 hours as the whole of the gelation and the aging process, but it may be 6 to 120 hours.
  • the total of the gelation time and the ripening time can be 4 hours or more, a wet gel with higher strength (rigidity) can be obtained, and by making it 480 hours or less, the effect of ripening can be more easily maintained.
  • the gelling temperature and the aging temperature are increased within the above range, or the total time of the gelling time and the aging time is increased within the above range. It is also good.
  • the gelling temperature and the aging temperature are lowered within the above range, or the total time of the gelling time and the aging time is within the above range You may shorten it.
  • the wet gel obtained in the wet gel formation process is ground.
  • the grinding can be carried out, for example, by placing the wet gel in a Henshall-type mixer or performing a wet gel formation step in the mixer and operating the mixer under appropriate conditions (rotation speed and time). Also, more simply, the wet gel is placed in a sealable container, or the wet gel formation step is performed in the sealable container, and shaking is performed using a shaking device such as a shaker for a suitable period of time. Can. If necessary, the particle size of the wet gel can also be adjusted using a jet mill, a roller mill, a bead mill or the like.
  • the washing and solvent replacement steps are a step of washing the wet gel obtained by the wet gel forming step or the wet gel grinding step (washing step), and a solvent suitable for drying the washing liquid in the wet gel (drying step described later). And the step of replacing (solvent replacement step).
  • the washing and solvent replacement steps can be carried out without washing the wet gel but with only the solvent replacement step, impurities such as unreacted substances and by-products in the wet gel can be reduced.
  • the wet gel may be washed from the viewpoint of enabling production of high purity airgel particles.
  • the wet gel obtained by the wet gel formation step or the wet gel grinding step is washed.
  • the washing can be repeated, for example, using water or an organic solvent. At this time, the washing efficiency can be improved by heating.
  • organic solvent methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride
  • organic solvents such as N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used.
  • the above organic solvents may be used alone or in combination of two or more.
  • examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a solvent having low surface tension.
  • the hydrophilic organic solvent used in the washing step can play a role of pre-substitution for the solvent substitution step.
  • examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone and the like. Methanol, ethanol, methyl ethyl ketone and the like are excellent in economical point.
  • the amount of water or organic solvent used in the washing step may be such that the solvent in the wet gel is sufficiently replaced to be washable.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the washing can be repeated until the water content in the wet gel after washing becomes 10% by mass or less with respect to the mass of silica.
  • the temperature environment in the washing step can be set to a temperature equal to or lower than the boiling point of the solvent used for washing.
  • heating can be performed at about 30 to 60.degree.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress the shrinkage of the airgel in the drying step.
  • the substitution efficiency can be improved by heating.
  • Specific examples of the substitution solvent include, in the drying step, a solvent having a low surface tension described later when drying under atmospheric pressure at a temperature less than the critical point of the solvent used for drying.
  • examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide and the like, or solvents in which two or more of these are mixed.
  • solvents having a surface tension of 30 mN / m or less at 20 ° C. As a low surface tension solvent, solvents having a surface tension of 30 mN / m or less at 20 ° C. can be mentioned.
  • the surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • low surface tension solvents examples include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methyl pentane (18.1), 2-methyl hexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); benzene Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) Halogenated hydrocarbons such as carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1), etc .; ethyl ether (17.1), propyl ether (20.5) ), Isop Ethers such as pill ether (17.7), buty
  • aliphatic hydrocarbons (hexane, heptane, etc.) have low surface tension and are excellent in working environment.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane, etc.
  • a solvent having a boiling point of 100 ° C. or less at normal pressure may be used at the point of easy drying in the drying step described later.
  • the above solvents may be used alone or in combination of two or more.
  • the amount of solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature equal to or lower than the boiling point of the solvent used for the replacement, and, for example, in the case of using heptane, heating can be about 30 to 60 ° C.
  • the solvent replacement step is not essential.
  • the presumed mechanism is as follows. That is, when the silica particles function as a support for the three-dimensional network skeleton, the skeleton is supported, and the gel contraction in the drying step is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for the washing.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying or lyophilization can be used. Among these, atmospheric pressure drying or supercritical drying can be used from the viewpoint of easily producing a low density aerogel. In addition, normal pressure drying can be used from the viewpoint of low cost production. In the present embodiment, normal pressure means 0.1 MPa (atmospheric pressure).
  • Aerogels can be obtained by drying the washed and solvent-replaced wet gel at atmospheric pressure at a temperature below the critical point of the solvent used for drying.
  • the drying temperature varies depending on the type of the solvent which has been substituted (or the solvent used for washing if solvent substitution is not performed), particularly when drying at high temperature accelerates the evaporation rate of the solvent and causes the gel to greatly crack.
  • the temperature can be set to 20 to 150 ° C. in view of the following.
  • the drying temperature may be 60 to 120 ° C.
  • the drying time may vary depending on the wet gel volume and the drying temperature, but may be 4 to 120 hours.
  • accelerating under a pressure by applying a pressure less than the critical point within a range not inhibiting productivity is also included in normal-pressure drying.
  • Aerogels can also be obtained by supercritical drying of the washed and (optionally) solvent substituted wet gel.
  • Supercritical drying can be performed by a known method.
  • a method of performing supercritical drying for example, a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel can be mentioned.
  • the whole or a part of the solvent contained in the wet gel is immersed in liquefied carbon dioxide, for example, under the conditions of about 20 to 25 ° C., about 5 to 20 MPa.
  • a method of removing carbon dioxide alone or a mixture of carbon dioxide and a solvent after replacing the solvent with carbon dioxide having a lower critical point than the solvent for example, under the conditions of about 20 to 25 ° C., about 5 to 20 MPa.
  • the airgel obtained by such normal pressure drying or supercritical drying may be additionally dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This further facilitates obtaining an airgel with low density and small pores.
  • the additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • air gel particles are obtained by grinding an airgel (air gel block) obtained by drying.
  • it can carry out by putting an aerogel in a jet mill, a roller mill, a bead mill, a hammer mill etc., and driving
  • the coating solution contains airgel particles and a liquid medium.
  • the airgel particles in the coating liquid may be filled with a liquid medium in the pores.
  • examples of the coating liquid include the first to third coating liquids shown below.
  • the thing of high viscosity (for example, 1000 mPa * s or more) among coating liquids can be called paste.
  • the first coating liquid contains airgel particles having a specific surface area of 350 m 2 / g or less as described above, a binder resin, and a liquid medium.
  • the first coating solution can also be said to be a mixture of the above-mentioned airgel particles, a binder resin and a liquid medium.
  • the specific surface area of the airgel particles is 350 m 2 / g or less.
  • the specific surface area of the airgel particles is considered to affect the adsorption power (adsorption amount) to the binder resin. Therefore, when the specific surface area is too large, the binder resin is incorporated together with the liquid medium in the airgel particle having a porous structure, and an appropriate amount of the binder resin is present on the surface of the airgel particle in the coating liquid state. It is difficult.
  • the binder resin has a function of binding airgel particles to each other after forming a coating film.
  • the binder resin for example, epoxy resin, silicone resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, acrylic resin (acrylic ester or methacrylic ester main structure) Polymers contained as units), polyvinyl chloride resin, polyvinyl acetate resin, polyamide resin, polyimide resin, cellulose resin, polyvinyl resin and the like.
  • acrylic acid resins polymers containing acrylic acid, acrylic acid salt, methacrylic acid, and methacrylic acid salt as structural units
  • polyvinyl alcohol polyethylene oxide
  • polyethylene glycol polyethylene glycol
  • silicone resins acrylic resins, phenol resins and polyester resins can be suitably used from the viewpoint of heat resistance and toughness.
  • cellulose resin hydroxypropyl methylcellulose, carboxymethylcellulose ammonium, hydroxyethyl methylcellulose etc. are mentioned, for example.
  • polyvinyl-type resin polyvinyl alcohol, polyvinyl pyrrolidone, etc. are mentioned, for example.
  • acrylic resin for example, polyacrylic acid, acrylic acid copolymer, polyacrylate, acrylate copolymer and the like can be mentioned.
  • the coating liquid may further contain a curing agent.
  • the curing agent is not particularly limited, and may be appropriately changed according to the type of thermosetting resin.
  • the thermosetting resin is an epoxy resin
  • a known epoxy resin curing agent can be used as the curing agent.
  • epoxy resin curing agents include amine curing agents, acid anhydride curing agents, polyamide curing agents, etc. From the viewpoint of reactivity, amine curing agents and polyamide curing agents are preferably used. Can.
  • Liquid media include water and organic solvents.
  • the organic solvent is not particularly limited as long as it can disperse the airgel particles.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene
  • fats such as hexane, heptane and pentane Hydrocarbons
  • ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane
  • alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol
  • esters such as methyl acetate, ethyl acetate and butyl acetate
  • amides such as N, N-dimethylform
  • alcohols and ketones can be used, and in particular, alcohols can be suitably used. Alcohols and ketones are also suitable when used in combination with water, water-based resin and the like because they are easy to mix.
  • the coating liquid may contain, as other components, a thickener, a fibrous substance, a pigment, a leveling agent, a film forming aid and the like.
  • a thickener can improve the viscosity of a coating liquid and can make the coating property with respect to an object better.
  • the thickener include fine particles of organic polymers, fumed silica, layered inorganic additives, clay minerals and the like.
  • the fibrous substance can exhibit an anchor function between airgel particles after forming a coating film, and the coating film strength can be further improved.
  • the fibrous material is not particularly limited and includes organic fibers and inorganic fibers.
  • organic fiber for example, polyamide fiber, polyimide fiber, polyvinyl alcohol fiber, polyvinylidene chloride fiber, polyvinyl chloride fiber, polyester fiber, polyacrylonitrile fiber, polyethylene fiber, polypropylene fiber, polyurethane
  • the fibers include phenolic fibers, phenolic fibers, polyether ester fibers, polylactic acid fibers, and polycarbonate fibers.
  • glass fiber, carbon fiber, ceramic fiber, a metal fiber etc. are mentioned, for example.
  • the content of airgel particles in the coating liquid can be 0.1 to 30% by mass from the viewpoint of dispersibility, filling amount of airgel particles, viscosity of the coating liquid, etc., but it is 1 to 25% by mass. May be In addition, from the viewpoint of being suitable for coating using a crucible or the like, the content of the airgel particles in the coating liquid may be 2% by mass or more, or 3% by mass or more.
  • the content of the binder resin in the coating liquid can be 1 to 40% by mass from the viewpoint of the binding property of the airgel particles to each other, the heat insulating property of the coating film, etc. However, even if it is 1 to 30% by mass Good.
  • the content of the binder resin in the coating liquid can be, for example, 5 parts by mass or more with respect to 100 parts by mass of the airgel particles, but may be 10 parts by mass or more, and 15 parts by mass or more And may be 20 parts by mass or more.
  • the airgel particles are easily bound firmly by the binder resin, and the strength of the coating is further improved.
  • the content of the binder resin can be, for example, 150 parts by mass or less with respect to 100 parts by mass of airgel particles, but may be 130 parts by mass or less, and may be 100 parts by mass or less , 90 parts by mass or less.
  • the ratio of the airgel particle in a coating film becomes high, and the heat insulation of a coating film improves further.
  • the content of the fibrous substance in the coating solution can be 1 to 50% by mass from the viewpoint of dispersibility in the coating solution, expression of a good anchor function, etc. It may be.
  • the content of the fibrous substance in the coating liquid can be, for example, 5 parts by mass or more with respect to 100 parts by mass of the airgel particles, but may be 7 parts by mass or more, and is 9 parts by mass or more May be Thereby, the anchoring effect by the fibrous substance can be easily obtained, and the coating film strength is further improved.
  • the content of the fibrous substance can be, for example, 50 parts by mass or less with respect to 100 parts by mass of airgel particles, but may be 35 parts by mass or less, and may be 25 parts by mass or less It may be 20 parts by mass or less, or 15 parts by mass or less.
  • the ratio of the airgel particle in a coating film becomes high, and the heat insulation of a coating film improves further.
  • the content of the thickener can be appropriately adjusted so as to obtain a desired coating solution viscosity (for example, 1000 mPa ⁇ s or more).
  • the viscosity of the coating solution can also be improved by blending a binder resin, in which case it is not necessary to blend a thickener.
  • the second coating liquid contains airgel particles, a binder resin, a fibrous substance having a fiber length of 1.5 mm or more, and a liquid medium.
  • the second coating liquid may be a mixture of the above-mentioned airgel particles, a binder resin, a fibrous material having a fiber length of 1.5 mm or more, and a liquid medium.
  • a 2nd coating liquid is demonstrated, it abbreviate
  • the second coating solution contains a fibrous material having a fiber length of 1.5 mm or more.
  • a fibrous material having a fiber length of 1.5 mm or more.
  • the coating liquid of this embodiment contains a long fiber.
  • fibers may be easily oriented in the plane by intentionally using long fibers (fibrous substances having a fiber length of 1.5 mm or more). It is guessed. It is believed that this makes it possible to maintain high thermal insulation in the thickness direction while improving the strength in the plane direction.
  • the fiber length can be 2 mm or more, may be 2.5 mm or more, or 3 mm or more.
  • the upper limit of the fiber length is not particularly limited, but can be 20 mm from the viewpoint of dispersibility in a coating liquid.
  • the fiber diameter of the fibrous substance can be 0.01 to 100 ⁇ m from the viewpoint of dispersibility in a coating liquid, a good anchor function, and the like.
  • the content of the fibrous substance in the coating solution is as described above.
  • the content of fibers having a fiber length of 1.5 mm or more can be 30% by mass or more based on the total mass of the fibrous substance, but may be 50% by mass or more.
  • the upper limit of the content can be 100% by mass (that is, the fiber length of substantially all the fibrous material in the coating liquid is 1.5 mm or more).
  • the third coating liquid contains airgel particles, a liquid medium, a first binder resin, and a second binder resin.
  • the third coating solution can also be said to be a mixture of airgel particles, a liquid medium, a first binder resin, and a second binder resin.
  • a 3rd coating liquid is demonstrated, it abbreviate
  • the first binder resin and the second binder resin have a function of binding airgel particles to each other after forming a coating film.
  • the first binder resin and the second binder resin are both dissolved in the liquid medium, and the solubility of the first binder resin in the liquid medium is higher than the solubility of the second binder resin in the liquid medium.
  • a coating film having excellent coating film strength and adhesiveness can be obtained.
  • the reason is not necessarily clear, but the inventors speculate as follows. Since the first binder resin and the second binder resin have different solubilities in the liquid medium, the second binder resin is first to the liquid medium in the drying step (the step of removing the liquid medium) at the time of coating film formation. The second binder resin is likely to precipitate first. It is considered that such a difference in solubility results in the formation of a characteristic binder structure at the time of coating film formation, and excellent coating film strength and adhesiveness can be obtained.
  • the second binder resin is first bound on the airgel particles (and the fibrous material described later), and the first binder resin is the second. It is speculated that excellent film strength and adhesiveness can be obtained by binding between airgel particles (or between airgel particles and fibrous material or between fibrous materials) via a binder resin. Ru. Further, it is also considered that the airgel particles are strongly bonded to each other by the second binder resin being in the form of particles and filling the space between the airgel particles and then binding with the first binder resin.
  • binder resin examples include the above-mentioned resins.
  • the first binder resin and the second binder resin may be selected from these, and more specifically, may be selected from the resins described later.
  • the content of the second binder resin is preferably larger than the content of the first binder resin. Thereby, the above-mentioned effect is more remarkably exhibited.
  • the content of the second binder resin is preferably more than 100 parts by mass, more preferably 150 parts by mass or more, and may be 200 parts by mass or more with respect to 100 parts by mass of the first binder resin. It may be more than, 400 parts by mass or more, and 600 parts by mass or more.
  • the content of the second binder resin may be 800 parts by mass or less, preferably 700 parts by mass or less, with respect to 100 parts by mass of the first binder resin, from the viewpoint of excellent heat insulation performance. It may be not more than part, not more than 500 parts by mass, and not more than 400 parts by mass.
  • the total content of the first binder resin and the second binder resin in the coating solution can be 1 to 40% by mass from the viewpoint of the binding property of the airgel particles, the heat insulation property of the coating film, etc. And 1 to 30% by mass.
  • the total content of the first binder resin and the second binder resin may be, for example, 5 parts by mass or more, preferably 10 parts by mass or more, and 15 parts by mass with respect to 100 parts by mass of the airgel particles.
  • the above is more preferable, and 20 parts by mass or more is more preferable.
  • the airgel particles are easily bound firmly by the binder resin, and the strength of the coating is further improved.
  • the total content of the first binder resin and the second binder resin may be, for example, 150 parts by mass or less, preferably 130 parts by mass or less, with respect to 100 parts by mass of the airgel particles, More preferably, it is 90 parts by weight or less.
  • the ratio of the airgel particle in a coating film becomes high, and the heat insulation of a coating film improves further.
  • the first binder resin has a function of binding airgel particles to one another after the formation of a coating film, and may be a resin which can be dissolved in a liquid medium.
  • the liquid medium is an aqueous solvent
  • examples of the first binder resin include cellulose resin, polyvinyl alcohol, polyvinyl pyrrolidone, acrylic resin, polyethylene oxide, polyethylene glycol and the like.
  • cellulose resins, polyvinyl pyrrolidone and acrylic acid resins can be suitably used.
  • the second binder resin may be a resin that is soluble in the liquid medium and has a lower solubility in the liquid medium than the first binder resin.
  • the second binder resin may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resin an acrylic resin, polyvinyl alcohol, a polypropylene, polyvinyl chloride etc. are mentioned, for example. Among these, from the viewpoint of handleability, acrylic resin and polyvinyl alcohol can be suitably used.
  • thermosetting resin an epoxy resin, a silicone resin, a polyurethane etc. are mentioned, for example.
  • an epoxy resin and a silicone resin can be used suitably from a viewpoint which is excellent in heat resistance.
  • the coating may further contain a curing agent.
  • the curing agent is not particularly limited, and may be appropriately changed according to the type of thermosetting resin.
  • the thermosetting resin is an epoxy resin
  • a known epoxy resin curing agent can be used as the curing agent.
  • epoxy resin curing agents include amine curing agents, acid anhydride curing agents, and polyamide curing agents. From the viewpoint of reactivity, amine based and polyamide curing agents can be suitably used.
  • the liquid medium includes the water and the organic solvent described above.
  • the liquid medium is preferably an aqueous solvent containing water.
  • the aqueous solvent may be water or a mixed solvent containing water and an organic solvent. According to such a liquid medium, the dispersibility of the airgel particles is improved, and a uniform coating film can be easily obtained.
  • the coating liquid according to the present embodiment can be widely applied to, for example, large-scale facilities such as plants and power plants, to small and medium-sized devices such as home appliances and automobiles, and aims to reduce energy loss in various situations. Can.
  • the method for producing a coating includes the step of removing the liquid medium from the coating liquid containing the airgel particles and the liquid medium. More specifically, the method for producing a coating film can include the steps of applying the above-mentioned coating solution onto an object, and removing the liquid medium from the coating solution applied onto the object. .
  • the applied coating solution may be left in an environment of 0 to 40 ° C., or the applied coating solution is heated (for example, 40 to 150 ° C.) treated or decompressed (for example, Or less) or both.
  • the coating liquid of this embodiment may be high viscosity (paste-like), as shown in FIG. 1, a coating liquid can be apply
  • a coating film having a thickness which can not be realized by the conventional heat insulating paint can be formed in a short time.
  • a coating film having a thickness of at least about 2 mm can be formed by a single application, and only a coating film having a thickness of about 0.5 mm can be obtained. It is possible to realize extremely high work efficiency as compared with the paint of In addition, since a coating liquid contains airgel particle
  • the first coating can contain 40 to 95% by mass of airgel particles, and can contain 1 to 50% by mass of a binder resin (or its cured product).
  • the second coating film can contain 40 to 95% by mass of airgel particles, can contain 1 to 40% by mass of a binder resin (or its cured product), and has a fiber length of 1.5 mm or more
  • the substance can be contained in an amount of 1 to 50% by mass.
  • the content of airgel particles in the coating can be, for example, 40% by mass or more, but may be 50% by mass or more, 60% by mass or more, and 70% by mass or more. May be This further improves the heat insulation of the coating. Moreover, although content of the airgel particle in a coating film can be 95 mass% or less, for example, 90 mass% or less may be sufficient. This tends to facilitate the formation of a coating film.
  • the content of the first binder resin in the coating film may be, for example, 2 parts by mass or more, preferably 5 parts by mass or more, with respect to 100 parts by mass of the airgel particles. More than part is more preferable. Further, the content of the first binder resin in the coating film may be, for example, 20 parts by mass or less, preferably 17 parts by mass or less, and more preferably 15 parts by mass or less with respect to 100 parts by mass of the airgel particles.
  • the content of the second binder resin (or the cured product thereof) in the coating film may be, for example, 10 parts by mass or more, and 15 parts by mass with respect to 100 parts by mass of the airgel particles in the third coating film. The above is preferable and 20 mass parts or more may be sufficient.
  • the content of the second binder resin (or the cured product thereof) in the coating film may be, for example, 100 parts by mass or less, preferably 80 parts by mass or less, with respect to 100 parts by mass of the airgel particles. It may be less than or equal to parts, and may be less than or equal to 40 parts by mass.
  • the thickness of the coating film is not particularly limited, and can be, for example, 0.01 to 5 mm.
  • the coating film has good water repellency because the airgel particles of the present embodiment have hydrophobicity. That is, it is hard to produce performance degradation (for example, heat insulation fall) by a coating film containing water, and it can reduce the replacement frequency of a coating film. Further, due to the good water repellency, it is not necessary to provide an exterior material for the purpose of protecting the coating film.
  • the water repellency can be evaluated by measuring the contact angle between the coating film and water. The contact angle may be 90 ° or more, 110 ° or more, or 130 ° or more. The contact angle of the coating film can be adjusted, for example, by the content of airgel particles in the coating film, the type and content of the liquid medium, and the like.
  • the coating has good heat resistance.
  • the heat resistance can be evaluated by measuring the temperature at 5% weight loss of the coating. For example, when the temperature is raised to 500 ° C. under a condition of a heating rate of 10 ° C./min and measurement is performed using a differential thermal thermal simultaneous measurement device, the temperature at the time of 5% weight loss can be 150 ° C. or higher The temperature may be 200 ° C. or more, or 250 ° C. or more.
  • the heat resistance of the coating can be adjusted, for example, by the type of binder resin, the content in the coating, and the like.
  • the form of the object may be more complicated.
  • the coating liquid according to this embodiment may be applied to an object to which it is difficult to attach a sheet-like or board-like flat heat insulating material such as a component having a complicated shape or a pipe (pipe) having a bent portion.
  • a heat insulating layer can be provided on the surface.
  • the coating film has excellent heat insulation, heat resistance, flame retardancy, water repellency and the like derived from airgel. From such advantages, the coating film can be used in cryogenic containers, space fields, construction fields, automobile fields (for example, heat insulators for automobile parts), home appliances, semiconductor fields, industrial equipment (for example, plants, power plants etc.) It can apply to the use as a heat insulating material in the heat insulating material for various piping etc. etc. In addition, the said coating film can be utilized also as a water repellent material, a sound absorbing material, a static vibration material, a catalyst support material etc. other than the use as a heat insulating material.
  • polysiloxane compound A having a structure represented by Obtain a sol by. The obtained sol was gelled at 60 ° C. and then aged at 60 ° C. for 48 hours to obtain a wet gel.
  • the "polysiloxane compound A” was synthesized as follows. First, in a 1-liter three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser, dimethylpolysiloxane XC 96-723 (Momentive Performance Materials Japan GK Co., Ltd.) having silanol groups at both ends. 100.0 parts by mass, 181.3 parts by mass of methyltrimethoxysilane and 0.50 parts by mass of t-butylamine were mixed, and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, to thereby obtain a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
  • the obtained wet gel was transferred to a plastic bottle, and after sealing, it was crushed for 10 minutes at 27,000 rpm using an Extreme mill (MX-1000XTS manufactured by As One Corporation) to obtain a particulate wet gel .
  • the resulting particulate wet gel was immersed in 2500.0 parts by mass of methanol and washed at 25 ° C. for 24 hours. This washing operation was performed a total of three times while changing to fresh methanol.
  • the washed particulate wet gel was immersed in 2500.0 parts by mass of low surface tension solvent heptane, and solvent substitution was performed at 25 ° C. for 24 hours. This solvent displacement operation was performed a total of three times while exchanging for fresh heptane.
  • the washed, solvent-replaced particulate wet gel was dried at 40 ° C. for 96 hours under normal pressure, and then further dried at 150 ° C. for 2 hours. Finally, the mixture was sieved (manufactured by Tokyo Screen Co., Ltd., mesh 45 ⁇ m, wire diameter 32 ⁇ m) to obtain airgel particles A having a structure represented by the general formulas (3), (4) and (5).
  • Example 1-1 In a 300 mL separable flask, 10 g of airgel particles A, 1 g of glass fiber (Nitto Boshoku Co., Ltd., CS 3 PE-908, average fiber length 3 mm), 35 g of isopropyl alcohol (Wako Pure Chemical Industries, Ltd., reagent), and carboxymethyl cellulose 1 g of ammonium (Wako Pure Chemical Industries, Ltd., reagent) was taken, and stirred at 150 rpm for 15 minutes using a mechanical stirrer to obtain an isopropyl alcohol dispersion. Subsequently, 50 g of water was added to the dispersion to dissolve carboxymethylcellulose ammonium, whereby a coating solution 1-1 was obtained.
  • Example 1-1 A coating solution was prepared in the same manner as in Example 1-1 except that the blending raw materials and the blending amount of the coating solution were changed as shown in Table 1, to obtain coating solutions 1-2 to 1-5.
  • the viscosities of the coating liquids of the examples were all over 10000 mPa ⁇ s.
  • the BET specific surface area of the airgel particles was measured using a gas adsorption amount measuring device (Autosorb-iQ (Autosorb is a registered trademark) manufactured by Cantachrome Instruments Japan Ltd.).
  • the specific surface area of the airgel particle A was 125 m 2 / g
  • the specific surface area of the airgel particle B was 716 m 2 / g.
  • the dispersion liquid was prepared by adding to the ethanol so that the content of the airgel particles was 0.5% by mass, and applying vibration to this with a 50 W ultrasonic homogenizer for 20 minutes. 10 mL of the obtained dispersion was poured into Microtrac MT 3000 (product name, manufactured by Nikkiso Co., Ltd.), and the particle diameter was measured at 25 ° C. with a refractive index of 1.3 and an absorption of 0. Then, the particle diameter at an integrated value of 50% (volume basis) in the obtained particle diameter distribution is taken as the average particle diameter D50.
  • the average particle size D50 of the airgel particles A was 20 ⁇ m
  • the average particle size D50 of the airgel particles B was 8.7 ⁇ m.
  • the coating liquids of Examples and Comparative Examples were coated on an aluminum foil so as to have a thickness of 2 mm using a metal spatula. Then, the liquid medium was removed from the coating liquid by heating at 120 ° C. for 1 hour to obtain a coating film.
  • the film-forming property of the coating solution was evaluated by observing the obtained coating film visually. That is, the case where it had the favorable appearance without a crack was evaluated as film-forming property favorable, and the case where the crack has generate
  • the evaluation results are shown in Table 2.
  • Example 1-1 and 1-2 after the coating film obtained by the film formation evaluation was cut into 30 cm ⁇ 30 cm together with the aluminum foil, the coating film was destroyed when the aluminum foil was removed. It was possible to peel off the aluminum foil without In addition, when the heat insulation of the coating film was evaluated by a steady-state method, the thermal conductivity was sufficiently low (32 to 35 mW / m ⁇ K).
  • Example 1-1 Water repellant evaluation
  • the water repellency of the coating obtained in Example 1-1 was evaluated by measuring the contact angle with water.
  • the coating film was processed to a size of 50 ⁇ 50 mm and used as a measurement sample. Then, about 3 ⁇ L of pure water was dropped on the surface of the measurement sample, and the contact angle after 5 minutes was measured.
  • a contact angle meter (LSE-B100, manufactured by Nick Co., Ltd.) was used as a measuring device. The contact angle of the coating was 145 °.
  • the heat resistance was evaluated using the coating film obtained in Example 1-1.
  • the obtained coating film was peeled off from the aluminum foil and used as a measurement sample.
  • measurement is carried out by raising the temperature to 500 ° C. at a heating rate of 10 ° C./min using a differential thermal-thermal-gravity simultaneous measuring device (TG / DTA STA7300 manufactured by Hitachi High-Tech Science Co., Ltd.) The temperature of the hour was recorded.
  • the weight of the coating film in 100 degreeC was made into the reference weight (zero point).
  • the temperature at 5% weight loss of the coating was 320 ° C.
  • the heat insulation performance was evaluated about the coating film obtained using the coating liquid of Example 1-1.
  • the coating solution was applied on alumite-treated aluminum plate (50 ⁇ 50 mm, thickness 0.5 mm) using a metal spatula so as to have a specified thickness.
  • the coating solution is dried at room temperature (25 ° C.) for 2 hours, and then dried for a further 2 hours with a dryer heated to 60 ° C. (Perfect oven SPHH-301 manufactured by Espec Corp.), and a plurality of coating films having different thicknesses.
  • An evaluation sample was prepared. In the case of obtaining a thick coating film, it was applied once, dried at room temperature for 2 hours, and then applied again. This was repeated until the desired thickness was obtained.
  • the coating film about 2 mm in thickness was able to be obtained by one application.
  • the evaluation sample was placed so that the aluminum plate side faced the glass heater (S-101, manufactured by Blast Co., Ltd.), and the temperature was raised to 150.degree.
  • the temperature of the evaluation sample surface (the temperature of the coating film surface) after holding at 150 ° C. for 1 hour was measured using infrared thermography (FSV-1200-L16, manufactured by Apiste Co., Ltd.).
  • the surface temperature, which was 150 ° C. in the absence of a coating (coating thickness 0 mm) was 130 ° C. as the coating thickness was increased to 1.0 mm, 2.0 mm, 5.0 mm and 10.0 mm. It decreased to 100 ° C, 75 ° C and 60 ° C.
  • Example 2-1 In a 300 mL separable flask, 10 g of airgel particles produced by the same procedure as “production of airgel particles A” in Experiment 1, 5 g of aramid fibers (Teijin Limited, Technora, average fiber length 6 mm), isopropyl alcohol (Wako Pure Chemical Industries, Ltd. 100 g of manufactured by Kogyo Co., Ltd. and 2 g of carboxymethylcellulose ammonium (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were taken, and stirred at 150 rpm for 15 minutes using a mechanical stirrer to obtain an isopropyl alcohol dispersion. Subsequently, 100 g of water was added to the dispersion to dissolve carboxymethylcellulose ammonium, whereby a coating solution 2-1 was obtained.
  • aramid fibers Teijin Limited, Technora, average fiber length 6 mm
  • isopropyl alcohol Waako Pure Chemical Industries, Ltd. 100 g of manufactured by Kogyo Co., Ltd
  • Example 2-7 A coating liquid was prepared in the same manner as in Example 2-1 except that the blending raw materials and the blending amount of the coating liquid were changed as shown in Table 3, to obtain coating liquids 2-2 to 2-7.
  • the viscosities of the coating liquids of the examples were all over 10000 mPa ⁇ s.
  • that having 2 g of PVA and 98 g of water means that 100 g of a 2 wt% PVA aqueous solution was used in place of carboxymethylcellulose ammonium and water.
  • the coating liquids of Examples and Comparative Examples were coated on an aluminum foil so as to have a thickness of 2 mm using a metal spatula. Then, the liquid medium was removed from the coating liquid by heating at 120 ° C. for 1 hour to obtain an aluminum foil with a coated film. The thermal conductivity of the obtained coating film was measured by a steady state method. The results are shown in Table 4.
  • the coating film of the example was cut into 30 cm ⁇ 30 cm together with the aluminum foil, and the aluminum foil was removed. With any of the coatings, the aluminum foil could be peeled off without the coating being destroyed.
  • the coating film of the comparative example was subjected to the same operation, the coating film was broken and the coating film remained on the aluminum foil. Since short fibers are used in the comparative example, it seems that a larger amount of fibers was required to obtain sufficient coating strength. However, when the fiber amount is increased, the thermal conductivity is considered to be further increased because a heat path by the short fibers will be further formed.
  • Example A-1 10 parts by mass of hydroxypropyl methylcellulose (manufactured by Matsumoto Yushi Co., Ltd., product name: MP-30000), 10 parts by mass of glass fibers (product name: chopped strands, fiber diameter: 13 ⁇ m, fiber length: 3 mm) 100 parts by mass of an airgel particle manufactured by the same procedure as “Preparation of airgel particle A”, 16 parts by mass of an acrylic resin (manufactured by Hitachi Chemical Co., Ltd., product name: KH-CT-865), 350 mass of methyl ethyl ketone (MEK) Parts and 200 parts by mass of water were mixed to obtain a coating solution.
  • hydroxypropyl methylcellulose manufactured by Matsumoto Yushi Co., Ltd., product name: MP-30000
  • glass fibers product name: chopped strands, fiber diameter: 13 ⁇ m, fiber length: 3 mm
  • MEK methyl ethyl ketone
  • a coating machine was applied on an aluminum foil (product name: Myfoil thick type 50, thickness: 50 ⁇ m, made by UACJ, after drying) to a thickness of 2 mm and heated to 60 ° C.
  • the product was manufactured by company, product name: Perfect oven SPHH-301) and dried for 2 hours to obtain an airgel-containing coating.
  • coating film strength tensile strength
  • adhesive strength peel strength
  • the obtained coating film was processed into a size of 2 ⁇ 5 ⁇ 5 mm, and used as a measurement sample.
  • a small-sized desktop tester "EZTest" product name, manufactured by Shimadzu Corporation
  • 500 N was used as a load cell.
  • the sample was set at a distance between the top and bottom of 25 mm, and tension was performed at a speed of 2.5 mm / min. The measurement was terminated when the sample broke.
  • the coated film with aluminum foil was cut at intervals of 3 mm to make a measurement sample.
  • a small-sized desktop tester "EZTest" product name, manufactured by Shimadzu Corporation
  • the sample was fixed with the aluminum foil face up, the aluminum foil was sandwiched, and tension was performed at a speed of 50 mm / min.
  • the measurement was finished when the aluminum foil peeled from the coating.
  • Example A-2 A coating solution was prepared in the same manner as Example A-1, except that the amount of acrylic resin was changed to 33 parts by mass. Also, using the obtained coating solution, an airgel-containing coating was produced in the same manner as in Example A-1. With respect to the obtained coating film, the coating film strength (tensile strength) and the adhesive strength (peel strength) were measured in the same manner as in Example A-1. The results are shown in Table 5.
  • Example A-3 A coating solution was prepared in the same manner as Example A-1, except that the amount of acrylic resin was changed to 66 parts by mass. Also, using the obtained coating solution, an airgel-containing coating was produced in the same manner as in Example A-1. With respect to the obtained coating film, the coating film strength (tensile strength) and the adhesive strength (peel strength) were measured in the same manner as in Example A-1. The results are shown in Table 5.
  • Example B-1 10 parts by mass of hydroxypropyl methylcellulose (Matsumoto Yushi Co., Ltd., product name: MP-30000), 10 parts by mass of glass fibers (product name: chopped strands, fiber diameter: 13 ⁇ m, fiber length: 3 mm), 100 parts of airgel particles 16 parts by mass, epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: jER811), 1.6 parts by mass of triethylenetetramine (TETA, manufactured by Wako Pure Chemical Industries, Ltd.) as a curing agent, methyl ethyl ketone (MEK) 350 parts by mass and 200 parts by mass of water were mixed to obtain a coating solution.
  • epoxy resin manufactured by Mitsubishi Chemical Corporation, product name: jER811
  • TETA triethylenetetramine
  • MEK methyl ethyl ketone
  • a coating machine was applied on an aluminum foil (product name: Myfoil thick type 50, thickness: 50 ⁇ m, made by UACJ, after drying) to a thickness of 2 mm and heated to 60 ° C.
  • the product was manufactured by company, product name: Perfect oven SPHH-301) and dried for 2 hours to obtain an airgel-containing coating.
  • the coating film strength (tensile strength) and the adhesive strength (peel strength) were measured in the same manner as in Example A-1. The results are shown in Table 5.
  • Example B-2 A coating solution was prepared in the same manner as in Example B-1, except that the amount of the epoxy resin was changed to 33 parts by mass and the amount of the curing agent to 3.3 parts by mass. Further, using the obtained coating solution, an airgel-containing coating was produced in the same manner as in Example B-1. With respect to the obtained coating film, the coating film strength (tensile strength) and the adhesive strength (peel strength) were measured in the same manner as in Example A-1. The results are shown in Table 5.
  • Example B-3 A coating solution was prepared in the same manner as Example B-1, except that the amount of the epoxy resin was changed to 66 parts by mass, and the amount of the curing agent to 6.6 parts by mass. Further, using the obtained coating solution, an airgel-containing coating was produced in the same manner as in Example B-1. With respect to the obtained coating film, the coating film strength (tensile strength) and the adhesive strength (peel strength) were measured in the same manner as in Example A-1. The results are shown in Table 5.
  • the viscosity of the coating liquid of the Example was all over 10000 mPa * s.
  • Example 1 A coating solution was prepared in the same manner as Example A-1, except that the acrylic resin was not blended. Also, using the obtained coating solution, an airgel-containing coating was produced in the same manner as in Example A-1. With respect to the obtained coating film, the coating film strength (tensile strength) and the adhesive strength (peel strength) were measured in the same manner as in Example A-1. The results are shown in Table 5.
  • second binder resin indicates the content relative to 100 parts by mass of the first binder resin
  • peel strength indicates the measurement result of the above ⁇ measurement of peel strength>
  • tensile breaking strength Shows the measurement result of the above-mentioned ⁇ measurement of tensile strength>.
  • Example A-1 The water repellency of Example A-1 was evaluated in the same manner as in Example 1-1.
  • the contact angle of the coating was 123 °.
  • the heat resistance of Example A-1 was evaluated in the same manner as in Example 1-1.
  • the temperature at 5% weight loss of the coating was 270.degree.
  • the heat insulation performance evaluation was performed on Example A-1 in the same manner as Example 1-1.
  • the surface temperature, which was 150 ° C. in the absence of a coating (coating thickness 0 mm) was 130 ° C. as the coating thickness was increased to 1.0 mm, 2.0 mm, 5.0 mm and 10.0 mm. It decreased to 110 ° C, 85 ° C, and 65 ° C.

Abstract

本発明は、エアロゲル粒子及び液状媒体を含む塗液に関する。

Description

塗液、塗膜の製造方法及び塗膜
 本発明は、塗液、塗膜の製造方法及び塗膜に関する。
 断熱性、透明性等に優れる材料としてエアロゲルが知られている。このような特性を有するエアロゲルを粒子状に加工し、断熱材の構成材料として用いる方法が提案されている(例えば、特許文献1及び2)。特許文献1では、粒子状のエアロゲルを、断熱窓を構成する樹脂板等の間の充填剤として用いることが提案されている。特許文献2では、エアロゲル粒子と有機繊維とを含む水分散液を調製した後、水を蒸発させることにより得られる中間生成物をさらにプレス成型することで、断熱材(成型体)を製造する方法が示されている。
特開2012-91943号公報 特開2014-35044号公報
 本発明は上記の事情に鑑みてなされたものであり、新規なエアロゲル粒子含有塗液を提供することを目的とする。本発明はまた、当該塗液を用いた塗膜の製造方法、及び新規な塗膜を提供することを目的とする。
 本発明は、エアロゲル粒子及び液状媒体を含む塗液を提供する。
 本発明は、比表面積が350m/g以下であるエアロゲル粒子、バインダ樹脂、及び液状媒体を含む塗液を提供する。このような塗液は、従来技術により得られるエアロゲル粒子を含むものとは異なり、良好な塗膜を得ることができる。
 上記の塗液において、液状媒体が有機溶媒を含むことができる。これにより、エアロゲル粒子の分散性をより向上することができる。
 上記の塗液において、バインダ樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂及びポリビニル系樹脂からなる群より選択される少なくとも一種とすることができる。これにより成膜性をより向上することができる。
 本発明はまた、エアロゲル粒子、バインダ樹脂、繊維長が1.5mm以上である繊維状物質、及び液状媒体を含む塗液を提供する。このような塗液は、従来技術により得られる塗液に比して、断熱性に優れる塗膜を得ることができる。
 上記の塗液において、液状媒体が有機溶媒を含むことができる。これにより、エアロゲル粒子の分散性を向上することができる。
 上記の塗液において、繊維状物質の繊維長は20mm以下とすることができる。これにより繊維状物質の分散性を向上することができる。
 上記の塗液において、塗液中の繊維状物質の全質量を基準として、繊維長が1.5mm以上である繊維状物質の含有量は30質量%以上とすることができる。これにより断熱性及び塗膜強度をより向上することができる。
 本発明はさらに、エアロゲル粒子と、液状媒体と、第一のバインダ樹脂と、液状媒体に対する溶解度が第一のバインダ樹脂より低い第二のバインダ樹脂と、を含む、塗液を提供する。このような塗液によれば、塗膜強度及び接着性に優れる塗膜を得ることができる。
 上記の塗液において、液状媒体は、水を含む水系溶媒であってよい。これによりエアロゲル粒子の分散性が向上して、均一な塗膜が得られやすくなる。
 上記の塗液において、第二のバインダ樹脂の含有量は、第一のバインダ樹脂の含有量より多くしてよい。これにより、塗膜強度及び接着性により優れた塗膜が得られやすくなる。
 上記の塗液において、第一のバインダ樹脂はセルロース系樹脂であってよい。これにより、塗膜強度及び接着性が優れた塗膜が得られるのに加え、塗液の粘度が高くなり膜形成しやすくなるという効果がある。
 上記の塗液において、第二のバインダ樹脂は熱可塑性樹脂であってよい。これにより、接着性に一層優れた塗膜が得られやすくなる。なお、第二のバインダ樹脂はアクリル樹脂であってよい。
 上記の塗液において、第二のバインダ樹脂は熱硬化性樹脂であってもよく、このとき塗膜は硬化剤を更に含んでいてよい。これにより、塗膜強度に一層優れた塗膜が得られやすくなる。なお、第二のバインダ樹脂はエポキシ樹脂であってもよく、このとき塗膜はエポキシ樹脂硬化剤をさらに含んでいてよい。
 上記の塗液は、繊維状物質をさらに含んでいてよい。これにより、塗膜強度に一層優れた塗膜が得られやすくなる。
 本発明の各塗液において、粘度は1000mPa・s以上であってもよい。これにより、成膜性をより向上させることができる。
 本発明の各塗液は、有機繊維及び無機繊維の少なくとも一方を含んでいてもよい。これにより、塗膜強度に一層優れた塗膜が得られやすくなる。
 本発明はまた、上記塗液から液状媒体を除去する工程を備える、塗膜の製造方法を提供する。
 本発明はさらに、比表面積が350m/g以下であるエアロゲル粒子、及びバインダ樹脂又はその硬化体を含む塗膜を提供するものであり、エアロゲル粒子、バインダ樹脂又はその硬化体、及び繊維長が1.5mm以上である繊維状物質を含む塗膜を提供するものであり、エアロゲル粒子と、第一のバインダ樹脂と、水系溶媒に対する溶解度が第一のバインダ樹脂より低い第二のバインダ樹脂又はその硬化体と、を含む、塗膜を提供するものである。本発明の製造方法により得られる塗膜及び本発明の塗膜は良好な膜質を有している。
 本発明によれば、新規なエアロゲル粒子含有塗液を提供することができる。本発明はまた、当該塗液を用いた塗膜の製造方法、及び新規な塗膜(エアロゲル塗膜)を提供することができる。
鏝を用いて塗液を対象物上に塗布する方法を示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
<エアロゲル>
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。一般的に、エアロゲルの内部は、網目状の微細構造を有しており、2~20nm程度の粒子状のエアロゲル成分が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造が形成されている。なお、本実施形態に係るエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。
 本実施形態に係るエアロゲルとしては、以下の態様が挙げられる。これらの態様を採用することにより、断熱性、難燃性、耐熱性及び柔軟性に優れるエアロゲルを得ることが容易となる。各々の態様を採用することで、各々の態様に応じた断熱性、難燃性、耐熱性及び柔軟性を有するエアロゲルを得ることができる。
(第一の態様)
 本実施形態に係るエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記式(1)又は式(1a)で表される構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルとなる。このような観点から、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。
(第二の態様)
 本実施形態に係るエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有し、かつ橋かけ部が下記一般式(2)で表される構造を有することができる。このようなラダー型構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲルの骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。シルセスキオキサンは、組成式:(RSiO1.5を有するポリシロキサンであり、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。なお、下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本実施形態に係るエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。ただし、本態様のエアロゲルは、一般式(2)で表される構造に加え、さらにシルセスキオキサンに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。
(第三の態様)
 本実施形態に係るエアロゲルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種、を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの:ゾル由来の湿潤ゲルの乾燥物)であってもよい。なお、これまで述べてきたエアロゲルも、このように、ケイ素化合物等を含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、ポリシロキサン化合物を用いることができる。すなわち、上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有することができる。
 ポリシロキサン化合物における官能基は、特に限定されないが、同じ官能基同士で反応するか、あるいは他の官能基と反応する基とすることができる。加水分解性の官能基としては、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲルの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基は、ゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲルの柔軟性をより向上する観点から2~4であってもよい。
 分子内にヒドロキシアルキル基を有するポリシロキサン化合物としては、下記一般式(A)で表される構造を有するものが挙げられる。下記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(1)及び式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000006
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(A)中、R1aとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(A)中、R2aとしては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。また、式(A)中、R3a及びR4aとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(A)中、nは2~30とすることができるが、5~20であってもよい。
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)などが挙げられる。
 分子内にアルコキシ基を有するポリシロキサン化合物としては、下記一般式(B)で表される構造を有するものが挙げられる。下記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)又は(3)で表される橋かけ部を有するラダー型構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000007
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(B)中、R1bとしては炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としてはメチル基、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R2b及びR3bとしてはそれぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としてはメトキシ基、エトキシ基等が挙げられる。また、式(B)中、R4b及びR5bとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(B)中、mは2~30とすることができるが、5~20であってもよい。
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物は混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 これら、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 本実施形態に係るエアロゲルを作製するにあたり、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、上述のポリシロキサン化合物以外のケイ素化合物を用いることができる。すなわち、上記のケイ素化合物を含有するゾルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有する当該ケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ケイ素化合物群」という)を、上述のポリシロキサン化合物群に加えて、あるいは上述のポリシロキサン化合物群に代えて、含有することができる。ケイ素化合物における分子内のケイ素数は1又は2とすることができる。
 分子内に加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、アルキルケイ素アルコキシド等が挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができる。このようなアルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。ここで、加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール、トリフルオロプロピルシラントリオール等が挙げられる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物は、加水分解性の官能基及び縮合性の官能基とは異なる上述の反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。
 加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 また、縮合性の官能基を有し、反応性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。
 さらに、分子末端の加水分解性の官能基が3個以下のケイ素化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン、エチルトリメトキシシラン、ビニルトリメトキシシラン等も用いることができる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有する当該ケイ素化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 上記のケイ素化合物(ポリシロキサン化合物を除く)を使用することにより、下記一般式(4)~(6)で表される構造をエアロゲルの骨格中に導入することができる。本実施形態に係るエアロゲルは、これらの構造をのうちいずれかを単独で、又は2種以上有することができる。
Figure JPOXMLDOC01-appb-C000008
 式(4)中、Rはアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(6)中、R12はアルキレン基を示す。ここで、アルキレン基としては炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、ヘキシレン基等が挙げられる。
(第四の態様)
 本実施形態に係るエアロゲルは、さらに強靱化する観点並びにさらに優れた断熱性及び柔軟性を達成する観点から、エアロゲル成分に加え、さらにシリカ粒子を含有していてもよい。エアロゲル成分及びシリカ粒子を含有するエアロゲルを、エアロゲル複合体ということもできる。エアロゲル複合体は、エアロゲル成分とシリカ粒子とが複合化されていながらも、エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有していると考えられる。
 エアロゲル成分及びシリカ粒子を含有するエアロゲルは、上述の、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、シリカ粒子と、を含有するゾルの縮合物である湿潤ゲルの乾燥物ということができる。したがって、第一の態様~第三の態様に関する記載は、本実施形態に係るエアロゲルに対しても適宜準用することができる。
 シリカ粒子としては、特に制限なく用いることができ、非晶質シリカ粒子等が挙げられる。非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子、コロイダルシリカ粒子等が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
 シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度及び柔軟性をエアロゲルに付与し易く、乾燥時の耐収縮性に優れるエアロゲルが得易い観点から、1nm以上であってもよく、5nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、500nm以下であってもよく、300nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、1~500nmであってもよく、5~300nmであってもよく、20~100nmであってもよい。
 本実施形態において、エアロゲル成分の平均粒子径及びシリカ粒子の平均一次粒子径は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲルを直接観察することにより得ることができる。ここでいう「直径」とは、エアロゲルの断面に露出した粒子の断面を円とみなした場合の直径を意味する。また、「断面を円とみなした場合の直径」とは、断面の面積を同じ面積の真円に置き換えたときの当該真円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子の平均粒子径は、原料からも測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常固形分濃度が5~40質量%程度で、水中に分散しているコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。
 シリカ粒子の1g当たりのシラノール基数は、耐収縮性に優れるエアロゲルを得易くなる観点から、10×1018個/g以上であってもよく、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。シリカ粒子の1g当たりのシラノール基数は、均質なエアロゲルが得易くなる観点から、1000×1018個/g以下であってもよく、800×1018個/g以下であってもよく、700×1018個/g以下であってもよい。これらの観点から、シリカ粒子の1g当たりのシラノール基数は、10×1018~1000×1018個/gであってもよく、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。
 上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるポリシロキサン化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるポリシロキサン化合物群の含有量は、ゾルの総量100質量部に対し、5~50質量部であってもよく、10~30質量部であってもよい。
 上記ゾルがケイ素化合物(ポリシロキサン化合物を除く)を含有する場合、ケイ素化合物群(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物の含有量、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるケイ素化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるケイ素化合物群の含有量は、5~50質量部であってもよく、10~30質量部であってもよい。
 ゾルが、ポリシロキサン化合物群及びケイ素化合物群を共に含む場合、ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、良好な相溶性がさらに得易くなる観点から、1:0.5以上であってもよく、1:1以上であってもよい。ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、ゲルの収縮がさらに抑制し易くなる観点から、1:4以下であってもよく、1:2以下であってもよい。これらの観点から、ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、1:0.5~1:4であってもよく、1:1~1:2であってもよい。
 上記ゾルにシリカ粒子が含まれる場合、シリカ粒子の含有量は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、1質量部以上であってもよく、4質量部以上であってもよい。シリカ粒子の含有量は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、20質量部以下であってもよく、15質量部以下であってもよい。これらの観点から、シリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部であってもよく、4~15質量部であってもよい。
<エアロゲル粒子>
 本実施形態におけるエアロゲル粒子は、例えば後述のとおりバルクのエアロゲルを粉砕することにより得ることができる。
 エアロゲル粒子の比表面積は350m/g以下とすることができるが、300m/g以下であってもよく、250m/g以下であってもよく、150m/g以下であってもよい。これにより、成膜性に優れる塗液を調製し易い。エアロゲル粒子の比表面積の下限は特に限定されないが、塗液中での凝集抑制及び充填率の向上という観点から、30m/g程度とすることができる。エアロゲル粒子の比表面積を調整する方法としては様々考えられるが、例えば、一般式(2)で表される橋架け部構造を有するエアロゲル成分の量を調整すること、シリカ粒子の量を調整すること等が挙げられる。
 比表面積はBET法により測定することができる。測定装置としては、ガス吸着量測定装置(カンタクローム・インスツルメンツ・ジャパン合同会社製、Autosorb-iQ(Autosorbは登録商標))を用いることができる。
 エアロゲル粒子の平均粒子径D50は1~1000μmとすることができるが、3~700μmであってもよく、5~500μmであってもよく、10~100μmであってもよく、10~50μmであってもよい。エアロゲル粒子の平均粒子径D50が1μm以上であることにより、分散性、取り扱い性等に優れるエアロゲル粒子が得易くなる。一方、平均粒子径D50が1000μm以下であることにより、分散性に優れるエアロゲル粒子が得易くなる。エアロゲル粒子の平均粒子径は、粉砕方法及び粉砕条件、ふるい、分級の仕方等により適宜調整することができる。
 エアロゲル粒子の平均粒子径D50はレーザー回折・散乱法により測定することができる。例えば、溶媒(エタノール)に、エアロゲル粒子の含有量が0.05~5質量%となるように添加し、50Wの超音波ホモジナイザーで15~30分振動することによって、エアロゲル粒子の分散を行う。その後、分散液の約10mL程度をレーザー回折・散乱式粒子径分布測定装置に注入して、25℃で、屈折率1.3、吸収0として粒子径を測定する。そして、この粒子径分布における積算値50%(体積基準)での粒径を平均粒子径D50とする。測定装置としては、例えばMicrotrac MT3000(日機装株式会社製、製品名)を用いることができる。
<エアロゲル粒子の製造方法>
 エアロゲル粒子の製造方法は、特に限定されないが、例えば以下の方法により製造することができる。
 本実施形態のエアロゲル粒子は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する洗浄及び溶媒置換工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程と、乾燥により得られたエアロゲルを粉砕する粉砕工程とを主に備える製造方法により製造することができる。
 また、ゾル生成工程と、湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する湿潤ゲル粉砕工程と、洗浄及び溶媒置換工程と、乾燥工程とを主に備える製造方法により製造してもよい。
 得られたエアロゲル粒子は、ふるい、分級等によって大きさをさらに揃えることができる。粒子の大きさを整えることで分散性を高めることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては上記ケイ素化合物と、場合によりシリカ粒子と、が溶媒中に溶解又は分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
(ゾル生成工程)
 ゾル生成工程は、ケイ素化合物と、場合によりシリカ粒子(シリカ粒子を含む溶媒であってもよい)と、を混合して加水分解反応を行った後、ゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 溶媒としては、例えば、水、又は、水及びアルコールの混合液を用いることができる。アルコールとしては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば溶媒としてアルコールを用いる場合、アルコールの量は、ケイ素化合物群及びポリシロキサン化合物群の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、又は4.5~6モルであってもよい。アルコールの量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸などが挙げられる。これらの中でも、得られるエアロゲルの耐水性をより向上する酸触媒としては有機カルボン酸が挙げられる。当該有機カルボン酸としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.001~0.1質量部とすることができる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物の種類及び量にも左右されるが、例えばポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
 塩基触媒としては、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム、炭酸銅(II)、炭酸鉄(II)、炭酸銀(I)等の炭酸塩類;炭酸水素カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル粒子中に残存し難いため耐水性を損ない難いという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物、及びシリカ粒子の、脱水縮合反応又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル粒子中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル粒子を得ることができる。
 塩基触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により適宜設定することができる。ゾル中にシリカ粒子が含まれている場合は、含まれていない場合と比較して、特にゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有するシラノール基又は反応性基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
 得られるエアロゲル粒子の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル粒子の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(湿潤ゲル粉砕工程)
 湿潤ゲル粉砕工程を行う場合、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する。粉砕は、例えば、ヘンシャル型ミキサーに湿潤ゲルを入れるか、又はミキサー内で湿潤ゲル生成工程を行い、ミキサーを適度な条件(回転数及び時間)で運転することにより行うことができる。また、より簡易的には密閉可能な容器に湿潤ゲルを入れるか、又は密閉可能な容器内で湿潤ゲル生成工程を行い、シェイカー等の振盪装置を用いて、適度な時間振盪することにより行うことができる。なお、必要に応じて、ジェットミル、ローラーミル、ビーズミル等を用いて、湿潤ゲルの粒子径を調整することもできる。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル粒子の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。
 洗浄工程では、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。
 溶媒置換工程では、乾燥工程におけるエアロゲルの収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒が挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。
 なお、ゲル中にシリカ粒子が含まれている場合、溶媒置換工程は必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、エアロゲル(エアロゲルブロック又はエアロゲル粒子)を得ることができる。すなわち、上記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲルを得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲルを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 エアロゲルは、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 エアロゲルは、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲルは、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルをさらに得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
(粉砕工程)
 湿潤ゲル粉砕工程を行わない場合は、乾燥により得られたエアロゲル(エアロゲルブロック)を粉砕することによりエアロゲル粒子を得る。例えば、ジェットミル、ローラーミル、ビーズミル、ハンマーミル等にエアロゲルを入れ、適度な回転数と時間で運転することにより行うことができる。
<塗液>
 塗液は、エアロゲル粒子及び液状媒体を含む。塗液中のエアロゲル粒子は、細孔内が液状媒体で満たされていてもよい。当該塗液としては、より具体的には以下に示す第一~第三の塗液が挙げられる。なお、塗液のうち高粘度(例えば、1000mPa・s以上)のものをペーストと言うことができる。
(第一の塗液)
 第一の塗液は、上述の比表面積が350m/g以下であるエアロゲル粒子、バインダ樹脂、及び液状媒体を含む。第一の塗液は、上述のエアロゲル粒子、バインダ樹脂及び液状媒体の混合物であるということもできる。
 第一の塗液において、エアロゲル粒子の比表面積は350m/g以下である。これにより、成膜性に優れる塗液を調製することができる。この理由は必ずしも定かではないが、発明者らは次のように推察している。エアロゲル粒子の比表面積は、バインダ樹脂に対する吸着力(吸着量)を左右すると考えられる。したがって、当該比表面積が大き過ぎる場合は、多孔質構造を有するエアロゲル粒子内に、液状媒体と共にバインダ樹脂が取り込まれてしまい、塗液の状態で適切な量のバインダ樹脂をエアロゲル粒子表面に存在させることが難しい。これにより、塗液を乾燥させる際に、バインダ樹脂によるエアロゲル粒子の結着が十分に行われず、良好な膜質を有する塗膜を得ることができない。これに対し、エアロゲル粒子の比表面積が上記範囲内であると、適切な量のバインダ樹脂をエアロゲル粒子表面に存在させることができるため、エアロゲル粒子がバインダ樹脂により好適に結着された塗膜を形成することが可能となると考える。
 バインダ樹脂は、塗膜形成後にエアロゲル粒子同士を結着する機能を有する。バインダ樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂(アクリル酸エステル又はメタクリル酸エステルを主たる構造単位として含む重合体)、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、ポリビニル系樹脂等が挙げられる。また、バインダ樹脂として、アクリル酸系樹脂(アクリル酸、アクリル酸塩、メタクリル酸、メタクリル酸塩を構造単位として含む重合体)、ポリビニルアルコール、ポリエチレンオキシド、ポリエチレングリコール等を用いることもできる。これらの中でも、耐熱性及び強靭性という観点から、シリコーン樹脂、アクリル樹脂、フェノール樹脂及びポリエステル樹脂を好適に用いることができる。
 なお、セルロース系樹脂としては、例えば、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースアンモニウム、ヒドロキシエチルメチルセルロース等が挙げられる。また、ポリビニル系樹脂としては、例えば、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
 アクリル酸系樹脂としては、例えば、ポリアクリル酸、アクリル酸共重合ポリマー、ポリアクリル酸塩、アクリル酸塩共重合ポリマー等が挙げられる。
 バインダ樹脂が熱硬化性樹脂であるとき、塗液は、硬化剤をさらに含有していてよい。硬化剤は特に限定されず、熱硬化性樹脂の種類に応じて適宜変更してよい。例えば、熱硬化性樹脂がエポキシ樹脂であるとき、硬化剤としては、公知のエポキシ樹脂硬化剤を用いることができる。エポキシ樹脂硬化剤としては、例えば、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が例示でき、反応性の観点からはアミン系硬化剤及びポリアミド系硬化剤を好適に用いることができる。
 液状媒体としては水及び有機溶媒が挙げられる。有機溶媒としては、該エアロゲル粒子を分散し得るものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン等の脂肪族炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類などが挙げられる。これらの中でも、揮発性、沸点等の観点から、アルコール類及びケトン類を用いることができ、特にアルコール類を好適に用いることができる。アルコール類及びケトン類は、水、水系樹脂等との混合が容易であるため、それらの成分との併用時にも好適である。
 塗液は、他の成分として増粘剤、繊維状物質、顔料、レベリング剤、成膜助剤等を含んでいてもよい。
 増粘剤は塗液の粘性を向上させ、対象に対する塗工性をより良好にすることができる。増粘剤としては、例えば、有機系ポリマー、フュームドシリカ、層状無機添加剤、粘土鉱物等の微粒子が挙げられる。
 繊維状物質は塗膜形成後にエアロゲル粒子間のアンカー機能を発現することができ、塗膜強度をより向上することができる。繊維状物質としては特に制限されず、有機繊維及び無機繊維が挙げられる。有機繊維としては、例えば、ポリアミド系繊維、ポリイミド系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリウレタン系繊維、フェノール系繊維、ポリエーテルエステル系繊維、ポリ乳酸系繊維、ポリカーボネート系繊維等が挙げられる。無機繊維としては、例えば、ガラス繊維、炭素繊維、セラミック繊維、金属繊維等が挙げられる。
 塗液中のエアロゲル粒子の含有量は、分散性、エアロゲル粒子の充填量、塗液の粘度等の観点から、0.1~30質量%とすることができるが、1~25質量%であってもよい。また、鏝等を用いた塗布に好適であるという観点からは、塗液中のエアロゲル粒子の含有量は2質量%以上であってもよく、3質量%以上であってもよい。
 塗液中のバインダ樹脂の含有量は、エアロゲル粒子同士の結着性、塗膜の断熱性等の観点から、1~40質量%とすることができるが、1~30質量%であってもよい。
 塗液中のバインダ樹脂の含有量は、例えば、エアロゲル粒子100質量部に対して、5質量部以上とすることができるが、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよい。これにより、エアロゲル粒子がバインダ樹脂によって強固に結着され易くなり、塗膜の強度が一層向上する。
 また、バインダ樹脂の含有量は、例えば、エアロゲル粒子100質量部に対して、150質量部以下とすることができるが、130質量部以下であってもよく、100質量部以下であってもよく、90質量部以下であってもよい。これにより、塗膜中のエアロゲル粒子の比率が高くなり、塗膜の断熱性が一層向上する。
 塗液中の繊維状物質の含有量は、塗液中での分散性、良好なアンカー機能の発現性等の観点から、1~50質量%とすることができるが、1~30質量%であってもよい。
 塗液中の繊維状物質の含有量は、例えば、エアロゲル粒子100質量部に対して、5質量部以上とすることができるが、7質量部以上であってもよく、9質量部以上であってもよい。これにより、繊維状物質によるアンカー効果が得られ易くなり、塗膜強度が一層向上する。
 また、繊維状物質の含有量は、例えば、エアロゲル粒子100質量部に対して、50質量部以下とすることができるが、35質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよく、15質量部以下であってもよい。これにより、塗膜中のエアロゲル粒子の比率が高くなり、塗膜の断熱性が一層向上する。
 増粘剤の含有量は、所望の塗液粘度(例えば、1000mPa・s以上)となるように適宜調整することができる。塗液の粘度はバインダ樹脂を配合することにより向上させることもできるため、その場合は必ずしも増粘剤を配合する必要はない。
(第二の塗液)
 第二の塗液は、エアロゲル粒子、バインダ樹脂、繊維長が1.5mm以上である繊維状物質、及び液状媒体を含む。第二の塗液は、上述のエアロゲル粒子、バインダ樹脂、繊維長が1.5mm以上である繊維状物質、及び液状媒体の混合物であるということもできる。以下、第二の塗液について説明をするが、第一の塗液の記載と重複する内容については適宜省略する。
 第二の塗液は、繊維長が1.5mm以上である繊維状物質を含む。これにより、塗膜強度を向上しつつ、塗膜の断熱性を確保することができる。この理由は必ずしも定かではないが、発明者らは次のように推察している。一般に、特許文献2のようなプレス成型体を作製するのであれば、成型体のさらなる強度確保のため、成型体内で繊維がランダムに配向していることが好ましい。特許文献2において短繊維が用いられているのは、長繊維に比べて短繊維がランダムに配向し易いためであると考える。しかしながら、厚みの薄い膜状の成型体を作製した場合、繊維をランダムに配向させることは、厚み方向(断熱したい方向)において繊維による熱パスが生じやすく、厚み方向の断熱性を損なうことにもつながる。これに対し、本実施形態の塗液は長繊維を含むものである。塗液を用いて対象表面に薄い塗膜を形成する場合においては、長繊維(繊維長が1.5mm以上である繊維状物質)を敢えて用いることで繊維が面内に配向し易くなることが推測される。これによって、面方向における強度を向上させつつ、厚み方向における高い断熱性を維持することが可能になると考える。
 この観点から、当該繊維長は2mm以上とすることができ、2.5mm以上であってもよく、3mm以上であってもよい。一方、繊維長の上限は特に制限されないが、塗液中での分散性の観点から、20mmとすることができる。
 繊維状物質の繊維径は、塗液中での分散性、良好なアンカー機能等の観点から、0.01~100μmとすることができる。
 塗液中の繊維状物質の含有量は、上記のとおりである。また、繊維状物質の全質量を基準として、繊維長が1.5mm以上である繊維の含有量は、30質量%以上とすることができるが、50質量%以上であってもよい。当該含有量の上限は、100質量%(すなわち、実質的に塗液中の全繊維状物質の繊維長が1.5mm以上)とすることができる。
(第三の塗液)
 第三の塗液は、エアロゲル粒子、液状媒体、第一のバインダ樹脂、及び第二のバインダ樹脂を含む。第三の塗液は、エアロゲル粒子、液状媒体、第一のバインダ樹脂、及び第二のバインダ樹脂の混合物であるということもできる。以下、第三の塗液について説明をするが、第一及び第二の塗液の記載と重複する内容については適宜省略する。
 第一のバインダ樹脂及び第二のバインダ樹脂は、塗膜形成後にエアロゲル粒子同士を結着する機能を有する。第一のバインダ樹脂及び第二のバインダ樹脂は、いずれも液状媒体に溶解し、第一のバインダ樹脂の液状媒体に対する溶解度は、第二のバインダ樹脂の液状媒体に対する溶解度より高い。
 このような第一のバインダ樹脂及び第二のバインダ樹脂を塗液に含ませることで、塗膜強度及び接着性に優れた塗膜が得られる。この理由は必ずしも定かではないが、発明者らは次のように推察している。第一のバインダ樹脂と第二のバインダ樹脂は液状媒体に対する溶解度が異なるため、塗膜形成時の乾燥工程(液状媒体を除去する工程)において、液状媒体に対して第二のバインダ樹脂が第一のバインダ樹脂より先に飽和し、第二のバインダ樹脂が先に析出しやすくなる。このような溶解度の差異により、塗膜形成時に特徴的なバインダ構造が形成され、優れた塗膜強度及び接着性が得られると考えられる。
 上述の特徴的なバインダ構造については必ずしも定かではないが、例えば、第二のバインダ樹脂が先にエアロゲル粒子(及び後述の繊維状物質)上に結着し、第一のバインダ樹脂が第二のバインダ樹脂を介してエアロゲル粒子間(又は、エアロゲル粒子と繊維状物質との間若しくは繊維状物質間)を結着することで、優れた塗膜強度及び接着性が得られていることが推測される。また、第二のバインダ樹脂が粒状となってエアロゲル粒子間を埋め、その後、第一のバインダ樹脂で結着されることで、エアロゲル粒子同士が強固に結着しているとも考えられる。
 バインダ樹脂としては上記の樹脂が挙げられる。第一のバインダ樹脂及び第二のバインダ樹脂はこれらの中から選択してよく、より具体的には後述の樹脂から選択してもよい。
 本実施形態では、第二のバインダ樹脂の含有量が、第一のバインダ樹脂の含有量より多いことが好ましい。これにより、上述の効果がより顕著に奏される。第二のバインダ樹脂の含有量は、第一のバインダ樹脂100質量部に対して100質量部を超えることが好ましく、150質量部以上がより好ましく、200質量部以上であってよく、300質量部以上であってもよく、400質量部以上であってもよく、600質量部以上であってもよい。
 また、第二のバインダ樹脂の含有量は、断熱性能に優れる観点からは、第一のバインダ樹脂100質量部に対して、800質量部以下であってよく、700質量部以下が好ましく、600質量部以下であってよく、500質量部以下であってもよく、400質量部以下であってもよい。
 塗液中の第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量は、エアロゲル粒子同士の結着性、塗膜の断熱性等の観点から、1~40質量%とすることができるが、1~30質量%であってもよい。
 第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量は、例えば、エアロゲル粒子100質量部に対して、5質量部以上であってよく、10質量部以上であることが好ましく、15質量部以上がより好ましく、20質量部以上が更に好ましい。これにより、エアロゲル粒子がバインダ樹脂によって強固に結着されやすくなり、塗膜の強度が一層向上する。
 また、第一のバインダ樹脂及び第二のバインダ樹脂の合計含有量は、例えば、エアロゲル粒子100質量部に対して、150質量部以下であってよく、130質量部以下であることが好ましく、100質量部以下がより好ましく、90質量部以下が更に好ましい。これにより、塗膜中のエアロゲル粒子の比率が高くなり、塗膜の断熱性が一層向上する。
 第一のバインダ樹脂は、塗膜形成後にエアロゲル粒子同士を結着する機能を有し、液状媒体に溶解可能な樹脂であればよい。例えば、液状媒体が水系溶媒であるとき、第一のバインダ樹脂としては、例えば、セルロース系樹脂、ポリビニルアルコール、ポリビニルピロリドン、アクリル酸系樹脂、ポリエチレンオキシド、ポリエチレングリコール等が挙げられる。これらのうち、増粘性に優れる観点からは、セルロース系樹脂、ポリビニルピロリドン、アクリル酸系樹脂を好適に用いることができる。
 第二のバインダ樹脂は、液状媒体に溶解可能であり、液状媒体に対する溶解度が第一のバインダ樹脂より低い樹脂であればよい。第二のバインダ樹脂は、熱可塑性樹脂であってよく、熱硬化性樹脂であってもよい。
 熱可塑性樹脂としては、例えば、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、ポリ塩化ビニル等が挙げられる。これらのうち、取り扱い性の観点からは、アクリル樹脂、ポリビニルアルコールを好適に用いることができる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ポリウレタン等が挙げられる。これらのうち、耐熱性に優れる観点からは、エポキシ樹脂、シリコーン樹脂を好適に用いることができる。
 第二のバインダ樹脂が熱硬化性樹脂であるとき、塗膜は、硬化剤を更に含有していてよい。硬化剤は特に限定されず、熱硬化性樹脂の種類に応じて適宜変更してよい。例えば、熱硬化性樹脂がエポキシ樹脂であるとき、硬化剤としては、公知のエポキシ樹脂硬化剤を用いることができる。エポキシ樹脂硬化剤としては、例えば、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が例示でき、反応性の観点からはアミン系、ポリアミド系を好適に用いることができる。
 液状媒体としては上記の水及び有機溶媒が挙げられる。好適な一態様において、液状媒体は、水を含む水系溶媒であることが好ましい。水系溶媒は、水であってよく、水及び有機溶媒を含む混合溶媒であってもよい。このような液状媒体によれば、エアロゲル粒子の分散性が向上して、均一な塗膜が得られやすくなる。
 本実施形態の塗液は、例えば、プラントや発電所のような大規模施設から、家電、自動車等が有する中・小型機器まで幅広く適応可能であり、様々な状況においてエネルギーロスの低減を図ることができる。
<塗膜の製造方法及び塗膜>
 塗膜の製造方法(塗膜形成方法)は、エアロゲル粒子及び液状媒体を含む塗液から、液状媒体を除去する工程を備える。より具体的には、塗膜の製造方法は、上述の塗液を対象物上に塗布する工程と、対象物上に塗布された塗液から液状媒体を除去する工程と、を備えることができる。
 塗液を対象物上に塗布する方法としては特に制限されず、例えばディップコート、スプレーコート、スピンコート、ロールコート等が挙げられる。塗膜の形成に際しては、塗布された塗液を0~40℃の環境に放置してもよく、あるいは塗布された塗液に対し、加熱(例えば、40~150℃)処理、減圧(例えば、10000Pa以下)処理、又はそれらの両処理を行ってもよい。
 なお、本実施形態の塗液は高粘度(ペースト状)であってもよいため、図1に示すように鏝(金属へら)等を用いて塗液を対象物上に塗布することができる。図1では、鏝を用いて塗液を配管の屈曲部に塗布している。本実施形態の塗液であれば、従来の断熱塗料では実現困難な厚みの塗膜を短時間で形成することができる。具体的には、そのような塗液であれば、一度の塗布により少なくとも2mm程度の厚さの塗膜を形成することができ、0.5mm程度の厚さの塗膜しか得られなかった従来の塗料に比して極めて高い作業効率を実現することができる。なお、塗液はエアロゲル粒子を含むため、従来の断熱塗料よりも断熱性能に優れる塗膜を得ることができる。
 第一の塗液を用いる場合、これにより、比表面積が350m/g以下であるエアロゲル粒子及びバインダ樹脂(又はその硬化体)を含む第一の塗膜を得ることができる。第一の塗膜は、エアロゲル粒子を40~95質量%含むことができ、バインダ樹脂(又はその硬化体)を1~50質量%含むことができる。
 第二の塗液を用いる場合、これにより、エアロゲル粒子、バインダ樹脂(又はその硬化体)、及び繊維長が1.5mm以上である繊維状物質を含む第二の塗膜を得ることができる。第二の塗膜は、エアロゲル粒子を40~95質量%含むことができ、バインダ樹脂(又はその硬化体)を1~40質量%含むことができ、繊維長が1.5mm以上である繊維状物質を1~50質量%含むことができる。
 第三の塗液を用いる場合、これにより、エアロゲル粒子、第一のバインダ樹脂、及び、第二のバインダ樹脂(又はその硬化体)を含む第三の塗膜を得ることができる。
 塗膜中のエアロゲル粒子の含有量は、例えば、40質量%以上とすることができるが、50質量%以上であってもよく、60質量%以上であってもよく、70質量%以上であってもよい。これにより、塗膜の断熱性が一層向上する。また、塗膜中のエアロゲル粒子の含有量は、例えば、95質量%以下とすることができるが、90質量%以下であってもよい。これにより、塗膜が形成し易くなる傾向がある。
 特に第三の塗膜について、塗膜中の第一のバインダ樹脂の含有量は、エアロゲル粒子100質量部に対して、例えば2質量部以上であってよく、5質量部以上が好ましく、8質量部以上がより好ましい。また、塗膜中の第一のバインダ樹脂の含有量は、エアロゲル粒子100質量部に対して、例えば20質量部以下であってよく、17質量部以下が好ましく、15質量部以下がより好ましい。
 特に第三の塗膜について、塗膜中の第二のバインダ樹脂(又はその硬化体)の含有量は、エアロゲル粒子100質量部に対して、例えば10質量部以上であってよく、15質量部以上が好ましく、20質量部以上であってもよい。また、塗膜中の第二のバインダ樹脂(又はその硬化体)の含有量は、エアロゲル粒子100質量部に対して、例えば100質量部以下であってよく、80質量部以下が好ましく、60質量部以下であってよく、40質量部以下であってもよい。
 塗膜の厚さは特に制限されず、例えば、0.01~5mmとすることができる。
 塗膜は、本実施形態のエアロゲル粒子が疎水性を有するため、良好な撥水性を有する。すなわち、塗膜が水を含んでしまうことによる性能劣化(例えば断熱性の低下)が生じ難く、塗膜の交換頻度を低減することができる。また、良好な撥水性により、塗膜の保護を目的とした外装材を設ける必要もない。撥水性は、塗膜と水との接触角を測定することで評価できる。接触角は90°以上とすることができ、110°以上であってもよく、130°以上であってもよい。塗膜の接触角は、例えば塗膜中のエアロゲル粒子の含有量、液状媒体の種類や含有量等により調整することができる。
 塗膜は良好な耐熱性を有する。耐熱性は、塗膜の5%重量減少時の温度を測定することで評価できる。例えば、示差熱熱重量同時測定装置を用い、昇温速度10℃/minの条件で500℃まで昇温させ測定を行った場合、5%重量減少時の温度は150℃以上とすることができ、200℃以上であってもよく、250℃以上であってもよい。塗膜の耐熱性は、例えばバインダ樹脂の種類や塗膜中の含有量等により調整することができる。
 対象物を構成する材料としては特に制限されず、金属、セラミック、ガラス、樹脂、これらの複合材料等が挙げられる。対象物の形態としては、使用する目的又は材料に応じて適宜選択することができ、ブロック状、シート状、パウダー状、繊維状等が挙げられる。
 なお、対象物の形態はより複雑であってもよい。複雑な形状を有する部品、屈曲部を有する配管(パイプ)等のような、シート状、ボード状等の平面状の断熱材を取り付け難い対象物に対しても、本実施形態の塗液であればその表面に断熱層を設けることができる。
 塗膜は、エアロゲルに由来する優れた断熱性、耐熱性、難燃性、撥水性等を有する。このような利点から、当該塗膜を、極低温容器、宇宙分野、建築分野、自動車分野(例えば自動車部品用の断熱材)、家電分野、半導体分野、産業用設備(例えばプラント、発電所等の各種配管用の断熱材)等における断熱材としての用途等に適用できる。なお、当該塗膜は、断熱材としての用途の他に、撥水材、吸音材、静振材、触媒担持材等としても利用することができる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。
<実験1>
(エアロゲル粒子Aの作製)
 シリカ粒子含有原料としてPL-2L(扶桑化学工業株式会社製、製品名)を100.0質量部、水を80.0質量部、酸触媒として酢酸を0.5質量部、カチオン性界面活性剤として臭化セチルトリメチルアンモニウム(和光純薬工業株式会社製)を1.0質量部、及び熱加水分解性化合物として尿素を150.0質量部混合し、これにケイ素化合物としてメチルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-13)を60.0質量部、ジメチルジメトキシシラン(信越化学工業株式会社製、製品名:KBM-22)を20.0質量部、上記一般式(B)で表される構造を有する両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を20.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃でゲル化した後、60℃で48時間熟成して湿潤ゲルを得た。
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサンXC96-723(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
 その後、得られた湿潤ゲルをプラスチック製ボトルに移し、密閉後、エクストリームミル(アズワン株式会社製、MX-1000XTS)を用いて、27,000rpmで10分間粉砕し、粒子状の湿潤ゲルを得た。得られた粒子状の湿潤ゲルをメタノール2500.0質量部に浸漬し、25℃で24時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら合計3回行った。次に、洗浄した粒子状の湿潤ゲルを、低表面張力溶媒であるヘプタン2500.0質量部に浸漬し、25℃で24時間かけて溶媒置換を行った。この溶媒置換操作を、新しいヘプタンに交換しながら合計3回行った。洗浄及び溶媒置換された粒子状の湿潤ゲルを、常圧下にて、40℃で96時間乾燥し、その後さらに150℃で2時間乾燥した。最後に、ふるい(東京スクリーン株式会社製、目開き45μm、線径32μm)にかけ、上記一般式(3)、(4)及び(5)で表される構造を有するエアロゲル粒子Aを得た。
(エアロゲル粒子Bの準備)
 エアロゲル粒子BとしてJIOS AeroVa(登録商標、JIOS AEROGEL CORPORATION社製、製品名)を準備した。
(実施例1-1)
 300mLセパラブルフラスコに、エアロゲル粒子A10g、ガラス繊維(日東紡績株式会社製、CS 3 PE-908、平均繊維長3mm)1g、イソプロピルアルコール(和光純薬工業株式会社製、試薬)35g、及びカルボキシメチルセルロースアンモニウム(和光純薬工業株式会社、試薬)1gをとり、メカニカルスターラを用いて150rpmで15分間撹拌し、イソプロピルアルコール分散液を得た。続いて、この分散液に水50gを添加してカルボキシメチルセルロースアンモニウムを溶解し、塗液1-1を得た。
(その他の実施例及び比較例)
 塗液の配合原料及び配合量を表1に示すように変更したこと以外は、実施例1-1と同様にして塗液を調製し、塗液1-2~1-5を得た。実施例の塗液の粘度はいずれも10000mPa・s超であった。
Figure JPOXMLDOC01-appb-T000011
(比表面積測定)
 エアロゲル粒子のBET比表面積を、ガス吸着量測定装置(カンタクローム・インスツルメンツ・ジャパン合同会社製、Autosorb-iQ(Autosorbは登録商標))を用いて測定した。エアロゲル粒子Aの比表面積は125m/g、エアロゲル粒子Bの比表面積は716m/gであった。
(平均粒子径測定)
 エタノールに、エアロゲル粒子の含有量が0.5質量%となるように添加し、これに50Wの超音波ホモジナイザーで20分間振動を与えることで分散液を調製した。得られた分散液10mLをMicrotrac MT3000(日機装株式会社製、製品名)に注入し、25℃で、屈折率1.3、吸収0として粒子径を測定した。そして、得られた粒子径分布における積算値50%(体積基準)での粒子径を平均粒子径D50とした。エアロゲル粒子Aの平均粒子径D50は20μm、エアロゲル粒子Bの平均粒子径D50は8.7μmであった。
(成膜性評価)
 実施例及び比較例の塗液を、金属ヘラを用いて、厚みが2mmとなるようにアルミ箔上に塗布した。そして120℃で1時間加熱することで塗液から液状媒体を除去し、塗膜を得た。得られた塗膜を目視にて観察することで、塗液の成膜性を評価した。すなわち、クラックのない良好な外観を有していた場合を成膜性良好と評価し、クラックが発生していた場合を成膜性不良と評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 なお、実施例1-1及び1-2について、成膜性評価にて得られた塗膜を、アルミ箔ごと30cm×30cmにカットした後、アルミ箔を除去したところ、塗膜が破壊されることなくアルミ箔を剥がすことができた。また、定常法により当該塗膜の断熱性を評価したところ、熱伝導率は十分に低かった(32~35mW/m・K)。
(撥水性評価)
 実施例1-1にて得られた塗膜の撥水性を、水との接触角を測定することで評価した。塗膜を50×50mmのサイズに加工し、測定サンプルとした。そして、測定サンプル表面に約3μLの純水を滴下し、5分後の接触角を測定した。測定装置として、接触角計(株式会社ニック製、LSE-B100)を用いた。塗膜の接触角は145°であった。
(耐熱性評価)
 実施例1-1にて得られた塗膜を用いて、耐熱性を評価した。まず、得られた塗膜をアルミ箔から剥がし、測定サンプルとした。測定装置として、示差熱熱重量同時測定装置(株式会社日立ハイテクサイエンス製、TG/DTA STA7300)を用い、昇温速度10℃/minで500℃まで昇温させて測定を行い、5%重量減少時の温度を記録した。なお、水の蒸発による重量変化を除くために、100℃での塗膜の重量を基準重量(ゼロ点)とした。塗膜の5%重量減少時の温度は320℃であった。
(断熱性能評価)
 実施例1-1の塗液を用いて得られる塗膜について、断熱性能を評価した。まず、塗液をアルマイト処理したアルミニウム板(50×50mm、厚み0.5mm)上に規定の厚さになるように、金属へらを用いて塗布した。この塗液を室温(25℃)で2時間乾燥した後、60℃に加熱した乾燥機(エスペック株式会社製、パーフェクトオーブンSPHH-301)でさらに2時間乾燥させ、塗膜厚さの異なる複数の評価サンプルを準備した。厚い塗膜を得る場合には、一旦塗布をした後に室温で2時間乾燥させてから再度塗布を行った。所望の厚さが得られるまでこれを繰り返した。なお、一度の塗布により厚さが2mm程度の塗膜を得ることができた。評価サンプルを、アルミ板側がガラスヒータ(株式会社ブラスト製、S-101)に面するように置き、150℃まで昇温した。150℃で1時間保持後の評価サンプル表面の温度(塗膜表面の温度)を、赤外線サーモグラフィ(株式会社アピステ製、FSV-1200-L16)を用いて測定した。塗膜が無い(塗膜厚さ0mm)状態では150℃であった表面温度が、塗膜厚さが1.0mm、2.0mm、5.0mm、10.0mmと厚くなるにつれ、130℃、100℃、75℃、60℃と低下した。
<実験2>
(実施例2-1)
 300mLセパラブルフラスコに、実験1の「エアロゲル粒子Aの作製」と同様の手順で作製したエアロゲル粒子10g、アラミド繊維(帝人株式会社製、テクノーラ、平均繊維長6mm)5g、イソプロピルアルコール(和光純薬工業株式会社製、試薬)100g、及びカルボキシメチルセルロースアンモニウム(和光純薬工業株式会社製、試薬)2gをとり、メカニカルスターラを用いて150rpmで15分間撹拌し、イソプロピルアルコール分散液を得た。続いて、この分散液に水100gを添加してカルボキシメチルセルロースアンモニウムを溶解し、塗液2-1を得た。
(その他の実施例及び比較例)
 塗液の配合原料及び配合量を表3に示すように変更したこと以外は、実施例2-1と同様にして塗液を調製し、塗液2-2~2-7を得た。実施例の塗液の粘度はいずれも10000mPa・s超であった。なお、実施例2-6において、PVA2g及び水98gとあるのは、カルボキシメチルセルロースアンモニウム及び水に代えて、2wt%PVA水溶液100gを用いたことを意味する。
Figure JPOXMLDOC01-appb-T000013
(熱伝導率測定)
 実施例及び比較例の塗液を、金属ヘラを用いて、厚みが2mmとなるようにアルミ箔上に塗布した。そして120℃で1時間加熱することで塗液から液状媒体を除去し、塗膜付きのアルミ箔を得た。得られた塗膜の熱伝導率を定常法により測定した。結果を表4に示す。
(断熱性評価)
 温度制御装置(株式会社ブラスト製、BT-101)により温度を100℃に設定したガラスヒーター(株式会社ブラスト製、S-101)上に、熱伝導率測定にて得られた塗膜付きのアルミ箔を、アルミ箔がガラスヒーター側になるように載せた。ガラスヒーターとアルミ箔とは、塗布量1μL/cmのシリコーンオイル(信越化学工業株式会社製、KF96-100CS)を介して接触させた。そして5分経過後の塗膜表面の温度を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
 なお、実施例の塗膜を、アルミ箔ごと30cm×30cmにカットし、アルミ箔を除去した。いずれの塗膜についても、塗膜が破壊されることなくアルミ箔を剥がすことができた。一方、比較例の塗膜について同様の操作をしたところ、塗膜が破壊されてアルミ箔上に塗膜が残存した。比較例では短繊維を用いているため、充分な塗膜強度を得るにはより多くの繊維量が必要であったと思われる。ただし、繊維量を増加させた場合、短繊維による熱パスがさらに形成されるであろうため、熱伝導率はさらに大きくなると考えられる。
<実験3>
(実施例A-1)
 ヒドロキシプロピルメチルセルロース(松本油脂株式会社製、製品名:MP-30000)を10質量部、ガラス繊維(製品名:チョップドストランド、繊維径:13μm、繊維長:3mm)を10質量部、実験1の「エアロゲル粒子Aの作製」と同様の手順で作製したエアロゲル粒子を100質量部、アクリル樹脂(日立化成株式会社製、製品名:KH-CT-865)を16質量部、メチルエチルケトン(MEK)を350質量部、水を200質量部混合して、塗液を得た。
 塗液を、アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上に乾燥後厚さが2mmとなるように塗布し、60℃に加熱した乾燥機(エスペック株式会社製、製品名:パーフェクトオーブンSPHH-301)で2時間乾燥させ、エアロゲル含有塗膜を得た。
 得られた塗膜について、以下の方法で、塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
<引張り強度の測定>
 得られた塗膜を2×5×5mmのサイズに加工し、測定サンプルとした。測定装置としては、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。なお、ロードセルとしては500Nを使用した。また、上下に配置したねじ式平面形つかみ具を用い、上下間距離を25mmとしてサンプルをセットし、2.5mm/minの速度で引張りを行った。測定はサンプルが破断した時点で終了とした。
<ピール強度の測定>
 アルミ箔付き塗膜を3mm間隔で切断し、測定サンプルとした。測定装置としては、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。測定はアルミ箔面を上側にしてサンプルを固定し、アルミ箔をはさみ、50mm/minの速度で引張りを行った。測定はアルミ箔が塗膜から剥離した時点で終了とした。
(実施例A-2)
 アクリル樹脂の量を33質量部に変更したこと以外は、実施例A-1と同様にして塗液を調製した。また、得られた塗液を用い、実施例A-1と同じ方法でエアロゲル含有塗膜を作製した。得られた塗膜について、実施例A-1と同じ方法で塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
(実施例A-3)
 アクリル樹脂の量を66質量部に変更したこと以外は、実施例A-1と同様にして塗液を調製した。また、得られた塗液を用い、実施例A-1と同じ方法でエアロゲル含有塗膜を作製した。得られた塗膜について、実施例A-1と同じ方法で塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
(実施例B-1)
 ヒドロキシプロピルメチルセルロース(松本油脂株式会社製、製品名:MP-30000)を10質量部、ガラス繊維(製品名:チョップドストランド、繊維径:13μm、繊維長:3mm)を10質量部、エアロゲル粒子を100質量部、エポキシ樹脂(三菱ケミカル株式会社製、製品名:jER811)を16質量部、硬化剤としてトリエチレンテトラミン(TETA、和光純薬株式会社製)を1.6質量部、メチルエチルケトン(MEK)を350質量部、水を200質量部混合して、塗液を得た。
 塗液を、アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上に乾燥後厚さが2mmとなるように塗布し、60℃に加熱した乾燥機(エスペック株式会社製、製品名:パーフェクトオーブンSPHH-301)で2時間乾燥させ、エアロゲル含有塗膜を得た。
 得られた塗膜について、実施例A-1と同じ方法で塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
(実施例B-2)
 エポキシ樹脂の量を33質量部、硬化剤の量を3.3質量部に変更したこと以外は、実施例B-1と同様にして塗液を調製した。また、得られた塗液を用い、実施例B-1と同じ方法でエアロゲル含有塗膜を作製した。得られた塗膜について、実施例A-1と同じ方法で塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
(実施例B-3)
 エポキシ樹脂の量を66質量部、硬化剤の量を6.6質量部に変更したこと以外は、実施例B-1と同様にして塗液を調製した。また、得られた塗液を用い、実施例B-1と同じ方法でエアロゲル含有塗膜を作製した。得られた塗膜について、実施例A-1と同じ方法で塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
 なお、実施例の塗液の粘度はいずれも10000mPa・s超であった。
(比較例1)
 アクリル樹脂を配合しなかったこと以外は、実施例A-1と同様にして塗液を調製した。また、得られた塗液を用い、実施例A-1と同じ方法でエアロゲル含有塗膜を作製した。得られた塗膜について、実施例A-1と同じ方法で塗膜強度(引張り強度)及び接着強度(ピール強度)を測定した。結果を表5に示す。
 表5中、「第二のバインダ樹脂」は、第一のバインダ樹脂100質量部に対する含有量を示し、「ピール強度」は上記<ピール強度の測定>の測定結果を示し、「引張り破断強度」は上記<引張り強度の測定>の測定結果を示す。
Figure JPOXMLDOC01-appb-T000015
 実施例A-1について、実施例1-1と同様にして撥水性評価を行った。塗膜の接触角は123°であった。また、実施例A-1について、実施例1-1と同様にして耐熱性評価を行った。塗膜の5%重量減少時の温度は270℃であった。さらに、実施例A-1について、実施例1-1と同様にして断熱性能評価を行った。塗膜が無い(塗膜厚さ0mm)状態では150℃であった表面温度が、塗膜厚さが1.0mm、2.0mm、5.0mm、10.0mmと厚くなるにつれ、130℃、110℃、85℃、65℃と低下した。

Claims (24)

  1.  エアロゲル粒子及び液状媒体を含む塗液。
  2.  バインダ樹脂をさらに含み、前記エアロゲル粒子の比表面積が350m/g以下である、請求項1に記載の塗液。
  3.  前記液状媒体が有機溶媒を含む、請求項2に記載の塗液。
  4.  前記バインダ樹脂が、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種である、請求項2又は3に記載の塗液。
  5.  バインダ樹脂、及び繊維長が1.5mm以上である繊維状物質をさらに含む、請求項1に記載の塗液。
  6.  前記液状媒体が有機溶媒を含む、請求項5に記載の塗液。
  7.  前記繊維状物質の繊維長が20mm以下である、請求項5又は6に記載の塗液。
  8.  前記塗液中の繊維状物質の全質量を基準として、繊維長が1.5mm以上である前記繊維状物質の含有量が30質量%以上である、請求項5~7のいずれか一項に記載の塗液。
  9.  第一のバインダ樹脂、及び前記液状媒体に対する溶解度が前記第一のバインダ樹脂より低い第二のバインダ樹脂をさらに含む、請求項1に記載の塗液。
  10.  前記液状媒体が、水を含む水系溶媒である、請求項9に記載の塗液。
  11.  前記第二のバインダ樹脂の含有量が、前記第一のバインダ樹脂の含有量より多い、請求項9又は10に記載の塗液。
  12.  前記第一のバインダ樹脂がセルロース系樹脂である、請求項9~11のいずれか一項に記載の塗液。
  13.  前記第二のバインダ樹脂が、熱可塑性樹脂である、請求項9~12のいずれか一項に記載の塗液。
  14.  前記第二のバインダ樹脂が、アクリル樹脂である、請求項13に記載の塗液。
  15.  前記第二のバインダ樹脂が、熱硬化性樹脂であり、前記塗液が、硬化剤をさらに含む、請求項9~12のいずれか一項に記載の塗液。
  16.  前記第二のバインダ樹脂が、エポキシ樹脂であり、前記塗液が、エポキシ樹脂硬化剤をさらに含む、請求項15に記載の塗液。
  17.  繊維状物質をさらに含む、請求項9~16のいずれか一項に記載の塗液。
  18.  粘度が1000mPa・s以上である、請求項1~17のいずれか一項に記載の塗液。
  19.  有機繊維及び無機繊維の少なくとも一方を含む、請求項1~18のいずれか一項に記載の塗液。
  20.  請求項1~19のいずれか一項に記載の塗液から、前記液状媒体を除去する工程を備える、塗膜の製造方法。
  21.  エアロゲル粒子を含む塗膜。
  22.  バインダ樹脂又はその硬化体をさらに含み、前記エアロゲル粒子の比表面積が350m/g以下である、請求項21に記載の塗膜。
  23.  バインダ樹脂又はその硬化体、及び繊維長が1.5mm以上である繊維状物質をさらに含む、請求項21に記載の塗膜。
  24.  第一のバインダ樹脂と、水系溶媒に対する溶解度が前記第一のバインダ樹脂より低い第二のバインダ樹脂又はその硬化体と、をさらに含む、請求項21に記載の塗膜。
PCT/JP2018/015703 2017-10-04 2018-04-16 塗液、塗膜の製造方法及び塗膜 WO2019069495A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207007240A KR102583729B1 (ko) 2017-10-04 2018-04-16 도액, 도막의 제조 방법 및 도막
JP2019546525A JP7196854B2 (ja) 2017-10-04 2018-04-16 塗液、塗膜の製造方法及び塗膜
EP18864527.9A EP3693425A4 (en) 2017-10-04 2018-04-16 COATING LIQUID, AND COATING FILM AS WELL AS THE METHOD FOR MANUFACTURING THE SAME
US16/652,744 US20200231834A1 (en) 2017-10-04 2018-04-16 Coating solution, method for producing coating film, and coating film
CN201880064402.4A CN111164167A (zh) 2017-10-04 2018-04-16 涂液、涂膜的制造方法及涂膜
TW107127825A TWI780203B (zh) 2017-10-04 2018-08-09 塗液、塗膜的製造方法及塗膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/036179 2017-10-04
PCT/JP2017/036179 WO2019069412A1 (ja) 2017-10-04 2017-10-04 塗液、塗膜の製造方法及び塗膜

Publications (1)

Publication Number Publication Date
WO2019069495A1 true WO2019069495A1 (ja) 2019-04-11

Family

ID=65994725

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/036179 WO2019069412A1 (ja) 2017-10-04 2017-10-04 塗液、塗膜の製造方法及び塗膜
PCT/JP2018/015703 WO2019069495A1 (ja) 2017-10-04 2018-04-16 塗液、塗膜の製造方法及び塗膜

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036179 WO2019069412A1 (ja) 2017-10-04 2017-10-04 塗液、塗膜の製造方法及び塗膜

Country Status (7)

Country Link
US (1) US20200231834A1 (ja)
EP (1) EP3693425A4 (ja)
JP (1) JP7196854B2 (ja)
KR (1) KR102583729B1 (ja)
CN (1) CN111164167A (ja)
TW (1) TWI780203B (ja)
WO (2) WO2019069412A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019069494A1 (ja) * 2017-10-04 2020-09-10 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JPWO2019069492A1 (ja) * 2017-10-04 2020-09-10 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JPWO2019069493A1 (ja) * 2017-10-04 2020-09-10 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
WO2021153764A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 塗液の製造方法及び断熱材の製造方法
WO2021152853A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 断熱材の製造方法
CN115948096A (zh) * 2022-12-17 2023-04-11 沪宝新材料科技(上海)股份有限公司 一种楼地面隔音涂料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056539A1 (en) * 2021-03-09 2022-09-14 Armacell Enterprise GmbH & Co. KG Composite article comprising aerogel particles and ceramic fibers
CN117015580A (zh) * 2021-03-09 2023-11-07 株式会社力森诺科 涂液的制造方法及绝热材料的制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367742A (en) * 1963-10-18 1968-02-06 Monsanto Co Chemical compositions and processes
JPH10508049A (ja) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト エーロゲルを含む組成物、その製造法、およびその使用
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2004534108A (ja) * 2001-03-15 2004-11-11 キャボット コーポレイション 光沢のないチキソトロープペイント配合物
JP2006515556A (ja) * 2002-12-18 2006-06-01 デグサ アクチエンゲゼルシャフト 表面改質された、エアロゲル型ストラクチャードシリカ
JP2007514810A (ja) * 2003-11-12 2007-06-07 バーチル,ジー.スチュアート,ジュニア 断熱層のための組成物
JP2012091943A (ja) 2010-10-25 2012-05-17 Tokuyama Corp エアロゲル
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2014035044A (ja) 2012-08-09 2014-02-24 Panasonic Corp 断熱材及びその製造方法
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607255A (en) * 1968-01-22 1971-09-21 Crown Zellerbach Corp Surfacing nonimage areas of lithographic master with hydrophilic desensitizing composition
JP2944144B2 (ja) * 1990-05-10 1999-08-30 王子製紙株式会社 インクジェット記録用紙
JP3088147B2 (ja) * 1991-09-30 2000-09-18 王子製紙株式会社 被記録材
EP1010666B1 (en) * 1998-06-12 2009-11-04 Mitsubishi Paper Mills Limited Silica-alumina composite sol, processes for producing the same, and recording medium
US6239378B1 (en) * 1999-02-02 2001-05-29 Dow Corning Corporation Flame resistant silicone rubber wire and cable coating composition
JP4282597B2 (ja) * 2002-06-03 2009-06-24 旭化成ケミカルズ株式会社 光触媒組成物
US7790787B2 (en) * 2006-05-03 2010-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aerogel/polymer composite materials
WO2011026070A1 (en) * 2009-08-31 2011-03-03 Newpage Corporation Inkjet recording medium
EP2504290B1 (en) 2009-11-25 2018-04-25 Cabot Corporation Methods for manufacturing aerogel composites
WO2013179218A1 (en) * 2012-05-28 2013-12-05 L-M-J Nation Security Llc Fire resistant paint for application to an outdoor or indoor surface, articles of manufacture, an apparatus for manufacture and a process for manufacture thereof
CN105200720B (zh) 2015-09-17 2017-06-13 浙江工业大学 多功能波轮洗衣机
KR101645973B1 (ko) 2016-03-16 2016-08-05 주식회사 코에원텍 높은 단열성과 접착성을 지닌 에어로겔 코팅액 및 이를 코팅처리한 내열성 글라스울과 그 제조방법
CN106336780B (zh) * 2016-10-18 2018-06-15 大连箐华新材料研究院 一种防腐绝热涂料及其制备方法
US10538434B2 (en) * 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
WO2019069404A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
WO2019069407A1 (ja) 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
WO2019069411A1 (ja) 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367742A (en) * 1963-10-18 1968-02-06 Monsanto Co Chemical compositions and processes
JPH10508049A (ja) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト エーロゲルを含む組成物、その製造法、およびその使用
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2004534108A (ja) * 2001-03-15 2004-11-11 キャボット コーポレイション 光沢のないチキソトロープペイント配合物
JP2006515556A (ja) * 2002-12-18 2006-06-01 デグサ アクチエンゲゼルシャフト 表面改質された、エアロゲル型ストラクチャードシリカ
JP2007514810A (ja) * 2003-11-12 2007-06-07 バーチル,ジー.スチュアート,ジュニア 断熱層のための組成物
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2012091943A (ja) 2010-10-25 2012-05-17 Tokuyama Corp エアロゲル
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP2014035044A (ja) 2012-08-09 2014-02-24 Panasonic Corp 断熱材及びその製造方法
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019069494A1 (ja) * 2017-10-04 2020-09-10 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JPWO2019069492A1 (ja) * 2017-10-04 2020-09-10 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JPWO2019069493A1 (ja) * 2017-10-04 2020-09-10 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JP7196853B2 (ja) 2017-10-04 2022-12-27 昭和電工マテリアルズ株式会社 塗液、塗膜の製造方法及び塗膜
JP7196852B2 (ja) 2017-10-04 2022-12-27 昭和電工マテリアルズ株式会社 塗液、塗膜の製造方法及び塗膜
US11787957B2 (en) 2017-10-04 2023-10-17 Resonac Corporation Coating solution, method for producing coating film, and coating film
WO2021153764A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 塗液の製造方法及び断熱材の製造方法
WO2021152853A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 断熱材の製造方法
WO2021152850A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 塗液の製造方法及び断熱材の製造方法
WO2021153755A1 (ja) * 2020-01-31 2021-08-05 昭和電工マテリアルズ株式会社 断熱材の製造方法
CN115948096A (zh) * 2022-12-17 2023-04-11 沪宝新材料科技(上海)股份有限公司 一种楼地面隔音涂料及其制备方法
CN115948096B (zh) * 2022-12-17 2023-08-22 沪宝新材料科技(上海)股份有限公司 一种楼地面隔音涂料及其制备方法

Also Published As

Publication number Publication date
KR102583729B1 (ko) 2023-09-26
JP7196854B2 (ja) 2022-12-27
TW201918528A (zh) 2019-05-16
KR20200061336A (ko) 2020-06-02
CN111164167A (zh) 2020-05-15
WO2019069412A1 (ja) 2019-04-11
JPWO2019069495A1 (ja) 2020-09-10
EP3693425A1 (en) 2020-08-12
US20200231834A1 (en) 2020-07-23
TWI780203B (zh) 2022-10-11
EP3693425A4 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP7196854B2 (ja) 塗液、塗膜の製造方法及び塗膜
WO2019069494A1 (ja) 塗液、塗膜の製造方法及び塗膜
TWI787318B (zh) 塗液、塗膜的製造方法及塗膜
TWI829911B (zh) 塗液、複合材料及塗膜
WO2020012554A1 (ja) 塗液の製造方法、塗液及び塗膜
WO2021153764A1 (ja) 塗液の製造方法及び断熱材の製造方法
JP7196907B2 (ja) 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト
JP7196853B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP7160106B2 (ja) エアロゲル粒子、分散体及び塗膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018864527

Country of ref document: EP

Effective date: 20200504