WO2021153755A1 - 断熱材の製造方法 - Google Patents

断熱材の製造方法 Download PDF

Info

Publication number
WO2021153755A1
WO2021153755A1 PCT/JP2021/003314 JP2021003314W WO2021153755A1 WO 2021153755 A1 WO2021153755 A1 WO 2021153755A1 JP 2021003314 W JP2021003314 W JP 2021003314W WO 2021153755 A1 WO2021153755 A1 WO 2021153755A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
airgel
heat insulating
particles
coating
Prior art date
Application number
PCT/JP2021/003314
Other languages
English (en)
French (fr)
Inventor
寛之 泉
慶 東ヶ崎
弘 横田
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202180010843.8A priority Critical patent/CN115052940B/zh
Priority to EP21748040.9A priority patent/EP4074787A4/en
Priority to US17/795,878 priority patent/US20230151227A1/en
Priority to KR1020227015567A priority patent/KR20220133172A/ko
Priority to JP2021574703A priority patent/JPWO2021153755A1/ja
Publication of WO2021153755A1 publication Critical patent/WO2021153755A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to a method for producing a heat insulating material.
  • Airgel is known as a material with excellent heat insulation. Further, a method of processing airgel into particles and using it as a constituent material of a heat insulating material has been proposed (for example, Patent Documents 1 and 2). Patent Document 1 proposes to use particulate airgel as a filler between resin plates and the like constituting a heat insulating window. In Patent Document 2, a method for producing a heat insulating material (molded body) by preparing an aqueous dispersion containing airgel particles and organic fibers and then further press-molding an intermediate product obtained by evaporating water. It is shown.
  • a composite material in which airgel particles are dispersed in a resin component is expected to have excellent heat resistance.
  • the resin component permeates into the pores of the airgel particles, the pore structure is lost, the heat insulating property is lowered, the strength of the coating film is not sufficiently obtained, and cracks occur. There was a problem that it was easy to occur.
  • the present invention provides a method for producing a heat insulating material, which can suppress the permeation of a resin component into the pores of airgel particles and can obtain a heat insulating material having high heat insulating properties and high film forming properties. The purpose.
  • the present invention relates to a method for producing a heat insulating material, which comprises a coating step of applying by a coating means of 5 MPa or less to obtain a coating film, and a removing step of removing at least a part of the liquid medium from the coating film to obtain a heat insulating material.
  • the contact interface between the airgel particles and the resin component is reduced due to the aggregation of the airgel particles, and the permeation of the resin component into the pores of the airgel particles is suppressed. Further, since the coating liquid does not contain agglomerates of airgel particles prepared in advance but agglomerates the airgel particles when mixed with other components, the airgel particles and the agglomerates thereof are uniformly dispersed. Therefore, it is possible to suppress non-uniformity of the coating film, cracks, etc. due to uneven distribution of airgel particles.
  • the dispersibility of the airgel particles is further improved, and even when the filling rate of the airgel particles is increased, the airgel particles are contained in the coating liquid. And its aggregates are uniformly dispersed.
  • a coating means in which the pressure applied to the coating liquid is 1.5 MPa or less the crushing of the agglomerates due to the load at the time of coating is suppressed. Therefore, according to the above manufacturing method, a heat insulating material having high heat insulating property and high film forming property can be obtained.
  • the coating solution contains aggregates of the airgel particles, and the average diameter of the aggregates may be 2 to 40 times the average diameter of the airgel particles. According to the coating liquid containing such agglomerates, the above-mentioned effect is more prominently exhibited.
  • the area occupied by the airgel particles and the aggregates of the airgel particles in the observation field of view is occupied by the aggregates having a diameter of 20 ⁇ m or more. May be 50% or more. As a result, the above-mentioned effect is more prominently exhibited.
  • the total content of the airgel particles and the aggregates of the airgel particles in the coating liquid may be 70% by volume or more based on the total volume of solids.
  • the water-soluble polymer may contain a cellulosic resin.
  • the pore volume of the heat insulating material may be 0.15 g / cm 3 or more.
  • a method for producing a heat insulating material which can suppress the permeation of a resin component into the pores of airgel particles and can obtain a heat insulating material having high heat insulating properties and high film forming properties. ..
  • the present invention is not limited to the following embodiments.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • “A or B” may include either A or B, and may include both.
  • the materials exemplified in this embodiment may be used alone or in combination of two or more.
  • the pressure applied to the coating liquid obtained by mixing the airgel particles, the water-soluble polymer having a hydrophobic group and the liquid medium so that the airgel particles aggregate. includes a coating step of obtaining a coating film by coating with a coating means of 1.5 MPa or less, and a removing step of removing at least a part of a liquid medium from the coating film to obtain a heat insulating material.
  • the contact interface between the airgel particles and the resin component is reduced due to the aggregation of the airgel particles, and the permeation of the resin component into the pores of the airgel particles is suppressed.
  • the coating liquid does not contain agglomerates of airgel particles prepared in advance but agglomerates the airgel particles when mixed with other components, the airgel particles and the agglomerates thereof are uniformly dispersed. Therefore, it is possible to suppress non-uniformity of the coating film, cracks, etc. due to uneven distribution of airgel particles.
  • the dispersibility of the airgel particles is further improved, and even when the filling rate of the airgel particles is increased, the airgel particles are contained in the coating liquid. And its aggregates are uniformly dispersed.
  • a coating means having a pressure of 1.5 MPa or less the disintegration of the agglomerates due to the load at the time of coating is suppressed. Therefore, according to the above manufacturing method, a heat insulating material having high heat insulating property and high film forming property can be obtained.
  • airgel is a dry gel obtained by using the supercritical drying method for wet gel
  • xerogel is a dry gel obtained by drying under atmospheric pressure
  • cryogel is a dry gel obtained by freeze-drying.
  • the obtained low-density dry gel is referred to as "airgel” regardless of these drying methods of the wet gel. That is, in the present embodiment, the "airgel” is an airgel in a broad sense, "Gel compressed of a microporous solid in which the dispersed phase is a gas" (a gel composed of a microporous solid having a gas dispersed phase). Means.
  • the inside of the airgel has a network-like fine structure, and has a cluster structure in which particulate airgel components of about 2 to 20 nm are bound. There are pores of less than 100 nm between the skeletons formed by these clusters. As a result, the airgel has a three-dimensionally fine porous structure.
  • the airgel according to this embodiment is, for example, a silica airgel containing silica as a main component.
  • the silica airgel include a so-called organic-inorganic hybridized silica airgel in which an organic group (methyl group or the like) or an organic chain is introduced.
  • Examples of the airgel according to the present embodiment include the following aspects. By adopting these aspects, it becomes easy to obtain an airgel having excellent heat insulating properties, flame retardancy, heat resistance and flexibility. By adopting each aspect, it is possible to obtain an airgel having heat insulating properties, flame retardancy, heat resistance and flexibility according to each aspect.
  • the airgel according to this embodiment can have a structure represented by the following general formula (1).
  • the airgel according to the present embodiment can have a structure represented by the following general formula (1a) as a structure including a structure represented by the formula (1).
  • R 1 and R 2 independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • p represents an integer from 1 to 50.
  • two or more of R 1 may be the or different than a respectively identical, likewise, two or more R 2 may be each independently selected from the same.
  • two R 3 may be each independently selected from the same, likewise, the two R 4 may be each independently selected from the same.
  • R 1 and R 2 independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and the alkyl group is methyl. The group etc. can be mentioned.
  • R 3 and R 4 independently include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group. Be done.
  • p can be 2 to 30, and may be 5 to 20.
  • the airgel according to the present embodiment can have a ladder type structure including a strut portion and a bridging portion, and the bridging portion can have a structure represented by the following general formula (2).
  • the "ladder type structure” has two struts and bridges connecting the struts (those having a so-called "ladder” form). Is.
  • the skeleton of the airgel may have a ladder-type structure, but the airgel may partially have a ladder-type structure.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • b is an integer of 2 or more
  • the two or more R 5s may be the same or different, and similarly, the two or more R 6s are also the same. May also be different.
  • the above structure into the skeleton of airgel as an airgel component, for example, it has a structure derived from the conventional ladder-type silsesquioxane (that is, it has a structure represented by the following general formula (X)). It is an airgel that has better flexibility than airgel.
  • Silsesquioxane is a polysiloxane having a composition formula: (RSiO 1.5 ) n , and can have various skeletal structures such as a basket type, a ladder type, and a random type.
  • the structure of the bridging portion is ⁇ O—, but the airgel according to the present embodiment.
  • the structure of the bridging portion is a structure (polysiloxane structure) represented by the above general formula (2).
  • the airgel of this embodiment may have a structure derived from silsesquioxane in addition to the structure represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the interval between the structure serving as the support column, the chain length thereof, and the structure serving as the bridging portion is not particularly limited, but from the viewpoint of further improving heat resistance and mechanical strength, the ladder type structure is described by the following general formula ( It may have a ladder type structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b is 1 to 50. Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • the two or more R 5s may be the same or different, and similarly, the two or more R 6s are also the same. May also be different.
  • two or more R 7s may be the same or different, and similarly, when c is an integer of 2 or more, two or more.
  • R 8 may be the same or different.
  • R 5 , R 6 , R 7 and R 8 are used in the formulas (2) and (3).
  • an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like can be mentioned, and examples of the alkyl group include a methyl group and the like.
  • a and c can be independently set to 6 to 2000, respectively, but may be 10 to 1000.
  • b can be 2 to 30, but may be 5 to 20.
  • the airgel according to the present embodiment is selected from at least a group consisting of a hydrolyzable product of a silicon compound having a hydrolyzable functional group or a condensable functional group and a silicon compound having a hydrolyzable functional group. It may be a dried product of a wet gel which is a condensate of a sol containing a kind (a product obtained by drying a wet gel produced from a sol: a dried product of a wet gel derived from a sol). The airgel described so far may also be obtained by drying a wet gel produced from a sol containing a silicon compound or the like in this way.
  • a polysiloxane compound can be used as the silicon compound having a hydrolyzable functional group or a condensable functional group. That is, the sol is selected from at least a group consisting of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group and a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group. It can contain a kind of compound (hereinafter, sometimes referred to as "polysiloxane compound group").
  • the functional group in the polysiloxane compound is not particularly limited, but can be a group that reacts with the same functional group or reacts with another functional group.
  • Examples of the hydrolyzable functional group include an alkoxy group.
  • Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • the polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group different from the hydrolyzable functional group and the condensable functional group (hydrolyzable functional group and condensable functional group).
  • the polysiloxane compound having these functional groups and reactive groups may be used alone or in combination of two or more.
  • examples of the group for improving the flexibility of the aerogel include an alkoxy group, a silanol group, a hydroxyalkyl group and the like, and among these, the alkoxy group and the hydroxyalkyl group are The compatibility of the sol can be further improved. Further, from the viewpoint of improving the reactivity of the polysiloxane compound and reducing the thermal conductivity of the airgel, the number of carbon atoms of the alkoxy group and the hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel is further improved. From the viewpoint, it may be 2 to 5, or 2 to 4.
  • Examples of the polysiloxane compound having a hydroxyalkyl group in the molecule include those having a structure represented by the following general formula (A).
  • the structures represented by the general formulas (1) and (1a) can be introduced into the skeleton of the airgel.
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a independently represent an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • the two R 1a may be the same or different, and similarly, the two R 2a may be the same or different.
  • two or more R 3a may be the same or different, and similarly, two or more R 4a may be the same or different.
  • R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and examples of the hydroxyalkyl group include a hydroxyethyl group and a hydroxypropyl group.
  • R 2a includes an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • R 3a and R 4a independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and examples of the alkyl group include a methyl group and the like.
  • n can be 2 to 30, but may be 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (A) a commercially available product can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all). , Shin-Etsu Chemical Co., Ltd.), XF42-B0970, Fluid OFOH 702-4% and other compounds (all manufactured by Momentive) and the like.
  • Examples of the polysiloxane compound having an alkoxy group in the molecule include those having a structure represented by the following general formula (B).
  • a ladder-type structure having a bridging portion represented by the general formula (2) or (3) is introduced into the airgel skeleton. can do.
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • M represents an integer from 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • the two R 1bs may be the same or different, and the two R 2 bs may be the same or different, and similarly, the two Rs may be different.
  • Each of 3b may be the same or different.
  • the two or more R 4bs may be the same or different, and similarly, the two or more R 5 bs are also the same. May also be different.
  • R 1b includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like, and the alkyl group or the alkoxy group is a methyl group. , Methoxy group, ethoxy group and the like.
  • R 2b and R 3b independently include an alkoxy group having 1 to 6 carbon atoms, and examples of the alkoxy group include a methoxy group and an ethoxy group.
  • R 4b and R 5b independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and examples of the alkyl group include a methyl group and the like.
  • m can be 2 to 30, but may be 3 to 35 or 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in JP-A-2000-26609, JP-A-2012-233110 and the like. .. Further, XR31-B1410 (manufactured by Momentive Co., Ltd.) can also be used as the polysiloxane compound.
  • the polysiloxane compound having an alkoxy group may exist as a hydrolysis product in the sol, and the polysiloxane compound having an alkoxy group and the hydrolysis product thereof are mixed. May be. Further, in the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • hydrolyzed products of these polysiloxane compounds having a hydrolyzable functional group or a condensable functional group and the polysiloxane compound having a hydrolyzable functional group may be used alone or in admixture of two or more. May be used.
  • a silicon compound other than the above-mentioned polysiloxane compound can be used as the silicon compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the above-mentioned silicon compound is a silicon compound having a hydrolyzable functional group or a condensable functional group (excluding a polysiloxane compound), and the silicon compound having a hydrolyzable functional group. At least one selected from the group consisting of hydrolysis products (hereinafter, sometimes referred to as "silicon compound group”) is contained in addition to the above-mentioned polysiloxane compound group or in place of the above-mentioned polysiloxane compound group. be able to. The number of silicon in the molecule in the silicon compound can be 1 or 2.
  • the silicon compound having a hydrolyzable functional group in the molecule is not particularly limited, and examples thereof include alkyl silicon alkoxides. From the viewpoint of improving water resistance, the alkyl silicon alkoxide can have 3 or less hydrolyzable functional groups. Specific examples of such an alkyl silicon alkoxide include monoalkyl trialkoxysilane, monoalkyldialkoxysilane, dialkyldialkoxysilane, monoalkylmonoalkoxysilane, dialkylmonoalkoxysilane, and trialkylmonoalkoxysilane.
  • Examples include methyltrimethoxysilane, methyldimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, and hexyltrimethoxysilane.
  • examples of the hydrolyzable functional group include an alkoxy group such as a methoxy group and an ethoxy group.
  • the silicon compound having a condensable functional group is not particularly limited, but is not particularly limited, but is silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, hexylsilane.
  • Examples thereof include triol, octylsilanetriol, decylsilanetriol, and trifluoropropylsilanetriol.
  • a silicon compound having a hydrolyzable functional group or a condensable functional group is a reactive group (hydrolyzable functional group and condensable functional group) different from the hydrolyzable functional group and the condensable functional group. It may further have a functional group that does not correspond to a group).
  • vinyl trimethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and the like can also be used.
  • silicon compounds having a condensable functional group and a reactive group vinylsilanetriol, 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-Methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl) ) -3-Aminopropylmethylsilanediol and the like can also be used.
  • bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, vinyltrimethoxysilane and the like, which are silicon compounds having 3 or less hydrolyzable functional groups at the molecular terminals, can also be used. ..
  • a silicon compound having a hydrolyzable functional group or a condensable functional group (excluding a polysiloxane compound) and a hydrolysis product of the silicon compound having a hydrolyzable functional group can be used alone or in two types. The above may be mixed and used.
  • the structures represented by the following general formulas (4) to (6) can be introduced into the skeleton of airgel.
  • the airgel according to the present embodiment may have any one of these structures alone or in combination of two or more.
  • R 9 represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group and the like.
  • R 10 and R 11 each independently represent an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group and the like.
  • R 12 represents an alkylene group.
  • examples of the alkylene group include an alkylene group having 1 to 10 carbon atoms, and examples of the alkylene group include an ethylene group and a hexylene group.
  • the airgel according to the present embodiment may further contain silica particles in addition to the airgel component from the viewpoint of further toughening and achieving further excellent heat insulating properties and flexibility.
  • An airgel containing an airgel component and silica particles can also be referred to as an airgel complex.
  • the airgel complex is a composite of the airgel component and the silica particles, it has a cluster structure that is characteristic of airgel, and is considered to have a three-dimensionally fine porous structure. ..
  • the airgel containing an airgel component and silica particles comprises the above-mentioned hydrolyzed product of a silicon compound having a hydrolyzable functional group or a condensable functional group and a silicon compound having a hydrolyzable functional group. It can be said that it is a dried product of a wet gel which is a condensate of a sol containing at least one selected from the group and silica particles. Therefore, the description regarding the first to third aspects can be appropriately applied mutatis mutandis to the airgel according to the present embodiment.
  • the silica particles can be used without particular limitation, and examples thereof include amorphous silica particles.
  • examples of the amorphous silica particles include molten silica particles, fumed silica particles, colloidal silica particles and the like. Of these, colloidal silica particles have high monodispersity and easily suppress aggregation in the sol.
  • the silica particles may be silica particles having a hollow structure, a porous structure, or the like.
  • the shape of the silica particles is not particularly limited, and examples thereof include spherical, cocoon-shaped, and associative types. Of these, by using spherical particles as the silica particles, it becomes easy to suppress aggregation in the sol.
  • the average primary particle size of the silica particles may be 1 nm or more, or 5 nm or more, from the viewpoint that it is easy to impart appropriate strength and flexibility to the airgel and it is easy to obtain an airgel having excellent shrinkage resistance during drying. It may be 20 nm or more.
  • the average primary particle size of the silica particles may be 500 nm or less, 300 nm or less, or 100 nm from the viewpoint of easily suppressing the solid heat conduction of the silica particles and easily obtaining an airgel having excellent heat insulating properties. It may be as follows. From these viewpoints, the average primary particle size of the silica particles may be 1 to 500 nm, 5 to 300 nm, or 20 to 100 nm.
  • the average particle size of the airgel component and the average primary particle size of the silica particles can be obtained by directly observing the airgel using a scanning electron microscope (hereinafter abbreviated as "SEM").
  • SEM scanning electron microscope
  • the “diameter” here means the diameter when the cross section of the particles exposed on the cross section of the airgel is regarded as a circle.
  • the “diameter when the cross section is regarded as a circle” is the diameter of the perfect circle when the area of the cross section is replaced with a perfect circle having the same area.
  • the diameter of the circle is calculated for 100 particles and the average is taken.
  • the average particle size of silica particles can also be measured from the raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, taking colloidal silica particles dispersed in water having a solid content concentration of about 5 to 40% by mass as an example, a wafer with a pattern wiring was cut into 2 cm squares in a dispersion liquid of colloidal silica particles. After soaking the chips for about 30 seconds, the chips are rinsed with pure water for about 30 seconds and blow-dried with nitrogen. After that, the chip is placed on a sample table for SEM observation, an acceleration voltage of 10 kV is applied, silica particles are observed at a magnification of 100,000 times, and an image is taken. Twenty silica particles are arbitrarily selected from the obtained images, and the average particle size of these particles is taken as the average particle size.
  • the number of silanol groups per gram of the silica particles may be 10 ⁇ 10 18 / g or more, or 50 ⁇ 10 18 / g or more, from the viewpoint of facilitating the acquisition of airgel having excellent shrinkage resistance. , 100 ⁇ 10 18 pieces / g or more.
  • the number of silanol groups per gram of the silica particles may be 1000 ⁇ 10 18 / g or less, 800 ⁇ 10 18 / g or less, or 700 ⁇ 10 from the viewpoint of facilitating the acquisition of a homogeneous airgel. 10 18 pieces may be less than g.
  • the number of silanol groups per gram of the silica particles may be 10 ⁇ 10 18 to 1000 ⁇ 10 18 / g, or 50 ⁇ 10 18 to 800 ⁇ 10 18 / g. , 100 ⁇ 10 18 to 700 ⁇ 10 18 pieces / g.
  • the content of the polysiloxane compound group contained in the sol (the content of the polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and the hydrolysis of the polysiloxane compound having a hydrolyzable functional group).
  • the total content of the products may be 5 parts by mass or more or 10 parts by mass or more with respect to 100 parts by mass of the total amount of the sol from the viewpoint of further facilitating good reactivity. ..
  • the content of the polysiloxane compound group contained in the sol may be 50 parts by mass or less, and 30 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of further facilitating good compatibility. There may be. From these viewpoints, the content of the polysiloxane compound group contained in the sol may be 5 to 50 parts by mass or 10 to 30 parts by mass with respect to 100 parts by mass of the total amount of the sol.
  • the content of the silicon compound group (hydrolyzable functional group or silicon compound having a condensable functional group) and the hydrolyzable functional group are used.
  • the total content of the hydrolysis products of the silicon compound) may be 5 parts by mass or more, or 7 parts by mass, based on 100 parts by mass of the total amount of the sol, from the viewpoint of further facilitating good reactivity. It may be 10 parts by mass or more.
  • the content of the silicon compound group contained in the sol may be 50 parts by mass or less, or 40 parts by mass or less, based on 100 parts by mass of the total amount of the sol, from the viewpoint of further facilitating good compatibility. It may be 30 parts by mass or less.
  • the ratio of the content of the polysiloxane compound group to the content of the silicon compound group is 1: 1 from the viewpoint that good compatibility can be further easily obtained. It may be 0.5 or more, 1: 0.7 or more, or 1: 1 or more.
  • the ratio of the content of the polysiloxane compound group to the content of the silicon compound group may be 1: 4 or less, or 1: 3 or less, from the viewpoint of further suppressing the shrinkage of the gel. It may be 1: 2 or less. From these viewpoints, the ratio of the content of the polysiloxane compound group to the content of the silicon compound group may be 1: 0.5 to 1: 4, and may be 1: 0.7 to 1: 3. It may be 1: 1 to 1: 2.
  • the content of the silica particles is 100 parts by mass of the total amount of the sol from the viewpoint that it is easy to impart an appropriate strength to the airgel and it is easy to obtain an airgel having excellent shrinkage resistance during drying.
  • it may be 1 part by mass or more, 2 parts by mass or more, or 4 parts by mass or more.
  • the content of the silica particles may be 20 parts by mass or less with respect to 100 parts by mass of the total amount of the sol from the viewpoint that it becomes easy to suppress the solid heat conduction of the silica particles and it becomes easy to obtain an airgel having excellent heat insulating properties. It may be 17 parts by mass or less, or 15 parts by mass or less. From these viewpoints, the content of the silica particles may be 1 to 20 parts by mass, 2 to 17 parts by mass, or 4 to 15 parts by mass with respect to 100 parts by mass of the total amount of the sol. You may.
  • the airgel particles in the present embodiment can be obtained, for example, by pulverizing a bulk airgel as described later.
  • the average particle size D50 (also referred to as the average diameter) of the airgel particles can be 0.1 to 1000 ⁇ m, but may be 0.5 to 700 ⁇ m, 1 to 500 ⁇ m, or 3 to 100 ⁇ m. It may be 5 to 50 ⁇ m.
  • the average particle size of the airgel particles can be appropriately adjusted depending on the pulverization method, pulverization conditions, sieving, classification method, and the like.
  • the average particle size D50 of the airgel particles can be measured by the laser diffraction / scattering method.
  • the airgel particles are dispersed by adding them to a solvent (ethanol) so that the content of the airgel particles is 0.05 to 5% by mass and vibrating with a 50 W ultrasonic homogenizer for 15 to 30 minutes.
  • about 10 mL of the dispersion liquid is injected into a laser diffraction / scattering type particle size distribution measuring device, and the particle size is measured at 25 ° C. with a refractive index of 1.3 and absorption of 0.
  • the particle size at an integrated value of 50% (volume basis) in this particle size distribution is defined as the average particle size D50.
  • the measuring device for example, Microtrac MT3000 (manufactured by Nikkiso Co., Ltd., product name) can be used.
  • airgel particles a commercially available product can also be used.
  • examples of commercially available airgel particles include ENOVA MT1100 (manufactured by CABOT) and AeroVa (manufactured by JIOS AEROGEL CORPORATION).
  • the amount of aerogel particles is preferably such that the total content of aerogel particles and aggregates in the coating liquid is 70% by volume or more based on the total volume of solids, and is 72% by volume.
  • the amount is more preferably 74% by volume or more, and further preferably 74% by volume or more.
  • the amount of aerogel particles may be such that the total content of aerogel particles and aggregates in the coating liquid is, for example, 99% by volume or less based on the total volume of solids, and is 98% by volume or less.
  • the amount may be 97% by volume or less.
  • the method for producing the airgel particles is not particularly limited, but can be produced by, for example, the following method.
  • the airgel particles of the present embodiment are obtained from a sol generation step, a wet gel generation step in which the sol obtained in the sol generation step is gelled, and then aged to obtain a wet gel, and a wet gel obtained in the wet gel generation step.
  • a manufacturing method mainly comprising a washing and solvent replacement step of washing and solvent replacement (if necessary), a drying step of drying the washing and solvent-replaced wet gel, and a pulverization step of pulverizing the airgel obtained by drying. Can be manufactured.
  • a manufacturing method mainly including a sol forming step, a wet gel forming step, a wet gel crushing step of crushing the wet gel obtained in the wet gel forming step, a washing and solvent replacement step, and a drying step. You may.
  • the size of the obtained airgel particles can be further adjusted by sieving, classification, etc. Dispersity can be improved by adjusting the size of the particles.
  • the "sol" means a state before the gelation reaction occurs, and in the present embodiment, the above silicon compound and, in some cases, silica particles are dissolved or dispersed in a solvent. ..
  • the wet gel means a wet gel solid that contains a liquid medium but does not have fluidity.
  • the sol formation step is a step of forming a sol after mixing a silicon compound and, in some cases, silica particles (which may be a solvent containing silica particles) and performing a hydrolysis reaction.
  • an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction.
  • a surfactant, a thermohydrolyzable compound and the like can be added to the solvent.
  • components such as carbon graphite, aluminum compound, magnesium compound, silver compound and titanium compound may be added to the solvent for the purpose of suppressing heat ray radiation.
  • the solvent for example, water or a mixed solution of water and alcohol can be used.
  • the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like.
  • examples of alcohols having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, 2-propanol and the like. These may be used alone or in combination of two or more.
  • the amount of alcohol when used as the solvent, can be 4 to 8 mol with respect to the total amount of 1 mol of the silicon compound group and the polysiloxane compound group, but may be 4 to 6.5. Alternatively, it may be 4.5 to 6 mol.
  • the amount of alcohol is 4 mol or more, it becomes easier to obtain good compatibility, and when it is 8 mol or less, it becomes easier to suppress the shrinkage of the gel.
  • Acid catalysts include inorganic acids such as hydrofluoric acid, hydrochloric acid, nitrate, sulfuric acid, sulfite, phosphoric acid, phosphite, hypophosphoric acid, bromic acid, chloric acid, chloric acid, hypochlorous acid; acidic phosphoric acid.
  • Acidic phosphates such as aluminum, acidic magnesium phosphate, acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, azelaic acid And so on.
  • an organic carboxylic acid can be mentioned as an acid catalyst for further improving the water resistance of the obtained airgel.
  • the organic carboxylic acid include acetic acid, but formic acid, propionic acid, oxalic acid, malonic acid and the like may be used. These may be used alone or in combination of two or more.
  • the hydrolysis reaction of the silicon compound can be promoted and a sol can be obtained in a shorter time.
  • the amount of the acid catalyst added can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. These may be used alone or in combination of two or more.
  • nonionic surfactant for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene, and the like can be used.
  • the compound containing a hydrophilic portion such as polyoxyethylene and a hydrophobic portion mainly composed of an alkyl group include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound containing a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether and block copolymers of polyoxyethylene and polyoxypropylene.
  • Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate and the like.
  • Examples of the amphoteric surfactant include amino acid-based surfactants, betaine-based surfactants, and amine oxide-based surfactants.
  • Examples of the amino acid-based surfactant include acylglutamic acid and the like.
  • Examples of the betaine-based surfactant include betaine lauryldimethylaminoacetate and betaine stearyldimethylaminoacetate.
  • Examples of the amine oxide-based surfactant include lauryldimethylamine oxide.
  • surfactants have the effect of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing phase separation in the wet gel formation step described later. It is believed that.
  • the amount of the surfactant added depends on the type of the surfactant or the type and amount of the silicon compound, but for example, 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group. Can be. The addition amount may be 5 to 60 parts by mass.
  • the thermally hydrolyzable compound generates a base catalyst by thermal hydrolysis to make the reaction solution basic and promote the sol-gel reaction in the wet gel formation step described later. Therefore, the thermally hydrolyzable compound is not particularly limited as long as it is a compound capable of making the reaction solution basic after hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N. -Acetamides such as methylacetamide and N, N-dimethylacetamide; cyclic nitrogen compounds such as hexamethylenetetramine and the like can be mentioned. Among these, urea is particularly likely to obtain the above-mentioned promoting effect.
  • the amount of the heat-hydrolyzable compound added is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel formation step described later.
  • the amount of urea added can be 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group.
  • the addition amount may be 2 to 150 parts by mass. When the addition amount is 1 part by mass or more, it becomes easier to obtain good reactivity, and when it is 200 parts by mass or less, it becomes easier to suppress the precipitation of crystals and the decrease in gel density.
  • Hydrolysis in the sol formation step depends on the type and amount of silicon compounds, silica particles, acid catalysts, surfactants, etc. in the mixture, but for example, 10 minutes to 24 minutes in a temperature environment of 20 to 60 ° C. It may be carried out for an hour, or may be carried out for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C. As a result, the hydrolyzable functional groups in the silicon compound are sufficiently hydrolyzed, and the hydrolyzed product of the silicon compound can be obtained more reliably.
  • the temperature environment of the sol formation step may be adjusted to a temperature at which the hydrolysis of the thermally hydrolyzable compound is suppressed and the gelation of the sol is suppressed. ..
  • the temperature at this time may be any temperature as long as it can suppress the hydrolysis of the thermally hydrolyzable compound.
  • the temperature environment in the sol formation step can be 0 to 40 ° C, but it may be 10 to 30 ° C.
  • the wet gel forming step is a step of gelling the sol obtained in the sol forming step and then aging to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • Examples of the base catalyst include carbonates such as calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate, and silver (I) carbonate; hydrogen carbonate.
  • Hydrogen carbonates such as calcium, potassium hydrogen carbonate, sodium hydrogen carbonate, ammonium hydrogen carbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide; ammonium hydroxide, ammonium fluoride, etc.
  • Ammonium compounds such as ammonium chloride and ammonium bromide; basic sodium phosphate salts such as sodium metaphosphate, sodium pyrophosphate, sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2, -Ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3- (diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec-butylamine, propyl Aliphatic amines such as amines, 3- (methylamino) propylamines, 3- (dimethylamino) propylamines, 3-methoxyamines, dimethylethanolamines, methyldiethanolamine
  • ammonium hydroxide water ammonia
  • the above-mentioned base catalyst may be used alone or in combination of two or more.
  • the dehydration condensation reaction or dealcohol condensation reaction of the silicon compound and silica particles in the sol can be promoted, and the sol can be gelled in a shorter time.
  • this makes it possible to obtain a wet gel having higher strength (rigidity).
  • ammonia is highly volatile and does not easily remain in the airgel particles. Therefore, by using ammonia as a base catalyst, airgel particles having more excellent water resistance can be obtained.
  • the amount of the base catalyst added can be 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group, but may be 1 to 4 parts by mass. When the amount is 0.5 parts by mass or more, gelation can be performed in a shorter time, and when the amount is 5 parts by mass or less, a decrease in water resistance can be further suppressed.
  • the gelation of the sol in the wet gel formation step may be performed in a closed container so that the solvent and the base catalyst do not volatilize.
  • the gelation temperature can be 30 to 90 ° C, but may be 40 to 80 ° C. By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time, and a wet gel having higher strength (rigidity) can be obtained. Further, by setting the gelation temperature to 90 ° C. or lower, volatilization of the solvent (particularly alcohol) can be easily suppressed, so that gelation can be performed while suppressing volume shrinkage.
  • the aging in the wet gel formation step may be carried out in a closed container so that the solvent and the base catalyst do not volatilize.
  • the aging temperature can be 30 to 90 ° C, but may be 40 to 80 ° C.
  • the aging temperature can be 30 to 90 ° C, but may be 40 to 80 ° C.
  • a wet gel having higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (particularly alcohol) can be easily suppressed. , It can be gelled while suppressing volume shrinkage.
  • the gelation of the sol and the subsequent aging may be continuously performed in a series of operations.
  • the gelling time and aging time can be appropriately set according to the gelling temperature and the aging temperature.
  • the gelation time can be particularly shortened as compared with the case where silica particles are not contained. It is presumed that the reason for this is that the silanol group or reactive group of the silicon compound in the sol forms a hydrogen bond or a chemical bond with the silanol group of the silica particles.
  • the gelling time can be 10 to 120 minutes, but may be 20 to 90 minutes. By setting the gelation time to 10 minutes or more, it becomes easy to obtain a homogeneous wet gel, and by setting it to 120 minutes or less, the drying step can be simplified from the washing and solvent replacement steps described later.
  • the total time of the gelling time and the aging time can be 4 to 480 hours as a whole of the gelling and aging steps, but it may be 6 to 120 hours.
  • the total of the gelling time and the aging time is 4 hours or more, a wet gel having higher strength (rigidity) can be obtained, and when it is 480 hours or less, the aging effect can be more easily maintained.
  • the gelation temperature and aging temperature are increased within the above range, and the total time of gelation time and aging time is increased within the above range. May be good. Further, in order to increase the density of the obtained airgel particles and reduce the average pore diameter, the gelling temperature and the aging temperature are lowered within the above range, and the total time of the gelling time and the aging time is set within the above range. It may be shortened.
  • the wet gel obtained in the wet gel production step is pulverized.
  • the pulverization can be performed, for example, by putting the wet gel in a henshal type mixer, or by performing a wet gel generation step in the mixer and operating the mixer under appropriate conditions (rotation speed and time). Further, more simply, the wet gel is placed in a sealable container, or the wet gel generation step is performed in the sealable container and shaken for an appropriate time using a shaking device such as a shaker. Can be done. If necessary, the particle size of the wet gel can be adjusted by using a jet mill, a roller mill, a bead mill or the like.
  • the washing and solvent replacement steps are a step of washing the wet gel obtained by the wet gel forming step or the wet gel crushing step (washing step), and a solvent suitable for drying conditions (drying step described later) of the washing liquid in the wet gel. This is a step having a step of substituting with (solvent replacement step).
  • the washing and solvent replacement steps can be carried out in a form in which only the solvent replacement step is performed without washing the wet gel, but impurities such as unreacted substances and by-products in the wet gel can be reduced. From the viewpoint of enabling the production of high-purity airgel particles, the wet gel may be washed.
  • the wet gel obtained by the wet gel forming step or the wet gel crushing step is washed.
  • the washing can be repeated using, for example, water or an organic solvent. At this time, the cleaning efficiency can be improved by heating.
  • Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride. , N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid and various other organic solvents can be used. The above organic solvent may be used alone or in combination of two or more.
  • a solvent having a low surface tension can be used in order to suppress the shrinkage of the gel due to drying.
  • low surface tension solvents generally have extremely low mutual solubility in water. Therefore, when a solvent having a low surface tension is used in the solvent replacement step, examples of the organic solvent used in the cleaning step include a hydrophilic organic solvent having high mutual solubility in both water and a solvent having a low surface tension.
  • the hydrophilic organic solvent used in the washing step can play a role of pre-replacement for the solvent replacement step.
  • examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone and the like. Methanol, ethanol, methyl ethyl ketone and the like are excellent in terms of economy.
  • the amount of water or organic solvent used in the washing step can be an amount that can be washed by sufficiently replacing the solvent in the wet gel.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the washing can be repeated until the water content in the wet gel after washing becomes 10% by mass or less based on the mass of silica.
  • the temperature environment in the washing step can be a temperature equal to or lower than the boiling point of the solvent used for washing.
  • the temperature can be set to about 30 to 60 ° C.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress the shrinkage of the airgel in the drying step.
  • the replacement efficiency can be improved by heating.
  • Specific examples of the replacement solvent include low surface tension solvents, which will be described later, when drying under atmospheric pressure at a temperature below the critical point of the solvent used for drying in the drying step.
  • examples of the replacement solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide and the like, or a solvent obtained by mixing two or more of these.
  • Examples of the solvent having a low surface tension include a solvent having a surface tension of 30 mN / m or less at 20 ° C. The surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • Examples of low surface tension solvents include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3-.
  • Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); benzene Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1) and other halogenated hydrocarbons; ethyl ether (17.1), propyl ether (20.5) ), Isopropyl ether (17.7), butyl ethyl ether (20.8), 1,2-dimethoxyethane (24.6) and other ethers; acetone (23.3), methyl ethyl ketone (24.6), methyl Ketones such as propy
  • aliphatic hydrocarbons (hexane, heptane, etc.) have low surface tension and are excellent in working environment.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane, etc.
  • a solvent having a boiling point of 100 ° C. or lower at normal pressure may be used because it is easy to dry in the drying step described later.
  • the above solvent may be used alone or in combination of two or more.
  • the amount of solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature equal to or lower than the boiling point of the solvent used for the replacement.
  • the temperature can be set to about 30 to 60 ° C.
  • the solvent replacement step is not essential.
  • the inferred mechanism is as follows. That is, the silica particles function as a support for the three-dimensional network-like skeleton, so that the skeleton is supported and the shrinkage of the gel in the drying step is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. As described above, by using the silica particles, it is possible to simplify the drying step from the washing and solvent replacement steps.
  • the drying method is not particularly limited, and known atmospheric drying, supercritical drying or freeze-drying can be used. Among these, atmospheric drying or supercritical drying can be used from the viewpoint of easy production of low-density airgel. Further, from the viewpoint of low cost production, atmospheric drying can be used. In this embodiment, normal pressure means 0.1 MPa (atmospheric pressure).
  • Airgel can be obtained by drying a wet gel that has been washed and solvent-substituted (if necessary) at a temperature below the critical point of the solvent used for drying under atmospheric pressure.
  • the drying temperature varies depending on the type of solvent substituted (the solvent used for washing if solvent substitution is not performed), but especially when drying at a high temperature accelerates the evaporation rate of the solvent and causes large cracks in the gel. In view of the fact that there is a temperature, the temperature can be set to 20 to 150 ° C.
  • the drying temperature may be 60 to 120 ° C.
  • the drying time varies depending on the volume of the wet gel and the drying temperature, but can be 4 to 120 hours. It should be noted that normal pressure drying also includes accelerating drying by applying a pressure below the critical point within a range that does not impair productivity.
  • Airgels can also be obtained by washing and (if necessary) solvent-substituted wet gels by supercritical drying.
  • Supercritical drying can be performed by a known method. Examples of the method of supercritical drying include a method of removing the solvent at a temperature and pressure equal to or higher than the critical point of the solvent contained in the wet gel.
  • the wet gel is immersed in liquefied carbon dioxide under conditions of, for example, about 20 to 25 ° C. and 5 to 20 MPa, so that all or part of the solvent contained in the wet gel is used. Is replaced with carbon dioxide having a lower critical point than the solvent, and then carbon dioxide alone or a mixture of carbon dioxide and a solvent is removed.
  • the airgel obtained by such atmospheric drying or supercritical drying may be further dried under atmospheric pressure at 105 to 200 ° C. for about 0.5 to 2 hours. This makes it easier to obtain an airgel with a low density and small pores.
  • the additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • airgel particles are obtained by pulverizing the airgel (airgel block) obtained by drying.
  • it can be carried out by putting airgel in a jet mill, a roller mill, a bead mill, a hammer mill or the like and operating the airgel at an appropriate rotation speed and time.
  • the water-soluble polymer may have a hydrophobic group and be water-soluble.
  • hydrophobic group examples include an alkyl group (preferably a long-chain alkyl group having 6 to 26 carbon atoms), an ester group, an alkoxy group, a halogen and the like.
  • an alkyl group is preferable, a long-chain alkyl group having 8 to 26 carbon atoms is more preferable, a long-chain alkyl group having 10 to 26 carbon atoms is further preferable, and a long-chain alkyl group having 12 to 26 carbon atoms is more preferable.
  • the long-chain alkyl group of is more preferable, and it may be a long-chain alkyl group having 15 to 26 carbon atoms.
  • water-soluble polymer examples include modified carboxylvinyl polymer, modified polyether urethane, cellulosic resin, polyethylene oxide, polyvinyl alcohol, polyacrylate, polyvinylpyrrolidone, dextrin resin, chitin resin, chitosan resin and the like. Can be mentioned.
  • a cellulosic resin can be preferably used as the water-soluble polymer.
  • the cellulosic resin include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, and a modified product obtained by further modifying (for example, hydrophobizing) these.
  • a cellulosic resin having an alkyl group is preferable, and a cellulosic resin having a long-chain alkyl group having 6 to 26 carbon atoms is more preferable. According to such a cellulosic resin, the effect of the present invention is more prominently exhibited.
  • the long-chain alkyl group preferably has 8 to 26 carbon atoms, more preferably 10 to 26 carbon atoms, still more preferably 12 to 26 carbon atoms, and even more preferably 15 to 26 carbon atoms.
  • cellulosic resin for example, a cellulosic resin having a structural unit represented by the following formula (A-1) is preferable.
  • R A represents a hydrogen atom, an alkyl group, hydroxyalkyl group, -R A1 -O-R A2, a group represented by (R A1 represents an alkanediyl group or a hydroxy alkanediyl group, RA2 indicates an alkyl group).
  • 3 R A may be the same or different from each other. However, among the three R A, at least one is a group represented by the alkyl group or -R A1 -O-R A2.
  • the alkyl group in RA is preferably an alkyl group having 1 to 26 carbon atoms. Further, the alkyl group in RA is more preferably a short-chain alkyl group having 1 to 3 carbon atoms or a long-chain alkyl group having 6 to 26 carbon atoms.
  • the long-chain alkyl group preferably has 8 to 26 carbon atoms, more preferably 10 to 26 carbon atoms, still more preferably 12 to 26 carbon atoms, and even more preferably 15 to 26 carbon atoms.
  • hydroxyalkyl group in RA a hydroxyalkyl group having 1 to 26 carbon atoms is preferable, a hydroxyalkyl group having 1 to 10 carbon atoms is more preferable, and a hydroxyalkyl group having 1 to 5 carbon atoms is more preferable. Groups are even more preferred.
  • alkanediyl group in R A1 is preferably an alkanediyl group of 1 to 26 carbon atoms, more preferably an alkanediyl group having 1 to 10 carbon atoms, more preferably a carbon number It is an alkanediyl group of 1-5.
  • hydroxy alkanediyl group in R A1 is preferably a hydroxy alkanediyl group of 1 to 26 carbon atoms, more preferably a hydroxy alkanediyl group having 1 to 10 carbon atoms, more preferably from 1 to 5 carbon atoms Hydroxyalkanediyl group.
  • an alkyl group having 1 to 26 carbon atoms is preferable.
  • the alkyl group in R A2 is a short chain alkyl group having 1 to 3 carbon atoms, or, more preferably a long chain alkyl group having 6 to 26 carbon atoms, more preferably a long chain alkyl group.
  • the long-chain alkyl group preferably has 8 to 26 carbon atoms, more preferably 10 to 26 carbon atoms, still more preferably 12 to 26 carbon atoms, and even more preferably 15 to 26 carbon atoms.
  • R A is a long chain alkyl group
  • three groups at least one of R A is represented by -R A1 -O-R A2
  • RA2 is a long-chain alkyl group.
  • the content of the long-chain alkyl group having 6 to 26 carbon atoms is preferably 0.01 to 5% by mass, preferably 0.01 to 3% by mass, based on the total amount of the cellulosic resin. Is more preferable.
  • the content of the water-soluble polymer in the coating liquid may be, for example, 0.01% by volume or more, preferably 0.1% by volume or more, based on the total volume of solids in the coating liquid. , 0.3% by volume or more is more preferable.
  • the content of the water-soluble polymer may be, for example, 10% by volume or less, preferably 5% by volume or less, and more preferably 3% by volume or less based on the total volume of the solid content in the coating liquid. be.
  • an aqueous solvent containing water is preferable.
  • the aqueous solvent may contain an organic solvent in addition to water.
  • the organic solvent may be any one having compatibility with water, for example, alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane.
  • Ketones such as acetone and methyl ethyl ketone
  • Carbodic acids such as acetic acid and propionic acid
  • Nitrogen-containing compounds such as acetonitrile, dimethylformamide and triethylamine.
  • the content of the liquid medium in the coating liquid is not particularly limited, and may be appropriately changed according to the desired viscosity of the coating liquid and the like.
  • the content of the liquid medium may be an amount in which the solid content concentration of the coating liquid is in a suitable range described later.
  • the solid content concentration of the coating liquid may be, for example, 10% by mass or more, preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the solid content concentration of the coating liquid may be, for example, 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the coating liquid may further contain components other than the airgel particles, the water-soluble polymer and the liquid medium.
  • the coating liquid according to the present embodiment may further contain, for example, a binder resin.
  • a binder resin examples include epoxy resin, silicone resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, acrylic resin, polyvinyl chloride resin, and polyvinyl acetate resin.
  • examples thereof include polyamide resin, polyimide resin, and polyvinyl resin.
  • silicone resin, acrylic resin, phenol resin, polyester resin and the like can be preferably used from the viewpoint of heat resistance and toughness.
  • the content of the binder resin in the coating liquid may be, for example, 30% by volume or less, preferably 28% by volume or less, based on the total volume of solids. , More preferably 25% by volume or less. Further, the content of the binder resin in the coating liquid may be, for example, 0.1% by volume or more, or 1% by volume or more, based on the total volume of the solid content.
  • the composite material according to the present embodiment may further contain a thickener, a fibrous substance, a pigment, a leveling agent and the like as components other than the above.
  • thickener examples include fine particles such as fumed silica and clay minerals.
  • the fibrous substance can exhibit the anchor function between the airgel particles, and the strength of the coating film made of the composite material can be further improved.
  • the fibrous substance is not particularly limited, and examples thereof include organic fibers and inorganic fibers.
  • the organic fiber include polyamide fiber, polyimide fiber, polyvinyl alcohol fiber, polyvinylidene chloride fiber, polyvinyl chloride fiber, polyester fiber, polyacrylonitrile fiber, polyethylene fiber, polypropylene fiber, polyurethane.
  • examples thereof include based fibers, phenol-based fibers, polyether ester-based fibers, polylactic acid-based fibers, and polycarbonate-based fibers.
  • the inorganic fiber include glass fiber, carbon fiber, ceramic fiber, metal fiber and the like.
  • the coating liquid agglomerates the airgel particles by mixing the preparatory step of preparing the airgel particles, the water-soluble polymer and the liquid medium, and the airgel particles, the water-soluble polymer and the liquid medium prepared in the preparatory step. It may be produced by a production method including a mixing step of obtaining a coating liquid containing an agglomerate of airgel particles, a water-soluble polymer and a liquid medium.
  • components other than the airgel particles, the water-soluble polymer and the liquid medium may be further prepared.
  • each component prepared in the preparation step is mixed so that the airgel particles agglomerate.
  • the mixing method may be any method as long as the airgel particles can form aggregates, and examples thereof include a method of stirring and mixing each component prepared in the preparation step.
  • the stirring speed affects the size of the agglomerates.
  • the higher the stirring speed the more shear stress is applied to the coating liquid, so the size of the agglomerates tends to decrease. Therefore, from the viewpoint of obtaining an agglomerate of a suitable size, which will be described later, it is desirable to prepare a coating liquid at a small stirring speed.
  • the viscosity at the time of mixing also affects the size of the agglomerates. Even at the same stirring speed, the shear stress applied to the coating liquid changes depending on the viscosity. The higher the viscosity, the greater the shear stress applied to the coating and the smaller the agglomerates. On the other hand, if the viscosity of the coating liquid is low, the shear stress applied to the coating liquid becomes small and the aggregate becomes large even at the same stirring speed. Therefore, by adjusting the stirring speed according to the viscosity of the coating liquid, a coating liquid having a desired aggregate size can be produced.
  • the size of the aggregate can be changed by the additive.
  • additives that strongly affect the size of aggregates include surface conditioners, surfactants, dispersants, emulsion resins, and the like.
  • Surface conditioners and surfactants reduce the surface energy of the airgel particles and the solution. The lower the surface energy, the weaker the force to make the interface smaller, and the smaller the size of the agglomerates tends to be. Therefore, the addition of surface conditioners and surfactants reduces the surface energy and reduces the size of the aggregates.
  • the dispersant adheres to the surface of the particles and suppresses the approach of the particles to each other by an electrostatic or steric hindrance repulsive force. Since the dispersant adheres to the surface of the airgel particles and suppresses the approach of the airgel particles to each other, the size of the agglomerates is reduced by adding the dispersant.
  • Emulsion resin is a resin that is mainly dispersed in water by a dispersant. Such an emulsion resin is adsorbed on the surface of the airgel particles, and the accompanying dispersant suppresses the approach of the airgel particles to each other. That is, the addition of the emulsion resin reduces the size of the agglomerates.
  • the amount of liquid medium at the time of mixing also affects the size of the agglomerates. Even if the composition of the coating liquid finally produced is the same, (i) the method of adding the entire amount of the liquid medium from the initial stage of mixing and (ii) the method of mixing with a small amount of the liquid medium at the initial stage of mixing, and then the liquid medium.
  • the size of the agglomerates is different from the method of adding.
  • the above method (ii) has a higher initial coating viscosity than the above method (i), and when the above-mentioned additive is added, the concentration is also higher. Therefore, in the above method (ii), the size of the aggregate tends to be smaller than that in the above method (i).
  • the diameter of the aggregate is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the average diameter of the agglomerates is preferably 2 times or more, more preferably 4 times or more, and 8 times or more the average diameter of the airgel particles prepared in the preparation step. More preferred. As a result, the contact interface between the airgel and the resin component becomes smaller, and the permeation of the resin component into the pores of the airgel is more likely to be suppressed.
  • the average diameter of the agglomerates is preferably 40 times or less, more preferably 30 times or less, still more preferably 20 times or less, the average diameter of the airgel particles prepared in the preparation step. As a result, the decrease in film strength due to the continuation of relatively fragile airgels is suppressed, and higher film strength can be easily obtained.
  • the average diameter of the agglomerates indicates a value measured by the following method.
  • Measurement method of average diameter of aggregates in coating liquid Take about 20 g of the coating solution in a 100 mL poly cup, add 2 g of water while stirring with a spatula, and dilute while gradually blending. The diluted sample is placed on a glass plate, and a micrograph of the sample is obtained using an optical microscope (manufactured by OLYMPUS, model number: BX51). The obtained micrograph is analyzed using image editing software ImageJ, and the diameters of a plurality of aggregates in the micrograph are determined. The average value of the obtained values is taken as the average diameter of the agglomerates.
  • the average diameter of the airgel particles is synonymous with the above-mentioned average particle diameter D50 of the airgel particles.
  • the agglomerates having a diameter of 20 ⁇ m or more (more preferably 50 ⁇ m or more) in the area occupied by the airgel particles and the agglomerates in the observation field of view are coagulated.
  • the area occupied by the aggregate) is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, and may be 100%.
  • the diluted solution obtained by diluting the coating solution and the method for observing the diluted solution are the same as the sample prepared in the above-mentioned [Method for measuring the average diameter of aggregates in the coating solution] and the method for observing the sample. It can be the same. Further, the "area in the observation field of view” is obtained by analyzing the micrograph using the image editing software ImageJ.
  • the heat insulating material has a coating step of applying the coating liquid by a coating means having a pressure applied to the coating liquid of 1.5 MPa or less to obtain a coating film, and removing at least a part of the liquid medium from the coating film. It is manufactured by a manufacturing method including a removal step of obtaining a heat insulating material. According to this production method, the permeation of the resin into the airgel pores is sufficiently suppressed by the agglomeration of the airgel particles in the coating film, and the agglomerates of the airgel particles are crushed by adopting a predetermined coating means. Since the coating film can be formed while suppressing the above, a heat insulating material having high heat insulating properties and high film forming properties can be obtained.
  • the application target of the coating liquid is not particularly limited.
  • the object to be coated (for example, a support) may be peeled from the heat insulating material after the heat insulating material is manufactured, or may be used without peeling from the heat insulating material.
  • the object may be, for example, an object to which the heat insulating material is applied.
  • the material constituting the object is not particularly limited, and may be, for example, metal, ceramic, glass, resin, a composite material thereof, or the like.
  • the form of the object may be appropriately selected depending on the purpose of use, material, etc., and may be, for example, block-shaped, sheet-shaped, powder-shaped, fibrous-shaped, or the like.
  • the method of applying the coating liquid is not particularly limited, and any method may be used as long as the pressure applied to the coating liquid is 1.5 MPa or less.
  • a coating method such as roller coating, iron coating, or air spray is preferable because the pressure applied to the coating liquid can be easily reduced.
  • a heat insulating material made of a composite material containing an aggregate of airgel particles and a water-soluble resin is formed.
  • the method for removing the liquid medium from the coating film is not particularly limited, and examples thereof include a method of performing a heating (for example, 40 to 150 ° C.) treatment, a depressurizing treatment (for example, 10,000 Pa or less) treatment, or both treatments.
  • a heating for example, 40 to 150 ° C.
  • a depressurizing treatment for example, 10,000 Pa or less
  • the thickness of the heat insulating material is not particularly limited, and may be, for example, 0.01 to 30 mm or 0.1 to 20 mm.
  • the insulation has pores due to the airgel particles.
  • the pore volume of the heat insulating material is preferably at least 0.15 cm 3 / g, more preferably at least 0.20cm 3 / g, 0.60cm 3 / g or more is more preferable.
  • the upper limit of the pore volume of the heat insulating material is not particularly limited.
  • the pore volume of the heat insulating material may be, for example, 5.0 cm 3 / g or less.
  • the thermal conductivity of the heat insulating material is, for example, 0.05 W / (m ⁇ K) or less, preferably 0.04 W / (m ⁇ K) or less, and more preferably 0.035 W / (m ⁇ K) or less. ..
  • the lower limit of the thermal conductivity of the heat insulating material is not particularly limited.
  • the thermal conductivity of the heat insulating material may be, for example, 0.01 W / (m ⁇ K) or more.
  • the heat insulating material produced by the manufacturing method of the present embodiment has excellent heat insulating properties, heat resistance, flame retardancy, etc. derived from airgel. Therefore, the heat insulating material can be applied to applications as a heat insulating material in cryogenic containers, space field, construction field, automobile field, home appliance field, semiconductor field, industrial equipment and the like. In addition to being used as a heat insulating material, the heat insulating material can also be used as a water repellent material, a sound absorbing material, a vibration damping material, a catalyst supporting material, and the like.
  • airgel particles manufactured by CABOT, product name: ENOVA MT1100, particle diameter 2-24 ⁇ m, average particle diameter (D50) 10 ⁇ m
  • the mixture was stirred at 100 rpm to obtain a coating liquid.
  • the content of airgel particles is 74.7% by volume
  • the content of water-soluble polymer is 0.4% by volume
  • the content of acrylic resin is 24.9% by volume. %Met.
  • Example 1 100 parts by mass of the coating solution and 10 parts by mass of pure water prepared above were placed in a poly cup and stirred at 200 rpm for 5 minutes using a mechanical stirrer to dilute the coating solution. While applying a load of 500 g to the diluted coating liquid using a sand bone roller (manufactured by Otsuka Brush, sand aggregate regular roller coarse 4 inches), aluminum foil (manufactured by UACJ Corporation, manufactured by UACJ Corporation) so that the thickness of the coating liquid becomes 2 mm.
  • the pressure applied to the coating liquid at the time of roller coating was 25 kPa in terms of the contact area and load of the rollers.
  • Example 2 The diluent prepared in Example 1 was taken into a multi-use gun (Meiji Machine Co., Ltd., SGA-2), applied to an aluminum foil with a paint nozzle diameter of 5.5 mm and a spray air pressure of 0.06 MPa, and dried in the same manner as in Example 1. And obtained a heat insulating material.
  • Example 3 The diluted solution prepared in Example 1 was subjected to the same as in Example 1 by using a pressure feeding tank (Meiji Machine Co., Ltd., P-2A) and a spray gun (Meiji Machine Co., Ltd., F210-P12P) with a liquid feeding pressure of 0.3 MPa. Was applied to aluminum foil and dried to obtain a heat insulating material.
  • Example 1 The diluent prepared in Example 1 was placed in a special cup of an airless spray (manufactured by Graco, Ultra Max), applied to an aluminum foil at a coating pressure of 3.4 MPa in the same manner as in Example 1, and dried to obtain a heat insulating material. rice field.
  • an airless spray manufactured by Graco, Ultra Max
  • ⁇ Microscopic observation of coating liquid About 20 g of the coating solution was taken in a 100 mL polycup, 2 g of water was added with stirring using a spatula, and the mixture was gradually blended and diluted. The diluted sample was taken on a glass plate, and the airgel particles and their aggregates in the coating liquid were observed using an optical microscope (manufactured by OLYMPUS, model number: BX51) to obtain a micrograph. The obtained micrograph was analyzed using image editing software ImageJ, and the average diameter of the aggregates of the airgel particles was determined.
  • a heat insulating material was prepared by the same method as the above ⁇ Evaluation of cracks in the heat insulating material>. 100 mg of the prepared heat insulating material was collected, and the pore volume was calculated using a high-sensitivity gas adsorption analyzer (AutoSorb iQ, manufactured by Quantachrome).
  • a heat insulating material is made on aluminum foil (manufactured by UACJ Corporation, product name: My Foil Thick 50, thickness: 50 ⁇ m) by the same method as ⁇ Evaluation of cracks in heat insulating material>, and then applied twice in both vertical and horizontal directions.
  • a plate-shaped sample having a thickness of about 250 mm and a thickness of 3 mm was prepared, dried, the aluminum foil was peeled off, and the end portion was cut off to form a plate-shaped sample having a length and width of 200 mm.
  • the thermal conductivity of the obtained heat insulating material was measured by a steady method using a thermal conductivity measuring device "HFM-446" (manufactured by NETZSCH, product name). In this evaluation, only the coating solutions of Example 1 and Comparative Example 1 were performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)

Abstract

エアロゲル粒子、疎水性基を有する水溶性高分子及び液状媒体を前記エアロゲル粒子が凝集するように混合して得られた塗液を、前記塗液にかかる圧力が1.5MPa以下の塗布手段で塗布して塗膜を得る塗布工程と、前記塗膜から前記液状媒体の少なくとも一部を除去して断熱材を得る除去工程と、を含む、断熱材の製造方法。

Description

断熱材の製造方法
 本発明は、断熱材の製造方法に関する。
 断熱性に優れる材料としてエアロゲルが知られている。また、エアロゲルを粒子状に加工し、断熱材の構成材料として用いる方法が提案されている(例えば、特許文献1及び2)。特許文献1では、粒子状のエアロゲルを、断熱窓を構成する樹脂板等の間の充填剤として用いることが提案されている。特許文献2では、エアロゲル粒子と有機繊維とを含む水分散液を調製した後、水を蒸発させることにより得られる中間生成物をさらにプレス成型することで、断熱材(成型体)を製造する方法が示されている。
特開2012-91943号公報 特開2014-35044号公報
 エアロゲル粒子を樹脂成分中に分散させた複合材料は優れた耐熱性が期待される。しかし、このような複合材料を塗液化した場合、エアロゲル粒子の細孔内に樹脂成分が浸透して細孔構造が失われ断熱性が低下する、塗膜の強度が十分に得られずひび割れが生じやすい、といった課題があった。
 そこで本発明は、エアロゲル粒子の細孔内への樹脂成分の浸透が抑制され、高い断熱性及び高い成膜性を有する断熱材を得ることが可能な、断熱材の製造方法を提供することを目的とする。
 本発明の一側面は、エアロゲル粒子、疎水性基を有する水溶性高分子及び液状媒体を上記エアロゲル粒子が凝集するように混合して得られた塗液を、上記塗液にかかる圧力が1.5MPa以下の塗布手段で塗布して塗膜を得る塗布工程と、上記塗膜から上記液状媒体の少なくとも一部を除去して断熱材を得る除去工程と、を含む、断熱材の製造方法に関する。
 上記製造方法における塗液は、エアロゲル粒子の凝集によりエアロゲル粒子と樹脂成分との接触界面が少なくなり、エアロゲル粒子の細孔内への樹脂成分の浸透が抑制されている。また、上記塗液は、予め準備したエアロゲル粒子の凝集体を配合したものではなく、エアロゲル粒子を他成分との混合時に凝集させたものであるため、エアロゲル粒子及びその凝集体が均一に分散しており、エアロゲル粒子の偏在による塗膜の不均一化、ひび割れ等を抑制できる。さらに上記製造方法では、樹脂成分として疎水基を有する水溶性高分子を用いているため、エアロゲル粒子の分散性が更に向上し、エアロゲル粒子の充填率を高くした場合でも、塗液中にエアロゲル粒子及びその凝集体が均一に分散する。そして、上記製造方法では、塗液にかかる圧力が1.5MPa以下の塗布手段を用いることで、塗布時の負荷による凝集体の解砕を抑制している。このため、上記製造方法によれば、高い断熱性及び高い成膜性を有する断熱材が得られる。
 一態様において、上記塗液は上記エアロゲル粒子の凝集体を含み、上記凝集体の平均直径は、上記エアロゲル粒子の平均直径の2~40倍であってよい。このような凝集体を含む塗液によれば、上述の効果がより顕著に奏される。
 一態様において、上記塗液を希釈した希釈液を光学顕微鏡によって観察したとき、観察視野内の上記エアロゲル粒子及び上記エアロゲル粒子の凝集体が占める面積のうち、直径20μm以上の上記凝集体が占める面積は、50%以上であってよい。これにより、上述の効果がより顕著に奏される。
 一態様において、上記塗液中の上記エアロゲル粒子及び上記エアロゲル粒子の凝集体の合計含有量は、固形分の全体積基準で、70体積%以上であってよい。
 一態様において、上記水溶性高分子は、セルロース系樹脂を含んでいてよい。
 一態様において、上記断熱材の細孔容積は、0.15g/cm以上であってよい。
 本発明によれば、エアロゲル粒子の細孔内への樹脂成分の浸透が抑制され、高い断熱性及び高い成膜性を有する断熱材を得ることが可能な、断熱材の製造方法が提供される。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
 本実施形態に係る断熱材の製造方法は、エアロゲル粒子、疎水性基を有する水溶性高分子及び液状媒体をエアロゲル粒子が凝集するように混合して得られた塗液を、塗液にかかる圧力が1.5MPa以下の塗布手段で塗布して塗膜を得る塗布工程と、塗膜から液状媒体の少なくとも一部を除去して断熱材を得る除去工程と、を含む。
 本実施形態の製造方法における塗液は、エアロゲル粒子の凝集によりエアロゲル粒子と樹脂成分との接触界面が少なくなり、エアロゲル粒子の細孔内への樹脂成分の浸透が抑制されている。また、上記塗液は、予め準備したエアロゲル粒子の凝集体を配合したものではなく、エアロゲル粒子を他成分との混合時に凝集させたものであるため、エアロゲル粒子及びその凝集体が均一に分散しており、エアロゲル粒子の偏在による塗膜の不均一化、ひび割れ等を抑制できる。さらに上記製造方法では、樹脂成分として疎水基を有する水溶性高分子を用いているため、エアロゲル粒子の分散性が更に向上し、エアロゲル粒子の充填率を高くした場合でも、塗液中にエアロゲル粒子及びその凝集体が均一に分散する。そして、上記製造方法では、塗液に係る圧力が1.5MPa以下の塗布手段を用いることで、塗布時の負荷による凝集体の解砕を抑制している。このため、上記製造方法によれば、高い断熱性及び高い成膜性を有する断熱材が得られる。
<エアロゲル>
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。一般的に、エアロゲルの内部は、網目状の微細構造を有しており、2~20nm程度の粒子状のエアロゲル成分が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造が形成されている。
 本実施形態に係るエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。
 本実施形態に係るエアロゲルとしては、例えば、以下の態様が挙げられる。これらの態様を採用することにより、断熱性、難燃性、耐熱性及び柔軟性に優れるエアロゲルを得ることが容易となる。各々の態様を採用することで、各々の態様に応じた断熱性、難燃性、耐熱性及び柔軟性を有するエアロゲルを得ることができる。
(第一の態様)
 本実施形態に係るエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記式(1)又は式(1a)で表される構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルとなる。このような観点から、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。
(第二の態様)
 本実施形態に係るエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有し、かつ橋かけ部が下記一般式(2)で表される構造を有することができる。このようなラダー型構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲルの骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。シルセスキオキサンは、組成式:(RSiO1.5を有するポリシロキサンであり、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。なお、下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本実施形態に係るエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。ただし、本態様のエアロゲルは、一般式(2)で表される構造に加え、さらにシルセスキオキサンに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。
(第三の態様)
 本実施形態に係るエアロゲルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種、を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの:ゾル由来の湿潤ゲルの乾燥物)であってもよい。なお、これまで述べてきたエアロゲルも、このように、ケイ素化合物等を含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、ポリシロキサン化合物を用いることができる。すなわち、上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有することができる。
 ポリシロキサン化合物における官能基は、特に限定されないが、同じ官能基同士で反応するか、あるいは他の官能基と反応する基とすることができる。加水分解性の官能基としては、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲルの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基は、ゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲルの柔軟性をより向上する観点から2~5であってもよく、2~4であってもよい。
 分子内にヒドロキシアルキル基を有するポリシロキサン化合物としては、下記一般式(A)で表される構造を有するものが挙げられる。下記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(1)及び式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000006
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(A)中、R1aとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(A)中、R2aとしては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。また、式(A)中、R3a及びR4aとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(A)中、nは2~30とすることができるが、5~20であってもよい。
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。
 分子内にアルコキシ基を有するポリシロキサン化合物としては、下記一般式(B)で表される構造を有するものが挙げられる。下記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)又は(3)で表される橋かけ部を有するラダー型構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000007
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(B)中、R1bとしては炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としてはメチル基、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R2b及びR3bとしてはそれぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としてはメトキシ基、エトキシ基等が挙げられる。また、式(B)中、R4b及びR5bとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(B)中、mは2~30とすることができるが、3~35であってもよく、5~20であってもよい。
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。また、当該ポリシロキサン化合物としてXR31-B1410(モメンティブ社製)を用いることもできる。
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物は混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 これら、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 本実施形態に係るエアロゲルを作製するにあたり、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、上述のポリシロキサン化合物以外のケイ素化合物を用いることができる。すなわち、上記のケイ素化合物を含有するゾルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有する当該ケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ケイ素化合物群」という)を、上述のポリシロキサン化合物群に加えて、あるいは上述のポリシロキサン化合物群に代えて、含有することができる。ケイ素化合物における分子内のケイ素数は1又は2とすることができる。
 分子内に加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、アルキルケイ素アルコキシド等が挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができる。このようなアルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。ここで、加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール、トリフルオロプロピルシラントリオール等が挙げられる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物は、加水分解性の官能基及び縮合性の官能基とは異なる上述の反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。
 加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 また、縮合性の官能基を有し、反応性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。
 さらに、分子末端の加水分解性の官能基が3個以下のケイ素化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン、エチルトリメトキシシラン、ビニルトリメトキシシラン等も用いることができる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有する当該ケイ素化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 上記のケイ素化合物(ポリシロキサン化合物を除く)を使用することにより、下記一般式(4)~(6)で表される構造をエアロゲルの骨格中に導入することができる。本実施形態に係るエアロゲルは、これらの構造のうちいずれかを単独で、又は2種以上有することができる。
Figure JPOXMLDOC01-appb-C000008
 式(4)中、Rはアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(6)中、R12はアルキレン基を示す。ここで、アルキレン基としては炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、ヘキシレン基等が挙げられる。
(第四の態様)
 本実施形態に係るエアロゲルは、さらに強靱化する観点並びにさらに優れた断熱性及び柔軟性を達成する観点から、エアロゲル成分に加え、さらにシリカ粒子を含有していてもよい。エアロゲル成分及びシリカ粒子を含有するエアロゲルを、エアロゲル複合体ということもできる。エアロゲル複合体は、エアロゲル成分とシリカ粒子とが複合化されていながらも、エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有していると考えられる。
 エアロゲル成分及びシリカ粒子を含有するエアロゲルは、上述の、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、シリカ粒子と、を含有するゾルの縮合物である湿潤ゲルの乾燥物ということができる。したがって、第一の態様~第三の態様に関する記載は、本実施形態に係るエアロゲルに対しても適宜準用することができる。
 シリカ粒子としては、特に制限なく用いることができ、非晶質シリカ粒子等が挙げられる。非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子、コロイダルシリカ粒子等が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
 シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度及び柔軟性をエアロゲルに付与し易く、乾燥時の耐収縮性に優れるエアロゲルが得易い観点から、1nm以上であってもよく、5nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、500nm以下であってもよく、300nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、1~500nmであってもよく、5~300nmであってもよく、20~100nmであってもよい。
 本実施形態において、エアロゲル成分の平均粒子径及びシリカ粒子の平均一次粒子径は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲルを直接観察することにより得ることができる。ここでいう「直径」とは、エアロゲルの断面に露出した粒子の断面を円とみなした場合の直径を意味する。また、「断面を円とみなした場合の直径」とは、断面の面積を同じ面積の真円に置き換えたときの当該真円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子の平均粒子径は、原料からも測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常固形分濃度が5~40質量%程度で、水中に分散しているコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。
 シリカ粒子の1g当たりのシラノール基数は、耐収縮性に優れるエアロゲルを得易くなる観点から、10×1018個/g以上であってもよく、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。シリカ粒子の1g当たりのシラノール基数は、均質なエアロゲルが得易くなる観点から、1000×1018個/g以下であってもよく、800×1018個/g以下であってもよく、700×1018個g以下であってもよい。これらの観点から、シリカ粒子の1g当たりのシラノール基数は、10×1018~1000×1018個/gであってもよく、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。
 上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるポリシロキサン化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるポリシロキサン化合物群の含有量は、ゾルの総量100質量部に対し、5~50質量部であってもよく、10~30質量部であってもよい。
 上記ゾルがケイ素化合物(ポリシロキサン化合物を除く)を含有する場合、ケイ素化合物群(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物の含有量、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、7質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるケイ素化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよい。
 ゾルが、ポリシロキサン化合物群及びケイ素化合物群を共に含む場合、ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、良好な相溶性がさらに得易くなる観点から、1:0.5以上であってもよく、1:0.7以上であってもよく、1:1以上であってもよい。ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、ゲルの収縮がさらに抑制し易くなる観点から、1:4以下であってもよく、1:3以下であってもよく、1:2以下であってもよい。これらの観点から、ポリシロキサン化合物群の含有量と、ケイ素化合物群の含有量との比は、1:0.5~1:4であってもよく、1:0.7~1:3であってもよく、1:1~1:2であってもよい。
 上記ゾルにシリカ粒子が含まれる場合、シリカ粒子の含有量は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、1質量部以上であってもよく、2質量部以上であってもよく、4質量部以上であってもよい。シリカ粒子の含有量は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、20質量部以下であってもよく、17質量部以下であってもよく、15質量部以下であってもよい。これらの観点から、シリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部であってもよく、2~17質量部であってもよく、4~15質量部であってもよい。
<エアロゲル粒子>
 本実施形態におけるエアロゲル粒子は、例えば後述のとおりバルクのエアロゲルを粉砕することにより得ることができる。
 エアロゲル粒子の平均粒子径D50(平均直径ともいう。)は0.1~1000μmとすることができるが、0.5~700μmであってもよく、1~500μmであってもよく、3~100μmであってもよく、5~50μmであってもよい。エアロゲル粒子の平均粒子径D50が大きいと、分散性、取り扱い性等に優れるエアロゲル粒子が得易くなる。一方、平均粒子径D50が小さいと、分散性に優れるエアロゲル粒子が得易くなる。エアロゲル粒子の平均粒子径は、粉砕方法及び粉砕条件、ふるい、分級の仕方等により適宜調整することができる。
 エアロゲル粒子の平均粒子径D50はレーザー回折・散乱法により測定することができる。例えば、溶媒(エタノール)に、エアロゲル粒子の含有量が0.05~5質量%となるように添加し、50Wの超音波ホモジナイザーで15~30分振動することによって、エアロゲル粒子の分散を行う。その後、分散液の約10mL程度をレーザー回折・散乱式粒子径分布測定装置に注入して、25℃で、屈折率1.3、吸収0として粒子径を測定する。そして、この粒子径分布における積算値50%(体積基準)での粒径を平均粒子径D50とする。測定装置としては、例えばMicrotrac MT3000(日機装株式会社製、製品名)を用いることができる。
 また、エアロゲル粒子としては、市販品を用いることもできる。エアロゲル粒子の市販品としては、例えば、ENOVA MT1100(CABOT社製)、AeroVa(JIOS AEROGEL CORPORATION社製)等が挙げられる。
 本実施形態において、エアロゲル粒子の量は、塗液中のエアロゲル粒子及び凝集体の合計含有量が、固形分の全体積基準で、70体積%以上となる量であることが好ましく、72体積%以上となる量であることがより好ましく、74体積%以上となる量であることが更に好ましい。また、エアロゲル粒子の量は、塗液中のエアロゲル粒子及び凝集体の合計含有量が、固形分の全体積基準で、例えば99体積%以下となる量であってよく、98体積%以下となる量であってよく、97体積%以下となる量であってもよい。
<エアロゲル粒子の製造方法>
 エアロゲル粒子の製造方法は、特に限定されないが、例えば以下の方法により製造することができる。
 本実施形態のエアロゲル粒子は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する洗浄及び溶媒置換工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程と、乾燥により得られたエアロゲルを粉砕する粉砕工程とを主に備える製造方法により製造することができる。
 また、ゾル生成工程と、湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する湿潤ゲル粉砕工程と、洗浄及び溶媒置換工程と、乾燥工程とを主に備える製造方法により製造してもよい。
 得られたエアロゲル粒子は、ふるい、分級等によって大きさをさらに揃えることができる。粒子の大きさを整えることで分散性を高めることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては上記ケイ素化合物と、場合によりシリカ粒子と、が溶媒中に溶解又は分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
(ゾル生成工程)
 ゾル生成工程は、ケイ素化合物と、場合によりシリカ粒子(シリカ粒子を含む溶媒であってもよい)と、を混合して加水分解反応を行った後、ゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 溶媒としては、例えば、水、又は、水及びアルコールの混合液を用いることができる。アルコールとしては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば溶媒としてアルコールを用いる場合、アルコールの量は、ケイ素化合物群及びポリシロキサン化合物群の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、又は4.5~6モルであってもよい。アルコールの量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸などが挙げられる。これらの中でも、得られるエアロゲルの耐水性をより向上する酸触媒としては有機カルボン酸が挙げられる。当該有機カルボン酸としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.001~0.1質量部とすることができる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物の種類及び量にも左右されるが、例えばポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
 塩基触媒としては、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム、炭酸銅(II)、炭酸鉄(II)、炭酸銀(I)等の炭酸塩類;炭酸水素カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル粒子中に残存し難いため耐水性を損ない難いという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物、及びシリカ粒子の、脱水縮合反応又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル粒子中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル粒子を得ることができる。
 塩基触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により適宜設定することができる。ゾル中にシリカ粒子が含まれている場合は、含まれていない場合と比較して、特にゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有するシラノール基又は反応性基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
 得られるエアロゲル粒子の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル粒子の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(湿潤ゲル粉砕工程)
 湿潤ゲル粉砕工程を行う場合、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する。粉砕は、例えば、ヘンシャル型ミキサーに湿潤ゲルを入れるか、又はミキサー内で湿潤ゲル生成工程を行い、ミキサーを適度な条件(回転数及び時間)で運転することにより行うことができる。また、より簡易的には密閉可能な容器に湿潤ゲルを入れるか、又は密閉可能な容器内で湿潤ゲル生成工程を行い、シェイカー等の振盪装置を用いて、適度な時間振盪することにより行うことができる。なお、必要に応じて、ジェットミル、ローラーミル、ビーズミル等を用いて、湿潤ゲルの粒子径を調整することもできる。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル粒子の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。
 洗浄工程では、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。
 溶媒置換工程では、乾燥工程におけるエアロゲルの収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒が挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。
 なお、ゲル中にシリカ粒子が含まれている場合、溶媒置換工程は必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、シリカ粒子を用いることで、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、エアロゲル(エアロゲルブロック又はエアロゲル粒子)を得ることができる。すなわち、上記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲルを得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲルを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 エアロゲルは、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 エアロゲルは、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。
超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲルは、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルをさらに得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
(粉砕工程)
 湿潤ゲル粉砕工程を行わない場合は、乾燥により得られたエアロゲル(エアロゲルブロック)を粉砕することによりエアロゲル粒子を得る。例えば、ジェットミル、ローラーミル、ビーズミル、ハンマーミル等にエアロゲルを入れ、適度な回転数と時間で運転することにより行うことができる。
<水溶性高分子>
 本実施形態において、水溶性高分子は、疎水性基を有し、且つ、水溶性を有していればよい。
 疎水性基としては、例えば、アルキル基(好ましくは、炭素数6~26の長鎖のアルキル基)、エステル基、アルコキシ基、ハロゲン等が挙げられる。これらのうち、疎水性基としては、アルキル基が好ましく、炭素数8~26の長鎖のアルキル基がより好ましく、炭素数10~26の長鎖のアルキル基が更に好ましく、炭素数12~26の長鎖のアルキル基が一層好ましく、炭素数15~26の長鎖のアルキル基であってもよい。
 水溶性高分子としては、例えば、変性カルボキシルビニルポリマー、変性ポリエーテルウレタン、セルロース系樹脂、ポリエチレンオキシド、ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、デキストリン系樹脂、キチン系樹脂、キトサン系樹脂等が挙げられる。
 水溶性高分子としては、セルロース系樹脂を好適に用いることができる。セルロース系樹脂としては、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、及び、これらを更に変性(例えば、疎水化)した変性体、等が挙げられる。
 セルロース系樹脂としては、アルキル基を有するセルロース系樹脂が好ましく、炭素数6~26の長鎖アルキル基を有するセルロース系樹脂がより好ましい。このようなセルロース系樹脂によれば、本発明の効果がより顕著に奏される。長鎖アルキル基の炭素数は、好ましくは8~26であり、より好ましくは10~26、更に好ましくは12~26、一層好ましくは15~26である。
 セルロース系樹脂としては、例えば、下記式(A-1)で表される構造単位を有するセルロース系樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(A-1)中、Rは、水素原子、アルキル基、ヒドロキシアルキル基、-RA1-O-RA2で表される基(RA1はアルカンジイル基又はヒドロキシアルカンジイル基を示し、RA2はアルキル基を示す。)を示す。3個のRは、互いに同一でも異なっていてもよい。但し、3個のRのうち、少なくとも一つは、アルキル基又は-RA1-O-RA2で表される基である。
 式(A-1)中、Rにおけるアルキル基としては、炭素数1~26のアルキル基が好ましい。また、Rにおけるアルキル基は、炭素数1~3の短鎖アルキル基、又は、炭素数6~26の長鎖アルキル基であることがより好ましい。長鎖アルキル基の炭素数は、好ましくは8~26、より好ましくは10~26、更に好ましくは12~26、一層好ましくは15~26である。
 式(A-1)中、Rにおけるヒドロキシアルキル基としては、炭素数1~26のヒドロキシアルキル基が好ましく、炭素数1~10のヒドロキシアルキル基がより好ましく、炭素数1~5のヒドロキシアルキル基が更に好ましい。
 式(A-1)中、RA1におけるアルカンジイル基は、好ましくは炭素数1~26のアルカンジイル基であり、より好ましくは炭素数1~10のアルカンジイル基であり、更に好ましくは炭素数1~5のアルカンジイル基である。また、RA1におけるヒドロキシアルカンジイル基は、好ましくは炭素数1~26のヒドロキシアルカンジイル基であり、より好ましくは炭素数1~10のヒドロキシアルカンジイル基であり、更に好ましくは炭素数1~5のヒドロキシアルカンジイル基である。
 式(A-1)中、RA2としては、炭素数1~26のアルキル基が好ましい。また、RA2におけるアルキル基は、炭素数1~3の短鎖アルキル基、又は、炭素数6~26の長鎖アルキル基であることがより好ましく、長鎖アルキル基であることがより好ましい。長鎖アルキル基の炭素数は、好ましくは8~26、より好ましくは10~26、更に好ましくは12~26、一層好ましくは15~26である。
 式(A-1)において、3個のRのうち少なくとも一つが長鎖アルキル基であるか、3個のRのうち少なくとも一つが-RA1-O-RA2で表される基であり且つRA2が長鎖アルキル基であることが好ましい。
 セルロース系樹脂において、炭素数6~26の長鎖アルキル基の含有量が、セルロース系樹脂の全量基準で0.01~5質量%であることが好ましく、0.01~3質量%であることがより好ましい。
 本実施形態において、塗液中の水溶性高分子の含有量は、塗液中の固形分の全体積基準で、例えば0.01体積%以上であってよく、0.1体積%以上が好ましく、0.3体積%以上がより好ましい。また、水溶性高分子の含有量は、塗液中の固形分の全体積基準で、例えば10体積%以下であってよく、好ましくは5体積%以下であり、より好ましくは3体積%以下である。
<液状媒体>
 液状媒体としては、水を含む水系溶媒が好ましい。水系溶媒には、水以外に有機溶媒が含まれていてもよい。有機溶媒は、水との相溶性を有するものであればよく、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸、プロピオン酸等のカルボン酸;アセトニトリル、ジメチルホルムアミド、トリエチルアミン等の窒素含有化合物等が挙げられる。
 本実施形態において、塗液中の液状媒体の含有量は特に限定されず、所望の塗液の粘度等に応じて適宜変更してよい。例えば、液状媒体の含有量は、塗液の固形分濃度が後述の好適な範囲となる量であってよい。
 塗液の固形分濃度は、例えば、10質量%以上であってよく、好ましくは15質量%以上、より好ましくは20質量%以上である。また、塗液の固形分濃度は、例えば、70質量%以下であってよく、好ましくは60質量%以下、より好ましくは50質量%以下である。
<その他の成分>
 本実施形態において、塗液は、エアロゲル粒子、水溶性高分子及び液状媒体以外の成分を更に含有していてもよい。
 本実施形態に係る塗液は、例えば、バインダ樹脂を更に含有していてもよい。バインダ樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリビニル系樹脂等が挙げられる。これらの中でも、耐熱性及び強靭性という観点から、シリコーン樹脂、アクリル樹脂、フェノール樹脂、ポリエステル樹脂等を好適に用いることができる。
 本実施形態において、塗液がバインダ樹脂を含有する場合、塗液中のバインダ樹脂の含有量は、固形分の全体積基準で、例えば30体積%以下であってよく、好ましくは28体積%以下、より好ましくは25体積%以下である。また、塗液中のバインダ樹脂の含有量は、固形分の全体積基準で、例えば0.1体積%以上であってよく、1体積%以上であってもよい。
 また、本実施形態に係る複合材料は、上記以外の成分として、増粘剤、繊維状物質、顔料、レベリング剤等を更に含んでいてもよい。
 増粘剤としては、例えば、フュームドシリカ、粘土鉱物等の微粒子が挙げられる。
 繊維状物質はエアロゲル粒子間のアンカー機能を発現することができ、複合材料による塗膜の強度をより向上することができる。繊維状物質としては特に制限されず、有機繊維及び無機繊維が挙げられる。有機繊維としては、例えば、ポリアミド系繊維、ポリイミド系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリウレタン系繊維、フェノール系繊維、ポリエーテルエステル系繊維、ポリ乳酸系繊維、ポリカーボネート系繊維等が挙げられる。無機繊維としては、例えば、ガラス繊維、炭素繊維、セラミック繊維、金属繊維等が挙げられる。
<塗液の製造方法>
 本実施形態において、塗液は、エアロゲル粒子、水溶性高分子及び液状媒体を準備する準備工程と、準備工程で準備されたエアロゲル粒子、水溶性高分子及び液状媒体を混合してエアロゲル粒子を凝集させ、エアロゲル粒子の凝集体、水溶性高分子及び液状媒体を含有する塗液を得る混合工程と、を含む製造方法によって製造されてよい。
 準備工程では、エアロゲル粒子、水溶性高分子及び液状媒体以外の成分(例えば、上述の<その他の成分>に記載の成分)を更に準備してもよい。
 混合工程では、準備工程で準備した各成分を、エアロゲル粒子が凝集するように混合する。混合方法は、エアロゲル粒子が凝集体を形成し得る方法であればよく、例えば、準備工程で準備した各成分を撹拌混合する方法が挙げられる。
 撹拌速度は、凝集体のサイズに影響する。撹拌速度が大きいほどせん断応力が塗液にかかるため、凝集体のサイズは低下する傾向にある。したがって、後述な好適なサイズの凝集体を得る観点からは、小さな撹拌速度で塗液を作製することが望ましい。
 また、混合時の粘度も凝集体のサイズに影響する。同一の撹拌速度であっても、粘度に応じて塗液にかかるせん断応力は変化する。粘度が高ければ、より大きなせん断応力が塗液にかかり、凝集体は低サイズ化する。一方、塗液粘度が低ければ、同一の撹拌速度であっても塗液にかかるせん断応力は小さくなり、凝集体は大きくなる。従って、塗液粘度に応じて撹拌速度を調整することで、所望の凝集体サイズの塗液を作製することができる。
 また、添加剤によって凝集体のサイズを変化させることもできる。凝集体のサイズに強く影響する添加剤として、表面調整剤、界面活性剤、分散剤、エマルジョン樹脂等が挙げられる。
 表面調整剤及び界面活性剤は、エアロゲル粒子と溶液との表面エネルギーを低下させる。表面エネルギーが低いほど界面を小さくしようとする力が弱く、凝集体のサイズは小さくなる傾向にある。したがって、表面調整剤及び界面活性剤の添加は、表面エネルギーを低下させ、凝集体を低サイズ化させる。
 分散剤は、粒子表面に付着することで、静電的又は立体障害的な斥力によって粒子同士の接近を抑制するものである。分散剤は、エアロゲル粒子の表面に付着して、エアロゲル粒子同士の接近を抑制するため、分散剤の添加により凝集体が低サイズ化する。
 エマルジョン樹脂は、主に分散剤によって樹脂が水中に分散したものである。このようなエマルジョン樹脂は、エアロゲル粒子の表面に吸着され、付随する分散剤によってエアロゲル粒子同士の接近を抑制する。すなわち、エマルジョン樹脂の添加は、凝集体を低サイズ化させる。
 また、混合時の液状媒体の量も凝集体のサイズに影響する。最終的に製造される塗液の組成が同一であっても、(i)混合初期から液状媒体を全量投入する方法と、(ii)混合初期は少ない液状媒体量で混合し、その後に液状媒体を追加する方法と、では凝集体のサイズが異なる。上記(ii)の方法は上記(i)の方法に比べて、初期の塗液粘度が高くなり、上述の添加剤を添加した場合はその濃度も高くなる。このため、上記(ii)の方法は、上記(i)の方法に比べて凝集体が低サイズ化する傾向がある。塗液組成、混合装置(撹拌装置)等の条件に合わせてこれらの方法を使い分けることで、所望のサイズの凝集体を形成することができる。
 凝集体は、サイズが大きいほどエアロゲルと樹脂成分との接触界面が小さくなって、エアロゲルの細孔内への樹脂成分の浸透がより抑制されやすくなる。この観点から、本実施形態では、直径20μm以上の凝集体が形成されていることが好ましく、直径40μm以上の凝集体が形成されていることがより好ましく、直径50μm以上の凝集体が形成されていることが更に好ましい。一方、比較的脆弱なエアロゲルが連続することによる膜強度の低下を避ける観点からは、凝集体の直径は400μm以下が好ましく、直径300μm以下がより好ましい。
 本実施形態では、凝集体の平均直径が、準備工程で準備されたエアロゲル粒子の平均直径の2倍以上であることが好ましく、4倍以上であることがより好ましく、8倍以上であることが更に好ましい。これにより、エアロゲルと樹脂成分との接触界面がより小さくなって、エアロゲルの細孔内への樹脂成分の浸透がより抑制されやすくなる。また、凝集体の平均直径は、準備工程で準備されたエアロゲル粒子の平均直径の40倍以下であることが好ましく、30倍以下であることがより好ましく、20倍以下であることが更に好ましい。これにより、比較的脆弱なエアロゲルが連続することによる膜強度の低下が抑制され、より高い膜強度が得られやすくなる。
 なお、本明細書中、凝集体の平均直径は、以下の方法で測定される値を示す。
[塗液中の凝集体の平均直径の測定方法]
 100mLポリカップに塗液を20g程度とり、スパチュラを用いて撹拌しながら水を2gずつ加えることで、徐々になじませながら希釈する。希釈したサンプルをガラスプレート上にとり、光学顕微鏡(OLYMPUS製、型番:BX51)を用いてサンプルの顕微鏡写真を取得する。得られた顕微鏡写真を、画像編集ソフトImageJを用いて解析し、顕微鏡写真内の複数の凝集体の直径を求める。得られた値の平均値を、凝集体の平均直径とする。
 また、本明細書中、エアロゲル粒子の平均直径とは、上述のエアロゲル粒子の平均粒子径D50と同義である。
 本実施形態では、塗液を希釈した希釈液を光学顕微鏡によって観察したとき、観察視野内のエアロゲル粒子及び凝集体が占める面積のうち、直径20μm以上の凝集体(より好ましくは直径50μm以上の凝集体)が占める面積が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好まく、100%であってもよい。
 なお、本明細書中、塗液を希釈した希釈液及び当該希釈液の観察方法は、上述の[塗液中の凝集体の平均直径の測定方法]で調製したサンプル及び当該サンプルの観察方法と同じであってよい。また、「観察視野内の…面積」は、顕微鏡写真を画像編集ソフトImageJを用いて解析して求められる。
<断熱材の製造方法>
 本実施形態において、断熱材は、上記塗液を、塗液にかかる圧力が1.5MPa以下の塗布手段で塗布して塗膜を得る塗布工程と、塗膜から液状媒体の少なくとも一部を除去して断熱材を得る除去工程と、を含む製造方法により製造される。この製造方法によれば、塗液中でエアロゲル粒子が凝集することでエアロゲル細孔内への樹脂の浸透が十分に抑制されており、所定の塗布手段の採用によりエアロゲル粒子の凝集体の解砕を抑制しつつ塗膜を形成できるため、高い断熱性及び高い成膜性を有する断熱材が得られる。
 塗液の塗布対象は特に限定されない。塗布の対象物(例えば支持体)は、断熱材を製造後に断熱材から剥離されてよく、断熱材から剥離することなく使用さてもよい。対象物は、例えば、断熱材の適用対象であってもよい。対象物を構成する材料は特に限定されず、例えば、金属、セラミック、ガラス、樹脂、これらの複合材料等であってよい。また、対象物の形態は、使用目的、材質等に応じて適宜選択してよく、例えば、ブロック状、シート状、パウダー状、繊維状等であってよい。
 塗液の塗布方法は特に制限されず、塗液にかかる圧力が1.5MPa以下の方法であればよい。例えばローラー塗り、コテ塗り、エアスプレー等の塗布方法は、塗液にかかる圧力を低減しやすいため好ましい。
 除去工程では、塗膜から液状媒体の少なくとも一部を除去することで、エアロゲル粒子の凝集体と水溶性樹脂とを含有する複合材料からなる断熱材が形成される。
 塗膜から液状媒体を除去する方法は特に制限されず、例えば、加熱(例えば、40~150℃)処理、減圧(例えば、10000Pa以下)処理、又はそれらの両処理を行う方法が挙げられる。
 断熱材の厚さは特に限定されず、例えば0.01~30mmであってよく、0.1~20mmであってもよい。
 断熱材は、エアロゲル粒子に起因する細孔を有している。断熱材の細孔容積は、より高い断熱性が得られる観点から、0.15cm/g以上が好ましく、0.20cm/g以上がより好ましく、0.60cm/g以上が更に好ましい。断熱材の細孔容積の上限は特に限定されない。断熱材の細孔容積は、例えば5.0cm/g以下であってよい。
 断熱材の熱伝導率は、例えば0.05W/(m・K)以下であり、好ましくは0.04W/(m・K)以下、より好ましくは0.035W/(m・K)以下である。断熱材の熱伝導率の下限は特に限定されない。断熱材の熱伝導率は、例えば0.01W/(m・K)以上であってよい。
 本実施形態の製造方法により製造される断熱材は、エアロゲルに由来する優れた断熱性、耐熱性、難燃性等を有する。このため、当該断熱材は、極低温容器、宇宙分野、建築分野、自動車分野、家電分野、半導体分野、産業用設備等における断熱材としての用途等に適用できる。なお、当該断熱材は、断熱材としての用途の他に、撥水材、吸音材、静振材、触媒担持材等としても利用することができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(塗液の製造方法)
 500mLセパラブルフラスコに、水溶性高分子としてサンジェロース90L(大同化成工業株式会社製)6質量部、イソプロピルアルコール(富士フィルム和光純薬工業株式会社製、試薬)46質量部、熱水840質量部をとり、メカニカルスターラを用いて200rpmで1分間撹拌し、分散液を得た。続いて、フラスコを氷水浴で冷却しながら、メカニカルスターラを用いて200rpmで撹拌してサンジェロース90Lを溶解して、サンジェロース90Lの水溶液であるプレゲルを得た。プラネタリーミキサー(プライミクス社製、2P-1型)に、上記プレゲル892質量部とアクリル樹脂エマルジョン水溶液(DIC株式会社製、製品名:ボンコートDV759-EF)1000質量部とをとり100rpmで撹拌した。続いてエアロゲル粒子(CABOT製、製品名:ENOVA MT1100、粒子直径2-24μm、平均粒子径(D50)10μm)100質量部を添加し、その後100rpmで撹拌して塗液を得た。なお、塗液中、固形分の全体積基準で、エアロゲル粒子の含有量は74.7体積%、水溶性高分子の含有量は0.4体積%、アクリル樹脂の含有量は24.9体積%であった。
(実施例1)
 上記で作成した塗液100質量部と純水10質量部をポリカップにとりメカニカルスターラを用いて200rpmで5分間撹拌して塗液を希釈した。希釈した塗液を砂骨ローラー(大塚刷毛製、砂骨材レギュラーローラー粗目 4インチ)を用いて500gの荷重をかけながら、塗液の厚みが2mmとなるようにアルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)に塗工し、室温23℃で12時間放置して塗液から液状媒体を除去し、断熱材を得た。ローラー塗工時に塗液にかかる圧力はローラーの接地面積と荷重から換算して25kPaであった。
(実施例2)
 実施例1で作製した希釈液を多用ガン(明治機械製、SGA-2)にとり、塗料ノズル径5.5mm、吹き付け空気圧力0.06MPaで、実施例1と同様にアルミ箔に塗布し、乾燥させて断熱材を得た。
(実施例3)
 実施例1で作製した希釈液を圧送タンク(明治機械製、P-2A)とスプレーガン(明治機械製、F210-P12P)を用いて、0.3MPaの送液圧力により、実施例1と同様にアルミ箔に塗布し、乾燥させて断熱材を得た。
(比較例1)
 実施例1で作製した希釈液をエアレススプレー(Graco製、Ultra Max)の専用カップにとり3.4MPaの塗工圧力により、実施例1と同様にアルミ箔に塗布し、乾燥させて断熱材を得た。
 実施例及び比較例について、以下の方法で評価した。結果を表1に示す。
<塗液の顕微鏡観察>
 100mLポリカップに塗液を20g程度とり、スパチュラを用いて撹拌しながら水を2gずつ加え、徐々になじませながら希釈した。希釈したサンプルをガラスプレート上にとり、光学顕微鏡(OLYMPUS製、型番:BX51)を用いて、塗液中のエアロゲル粒子及びその凝集体を観察し、顕微鏡写真を得た。得られた顕微鏡写真について画像編集ソフトImageJを用いて解析し、エアロゲル粒子の凝集体の平均直径を求めた。
<断熱材のひび割れ評価>
 支持板のアルミ板(25cm×40cm×0.1cm)に貼り付けたアルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上に、実施例又は比較例に示す方法を用いて、縦横200~250mm、塗液の厚みが2mmとなるように塗工し、室温23℃で12時間放置して塗液から液状媒体を除去し、断熱材を得た。得られた断熱材に関して、断熱材全体にヒビのないものをA、一部にヒビがあるものをB、全体にヒビがあるものをCとして、ひび割れ具合を評価した。
<断熱材の細孔容積の評価>
 上記<断熱材のひび割れ評価>と同じ方法で断熱材を作製した。作製した断熱材を100mg採取し、高感度ガス吸着アナライザー(Quantachrome社製、AutoSorb iQ)を用いて、細孔容積を算出した。
<断熱材の熱伝導率の評価>
 アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上に<断熱材のひび割れ評価>と同じ方法で断熱材を作製し、さらに2回重ね塗りすることで縦横200~250mm、厚み3mmの板状サンプルを作製し、乾燥後アルミ箔を剥がして端部を切り落とし縦横200mmに成形した。得られた断熱材の熱伝導率は熱伝導率測定装置「HFM-446」(NETZSCH社製、製品名)により定常法で測定した。なお、本評価は、実施例1及び比較例1の塗液のみ行った。
Figure JPOXMLDOC01-appb-T000012
 表1に示すとおり、実施例では、高い細孔容積及び高い断熱性が実現され、成膜時のひび割れも抑制された。一方、比較例では、塗布手段により細孔容積が小さく、熱伝導率が大きく、成膜時に全体にひび割れが生じた。

Claims (6)

  1.  エアロゲル粒子、疎水性基を有する水溶性高分子及び液状媒体を前記エアロゲル粒子が凝集するように混合して得られた塗液を、前記塗液にかかる圧力が1.5MPa以下の塗布手段で塗布して塗膜を得る塗布工程と、
     前記塗膜から前記液状媒体の少なくとも一部を除去して断熱材を得る除去工程と、
    を含む、断熱材の製造方法。
  2.  前記塗液が、前記エアロゲル粒子の凝集体を含み、
     前記凝集体の平均直径が、前記エアロゲル粒子の平均直径の2~40倍である、請求項1に記載の製造方法。
  3.  前記塗液を希釈した希釈液を光学顕微鏡によって観察したとき、観察視野内の前記エアロゲル粒子及び前記エアロゲル粒子の凝集体が占める面積のうち、直径20μm以上の前記凝集体が占める面積が50%以上である、請求項1又は2に記載の製造方法。
  4.  前記塗液中の前記エアロゲル粒子及び前記エアロゲル粒子の凝集体の合計含有量は、固形分の全体積基準で、70体積%以上である、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記水溶性高分子が、セルロース系樹脂を含む、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記断熱材の細孔容積が、0.15cm/g以上である、請求項1~5のいずれか一項に記載の製造方法。
PCT/JP2021/003314 2020-01-31 2021-01-29 断熱材の製造方法 WO2021153755A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180010843.8A CN115052940B (zh) 2020-01-31 2021-01-29 绝热材料的制造方法
EP21748040.9A EP4074787A4 (en) 2020-01-31 2021-01-29 PROCESS FOR MANUFACTURING THERMAL INSULATION MATERIAL
US17/795,878 US20230151227A1 (en) 2020-01-31 2021-01-29 Manufacturing method for thermal insulating material
KR1020227015567A KR20220133172A (ko) 2020-01-31 2021-01-29 단열재의 제조 방법
JP2021574703A JPWO2021153755A1 (ja) 2020-01-31 2021-01-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/003803 2020-01-31
PCT/JP2020/003803 WO2021152853A1 (ja) 2020-01-31 2020-01-31 断熱材の製造方法

Publications (1)

Publication Number Publication Date
WO2021153755A1 true WO2021153755A1 (ja) 2021-08-05

Family

ID=77078287

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/003803 WO2021152853A1 (ja) 2020-01-31 2020-01-31 断熱材の製造方法
PCT/JP2021/003314 WO2021153755A1 (ja) 2020-01-31 2021-01-29 断熱材の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003803 WO2021152853A1 (ja) 2020-01-31 2020-01-31 断熱材の製造方法

Country Status (6)

Country Link
US (1) US20230151227A1 (ja)
EP (1) EP4074787A4 (ja)
JP (1) JPWO2021153755A1 (ja)
KR (1) KR20220133172A (ja)
CN (1) CN115052940B (ja)
WO (2) WO2021152853A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022190209A1 (ja) * 2021-03-09 2022-09-15
JP2024010560A (ja) * 2022-07-12 2024-01-24 デクセリアルズ株式会社 塗液及び塗膜

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2008031044A (ja) * 2006-07-26 2008-02-14 Kao Corp 口唇用油性化粧料
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2014035044A (ja) 2012-08-09 2014-02-24 Panasonic Corp 断熱材及びその製造方法
JP2017210446A (ja) * 2016-05-26 2017-11-30 三菱鉛筆株式会社 染毛料
JP2018043927A (ja) * 2016-09-12 2018-03-22 株式会社Kri 疎水性シリカエアロゲル粒子の水分散液並びに固体複合材料、断熱材及び吸音材
WO2019069412A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JP2019119691A (ja) * 2017-12-28 2019-07-22 花王株式会社 水中油型乳化組成物
JP2019182728A (ja) * 2018-04-18 2019-10-24 パナソニックIpマネジメント株式会社 断熱材およびその製造方法
WO2020012553A1 (ja) * 2018-07-10 2020-01-16 日立化成株式会社 塗液及び塗膜
WO2020208756A1 (ja) * 2019-04-10 2020-10-15 日立化成株式会社 複合材料、シート及び断熱材
WO2020209131A1 (ja) * 2019-04-10 2020-10-15 日立化成株式会社 塗液、複合材料及び塗膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004126237A (ru) * 2002-01-29 2005-05-27 Кабот Корпорейшн (US) Термостойкий аэрогельный изолирующий композиционный материал и способ его получения: аэрогельная связующая композиция и способ ее получения
EP1966289B1 (en) * 2005-10-21 2018-09-12 Cabot Corporation Aerogel based composites
GB0916031D0 (en) * 2009-09-14 2009-10-28 Univ Nottingham Cellulose nanoparticle aerogels,hydrogels and organogels
JP5528296B2 (ja) 2010-10-25 2014-06-25 株式会社トクヤマ エアロゲル
FR2975691B1 (fr) * 2011-05-26 2014-02-07 Electricite De France Materiau super-isolant a pression atmospherique a base d'aerogel
KR102023531B1 (ko) * 2015-04-07 2019-09-24 주식회사 엘지화학 에어로겔 함유 조성물 및 이를 이용하여 제조된 단열 블랑켓
WO2017038649A1 (ja) * 2015-08-28 2017-03-09 日立化成株式会社 被断熱体の製造方法及び被断熱体
JP6288383B2 (ja) * 2015-08-28 2018-03-07 日立化成株式会社 被断熱体の製造方法
US10995184B2 (en) * 2016-03-25 2021-05-04 Show A Denko Materials Co., Ltd. Sol composition, aerogel composite, support member provided with aerogel composite, and heat insulator
WO2018061211A1 (ja) * 2016-09-30 2018-04-05 日立化成株式会社 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体
WO2019069404A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
WO2019069407A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2008031044A (ja) * 2006-07-26 2008-02-14 Kao Corp 口唇用油性化粧料
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP2014035044A (ja) 2012-08-09 2014-02-24 Panasonic Corp 断熱材及びその製造方法
JP2017210446A (ja) * 2016-05-26 2017-11-30 三菱鉛筆株式会社 染毛料
JP2018043927A (ja) * 2016-09-12 2018-03-22 株式会社Kri 疎水性シリカエアロゲル粒子の水分散液並びに固体複合材料、断熱材及び吸音材
WO2019069412A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
WO2019069495A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
JP2019119691A (ja) * 2017-12-28 2019-07-22 花王株式会社 水中油型乳化組成物
JP2019182728A (ja) * 2018-04-18 2019-10-24 パナソニックIpマネジメント株式会社 断熱材およびその製造方法
WO2020012553A1 (ja) * 2018-07-10 2020-01-16 日立化成株式会社 塗液及び塗膜
WO2020208756A1 (ja) * 2019-04-10 2020-10-15 日立化成株式会社 複合材料、シート及び断熱材
WO2020209131A1 (ja) * 2019-04-10 2020-10-15 日立化成株式会社 塗液、複合材料及び塗膜

Also Published As

Publication number Publication date
US20230151227A1 (en) 2023-05-18
KR20220133172A (ko) 2022-10-04
WO2021152853A1 (ja) 2021-08-05
EP4074787A1 (en) 2022-10-19
CN115052940A (zh) 2022-09-13
EP4074787A4 (en) 2023-06-21
JPWO2021153755A1 (ja) 2021-08-05
CN115052940B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2020209131A1 (ja) 塗液、複合材料及び塗膜
WO2019069412A1 (ja) 塗液、塗膜の製造方法及び塗膜
JPWO2019069494A1 (ja) 塗液、塗膜の製造方法及び塗膜
WO2019069404A1 (ja) 塗液、塗膜の製造方法及び塗膜
WO2022190209A1 (ja) 塗液の製造方法及び断熱材の製造方法
WO2021153755A1 (ja) 断熱材の製造方法
WO2021153764A1 (ja) 塗液の製造方法及び断熱材の製造方法
JP7294409B2 (ja) 複合材料、シート及び断熱材
JP7259857B2 (ja) 塗液の製造方法、塗液及び塗膜
JP7230914B2 (ja) 塗液及び塗膜
JPWO2019202635A1 (ja) 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト
JP7302654B2 (ja) 塗液、複合材料及び塗膜
JP7196853B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP2022059803A (ja) 塗液の製造方法及び断熱材の製造方法
JP7107321B2 (ja) 分散液及びエアロゲル粒子
WO2020084670A1 (ja) エアロゲル粒子、分散体及び塗膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574703

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021748040

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE