WO2013008479A1 - ヘモグロビン類の測定方法 - Google Patents

ヘモグロビン類の測定方法 Download PDF

Info

Publication number
WO2013008479A1
WO2013008479A1 PCT/JP2012/050309 JP2012050309W WO2013008479A1 WO 2013008479 A1 WO2013008479 A1 WO 2013008479A1 JP 2012050309 W JP2012050309 W JP 2012050309W WO 2013008479 A1 WO2013008479 A1 WO 2013008479A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemoglobin
column
meth
measurement
cation exchange
Prior art date
Application number
PCT/JP2012/050309
Other languages
English (en)
French (fr)
Inventor
和之 大石
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to US14/130,112 priority Critical patent/US20140162369A1/en
Priority to CN201280033002.XA priority patent/CN103649745B/zh
Priority to KR1020137032856A priority patent/KR20140035934A/ko
Priority to EP20120811126 priority patent/EP2730920A4/en
Publication of WO2013008479A1 publication Critical patent/WO2013008479A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/26Cation exchangers for chromatographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8822Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving blood

Definitions

  • the present invention relates to a method for measuring hemoglobin using liquid chromatography.
  • the present invention also provides a method for measuring hemoglobin A1c, a method for simultaneously measuring hemoglobin A1c and hemoglobin F, a method for simultaneously measuring hemoglobin A1c and hemoglobin A2, and a method for simultaneously measuring hemoglobin A1c and abnormal hemoglobins. Regarding the method.
  • the method for measuring hemoglobin by liquid chromatography can be measured in a short time and is more accurate than other measurement methods, and is therefore particularly used for management of hemoglobin A1c value in diabetic patients.
  • the conventional method for measuring hemoglobin by liquid chromatography uses an eluent at a flow rate higher than a certain speed to perform measurement in a short time, and uses minute filler particles to maintain high accuracy. Therefore, the pressure value generated in the measurement system is high.
  • the pressure value generated in the measurement system is high.
  • the pressure value generated in the measurement system is about 5 MPa.
  • the pressure value generated in the measurement system in the measurement of hemoglobin generally performed is equal to or higher than the technique disclosed in Patent Document 1.
  • a high pressure resistant device is used.
  • the high pressure conditions include the presence or absence of non-specific adsorption in the flow path including columns and filters, the influence of eluent switching when multiple eluents are used, and the pressure value caused by changes in environmental temperature. Since the influence is greater than under low pressure conditions, the measurement accuracy may be reduced. These phenomena may occur even when a high pressure resistant device is used.
  • An object of this invention is to provide the measuring method of hemoglobin which can measure hemoglobin with high precision in a short time.
  • the present invention also provides a method for measuring hemoglobin A1c using this method for measuring hemoglobin, a method for simultaneously measuring hemoglobin A1c and hemoglobin F, a method for simultaneously measuring hemoglobin A1c and hemoglobin A2, and a method for simultaneously measuring hemoglobin A1c and abnormal hemoglobins. The purpose is to provide.
  • the present inventor reproduces the measurement by selecting a column showing a pressure value in a specific range shown under a certain condition. It was found that the performance is improved. Moreover, the range of the pressure value was found to be a range different from the pressure value of the column used in the conventional method for measuring hemoglobin, and was significantly lower than the pressure value of the conventional column.
  • a column filler as a column filler, cation exchange particles having a polymer containing a cation exchange group are filled on the surface of a crosslinked polymer particle, and an eluent used for measurement is fed at 1.0 mL / min.
  • the present invention is described in detail below.
  • the column filler used in the method for measuring hemoglobin of the present invention is a cation exchange particle having a polymer containing a cation exchange group on the surface of a crosslinked polymer particle.
  • the crosslinked polymer particles are preferably particles obtained by polymerizing an organic crosslinkable monomer or a mixture of monomers mainly composed of an organic crosslinkable monomer. Of these, particles obtained by polymerizing a crosslinkable acrylic monomer or a mixture of monomers having a crosslinkable acrylic monomer as a main component are more preferable.
  • the crosslinkable polymer particles are preferably particles that do not substantially have ion exchange properties.
  • “acrylic” means having an acrylic group or a methacrylic group.
  • (meth) acrylic acid” means “acrylic acid or methacrylic acid”
  • (meth) acrylate” means “acrylate or methacrylate”.
  • crosslinkable acrylic monomers examples include polyethylene glycol di (meth) acrylates, polypropylene glycol di (meth) acrylates, alkylene glycol di (meth) acrylates, hydroxyalkyl di (meth) acrylates, Examples include alkylol alkane (meth) acrylates having at least two (meth) acrylic groups.
  • polyethylene glycol di (meth) acrylates examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di ( And (meth) acrylate.
  • polypropylene glycol di (meth) acrylates examples include propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, and polypropylene glycol. Examples include di (meth) acrylate.
  • alkylene glycol di (meth) acrylates examples include polytetramethylene glycol di (meth) acrylate, poly (propylene glycol-tetramethylene glycol) -di (meth) acrylate, polyethylene glycol polypropylene glycol polyethylene glycol-di (meth) Acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexaglycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, And neopentyl glycol di (meth) acrylate.
  • hydroxyalkyl di (meth) acrylates examples include 2-hydroxy-1,3-di (meth) acryloxypropane, 2-hydroxy-1- (meth) acryloxy-3- (meth) acryloxypropane, 2 -Hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerol di (meth) acrylate, glycerol acrylate methacrylate, urethane (meth) diacrylate, isocyanuric acid di (meth) acrylate, isocyanuric acid tri (meth) acrylate, 1,10-di (meth) acryloxy-4,7-dioxadecane-2,9-diol, 1,10-di (meth) acryloxy-5-methyl-4,7-dioxadecane-2,9-diol, 11-di (meth) acryloxy-4,8-dioxy Undecane-2,6,10-
  • alkylolalkane (meth) acrylates having at least two (meth) acrylic groups in the molecule include trimethylolpropane tri (meth) acrylate, tetramethylolpropane tri (meth) acrylate, and ditrimethylolpropanetetra ( Examples include (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, trimethylolethane tri (meth) acrylate, and the like.
  • These crosslinkable acrylic monomers may be used alone or in combination of two or more. Further, these crosslinkable acrylic monomers preferably have a structure having no ion exchange group.
  • a non-crosslinkable monomer may be further used as the monomer constituting the crosslinked polymer particles.
  • the non-crosslinkable monomer is preferably a non-crosslinkable acrylic monomer.
  • the non-crosslinkable acrylic monomer is preferably a hydrophilic non-crosslinkable acrylic monomer, and examples thereof include alkyl (meth) acrylates and non-crosslinkable acrylic monomers having a hydroxyl group.
  • alkyl (meth) acrylates examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • non-crosslinkable acrylic monomer having a hydroxyl group examples include polyethylene glycol mono (meth) acrylates, polypropylene glycol mono (meth) acrylates, alkylene glycol mono (meth) acrylates, and other hydroxyl groups (meta ) Acrylates and the like.
  • polyethylene glycol mono (meth) acrylates examples include ethylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono ( Examples include meth) acrylate, methoxytri (poly) ethylene glycol mono (meth) acrylate, and methoxypolyethylene glycol mono (meth) acrylate.
  • polypropylene glycol mono (meth) acrylates examples include propylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol.
  • a mono (meth) acrylate etc. are mentioned.
  • alkylene glycol mono (meth) acrylates include poly (ethylene glycol / propylene glycol) mono (meth) acrylate, poly (ethylene glycol / tetramethylene glycol) mono (meth) acrylate, and poly (propylene glycol / tetramethylene glycol).
  • examples of other (meth) acrylates having a hydroxyl group include glycerin mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2,3-dihydroxylethyl (meth). Examples thereof include acrylate and 2,3-dihydroxylpropyl (meth) acrylate.
  • These non-crosslinkable acrylic monomers may be used alone or in combination of two or more. Further, these non-crosslinkable acrylic monomers preferably have a structure having no ion exchange group.
  • the upper limit of the content of the non-crosslinkable monomer in the mixture of the crosslinkable monomer and the non-crosslinkable monomer is 30 wt. %.
  • the content of the non-crosslinkable monomer exceeds 30% by weight, the pressure resistance and swelling resistance of the column filler to be obtained may decrease, and accurate measurement of hemoglobin may not be possible.
  • a more preferable upper limit of the content of the non-crosslinkable monomer is 20% by weight, and a more preferable upper limit is 10% by weight.
  • crosslinkable monomers examples include polymerization.
  • Known polymerization methods such as an emulsion polymerization method, a soap-free polymerization method, a dispersion polymerization method, a suspension polymerization method, and a seed polymerization method in the presence of an initiator may be mentioned.
  • a dispersion polymerization method, a suspension polymerization method, and a seed polymerization method are preferable.
  • a polymerization initiator is dissolved in a crosslinkable monomer and dispersed in a suitable dispersion medium, and then stirred in an inert gas atmosphere such as nitrogen gas as necessary. While being heated, crosslinked polymer particles suitable as a column filler can be obtained.
  • a known radical polymerization initiator which is water-soluble or oil-soluble can be used.
  • persulfates such as potassium persulfate, sodium persulfate, ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, o-chlorobenzoyl peroxide, acetyl peroxide, t- Butyl hydroperoxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2-ethylhexanoate, di-t- Organic peroxides such as butyl peroxide, 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethylvaleronitrile),
  • the amount of the polymerization initiator used is preferably 0.05 parts by weight and preferably 5 parts by weight with respect to 100 parts by weight of the crosslinkable monomers.
  • the amount of the polymerization initiator used is less than 0.05 parts by weight, unreacted monomers may remain and adversely affect the measurement of hemoglobins. If polymerization is performed for a long time in order to polymerize unreacted monomers, the particles may not be obtained due to aggregation during polymerization.
  • the amount of the polymerization initiator used exceeds 5 parts by weight, an agglomerate may be generated due to rapid progress of the polymerization reaction.
  • additives include a porous agent for forming macropores in the crosslinked polymer particles, various chain transfer agents for controlling the polymerization reaction, a dispersant for stabilizing suspended particles, and the like. Can be mentioned.
  • the column filler used in the method for measuring hemoglobin of the present invention is a cation exchange particle having a polymer containing a cation exchange group on the surface of a crosslinked polymer particle.
  • the cation exchange group include a carboxyl group, a phosphate group, and a sulfonate group. Of these, sulfonic acid groups are preferred.
  • the polymer containing a cation exchange group may have a plurality of different types of cation exchange groups.
  • the cation exchange group contains all the functional groups which have a cation exchange group at the terminal.
  • “carboxyl group” in the present specification includes a carboxylethyl group, a carboxylpropyl group, and the like.
  • a polymer containing a cation exchange group is a polymer obtained by polymerizing a monomer containing a cation exchange group, or a monomer containing a functional group that can be converted into a cation exchange group, and the functional group is subjected to cation exchange.
  • Polymers converted into groups are preferred. Among these, a polymer obtained by polymerizing a monomer containing a cation exchange group is more preferable.
  • a monomer containing a cation exchange group (hereinafter also referred to as a cation exchange monomer) is a monomer containing a polymerization reactive functional group and a cation exchange group.
  • the cation exchange monomer is preferably an acrylic monomer containing a cation exchange group.
  • acrylic monomer containing a carboxyl group examples include (meth) acrylic acid derivatives such as (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinate, and 2- (meth) acryloyloxyethylphthalic acid. Is mentioned.
  • acrylic monomer containing a phosphoric acid group examples include ((meth) acryloyloxyethyl) acid phosphate, (2- (meth) acryloyloxyethyl) acid phosphate, and (3- (meth) acryloyloxypropyl) acid.
  • acrylic acid derivatives such as phosphate.
  • acrylic monomer containing a sulfonic acid group examples include (meth) acrylic acid such as 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2-sulfoethyl (meth) acrylate, and 3-sulfopropyl (meth) acrylic acid. ) Acrylic acid derivatives and the like. These cation exchange monomers may be used alone or in combination of two or more.
  • non-crosslinkable hydrophilic monomers may be used.
  • the non-crosslinkable hydrophilic monomer the non-crosslinkable acrylic monomer having a hydroxyl group is preferable. Examples thereof include polyethylene glycol mono (meth) acrylates, polypropylene glycol mono (meth) acrylates, alkylene glycol mono (meth) acrylates, and other (meth) acrylates having a hydroxyl group.
  • the cation exchange particles obtained by polymerizing these cation exchange monomers on the surface of the crosslinked polymer particles are obtained by polymerizing the cation exchange monomers in the presence of the crosslinked polymer particles and the polymerization initiator. preferable. Among these, particles obtained by polymerizing the above cation exchange monomer in the presence of crosslinked polymer particles containing a polymerization initiator therein are more preferable.
  • Crosslinked polymer particles containing a polymerization initiator therein are prepared by dissolving the polymerization initiator in an organic solvent capable of swelling the crosslinked polymer particles and dissolving the polymerization initiator. Particles impregnated with a solvent are preferred.
  • a cation exchange particle obtained by polymerizing a cation exchange monomer on the surface of a crosslinked polymer particle a polymerization initiator is contained in the crosslinked polymer particle, and then the crosslinked polymer particle is used as an appropriate dispersion medium. Examples thereof include particles dispersed in and polymerized by adding a cation exchange monomer to the dispersion medium.
  • the cation-exchangeable particles are used in the polymerization reaction for preparing the crosslinked polymer particles before the polymerization reaction is completed, that is, before the polymerization initiator is completely consumed. Particles obtained by adding and continuing the polymerization reaction are more preferred.
  • This particle is a particle in which a cation exchange monomer is efficiently polymerized on the surface of the crosslinked polymer particle by using the polymerization initiator first added to perform the polymerization reaction of the crosslinked polymer particle. .
  • cation exchange particles particles obtained by polymerizing a monomer containing a functional group that can be converted into a cation exchange group on the surface of the crosslinked polymer particle and further converting the functional group into a cation exchange group are also preferable.
  • the functional group that can be converted into a cation exchange group (hereinafter also referred to as a reactive group) is preferably a nonionic hydrophilic group.
  • the nonionic hydrophilic group include a hydroxyl group, a glycol group, an epoxy group, a glycidyl group, a primary amino group, a secondary amino group, a cyano group, and an aldehyde group.
  • a hydroxyl group, an epoxy group, a glycidyl group, a primary amino group, and a secondary amino group are preferable, and a hydroxyl group, an epoxy group, and a glycidyl group are more preferable.
  • Monomers (hereinafter also referred to as reactive monomers) containing these reactive groups are preferably (meth) acrylic acid esters.
  • (meth) acrylic acid esters include polyethylene glycol mono (meth) acrylates, polypropylene glycol (meth) acrylates, alkylene glycol mono (meth) acrylates, epoxidized or hydroxylated (meth) acrylates, amino (Meth) acrylates, aldehyde-ized or cyanated (meth) acrylates, and the like.
  • polyethylene glycol mono (meth) acrylates examples include ethylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono ( Examples include meth) acrylate, methoxytri (poly) ethylene glycol mono (meth) acrylate, and methoxypolyethylene glycol mono (meth) acrylate.
  • polypropylene glycol (meth) acrylates examples include propylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (Meth) acrylate etc. are mentioned.
  • alkylene glycol mono (meth) acrylates include poly (ethylene glycol / propylene glycol) mono (meth) acrylate, poly (ethylene glycol / tetramethylene glycol) mono (meth) acrylate, and poly (propylene glycol / tetramethylene glycol).
  • epoxidized or hydroxylated (meth) acrylates include glycidyl (meth) acrylate, glycerin mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3- Examples include dihydroxylethyl (meth) acrylate and 2,3-dihydroxylpropyl (meth) acrylate.
  • aminated (meth) acrylates examples include 2-aminoethyl (meth) acrylate, 2,3-diaminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, and 2,3-diaminopropyl (meth).
  • Examples include acrylate and (meth) acrylamide.
  • aldehyde- or cyanated (meth) acrylates include (meth) acrolein, cyano (meth) acrylate, ethyl-2-acrylate, and the like. These reactive monomers may be used alone or in combination of two or more.
  • the particles obtained by polymerizing these reactive monomers on the surface of the crosslinked polymer particles are preferably particles obtained by polymerizing reactive monomers instead of the cation exchange monomers. These particles are particles obtained by polymerizing a reactive monomer in the presence of a crosslinked polymer particle and a polymerization initiator. Among these, particles obtained by polymerizing a reactive monomer in the presence of crosslinked polymer particles containing a polymerization initiator therein are more preferable.
  • a compound in which a reactive group of a particle obtained by polymerizing a reactive monomer on the surface of a crosslinked polymer particle is converted to a cation exchange group is a compound having a cation exchange group in the reactive group (hereinafter referred to as cation exchange property). Particles obtained by reacting a compound) are also preferable.
  • Examples of the particles obtained by reacting a reactive group with a cationic compound include particles obtained by reacting a reactive group with a cation exchange compound using a known chemical reaction.
  • a crosslinked polymer particle having a hydroxyl group on the surface as a reactive group, a halogenated ethanesulfonic acid such as sodium bromoethanesulfonate as a cation exchange compound, and a halogenated acetic acid such as sodium chloroacetate are mixed with an alkali hydroxide.
  • Examples thereof include cation exchange particles having a sulfonic acid group or a carboxyl group on the surface of a crosslinked polymer particle obtained by reacting in an aqueous solution.
  • cation exchange particles having a cation exchange group a crosslinked polymer particle obtained by esterifying a crosslinked polymer particle having a hydroxyl group as a reactive group and a polyfunctional carboxylic compound such as tricarbanilic acid or butanetetracarboxylic acid as a cation exchange compound by dehydration reaction. Examples thereof include cation exchange particles having a carboxyl group on the surface of the coalesced particles.
  • crosslinked polymer particles having a hydroxyl group as a reactive group on the surface and cation exchange compounds such as 1,3-propane sultone and 1,4-butane sultone in an aqueous alkali hydroxide solution or an organic solvent solution
  • cation-exchangeable particles having a sulfonic acid group on the surface of the crosslinked polymer particles obtained by the above reaction are examples of crosslinked polymer particles having a hydroxyl group as a reactive group on the surface, and cation exchange compounds such as 1,3-propane sultone and 1,4-butane sultone in an aqueous alkali hydroxide solution or an organic solvent solution.
  • Examples of particles obtained by reacting a reactive group with a cationic compound include the following particles 1), 2), and 3). 1) On the surface of a crosslinked polymer particle obtained by reacting a crosslinked polymer particle having an epoxy group or a glycidyl group as a reactive group on the surface with sodium sulfate, taurine, glycolic acid or the like which is a cation exchange compound. Cation exchange particles having a sulfonic acid group or a carboxyl group. 2) On the surface of the crosslinked polymer particles obtained by heat-treating crosslinked polymer particles having epoxy groups or glycidyl groups on the surface as reactive groups, boron trifluoride etherate and sodium sulfite which is a cation exchange compound.
  • Cation exchange particles having a sulfonic acid group After cross-linking polymer particles having an amino group as a reactive group on the surface and an epoxy compound such as epichlorohydrin or triglycidyl ether in an aqueous solution of alkali hydroxide or in an organic solvent solution, epoxidation is performed.
  • a cation-exchangeable particle having a cation-exchange group on the surface of a crosslinked polymer particle which is obtained by performing the same treatment as in the case of an epoxy group or a glycidyl group.
  • the preferable lower limit of the volume average particle diameter of the cation exchange particles is 5 ⁇ m, and the preferable upper limit is 30 ⁇ m.
  • the volume average particle diameter of the cation exchange particles is less than 5 ⁇ m, the pressure value when the eluent is fed increases, and it is difficult to obtain a column within the pressure range defined in the present invention.
  • the volume average particle diameter exceeds 30 ⁇ m, the porosity in the column increases, the measurement sample or the like diffuses, and the peak is likely to be broadened, so that the measurement accuracy may be lowered.
  • the more preferable lower limit of the volume average particle diameter of the cation exchange particles is 6 ⁇ m, and the more preferable upper limit is 25 ⁇ m.
  • the pressure value of the column tends to increase as the volume average particle diameter of the cation exchange particles decreases, and the column pressure value tends to decrease as it increases. Therefore, fine adjustment is possible by increasing the volume average particle diameter of the cation exchange particles when lowering the pressure value of the column, and decreasing the volume average particle diameter of the cation exchange particles when increasing the pressure value of the column.
  • the column used in the method for measuring hemoglobin of the present invention is a column packed with the cation exchange particles, and the pressure value when the eluent used for measurement is sent at a flow rate of 1.0 mL / min is 9.8. ⁇ 10 3 Pa or more and 29.4 ⁇ 10 5 Pa or less.
  • the column pressure value when the eluent used for the measurement is sent at a flow rate of 1.0 mL / min is “column pressure value”, a pressure of 9.8 ⁇ 10 3 Pa or more and 29.4 ⁇ 10 5 Pa or less.
  • the range is also referred to as “column pressure regulation value”.
  • the pressure value as used in this specification is a value which a pressure gauge shows, when a pressure gauge is installed between a liquid feeding pump and a column, and the eluent used at the time of measurement is sent at the said flow rate.
  • a column having a column pressure value of less than 9.8 ⁇ 10 3 Pa is used, the pressure value generated in the measurement system becomes difficult to stabilize, so that the measurement accuracy is lowered.
  • the measurement time may be long.
  • the column used in the method for measuring hemoglobin of the present invention is preferably a column having a column pressure value of 4.9 ⁇ 10 4 Pa or more and 24.5 ⁇ 10 5 Pa or less.
  • an empty column made of a known material such as a metal, a resin, or glass can be used as the empty column packed with the cation exchange particles as a column filler.
  • an empty column having a known structure comprising a column main body for storing a column packing material and an end fitting including a frit can be used.
  • the preferable lower limit of the length of the column body used in the method for measuring hemoglobin of the present invention is 3 mm, and the preferable upper limit is 70 mm.
  • the length of the column main body is less than 3 mm, the interaction between the filler and hemoglobin becomes insufficient, so that the separation performance is deteriorated and the measurement accuracy may be lowered.
  • the length of the column body exceeds 70 mm, the measurement time becomes long, and it becomes difficult to set the column pressure value to the prescribed pressure value of the column.
  • a more preferable lower limit of the length of the column body is 5 mm, and a more preferable upper limit is 50 mm.
  • the pressure value of the column tends to decrease, and as the length of the column body becomes longer, the pressure value of the column tends to increase. Therefore, when the column pressure value is lowered, the length of the column body is shortened, and when it is raised, the length of the column body is lengthened, and fine adjustment is possible.
  • the preferable lower limit of the inner diameter of the column body used in the method for measuring hemoglobin of the present invention is 1 mm, and the preferable upper limit is 10 mm.
  • the inner diameter of the column body is less than 1 mm, it is difficult to set the column pressure value to the column pressure regulation value, and the measurement accuracy may be lowered.
  • the inner diameter of the column exceeds 10 mm, the sample may diffuse in the column and the measurement accuracy may decrease.
  • the measurement time is extended.
  • a more preferable lower limit of the inner diameter of the column body is 2 mm, and a more preferable upper limit is 4 mm.
  • the column pressure value tends to increase as the inner diameter of the column body decreases, and the column pressure value decreases as the column body increases. Therefore, fine adjustment is possible by increasing the inner diameter of the column body when lowering the pressure value of the column and decreasing the inner diameter of the column body when increasing the pressure value.
  • the method for measuring hemoglobin of the present invention can be performed using a known liquid chromatograph to which the above column is connected.
  • a liquid chromatograph equipped with an introduction mechanism for introducing a measurement sample, a pump for feeding an eluent, a detector for detecting hemoglobins, and the like.
  • An example of the configuration of a liquid chromatograph in the method for measuring hemoglobin of the present invention is shown in FIG.
  • the eluent used in the method for measuring hemoglobin of the present invention is preferably a buffer solution or organic solvent containing a known salt compound, more preferably a buffer solution.
  • the buffers include organic acids, inorganic acids and salts thereof, amino acids, Good's buffer, and the like.
  • examples of the organic acid include citric acid, succinic acid, tartaric acid, malic acid and the like.
  • inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid and the like.
  • amino acids include glycine, taurine, arginine and the like.
  • known components that are generally added for example, surfactants, polymers, hydrophilic low-molecular compounds, chaotropic ions, and the like may be appropriately added to these buffers.
  • the preferable lower limit of the salt concentration of the buffer solutions when measuring hemoglobin is 10 mmol / L, and the preferable upper limit is 1000 mmol / L.
  • the salt concentration of the buffer solution is less than 10 mmol / L, the ion exchange reaction is not sufficiently performed, so that hemoglobins may not be separated. If the salt concentration of the buffer solution exceeds 1000 mmol / L, the salt may precipitate and adversely affect the system.
  • the pressure value generated in the measurement system is preferably set to 9.8 ⁇ 10 3 Pa or more and 19.6 ⁇ 10 5 Pa or less.
  • pressure value at the time of measurement the pressure value generated in the measurement system at the time of measurement
  • the pressure range of 9.8 ⁇ 10 3 Pa or more and 19.6 ⁇ 10 5 Pa or less is referred to as “the pressure regulation value at measurement” Say. Therefore, when measurement is performed at a flow rate of 1.0 mL / min, the column pressure value and the pressure value at the time of measurement coincide.
  • the pressure value at the time of measurement is less than 9.8 ⁇ 10 3 Pa, the pressure value at the time of measurement becomes difficult to stabilize, and the measurement accuracy is lowered.
  • the measurement time may be long.
  • the pressure value at the time of measurement exceeds 19.6 ⁇ 10 5 Pa, the measurement accuracy is lowered because measurement is performed under high pressure.
  • the pressure value at the time of measurement can be adjusted by increasing / decreasing the eluent feeding speed or the like.
  • hemoglobin A0 hemoglobin A0
  • hemoglobin A1c hemoglobin F (fetal hemoglobin)
  • hemoglobin A2 that a healthy person has
  • a part of hemoglobin generally called abnormal hemoglobin
  • abnormal hemoglobins include hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, and the like.
  • the term “measurable” for the above-mentioned hemoglobins means that the peak of each hemoglobin relative to the sum of all peak areas or the sum of some peak areas appearing in the chromatogram, as in the known method for measuring hemoglobins. It means that the area can be displayed as a percentage to indicate its content.
  • hemoglobin A1c that is an index of diabetes can be measured.
  • the method for measuring hemoglobin A1c by liquid chromatography using the method for measuring hemoglobin of the present invention is also one aspect of the present invention.
  • hemoglobin A1c other hemoglobins can be simultaneously measured together with hemoglobin A1c.
  • “simultaneously” means that the hemoglobin A1c and other hemoglobin peaks can be displayed on the chromatogram in one measurement to indicate the content of each hemoglobin to be measured.
  • hemoglobin F and hemoglobin A1c can be measured simultaneously by eluting hemoglobin F before hemoglobin A1c.
  • the method for simultaneously measuring hemoglobin A1c and hemoglobin F by liquid chromatography using the method for measuring hemoglobins of the present invention is also one aspect of the present invention.
  • hemoglobin A1c and hemoglobin A2 can be measured simultaneously by eluting hemoglobin A2 after hemoglobin A1c.
  • a method for simultaneously measuring hemoglobin A1c and hemoglobin A2 by liquid chromatography using the method for measuring hemoglobins of the present invention is also one aspect of the present invention.
  • hemoglobin A1c and abnormal hemoglobin can be measured simultaneously by eluting abnormal hemoglobin before and after hemoglobin A1c.
  • a method for simultaneously measuring hemoglobin A1c and abnormal hemoglobin by liquid chromatography using the method for measuring hemoglobin of the present invention is also one aspect of the present invention.
  • a column filler as a column filler, cation exchange particles having a polymer containing a cation exchange group are filled on the surface of a crosslinked polymer particle, and an eluent used for measurement is fed at 1.0 mL / min.
  • 7 is a graph showing the transition of hemoglobin A1c value when blood of healthy persons is repeatedly measured using Measurement Examples 1 to 7.
  • 7 is a graph showing the transition of the CV value during the simultaneous reproducibility test in the case where blood of a healthy person is repeatedly measured using Measurement Examples 1 to 7.
  • Example 1 a column filler having a polymer containing a cation exchange group on the surface of the crosslinked polymer particles was prepared, and a column conforming to the “column pressure regulation value” of the present invention was prepared. Moreover, the example which measured using the column filler on the conditions suitable for "the pressure regulation value at the time of measurement" of this invention is shown.
  • Example 1 200 g of tetraethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 50 g of diethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) and 100 g of tetramethylolmethane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.0 g of Nacalai Tesque) was dissolved.
  • the obtained mixture was dispersed in 2 L of an aqueous solution of 5% by weight of polyvinyl alcohol (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., “GOHSENOL GH-20”) and stirred under a nitrogen atmosphere using a rotary blade at a rotational speed of 300 rpm.
  • the polymerization reaction was performed for 1 hour by heating to 80 ° C. After 1 hour, 200 mL of an aqueous solution in which 80 g of acrylamide-tert-butylsulfonic acid (manufactured by Toagosei Co., Ltd.) was dissolved was added to the reaction system, and the polymerization reaction was further carried out at 80 ° C.
  • Cation-exchangeable particles (column filler) having a polymer containing After the obtained column filler was washed, the particle size was measured with a particle size distribution analyzer (“Accurizer 780” manufactured by Nikonp). As a result, the volume average particle size was 9.3 ⁇ m.
  • the obtained column for measuring hemoglobin (separation column 7) was connected to the liquid chromatograph 1 having the configuration shown in FIG.
  • a pressure gauge 4 manufactured by Nagano Keiki Co., Ltd., “Digital Pressure Gauge GC61” was connected between the liquid feed pump 3 and the injection valve 5 to measure the pressure value. The measurement conditions are shown below.
  • the column pressure value when the eluent A was fed at a flow rate of 1.0 mL / min was 1300 ⁇ 10 3 Pa.
  • FIG. 2 shows the chromatogram obtained as a result of measurement under the above measurement conditions.
  • peak 21 indicates hemoglobin A1c
  • peak 22 indicates hemoglobin A0
  • peak 23 indicates hemoglobin F.
  • Hemoglobin A1c and other hemoglobins were successfully separated within a short time.
  • the simultaneous reproducibility test which performs the measurement using the same sample 20 times continuously was done. As shown in Table 1, the reproducibility of the hemoglobin A1c value (HbA1c) and the hemoglobin F value (HbF) was good.
  • sample containing modified hemoglobins was measured using the above column and measurement conditions.
  • Three types of samples containing modified hemoglobins were prepared by known methods: a sample containing Rayval hemoglobin A1c (sample L), a sample containing acetylated hemoglobin (sample A), and a sample containing carbamylated hemoglobin (sample C).
  • Sample L was prepared by adding glucose to healthy human blood at 2000 mg / dL and heating at 37 ° C. for 3 hours.
  • Sample A was prepared by adding acetaldehyde to healthy human blood at 50 mg / dL and heating at 37 ° C. for 2 hours.
  • Sample C was prepared by adding sodium cyanate to healthy human blood at 50 mg / dL and heating at 37 ° C. for 2 hours.
  • the separation performance of hemoglobin A1c and modified hemoglobins is that hemoglobin A1c of healthy human blood used as a raw material for preparing modified hemoglobin from the hemoglobin A1c value of samples containing modified hemoglobin (sample L, sample A, sample C).
  • the value ( ⁇ value) obtained by subtracting the value was calculated and evaluated. As a result, as shown in Table 1, ⁇ values were all less than 0.2%, and hemoglobin A1c could be measured accurately even in samples containing modified hemoglobins.
  • a sample containing hemoglobin S and hemoglobin C of abnormal hemoglobin (manufactured by Helena Laboratory, “AFSC hemocontrol”) was measured.
  • the obtained chromatogram is shown in FIG. In FIG. 3, the peak 24 indicates hemoglobin S and the peak 25 indicates hemoglobin C.
  • Hemoglobin S and hemoglobin C which are abnormal hemoglobins, were successfully separated.
  • Table 1 the reproducibility of hemoglobin S and hemoglobin C in the simultaneous reproducibility test was also good.
  • Example 2 to 4 Polymerization was carried out by reducing the number of rotations during stirring in the polymerization reaction of Example 1, and column fillers having a volume average particle diameter different from that of Example 1 were prepared. The volume average particle diameter and the column pressure value were measured in the same manner as in Example 1. Table 1 shows the set rotational speed at the time of polymerization, the volume average particle diameter, the size of the column used, the column pressure value, the flow rate at the time of measurement, and the pressure at the time of measurement. Table 1 also shows all of these conditions and measurement results in the following examples and comparative examples.
  • Example 1 As a result of measuring the healthy human blood, the abnormal hemoglobin-containing sample, and the hemoglobin A2-containing sample used in Example 1 using the obtained column, the same chromatograms as those of FIGS. 2, 3, and 4 were obtained. Table 1 shows the results of the simultaneous reproducibility test and ⁇ values when the modified hemoglobin-containing sample was measured. Both were as good as when the column of Example 1 was used.
  • Examples 5 and 6 In Examples 5 and 6, a column having a polymer containing a cation exchange group on the surface of the crosslinked polymer particle and conforming to the “column pressure regulation value” of the present invention was prepared. However, the measurement of hemoglobins shows an example in which the measurement was performed under conditions that do not conform to the “specified pressure value during measurement” of the present invention. Polymerization was carried out by increasing the number of rotations during stirring in the polymerization reaction of Example 1 to prepare cation exchange particles having different volume average particle diameters. The volume average particle diameter and the column pressure value were measured in the same manner as in Example 1. Table 1 shows the set rotational speed, the volume average particle diameter, and the column pressure value at the time of polymerization.
  • Example 1 As a result of measuring the healthy human blood, the abnormal hemoglobin-containing sample, and the hemoglobin A2-containing sample used in Example 1 using the obtained column, the same chromatograms as those of FIGS. 2, 3, and 4 were obtained. Table 1 shows the results of the simultaneous reproducibility test and ⁇ values when the modified hemoglobin-containing sample was measured. In all cases, good numerical values with no problem in practical use were shown, but the CV value and ⁇ value were slightly larger than in the case of using the columns of Examples 1 to 4.
  • Example 7 shows an example in which the column packing material of Example 5 was used and measurement was performed while changing the conditions so as to meet the “specified pressure value at the time of measurement” of the present invention.
  • the column packing material of Example 5 was packed into a stainless steel empty column (column body inner diameter 4.6 mm, length 25 mm) shorter than the column used in Example 1.
  • Table 1 shows the measurement result of the column pressure value.
  • the column pressure value was adapted to the “column pressure regulation value” and “pressure regulation value at the time of measurement” of the present invention.
  • Table 1 shows the results of the simultaneous reproducibility test and ⁇ values when the modified hemoglobin-containing sample was measured. All the values were improved from those in Example 5 and were equivalent to the results in Examples 1 to 4.
  • Example 8 shows an example in which the column packing material of Example 6 was used and measurement was performed while changing the conditions so as to conform to the “pressure regulation value at the time of measurement” of the present invention.
  • the column packing material of Example 6 was packed into a stainless steel empty column (column body inner diameter 4.6 mm, length 25 mm) shorter than the column used in Example 1.
  • Table 1 shows the measurement result of the column pressure value.
  • the column pressure value conformed to the “column pressure regulation value” of the present invention.
  • the measurement was performed by changing the flow rate of the eluent under the measurement conditions of Example 1 from 1.0 mL / min to 0.8 mL / min.
  • the measurement result of the pressure value at the time of measurement is shown in Table 1.
  • Table 1 shows the results of the simultaneous reproducibility test and ⁇ values when the modified hemoglobin-containing sample was measured. All the values improved and became equal to the results of Examples 1 to 4. From Examples 7 and 8, good reproducibility can be obtained by using a column packing material that conforms to the “column pressure regulation value” of the present invention, and further conforms to the “pressure regulation value during measurement” of the present invention. It was confirmed that reproducibility was improved by measuring under conditions.
  • Comparative Example 1 In Comparative Example 1, the polymerization was carried out by reducing the number of revolutions during stirring in the polymerization reaction of Example 1, and a hemoglobin was measured by preparing a column that does not conform to the “column pressure regulation value” of the present invention. Indicates. The volume average particle diameter and the column pressure value were measured in the same manner as in Example 1. Table 1 shows the set rotational speed, the volume average particle diameter, and the column pressure value at the time of polymerization. Using the obtained column, the healthy human blood, abnormal hemoglobin-containing sample, and hemoglobin A2-containing sample used in Example 1 were measured. The chromatogram obtained as a result of measuring healthy human blood is shown in FIG. When FIG. 2 and FIG.
  • Comparative Example 2 In Comparative Example 2, polymerization was performed by increasing the number of rotations during stirring in the polymerization reaction of Example 1 to prepare a column that does not conform to the “specified pressure value of the column” of the present invention, and using this, hemoglobins The example which measured was shown. Using the obtained column, the volume average particle diameter and the column pressure value were measured in the same manner as in Example 1. Table 1 shows the set rotational speed, the volume average particle diameter, and the column pressure value at the time of polymerization. As a result of measuring the healthy human blood used in Example 1 using the obtained column, a chromatogram similar to FIG. 5 was obtained.
  • Comparative Example 3 shows an example in which hemoglobins were measured by preparing a column that does not conform to the “specified pressure value of the column” of the present invention by changing the conditions other than the number of rotations during stirring in the polymerization reaction of Example 1.
  • a column packing material was obtained in the same manner as in Example 1 except that 80 g of acrylamide-tert-butylsulfonic acid used in the polymerization of Example 1 was increased to 160 g.
  • the volume average particle diameter and the column pressure value were measured in the same manner as in Example 1.
  • Table 1 shows the set rotational speed, the volume average particle diameter, and the column pressure value at the time of polymerization.
  • the chromatograms obtained as a result of measuring the healthy human blood, the abnormal hemoglobin-containing sample, and the hemoglobin A2-containing sample used in Example 1 are similar to FIGS. 5, 6, and 7, respectively, of hemoglobin A1c and other hemoglobins. Separation performance was poor.
  • Table 1 shows the results of the simultaneous reproducibility test and the ⁇ value when the modified hemoglobin-containing sample was measured. Both were worse than when the column of Example 1 was used.
  • Comparative Example 4 In Comparative Example 4, a polymer containing a cation exchange group was not present on the surface of the crosslinked polymer particles, but a column that conformed to the “column pressure regulation value” of the present invention was prepared, and the “pressure during measurement” of the present invention was prepared. An example is shown in which measurement was performed under conditions suitable for the “specified value”.
  • the volume average particle diameter and the column pressure value were measured in the same manner as in Example 1.
  • the obtained results are shown in Table 1.
  • the healthy human blood, abnormal hemoglobin-containing sample, and hemoglobin A2-containing sample used in Example 1 were measured.
  • the chromatogram obtained was the same as in FIG. 5, and the separation performance of hemoglobin A1c and other hemoglobins was poor. Abnormal hemoglobins and hemoglobin A2 could not be separated at all.
  • Table 1 shows the results of the simultaneous reproducibility test and ⁇ values when the modified hemoglobin-containing sample was measured. Both were worse than when the column of Example 1 was used.
  • Example 2 Effect 1 of the suitability of the specified column pressure on reproducibility 1
  • the relationship between the pressure value at the time of measurement and the CV value in the simultaneous reproducibility test performed in Example 1 is the same as in the above evaluation (1). It investigated by the method.
  • FIG. 9 shows the relationship between the obtained pressure value and CV value at the time of measurement.
  • the column filler of Comparative Example 2 is a column filler having a polymer containing a cation exchange group on the surface of the crosslinked polymer particles, but does not meet the “specified pressure value of the column” of the present invention. In this case, reproducibility was poor, and reproducibility was not improved even if the measurement was performed under conditions suitable for the specified pressure value at the time of measurement.
  • FIG. 10 shows the relationship between the obtained pressure value and CV value at the time of measurement.
  • the column filler of Comparative Example 3 is a cation exchange particle having a polymer containing a cation exchange group on the surface of the crosslinked polymer particle, but does not meet the “specified pressure value of the column” of the present invention. In this case, reproducibility was poor, and reproducibility was not improved even if the measurement was performed under conditions suitable for the specified pressure value at the time of measurement.
  • Example 1 (4) Effect of repeated measurement Using the column fillers of Example 1, Example 5, Comparative Example 2, Comparative Example 3 and Comparative Example 4, the same healthy human blood sample was repeatedly measured. The transition of hemoglobin A1c value was examined. Moreover, every 200 measurements, the simultaneous reproducibility test performed in Example 1 was implemented, and the transition of the CV value was confirmed. Measurement Examples 1 to 7 were prepared using each column filler. Table 2 shows the conditions of each measurement example. In the column of “Appropriate / unsuitable for the conditions of the present invention” in Table 2, “ ⁇ ” indicates that the condition is met, and “x” indicates that the condition is not met.
  • Measurement Example 1 is a column filler having a polymer containing a cation exchange group on the surface of the crosslinked polymer particles, the structure of the column filler is suitable ( ⁇ ). Moreover, since the pressure value at the time of feeding the eluent at a flow rate of 1.0 mL / min is 1300 ⁇ 10 3 Pa, it matches the specified pressure value of the column ( ⁇ ). Furthermore, since the pressure value at the time of measurement is 1300 ⁇ 10 3 Pa, it conforms to the specified pressure value at the time of measurement ( ⁇ ).
  • FIG. 11 shows changes in hemoglobin A1c values measured repeatedly in these measurement examples.
  • the hemoglobin A1c values of Measurement Example 1 and Measurement Example 2 were stable after 3000 measurements. In measurement example 3, it decreased slightly after 2500 measurements.
  • the CV values during the simultaneous reproducibility test were all stable up to 3000 measurements. In measurement examples 4 to 7, it was greatly reduced before 1500 measurements. Further, the transition of the CV value during the simultaneous reproducibility shown in FIG. In the column of the present invention, it was confirmed that not only the CV value at the start of measurement was good, but also its accuracy could be maintained during many measurements.
  • the present invention it is possible to provide a method capable of measuring hemoglobin with high accuracy in a short time. Moreover, according to this invention, the measuring method of hemoglobin A1c, the simultaneous measuring method of hemoglobin A1c and hemoglobin F, the simultaneous measuring method of hemoglobin A1c and hemoglobin A2, and the simultaneous measuring method of hemoglobin A1c and abnormal hemoglobins can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、ヘモグロビン類を短時間で高精度に測定することができるヘモグロビン類の測定方法を提供することを目的とする。また、本発明は、該ヘモグロビン類の測定方法を用いるヘモグロビンA1cの測定方法、ヘモグロビンA1cとヘモグロビンFの同時測定方法、ヘモグロビンA1cとヘモグロビンA2の同時測定方法、及びヘモグロビンA1cと異常ヘモグロビン類の同時測定方法を提供することを目的とする。 本発明は、カラム充填剤として、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子を充填し、かつ、測定に用いる溶離液を1.0mL/分で送液したときの圧力値が9.8×10Pa以上、29.4×10Pa以下のカラムを用いる液体クロマトグラフィーによるヘモグロビン類の測定方法である。

Description

ヘモグロビン類の測定方法
本発明は液体クロマトグラフィーを用いたヘモグロビン類の測定方法に関する。また、本発明は、該ヘモグロビン類の測定方法を用いるヘモグロビンA1cの測定方法、ヘモグロビンA1cとヘモグロビンFの同時測定方法、ヘモグロビンA1cとヘモグロビンA2の同時測定方法、及びヘモグロビンA1cと異常ヘモグロビン類の同時測定方法に関する。
液体クロマトグラフィーによるヘモグロビン類の測定方法は、短時間で測定でき、他の測定方法に比べて精度が高いため、特に糖尿病患者のヘモグロビンA1c値の管理に用いられている。
液体クロマトグラフィーによる従来のヘモグロビン類の測定方法は、短時間で測定を行うために一定速度以上の流速で溶離液を送液したり、高い精度を維持するために微小な充填剤粒子を使用するので、測定系に生じる圧力値が高くなっている。
例えば特許文献1に開示されている技術では、溶離液の流速が1.0mL/分の場合、測定系に生じる圧力値は約5MPaである。一般に行われるヘモグロビン類の測定における測定系に生じる圧力値は、特許文献1に開示されている技術と同等かそれ以上である。このように、従来技術では短い測定時間や高い精度を維持するために高圧条件下での測定にならざるを得ず、そのために高耐圧性の装置を用いている。
しかしこのような高圧条件下での測定は、流路への圧力の負荷が大きいために流路の接続部からの微小な液漏れや脈流によってクロマトグラムの変形を引き起こし、測定精度を低下させる場合がある。また高圧の条件は、カラムやフィルタ類を含む流路内への非特異吸着の有無、複数の溶離液を用いた場合の溶離液の切り替えの影響、環境温度の変化等によって生じる圧力値への影響が低圧条件下に比べて大きいため、測定精度を低下させる場合がある。これらの現象は高耐圧性の装置を用いた場合でも起こる場合がある。
特開平5-005730号公報
本発明は、ヘモグロビン類を短時間で高精度に測定することができるヘモグロビン類の測定方法を提供することを目的とする。また本発明は、このヘモグロビン類の測定方法を用いるヘモグロビンA1cの測定方法、ヘモグロビンA1cとヘモグロビンFの同時測定方法、ヘモグロビンA1cとヘモグロビンA2の同時測定方法、及びヘモグロビンA1cと異常ヘモグロビン類の同時測定方法を提供することを目的とする。
本発明者は、ヘモグロビン類の測定方法において、特定の構造を有するカラム充填剤を充填したカラムを用いる場合、一定条件下で示される特定範囲の圧力値を示すカラムを選択することで測定の再現性が向上することを見出した。またその圧力値の範囲は、従来のヘモグロビン類の測定方法に用いられるカラムの圧力値とは異なる範囲であり、従来のカラムの圧力値よりも有意に低いことを見出した。
本発明は、カラム充填剤として、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子を充填し、かつ、測定に用いる溶離液を1.0mL/分で送液したときの圧力値が9.8×10Pa以上、29.4×10Pa以下のカラムを用いる液体クロマトグラフィーによるヘモグロビン類の測定方法である。
以下に本発明を詳述する。
本発明のヘモグロビン類の測定方法に用いるカラム充填剤は、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子である。
架橋重合体粒子は、有機系の架橋性単量体又は有機系の架橋性単量体を主成分とする単量体類の混合物を重合した粒子であることが好ましい。なかでも架橋性アクリル系単量体又は架橋性アクリル系単量体を主成分とする単量体類の混合物を重合した粒子であることがより好ましい。また架橋性重合体粒子は、実質的にイオン交換性を有しない粒子であることが好ましい。
なお本明細書において「アクリル系」とは、アクリル基又はメタクリル基を有することを意味する。また本明細書において「(メタ)アクリル酸」とは、「アクリル酸又はメタクリル酸」であることを示し、「(メタ)アクリレート」とは、「アクリレート又はメタクリレート」であることを示す。
架橋性アクリル系単量体としては、例えばポリエチレングリコールジ(メタ)アクリレート類、ポリプロピレングリコールジ(メタ)アクリレート類、アルキレングリコールジ(メタ)アクリレート類、ヒドロキシアルキルジ(メタ)アクリレート類、分子内に少なくとも2個の(メタ)アクリル基を有するアルキロールアルカン(メタ)アクリレート類等が挙げられる。
ポリエチレングリコールジ(メタ)アクリレート類としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等が挙げられる。
ポリプロピレングリコールジ(メタ)アクリレート類としては、例えば、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
アルキレングリコールジ(メタ)アクリレート類としては、例えば、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)-ジ(メタ)アクリレート、ポリエチレングリコールポリプロピレングリコールポリエチレングリコール-ジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。
ヒドロキシアルキルジ(メタ)アクリレート類としては、例えば、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2-ヒドロキシ-1-(メタ)アクリロキシ-3-(メタ)アクリロキシプロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールアクリレートメタクリレート、ウレタン(メタ)ジアクリレート、イソシアヌル酸ジ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、1,10-ジ(メタ)アクリロキシ-4,7-ジオキサデカン-2,9-ジオール、1,10-ジ(メタ)アクリロキシ-5-メチル-4,7-ジオキサデカン-2,9-ジオール、1,11-ジ(メタ)アクリロキシ-4,8-ジオキサウンデカン-2,6,10-トリオール等が挙げられる。
分子内に少なくとも2個の(メタ)アクリル基を有するアルキロールアルカン(メタ)アクリレート類としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート等が挙げられる。
これらの架橋性アクリル系単量体は単独で用いてもよいし、二種以上を組み合わせて用いてもよい。またこれらの架橋性アクリル系単量体は、イオン交換基を有さない構造であることが好ましい。
架橋重合体粒子を構成する単量体としては、更に非架橋性単量体を用いてもよい。
非架橋性単量体は非架橋性アクリル系単量体であることが好ましい。
非架橋性アクリル系単量体は親水性の非架橋性アクリル系単量体が好ましく、例えば、(メタ)アクリル酸アルキル類、水酸基を有する非架橋性アクリル系単量体等が挙げられる。
(メタ)アクリル酸アルキル類としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等が挙げられる。
水酸基を有する非架橋性アクリル系単量体としては、例えば、ポリエチレングリコールモノ(メタ)アクリレート類、ポリプロピレングリコールモノ(メタ)アクリレート類、アルキレングリコールモノ(メタ)アクリレート類、その他の水酸基を有する(メタ)アクリレート類等が挙げられる。
ポリエチレングリコールモノ(メタ)アクリレート類としては、例えば、エチレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、メトキシトリ(ポリ)エチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。
ポリプロピレングリコールモノ(メタ)アクリレート類としては、例えば、プロピレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等が挙げられる。
アルキレングリコールモノ(メタ)アクリレート類としては、例えば、ポリ(エチレングリコール・プロピレングリコール)モノ(メタ)アクリレート、ポリ(エチレングリコール・テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール・テトラメチレングリコール)モノ(メタ)アクリレート、オクトキシポリエチレングリコールポリプロピレングリコール-モノ(メタ)アクリレート等が挙げられる。
その他の水酸基を有する(メタ)アクリレート類としては、例えば、グリセリンモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシルエチル(メタ)アクリレート、2,3-ジヒドロキシルプロピル(メタ)アクリレート等が挙げられる。
これらの非架橋性アクリル系単量体は単独で用いてもよいし、二種以上を組み合わせて用いてもよい。またこれらの非架橋性アクリル系単量体はイオン交換基を有さない構造であることが好ましい。
架橋重合体を構成する単量体として非架橋性単量体を用いる場合、架橋性単量体と非架橋性単量体との混合物における非架橋性単量体の含有量の上限は30重量%である。非架橋性単量体の含有量が30重量%を超える場合、得られるカラム充填剤の耐圧性及び耐膨潤性が低下し、ヘモグロビン類の正確な測定ができなくなることがある。非架橋性単量体の含有量のより好ましい上限は20重量%、更に好ましい上限は10重量%である。
架橋性単量体、又は、架橋性単量体と非架橋性単量体の混合物(以下、両者を合わせて「架橋性単量体類」ともいう)を重合する方法としては、例えば、重合開始剤の存在下での乳化重合法、ソープフリー重合法、分散重合法、懸濁重合法、シード重合法等の公知の重合法が挙げられる。なかでも、分散重合法、懸濁重合法、シード重合法が好ましい。
例えば、懸濁重合法の場合、架橋性単量体類に重合開始剤を溶解して適当な分散媒中に分散させた後、必要に応じて窒素ガス等の不活性ガス雰囲気下で攪拌しながら加温することにより、カラム充填剤として適当な架橋重合体粒子を得ることができる。
架橋性単量体類の重合に用いる重合開始剤としては、水溶性又は油溶性の公知のラジカル重合開始剤を用いることができる。例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩や、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、オクタノイルパーオキサイド、o-クロロベンゾイルパーオキサイド、アセチルパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物や、2,2-アゾビスイソブヒロニトリル、2,2-アゾビス(2,4-ジメチルバレロニトリル)、4,4-アゾビス(4-シアノペンタン酸)、2,2-アゾビス(2-メチルブチロニトリル)、2,2-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスシクロヘキサンカルボニトリル等のアゾ化合物が挙げられる。
重合開始剤の使用量は、架橋性単量体類100重量部に対して好ましい下限が0.05重量部、好ましい上限が5重量部である。重合開始剤の使用量が0.05重量部未満の場合、未反応の単量体が残存しヘモグロビン類の測定に悪影響を及ぼすことがある。また未反応の単量体を重合させるために長時間の重合を行うと、重合途中に凝集して粒子が得られなくなることがある。重合開始剤の使用量が5重量部を超える場合、急激な重合反応の進行により凝集物が発生することがある。
また架橋性単量体類の重合時に公知の添加剤等を添加してもよい。このような添加剤としては、例えば架橋重合体粒子にマクロポアを形成するための多孔質化剤、重合反応を制御するための各種連鎖移動剤、懸濁粒子を安定化させるための分散剤等が挙げられる。
本発明のヘモグロビン類の測定方法に用いるカラム充填剤は、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子である。
カチオン交換基としては、例えばカルボキシル基、リン酸基、スルホン酸基等が挙げられる。なかでもスルホン酸基が好ましい。カチオン交換基を含む重合体は異なる複数種のカチオン交換基を有しても良い。
なお本明細書における「カチオン交換基」はカチオン交換基に付随する構造は問わないため、カチオン交換基を末端に有する全ての官能基を含む。例えば本明細書における「カルボキシル基」は、カルボキシルエチル基、カルボキシルプロピル基等を含む。
カチオン交換基を含む重合体は、カチオン交換基を含む単量体を重合させた重合体、又は、カチオン交換基に変換し得る官能基を含む単量体を重合させ、その官能基をカチオン交換基に変換させた重合体が好ましい。なかでもカチオン交換基を含む単量体を重合させた重合体がより好ましい。
カチオン交換基を含む単量体(以下、カチオン交換性単量体ともいう)は、重合反応性の官能基及びカチオン交換基を含む単量体である。
カチオン交換性単量体は、カチオン交換基を含むアクリル系単量体類であることが好ましい。
カルボキシル基を含むアクリル系単量体としては、例えば、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルサクシネート、2-(メタ)アクリロイルオキシエチルフタル酸等の(メタ)アクリル酸誘導体類が挙げられる。
リン酸基を含むアクリル系単量体としては、例えば、((メタ)アクリロイルオキシエチル)アシッドホスフェート、(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、(3-(メタ)アクリロイルオキシプロピル)アシッドホスフェート等の(メタ)アクリル酸誘導体類等が挙げられる。
スルホン酸基を含むアクリル系単量体としては、例えば、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-スルホエチル(メタ)アクリレート、3-スルホプロピル(メタ)アクリル酸等の(メタ)アクリル酸誘導体類等が挙げられる。
これらのカチオン交換性単量体は単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
またこれらのカチオン交換性単量体に加えて、他の非架橋性の親水性単量体を用いてもよい。非架橋性の親水性単量体としては、上記水酸基を有する非架橋性アクリル系単量体が好ましい。例えばポリエチレングリコールモノ(メタ)アクリレート類、ポリプロピレングリコールモノ(メタ)アクリレート類、アルキレングリコールモノ(メタ)アクリレート類、その他の水酸基を有する(メタ)アクリレート類等が挙げられる
これらのカチオン交換性単量体を架橋重合体粒子の表面で重合させたカチオン交換性粒子は、架橋重合体粒子及び重合開始剤の存在下で、カチオン交換性単量体を重合させた粒子が好ましい。なかでも重合開始剤を内部に含有する架橋重合体粒子の存在下で、上記のカチオン交換性単量体を重合させた粒子がより好ましい。
重合開始剤を内部に含有する架橋重合体粒子は、架橋重合体粒子を膨潤させることができ、かつ、重合開始剤を溶解できる有機溶媒に重合開始剤を溶解し、架橋重合体粒子をこの有機溶媒に含浸させた粒子が好ましい。
例えばカチオン交換性単量体を架橋重合体粒子の表面で重合させたカチオン交換性粒子としては、重合開始剤を架橋重合体粒子の内部に含有させた後、架橋重合体粒子を適当な分散媒中に分散し、該分散媒にカチオン交換性単量体を添加して重合させた粒子等が挙げられる。
カチオン交換性粒子は、架橋重合体粒子を調製する際の重合反応において、この重合反応が完了する前、すなわち重合開始剤が完全に消費される前に、カチオン交換性単量体を反応系に添加して重合反応を継続して得られる粒子が更に好ましい。この粒子は、架橋性重合体粒子の重合反応を行うために最初に添加した重合開始剤を利用して、架橋重合体粒子の表面に効率よくカチオン交換性単量体を重合させた粒子である。
またカチオン交換性粒子としては、架橋重合体粒子の表面にカチオン交換基に変換し得る官能基を含む単量体を重合させ、更に該官能基をカチオン交換基に変換させた粒子も好ましい。
カチオン交換基に変換し得る官能基(以下、反応性基ともいう)は、非イオン性の親水性基であることが好ましい。非イオン性の親水性基としては、例えば、水酸基、グリコール基、エポキシ基、グリシジル基、1級アミノ基、2級アミノ基、シアノ基、アルデヒド基等が挙げられる。なかでも、水酸基、エポキシ基、グリシジル基、1級アミノ基、2級アミノ基が好ましく、水酸基、エポキシ基、グリシジル基がより好ましい。
これらの反応性基を含む単量体(以下、反応性単量体ともいう)は、(メタ)アクリル酸エステル類が好ましい。
(メタ)アクリル酸エステル類としては、例えば、ポリエチレングリコールモノ(メタ)アクリレート類、ポリプロピレングリコール(メタ)アクリレート類、アルキレングリコールモノ(メタ)アクリレート類、エポキシ化又はヒドロキシル化(メタ)アクリレート類、アミノ化(メタ)アクリレート類、アルデヒド化又はシアノ化(メタ)アクリレート類等が挙げられる。
ポリエチレングリコールモノ(メタ)アクリレート類としては、例えば、エチレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、メトキシトリ(ポリ)エチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。
ポリプロピレングリコール(メタ)アクリレート類としては、例えば、プロピレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等が挙げられる。
アルキレングリコールモノ(メタ)アクリレート類としては、例えば、ポリ(エチレングリコール・プロピレングリコール)モノ(メタ)アクリレート、ポリ(エチレングリコール・テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール・テトラメチレングリコール)モノ(メタ)アクリレート、オクトキシポリエチレングリコールポリプロピレングリコール-モノ(メタ)アクリレート等が挙げられる。
エポキシ化又はヒドロキシル化(メタ)アクリレート類としては、例えば、グリシジル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシルエチル(メタ)アクリレート、2,3-ジヒドロキシルプロピル(メタ)アクリレート等が挙げられる。
アミノ化(メタ)アクリレート類としては、例えば、2-アミノエチル(メタ)アクリレート、2,3-ジアミノエチル(メタ)アクリレート、2-アミノプロピル(メタ)アクリレート、2,3-ジアミノプロピル(メタ)アクリレート、(メタ)アクリルアミド等が挙げられる。
アルデヒド化又はシアノ化(メタ)アクリレート類としては、例えば、(メタ)アクロレイン、シアノ(メタ)アクリレート、エチル-2-アクリレート等が挙げられる。
これらの反応性単量体は単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
これらの反応性単量体を架橋重合体粒子の表面で重合させた粒子としては、上記のカチオン交換性単量体の代わりに反応性単量体を重合させた粒子が好ましい。この粒子は、架橋重合体粒子及び重合開始剤の存在下で、反応性単量体を重合させた粒子である。なかでも重合開始剤を内部に含有する架橋重合体粒子の存在下で、反応性単量体を重合させた粒子がより好ましい。
架橋重合体粒子の表面に反応性単量体を重合させた粒子の反応性基を、カチオン交換基に変換させた粒子としては、反応性基にカチオン交換基を有する化合物(以下、カチオン交換性化合物ともいう)を反応させた粒子が好ましい。
反応性基とカチオン性化合物を反応させた粒子としては、公知の化学反応を用いて反応性基とカチオン交換性化合物を反応させた粒子が挙げられる。例えば、反応性基として水酸基を表面に有する架橋重合体粒子と、カチオン交換性化合物であるブロムエタンスルホン酸ナトリウム等のハロゲン化エタンスルホン酸類やクロロ酢酸ナトリウム等のハロゲン化酢酸類を、水酸化アルカリ水溶液中で反応させて得られる、架橋重合体粒子の表面にスルホン酸基又はカルボキシル基を有するカチオン交換性粒子が挙げられる。
また、反応性基として水酸基を表面に有する架橋重合体粒子と、カチオン交換性化合物であるカチオン交換基を有するアルデヒド化合物を、酸触媒下でアセタール化反応させて得られる、架橋重合体粒子の表面にカチオン交換基を有するカチオン交換性粒子が挙げられる。
更に、反応性基として水酸基を表面に有する架橋重合体粒子と、カチオン交換性化合物であるトリカルバニル酸、ブタンテトラカルボン酸等の多官能カルボン化合物を、脱水反応によるエステル化させて得られる、架橋重合体粒子の表面にカルボキシル基を有するカチオン交換性粒子が挙げられる。
加えて、反応性基として水酸基を表面に有する架橋重合体粒子と、カチオン交換性化合物である1,3-プロパンスルトン、1,4-ブタンスルトン等を、水酸化アルカリの水溶液中又は有機溶媒溶液中で反応させて得られる、架橋重合体粒子の表面にスルホン酸基を有するカチオン交換性粒子が挙げられる。
反応性基とカチオン性化合物を反応させた粒子としては、以下の1)、2)、3)等の粒子が挙げられる。1)反応性基としてエポキシ基又はグリシジル基を表面に有する架橋重合体粒子と、カチオン交換性化合物である硫酸ナトリウム、タウリン、グリコール酸等とを反応させて得られる、架橋重合体粒子の表面にスルホン酸基又はカルボキシル基を有するカチオン交換性粒子。2)反応性基としてエポキシ基又はグリシジル基を表面に有する架橋重合体粒子と、三フッ化ホウ素エーテラート及びカチオン交換性化合物である亜硫酸ナトリウムを加熱処理して得られる、架橋重合体粒子の表面にスルホン酸基を有するカチオン交換性粒子。3)反応性基としてアミノ基を表面に有する架橋重合体粒子と、エピクロルヒドリンやトリグリシジルエーテル等のエポキシ化合物を水酸化アルカリの水溶液中又は有機溶媒溶液中で反応させてエポキシ化した後、上記のエポキシ基又はグリシジル基の場合と同様の処理を行うことにより得られる、架橋重合体粒子の表面にカチオン交換基を有するカチオン交換性粒子。
カチオン交換性粒子の体積平均粒子径の好ましい下限は5μm、好ましい上限は30μmである。カチオン交換性粒子の体積平均粒子径が5μm未満の場合、溶離液を送液した場合の圧力値が増大し、本発明で規定する圧力範囲内のカラムを得ることが困難である。体積平均粒子径が30μmを超える場合、カラム内の空隙率が増大して測定試料等が拡散してピークがブロード化しやすくなるため、測定精度が低下する場合がある。カチオン交換性粒子の体積平均粒子径のより好ましい下限は6μm、より好ましい上限は25μmである。
カチオン交換性粒子を充填したカラムは、カチオン交換性粒子の体積平均粒子径が小さくなるほどカラムの圧力値は大きくなり、大きくなるほどカラムの圧力値は小さくなる傾向がある。従って、カラムの圧力値を下げる場合はカチオン交換性粒子の体積平均粒子径を大きくし、上げる場合はカチオン交換性粒子の体積平均粒子径を小さくすることで、微調整が可能である。
本発明のヘモグロビン類の測定方法に用いるカラムは、上記カチオン交換性粒子を充填したカラムであって、測定に用いる溶離液を流速1.0mL/分で送液したときの圧力値が9.8×10Pa以上、29.4×10Pa以下である。
以下、測定に用いる溶離液を流速1.0mL/分で送液したときのカラムの圧力値を「カラム圧力値」、9.8×10Pa以上、29.4×10Pa以下の圧力範囲を「カラムの圧力規定値」ともいう。また、本明細書でいう圧力値は、送液ポンプとカラムの間に圧力計を設置し、測定時に用いる溶離液を上記流速で送液した場合に圧力計が示す値である。
カラム圧力値が9.8×10Pa未満のカラムを用いる場合は、測定系に生じる圧力値が安定しにくくなるため測定精度が低下する。また測定時間が長くなる場合がある。カラム圧力値が29.4×10Paを超えるカラムを用いる場合は、高圧下での測定となるため測定精度が低下する。本発明のヘモグロビン類の測定方法に用いるカラムは、カラム圧力値が4.9×10Pa以上、24.5×10Pa以下であるカラムが好ましい。
本発明のヘモグロビン類の測定方法において、上記のカチオン交換性粒子をカラム充填剤として充填するエンプティカラムとしては、金属製、樹脂製、ガラス製等の公知の素材のエンプティカラムを用いることができる。またカラム充填剤を収納するカラム本体と、フリットを含むエンドフィッティングからなる公知の構造のエンプティカラムを用いることができる。
本発明のヘモグロビン類の測定方法に用いるカラム本体の長さの好ましい下限は3mm、好ましい上限は70mmである。カラム本体の長さが3mm未満の場合、充填剤とヘモグロビン類との相互作用が不充分となるため、分離性能が悪くなり測定精度が低下することがある。カラム本体の長さが70mmを超える場合、測定時間が長くなり、またカラム圧力値をカラムの圧力規定値に設定することが困難になる。カラム本体の長さのより好ましい下限は5mm、より好ましい上限は50mmである。
カラム本体の長さは、短くなるほどカラムの圧力値は小さくなり、長くなるほどカラムの圧力値は大きくなる傾向がある。従って、カラムの圧力値を下げる場合はカラム本体の長さを短くし、上げる場合はカラム本体の長さを長くすることで、微調整が可能である。
本発明のヘモグロビン類の測定方法に用いるカラム本体の内径の好ましい下限は1mm、好ましい上限は10mmである。カラム本体の内径が1mm未満の場合、カラム圧力値をカラムの圧力規定値に設定することが困難となり、測定精度が低下することがある。カラムの内径が10mmを超える場合、カラム内で試料が拡散して測定精度が低下することがある。また測定時間が延長する。カラム本体のより好ましい内径の下限は2mm、より好ましい上限は4mmである。
カラム本体の内径は、小さくなるほどカラムの圧力値は大きくなり、大きくなるほどカラムの圧力値は小さくなる傾向がある。従って、カラムの圧力値を下げる場合はカラム本体の内径を大きくし、上げる場合はカラム本体の内径を小さくすることで、微調整が可能である。
本発明のヘモグロビン類の測定方法は、上記のカラムを接続した公知の液体クロマトグラフを用いて行える。例えば、測定試料を導入するための導入機構、溶離液を送液するためのポンプ、ヘモグロビン類を検出するための検出器等を備えた液体クロマトグラフである。本発明のヘモグロビン類の測定方法における液体クロマトグラフの構成の一例を図1に示す。
本発明のヘモグロビン類の測定方法に用いられる溶離液は、公知の塩化合物を含む緩衝液類や有機溶媒類を用いることが好ましく、緩衝液類を用いることがより好ましい。
緩衝液類としては、例えば、有機酸、無機酸及びこれらの塩類、アミノ酸類、グッドの緩衝液等が挙げられる。
有機酸としては、例えば、クエン酸、コハク酸、酒石酸、リンゴ酸等が挙げられる。
無機酸としては、例えば、塩酸、硝酸、硫酸、リン酸、ホウ酸、酢酸等が挙げられる。
アミノ酸類としては、例えばグリシン、タウリン、アルギニン等が挙げられる。
またこれらの緩衝液類には、一般に添加される公知の成分、例えば、界面活性剤、ポリマー類、親水性の低分子化合物、カオトロピックイオン類等を適宜添加してもよい。
ヘモグロビン類の測定を行う際の緩衝液類の塩濃度の好ましい下限は10mmol/L、好ましい上限は1000mmol/Lである。緩衝液類の塩濃度が10mmol/L未満の場合、イオン交換反応が充分に行われないためヘモグロビン類を分離できないことがある。緩衝液類の塩濃度が1000mmol/Lを超えると塩類が析出しシステムに悪影響を及ぼすことがある。
ヘモグロビン類の測定を行う際には、測定系に生じる圧力値を9.8×10Pa以上、19.6×10Pa以下に設定することが好ましい。以下、測定時における測定系に生じる圧力値を「測定時の圧力値」、9.8×10Pa以上、19.6×10Pa以下の圧力範囲を「測定時の圧力規定値」ともいう。従って、流速1.0mL/分の流速で測定を行う場合は、カラム圧力値と測定時の圧力値は一致する。
測定時の圧力値が9.8×10Pa未満の場合は、測定時の圧力値が安定しにくくなり、測定精度が低下する。また測定時間が長くなる場合がある。測定時の圧力値が19.6×10Paを超える場合は、高圧下での測定となるため測定精度が低下する。
測定時の圧力値は、溶離液の送液速度等を増減させる等により、調整が可能である。
本発明のヘモグロビン類の測定方法によれば、種々のヘモグロビン類を測定することができる。例えば、健常人が有するヘモグロビンA0、ヘモグロビンA1c、ヘモグロビンF(胎児性ヘモグロビン)、ヘモグロビンA2を測定することができる。また一般に異常ヘモグロビンと呼ばれるヘモグロビン類の一部を測定できる。異常ヘモグロビン類としては、例えば、ヘモグロビンS、ヘモグロビンC、ヘモグロビンD、ヘモグロビンE等が挙げられる。
なお本明細書において、上記ヘモグロビン類を「測定できる」とは、公知のヘモグロビン類の測定方法と同様、クロマトグラムに現れる全てのピーク面積の合計又は一部のピーク面積の合計に対する各ヘモグロビンのピーク面積を百分率で表示してその含有率を示すことができることを意味する。
本発明のヘモグロビン類の測定方法によれば、糖尿病の指標となるヘモグロビンA1cを測定できる。本発明のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cの測定方法も本発明の1つである。
本発明のヘモグロビン類の測定方法によれば、ヘモグロビンA1cと共に他のヘモグロビン類を同時に測定することもできる。ここでいう「同時に」とは、1回の測定でヘモグロビンA1cと他のヘモグロビン類のピークをクロマトグラム上に表示して測定対象の各ヘモグロビン類の含有率を示すことができることを意味する。
例えば、ヘモグロビンA1cの前にヘモグロビンFを溶出することにより、ヘモグロビンFとヘモグロビンA1cを同時に測定できる。本発明のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cとヘモグロビンFの同時測定方法も本発明の1つである。
また、ヘモグロビンA1cの後にヘモグロビンA2を溶出することにより、ヘモグロビンA1cとヘモグロビンA2を同時に測定できる。本発明のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cとヘモグロビンA2の同時測定方法も本発明の1つである。
更に、ヘモグロビンA1cの前後に異常ヘモグロビン類を溶出することにより、ヘモグロビンA1cと異常ヘモグロビン類を同時に測定できる。本発明のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cと異常ヘモグロビン類の同時測定方法も本発明の1つである。
本発明は、カラム充填剤として、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子を充填し、かつ、測定に用いる溶離液を1.0mL/分で送液したときの圧力値が9.8×10Pa以上、29.4×10Pa以下のカラムを用いる液体クロマトグラフィーによるヘモグロビン類の測定方法である。上記の条件に適合するカラムを用いることにより、従来の高圧条件下での測定の欠点を解決し、更に短時間で高精度にヘモグロビン類を測定できる。また、ヘモグロビンA1cと他のヘモグロビン類を同時に測定できる。
本発明のヘモグロビン類の測定方法における液体クロマトグラフの構成の一例である。 実施例1のカラム及び測定条件を用いて、健常人血液のヘモグロビンA1cの測定を行った際に得られたクロマトグラムである。 実施例1のカラム及び測定条件を用いて、異常ヘモグロビン類の測定を行った際に得られたクロマトグラムである。 実施例1のカラム及び測定条件を用いて、ヘモグロビンA2の測定を行った際に得られたクロマトグラムである。 比較例1のカラム及び測定条件を用いて、健常人血液のヘモグロビンA1cの測定を行った際に得られたクロマトグラムである。 比較例2のカラム及び測定条件を用いて、異常ヘモグロビン類の測定を行った際に得られたクロマトグラムである。 比較例2のカラム及び測定条件を用いて、ヘモグロビンA2の測定を行った際に得られたクロマトグラムである。 実施例1及び比較例4のカラムを用いた場合の、測定時の圧力値と同時再現性試験におけるCV値の関係を示すグラフである。 実施例1及び比較例2のカラムを用いた場合の、測定時の圧力値と同時再現性試験におけるCV値の関係を示すグラフである。 実施例1及び比較例3のカラムを用いた場合の、測定時の圧力値と同時再現性試験におけるCV値の関係を示すグラフである。 測定例1~7を用いて、健常人血液を繰り返し測定した場合のヘモグロビンA1c値の推移を示すグラフである。 測定例1~7を用いて、健常人血液を繰り返し測定した場合の同時再現性試験時のCV値の推移を示すグラフである。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
実施例1~4では、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカラム充填剤を調製し、本発明の「カラムの圧力規定値」に適合するカラムを調製した。またこのカラム充填剤を用いて、本発明の「測定時の圧力規定値」に適合する条件で測定を行った例を示す。
(実施例1)
テトラエチレングリコールジメタクリレート(新中村化学工業社製)200g、ジエチレングリコールジメタクリレート(新中村化学工業社製)50g、及び、テトラメチロールメタントリアクリレート(新中村化学工業社製)100gに、過酸化ベンゾイル(ナカライテスク社製)1.0gを溶解した。得られた混合物を、5重量%のポリビニルアルコール(日本合成化学工業社製、「ゴーセノールGH-20」)水溶液2Lに分散させ、回転翼を用いて回転数300rpmで攪拌しながら、窒素雰囲気下で80℃に加温して1時間重合反応を行った。1時間後に反応系にアクリルアミド-tert-ブチルスルホン酸(東亞合成社製)80gを溶解した水溶液200mLを添加して更に80℃で1時間重合反応を行い、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子(カラム充填剤)を得た。
得られたカラム充填剤を洗浄した後、粒度分布測定装置(ナイコンプ社製、「アキュサイザー780」)により粒子径を測定した結果、体積平均粒子径は9.3μmであった。
カラム充填剤0.8gを、50mmol/Lリン酸緩衝液(pH6.0)30mLに添加して撹拌した後、5分間超音波処理してスラリーを調製した。ステンレス製エンプティカラム(カラム本体の内径4.6mm、長さ35mm)類を接続したカラム充填用パッカー(容量30mL、アズワン社製)にスラリー全量を注入した。カラム充填用パッカーに送液ポンプ(サイエンス社製、「PU-614GL」)を接続し、20MPaの圧力で充填してヘモグロビン類測定用のカラムを得た。
図1に示した構成の液体クロマトグラフ1に、得られたヘモグロビン類測定用のカラム(分離用カラム7)を接続した。送液ポンプ3とインジェクションバルブ5の間に圧力計4(長野計器社製、「デジタル圧力計GC61」)を接続して圧力値を測定した。測定条件を下記に示す。溶離液Aを流速1.0mL/分で送液した際のカラム圧力値は1300×10Paであった。
測定条件
・システム :LC-20Aシステム(島津製作所社製)
・溶離液  :溶離液A:200mmol/Lリン酸緩衝液(pH5.8)
       溶離液B:400mmol/Lリン酸緩衝液(pH7.8)
・溶出条件 :0.0分~1.0分:溶離液A100%
       1.0分~1.1分:溶離液B100%
       1.1分~2.0分:溶離液A100%
・流速   :1.0mL/分
・検出波長 :415nm
・試料注入量:10μL
上記のカラム及び測定条件を用いて、健常人血液中のヘモグロビンA1cの測定を行った。
測定試料は、フッ化ナトリウム採血したヒト健常人血液を、0.05%のTritonX-100(Sigma-Aldrich社製)を含むリン酸緩衝液(pH6.8)により200倍に溶血希釈したものを用いた。
上記の測定条件で測定した結果、得られたクロマトグラムを図2に示す。図2中、ピーク21はヘモグロビンA1c、ピーク22はヘモグロビンA0、ピーク23はヘモグロビンFを示す。ヘモグロビンA1cと他のヘモグロビン類が短時間内に良好に分離できた。また同じ試料を用いた測定を20回連続して行う同時再現性試験を行った。表1に示す通り、ヘモグロビンA1c値(HbA1c)とヘモグロビンF値(HbF)の再現性は良好であった。
Figure JPOXMLDOC01-appb-T000001
上記のカラム及び測定条件を用いて人為的に調製した修飾ヘモグロビン類を含む試料を測定した。
修飾ヘモグロビン類を含む試料として、レイバイルヘモグロビンA1c含有試料(試料L)、アセチル化ヘモグロビン含有試料(試料A)、カルバミル化ヘモグロビン含有試料(試料C)の3種類を公知の方法により調製した。試料Lは、健常人血液にグルコースを2000mg/dLとなるように添加し、37℃で3時間加温することにより調製した。試料Aは、健常人血液にアセトアルデヒドを50mg/dLとなるように添加し、37℃で2時間加温することにより調製した。試料Cは、健常人血液にシアン酸ナトリウムを50mg/dLとなるように添加し、37℃で2時間加温することにより調製した。
ヘモグロビンA1cと修飾ヘモグロビン類の分離性能は、修飾ヘモグロビン類を含む試料(試料L、試料A、試料C)のヘモグロビンA1c値から、修飾ヘモグロビンを調製する際の原料として用いた健常人血液のヘモグロビンA1c値を差し引いた値(Δ値)を算出して比較することにより評価した。その結果、表1に示す通りΔ値はいずれも0.2%未満であり、修飾ヘモグロビン類が含まれる試料においても、正確にヘモグロビンA1cを測定できた。
上記のカラムを用いて、異常ヘモグロビンのヘモグロビンS及びヘモグロビンCを含む試料(ヘレナ研究所社製、「AFSCヘモコントロール」)を測定した。得られたクロマトグラムを図3に示す。図3中、ピーク24はヘモグロビンS、ピーク25はヘモグロビンCを示す。異常ヘモグロビン類であるヘモグロビンS及びヘモグロビンCを良好に分離できた。また、表1に示す通り、同時再現性試験でのヘモグロビンS及びヘモグロビンCの再現性も良好であった。
上記のカラムを用いて、ヘモグロビンA2を含む試料(バイオラッド社製、「A2コントロールレベル2」)を測定した。得られたクロマトグラムを図4に示す。図4のピーク26はヘモグロビンA2を示す。ヘモグロビンA2を良好に分離できた。また、表1に示す通り、同時再現性試験でのヘモグロビンA2の再現性も良好であった。
(実施例2~4)
実施例1の重合反応時における撹拌時の回転数を小さくして重合を行い、実施例1と体積平均粒子径の異なるカラム充填剤を調製した。実施例1と同様の方法により体積平均粒子径及びカラム圧力値を測定した。重合時の設定回転数、体積平均粒子径、使用したカラムのサイズ、カラム圧力値、測定時の流速、測定時の圧力を表1に示す。なお、以下の実施例及び比較例におけるこれらの条件及び測定結果も全て表1に示す。
得られたカラムを用い、実施例1で用いた健常人血液、異常ヘモグロビン含有試料、ヘモグロビンA2含有試料を測定した結果、それぞれ図2、図3、図4と同様のクロマトグラムが得られた。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれも実施例1のカラムを用いた場合と同様に良好であった。
(実施例5、6)
実施例5、6では、架橋重合体粒子の表面にカチオン交換基を含む重合体を有し、本発明の「カラムの圧力規定値」に適合するカラムを調製した。ただし、ヘモグロビン類の測定は、本発明の「測定時の圧力規定値」に適合しない条件で行った例を示す。
実施例1の重合反応時における撹拌時の回転数を大きくして重合を行い、体積平均粒子径の異なるカチオン交換性粒子を調製した。実施例1と同様の方法により体積平均粒子径及びカラム圧力値を測定した。重合時の設定回転数、体積平均粒子径及びカラム圧力値を表1に示す。
得られたカラムを用い、実施例1で用いた健常人血液、異常ヘモグロビン含有試料、ヘモグロビンA2含有試料を測定した結果、それぞれ図2、図3、図4と同様のクロマトグラムが得られた。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれも実用上問題のないレベルの良好な数値を示したが、実施例1~4のカラムを用いた場合よりも若干CV値及びΔ値が大きかった。
(実施例7)
実施例7では、実施例5のカラム充填剤を用い、かつ、本発明の「測定時の圧力規定値」に適合するように条件を変更して測定を行った例を示す。
実施例5のカラム充填剤を、実施例1で用いたカラムより短いステンレス製エンプティカラム(カラム本体の内径4.6mm、長さ25mm)に充填した。カラム圧力値の測定結果を表1に示す。カラム圧力値は本発明の「カラムの圧力規定値」及び「測定時の圧力規定値」に適合した。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれの値も実施例5よりも向上し、実施例1~4の結果と同等になった。
(実施例8)
実施例8では、実施例6のカラム充填剤を用い、かつ、本発明の「測定時の圧力規定値」に適合するように条件を変更して測定を行った例を示す。
実施例6のカラム充填剤を、実施例1で用いたカラムより短いステンレス製エンプティカラム(カラム本体の内径4.6mm、長さ25mm)に充填した。カラム圧力値の測定結果を表1に示す。カラム圧力値は本発明の「カラムの圧力規定値」に適合した。更に実施例1の測定条件における溶離液の流速を、1.0mL/分から0.8mL/分に変更して測定を行った。測定時の圧力値の測定結果を表1に示す。測定時の圧力値は本発明の「測定時の圧力規定値」に適合した。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれの値も向上し、実施例1~4の結果と同等になった。
実施例7及び8から、本発明の「カラムの圧力規定値」に適合するカラム充填剤を用いることにより良好な再現性が得られ、更に本発明の「測定時の圧力規定値」に適合する条件で測定することで再現性が向上することが確認できた。
(比較例1)
比較例1では、実施例1の重合反応時における撹拌時の回転数を小さくして重合を行い、本発明の「カラムの圧力規定値」に適合しないカラムを調製してヘモグロビン類を測定した例を示す。
実施例1と同様の方法により体積平均粒子径及びカラム圧力値を測定した。重合時の設定回転数、体積平均粒子径及びカラム圧力値を表1に示す。
得られたカラムを用い、実施例1で用いた健常人血液、異常ヘモグロビン含有試料、ヘモグロビンA2含有試料を測定した。健常人血液を測定した結果、得られたクロマトグラムを図5に示す。図2と図5とを比較すると、比較例1で得られたカラムを用いた場合、ヘモグロビンA1c及びその他のヘモグロビン類の分離性能は悪かった。また、異常ヘモグロビン類やヘモグロビンA2は全く分離できなかった。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれも実施例1のカラムを用いた場合より悪かった。
(比較例2)
比較例2では、実施例1の重合反応時における撹拌時の回転数を大きくして重合を行い、本発明の「カラムの圧力規定値」に適合しないカラムを調製し、これを用いてヘモグロビン類を測定した例を示す。
得られたカラムを用い、実施例1と同様の方法により体積平均粒子径及びカラム圧力値を測定した。重合時の設定回転数、体積平均粒子径及びカラム圧力値を表1に示す。
得られたカラムを用い、実施例1で用いた健常人血液を測定した結果、図5と同様のクロマトグラムが得られた。また、実施例1で用いた異常ヘモグロビン含有試料、ヘモグロビンA2含有試料を測定した結果、得られたクロマトグラムをそれぞれ図6、図7に示す。比較例2で得られたカラムを用いた場合、ヘモグロビンA1c及びその他のヘモグロビン類の分離性能は悪かった。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれも実施例1のカラムを用いた場合より悪かった。
(比較例3)
比較例3では、実施例1の重合反応時における撹拌時の回転数以外の条件変更により本発明の「カラムの圧力規定値」に適合しないカラムを調製してヘモグロビン類を測定した例を示す。
実施例1の重合時に用いた、アクリルアミド-tert-ブチルスルホン酸80gを160gに増やし、他の条件は実施例1と同様にしてカラム充填剤を得た。実施例1と同様の方法により体積平均粒子径及びカラム圧力値を測定した。重合時の設定回転数、体積平均粒子径及びカラム圧力値を表1に示す。
実施例1で用いた健常人血液、異常ヘモグロビン含有試料、ヘモグロビンA2含有試料を測定した結果得られたクロマトグラムは、それぞれ図5、図6、図7と同様、ヘモグロビンA1c及びその他のヘモグロビン類の分離性能は悪かった。
同時再現性試験の結果、及び、修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれも実施例1のカラムを用いた場合より悪かった。
(比較例4)
比較例4では、架橋重合体粒子の表面にカチオン交換基を含む重合体を有しないが、本発明の「カラムの圧力規定値」に適合するカラムを調製し、本発明の「測定時の圧力規定値」に適合する条件で測定を行った例を示す。
トリエチレングリコールジメタクリレート200g、ジエチレングリコールジメタクリレート50g、テトラメチロールメタントリアクリレート100g及びアクリルアミド-tert-ブチルスルホン酸(東亞合成社製)80gに、過酸化ベンゾイル(ナカライテスク社製)1.0gを溶解した。得られた混合物を、5重量%のポリビニルアルコール(日本合成化学工業社製、「ゴーセノールGH-20」)水溶液2Lに分散させ、回転数300rpmで攪拌しながら、窒素雰囲気下で80℃に加温して10時間重合反応を行った。架橋重合体粒子の表面にカチオン交換基を含む重合体を有しないカチオン交換性粒子(カラム充填剤)を得た。
実施例1と同様の方法により体積平均粒子径及びカラム圧力値を測定した。得られた結果を表1に示す。
実施例1で用いた健常人血液、異常ヘモグロビン含有試料、ヘモグロビンA2含有試料を測定した。健常人血液を測定した結果、得られたクロマトグラムは図5と同様であり、ヘモグロビンA1c及びその他のヘモグロビン類の分離性能は悪かった。また、異常ヘモグロビン類やヘモグロビンA2は全く分離できなかった。
同時再現性試験の結果及び修飾ヘモグロビン類含有試料を測定した場合のΔ値を表1に示す。いずれも実施例1のカラムを用いた場合より悪かった。
(評価)
実施例及び比較例のカラム充填剤又はカラムを用いて性能の評価を行った。
(1)カラム充填剤の構造が再現性に及ぼす影響
本評価(1)では、実施例1及び比較例4のカラム充填剤を用いて、測定時の圧力値を変化させ、実施例1で行った同時再現性試験におけるCV値への影響を調べた。測定時の圧力値の変更は、カラム充填剤をカラム本体の長さ35mmと15mmの2種類のエンプティカラムに充填し、流速を0.5mL/分~2.5mL/分に変更することにより行った。
測定時の圧力値とCV値の関係を図8に示す。架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカラム充填剤(実施例1で得られたカラム充填剤)を用い、カラムの規定圧力値に適合したカラムを用いた場合は、良好な再現性が得られた。更に、測定時の規定圧力値に適合する条件の場合は再現性が向上した。
架橋重合体粒子の表面にカチオン交換基を含む重合体を有しないカラム充填剤(比較例4で得られたカラム充填剤)を用いた場合は、カラムの規定圧力値に適合した条件であっても再現性は不良であった。また測定時の規定圧力値の影響は認められなかった。
(2)カラム圧力規定値の適不適が再現性に及ぼす影響1
本評価(2)では、比較例2のカラム充填剤を用いて、測定時の圧力値と、実施例1で行った同時再現性試験におけるCV値の関係を、上記評価(1)と同様の方法により調べた。
得られた測定時の圧力値とCV値の関係を図9に示す。比較例2のカラム充填剤は、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカラム充填剤だが、本発明の「カラムの規定圧力値」に適合しない。この場合は再現性が不良であり、たとえ測定時の規定圧力値に適合する条件で測定を行っても、再現性が向上しなかった。
(3)カラム圧力規定値の適不適が再現性に及ぼす影響2
本評価(3)では、比較例3のカラム充填剤を用いて、測定時の圧力値と、実施例1で行った同時再現性試験におけるCV値の関係を、上記評価(1)と同様の方法により調べた。
得られた測定時の圧力値とCV値の関係を図10に示す。比較例3のカラム充填剤は、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子だが、本発明の「カラムの規定圧力値」に適合しない。この場合は再現性が不良であり、たとえ測定時の規定圧力値に適合する条件で測定を行っても、再現性が向上しなかった。
上記の評価(1)~(3)により、良好な再現性を得るためには、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカラム充填剤を用いる必要があること、及び、本発明のカラムの規定圧力値に適合するカラムを用いる必要があることが分かる。また測定時の規定圧力値で測定を行うことにより更に再現性が向上する。
(4)繰り返し測定の影響
実施例1、実施例5、比較例2、比較例3、及び、比較例4のカラム充填剤を用いて、同一の健常人血液試料を多数回繰り返して測定してヘモグロビンA1c値の推移を調べた。また、200回の測定毎に、実施例1で行った同時再現性試験を実施してそのCV値の推移を確認した。
各カラム充填剤を用いて測定例1~7を調製した。各測定例の条件を表2に示す。表2の「本発明の条件への適不適」欄に、同条件に適合した条件は「○」、適合しない条件は「×」で示した。例えば測定例1は、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカラム充填剤であるため、カラム充填剤の構造は適合している(○)。また、流速1.0mL/分の溶離液を送液した場合の圧力値は1300×10Paであるからカラムの規定圧力値に適合している(○)。更に、測定時の圧力値は1300×10Paであるから測定時の圧力規定値に適合している(○)。
Figure JPOXMLDOC01-appb-T000002
これらの測定例で繰り返し測定を行ったヘモグロビンA1c値の推移を図11に示す。測定例1及び測定例2のヘモグロビンA1c値は3000回の測定後も安定していた。測定例3では2500回の測定以降でわずかに低下した。また、同時再現性試験時のCV値はいずれも3000回測定まで安定していた。
測定例4~7では1500回の測定以前に大きく低下した。また、図12に示した同時再現性時のCV値の推移も同様の傾向を示した。本発明のカラムでは測定開始時のCV値が良好なだけでなく、その精度を多数回の測定の間維持できることが確認できた。
本発明によれば、ヘモグロビン類を短時間で高精度に測定可能な方法を提供できる。また本発明によれば、ヘモグロビンA1cの測定方法、ヘモグロビンA1cとヘモグロビンFの同時測定方法、ヘモグロビンA1cとヘモグロビンA2の同時測定方法、及びヘモグロビンA1cと異常ヘモグロビン類の同時測定方法を提供できる。
1 液体クロマトグラフ
2 溶離液切り替えバルブ
3 送液ポンプ
4 圧力計
5 インジェクションバルブ
6 プレフィルタ
7 分離用カラム
8 検出器
9 溶離液
10 オートサンプラ
11 廃液容器
21 ヘモグロビンA1c
22 ヘモグロビンA0
23 ヘモグロビンF(胎児性Hb)
24 ヘモグロビンS
25 ヘモグロビンC
26 ヘモグロビンA2

Claims (8)

  1. カラム充填剤として、架橋重合体粒子の表面にカチオン交換基を含む重合体を有するカチオン交換性粒子を充填し、かつ、測定に用いる溶離液を1.0mL/分で送液したときの圧力値が9.8×10Pa以上、29.4×10Pa以下のカラムを用いる
    液体クロマトグラフィーによるヘモグロビン類の測定方法。
  2. カチオン交換基を含む重合体は、カチオン交換基を含む単量体を架橋重合体粒子の表面において重合させて得られたものである請求項1記載のヘモグロビン類の測定方法。
  3. カチオン交換基を含む重合体は、カチオン交換基に変換し得る官能基を含む単量体を架橋重合体粒子の表面において重合させて得られたものである請求項1記載のヘモグロビン類の測定方法。
  4. 測定系に生じる圧力値を9.8×10Pa以上、19.6×10Pa以下に設定する請求項1、2又は3記載のヘモグロビン類の測定方法。
  5. 請求項1、2、3又は4記載のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cの測定方法。
  6. 請求項1、2、3又は4記載のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cとヘモグロビンFの同時測定方法。
  7. 請求項1、2、3又は4記載のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cとヘモグロビンA2の同時測定方法。
  8. 請求項1、2、3又は4記載のヘモグロビン類の測定方法を用いる、液体クロマトグラフィーによるヘモグロビンA1cと異常ヘモグロビン類の同時測定方法。
PCT/JP2012/050309 2011-07-08 2012-01-11 ヘモグロビン類の測定方法 WO2013008479A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/130,112 US20140162369A1 (en) 2011-07-08 2012-01-11 Method for measuring hemoglobins
CN201280033002.XA CN103649745B (zh) 2011-07-08 2012-01-11 血红蛋白类的测定方法
KR1020137032856A KR20140035934A (ko) 2011-07-08 2012-01-11 헤모글로빈류의 측정 방법
EP20120811126 EP2730920A4 (en) 2011-07-08 2012-01-11 METHOD FOR MEASURING HEMOGLOBINS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152148A JP2012032395A (ja) 2010-07-09 2011-07-08 ヘモグロビン類の測定方法
JP2011-152148 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008479A1 true WO2013008479A1 (ja) 2013-01-17

Family

ID=47514407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050309 WO2013008479A1 (ja) 2011-07-08 2012-01-11 ヘモグロビン類の測定方法

Country Status (6)

Country Link
US (1) US20140162369A1 (ja)
EP (1) EP2730920A4 (ja)
JP (2) JP2012032395A (ja)
KR (1) KR20140035934A (ja)
CN (1) CN103649745B (ja)
WO (1) WO2013008479A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980582A4 (en) * 2013-03-29 2016-12-07 Tosoh Corp Cation exchangers for liquid chromatography, process for the preparation thereof and use
US12011461B2 (en) 2017-03-15 2024-06-18 Orca Biosystems, Inc. Compositions and methods of hematopoietic stem cell transplants

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073183A (ja) * 2010-09-29 2012-04-12 Sekisui Medical Co Ltd ヘモグロビン類の測定方法
JP2012073184A (ja) * 2010-09-29 2012-04-12 Sekisui Medical Co Ltd ヘモグロビン類の測定方法
JP2013168600A (ja) 2012-02-17 2013-08-29 Fuji Electric Co Ltd 薄膜太陽電池の製造方法及び製造装置
JP2014095638A (ja) * 2012-11-09 2014-05-22 Sekisui Medical Co Ltd ヘモグロビンa0分画の分離方法
CN103954717A (zh) * 2014-04-28 2014-07-30 重庆医科大学附属儿童医院 利用液相色谱串联质谱测定血红蛋白浓度的方法
JP6780290B2 (ja) * 2016-05-11 2020-11-04 東ソー株式会社 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置
JP7094958B2 (ja) * 2017-06-30 2022-07-04 昭和電工株式会社 液体クロマトグラフィー用充填剤及び液体クロマトグラフィー用カラム
US20190154707A1 (en) * 2017-11-17 2019-05-23 Bio-Rad Laboratories, Inc. Smart Advisor for Blood Test Evaluation
CN113009025B (zh) * 2018-12-29 2023-04-07 江山德瑞医疗科技有限公司 一种测定值不受样本保存时间的影响糖化血红蛋白测定方法
JP7258276B2 (ja) * 2019-10-31 2023-04-17 株式会社レゾナック 糖化ヘモグロビン分析用カラムの充填剤の製造方法
JP7347156B2 (ja) * 2019-11-22 2023-09-20 株式会社レゾナック Hplc法による血液検体測定用の検体希釈液、及び糖化ヘモグロビンの測定方法
CN115315626B (zh) * 2020-03-13 2024-08-20 积水医疗株式会社 血红蛋白分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055730A (ja) 1990-11-30 1993-01-14 Hitachi Ltd 液体クロマトグラフ装置
JP2001159625A (ja) * 1999-09-24 2001-06-12 Sekisui Chem Co Ltd ヘモグロビンa2の分離方法
JP2001349894A (ja) * 2000-06-06 2001-12-21 Sekisui Chem Co Ltd ヘモグロビン類の測定方法
JP2010236909A (ja) * 2009-03-30 2010-10-21 Sekisui Medical Co Ltd ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP2011209040A (ja) * 2010-03-29 2011-10-20 Sekisui Medical Co Ltd ヘモグロビン類測定用カラム充填剤、ヘモグロビンA1cの測定方法、並びに、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341635A (en) * 1980-12-16 1982-07-27 Helena Laboratories Corporation Microchromatographic column and method
US5292818A (en) * 1982-07-20 1994-03-08 Sekisui Kagaku Kogyo Kabushiki Kaisha Method for producing a carrier for cation exchange liquid chromatography and a method for determining glycosylated hemoglobins using the carrier
DE69022250D1 (de) * 1990-11-21 1995-10-12 Sekisui Chemical Co Ltd Verfahren zur herstellung von trägern für die kationenaustausch-flüssigchromatographie sowie verfahren zur quantitativen bestimmung von glucose-hämoglobin unter benutzung dieses trägers.
EP1103812B1 (en) * 1998-08-07 2015-11-18 Sekisui Chemical Co., Ltd. Method for determining hemoglobins
JP2003207497A (ja) * 2002-01-10 2003-07-25 Sekisui Chem Co Ltd 溶離液と溶血試薬及びヘモグロビン類の測定方法
WO2007063701A1 (ja) * 2005-12-02 2007-06-07 Sekisui Chemical Co., Ltd. 親水性高分子微粒子、イオン交換液体クロマトグラフィー用充填剤及びイオン交換液体クロマトグラフィー用充填剤の製造方法
CN101095958A (zh) * 2007-07-04 2008-01-02 山西医科大学第一医院 2型糖尿病大鼠模型的制备方法
JP5446001B2 (ja) * 2009-08-28 2014-03-19 積水メディカル株式会社 液体クロマトグラフィーによるヘモグロビンA1c及び異常ヘモグロビン類の測定方法
JP2011047859A (ja) * 2009-08-28 2011-03-10 Sekisui Medical Co Ltd ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1cの測定方法、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP2012073184A (ja) * 2010-09-29 2012-04-12 Sekisui Medical Co Ltd ヘモグロビン類の測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055730A (ja) 1990-11-30 1993-01-14 Hitachi Ltd 液体クロマトグラフ装置
JP2001159625A (ja) * 1999-09-24 2001-06-12 Sekisui Chem Co Ltd ヘモグロビンa2の分離方法
JP2001349894A (ja) * 2000-06-06 2001-12-21 Sekisui Chem Co Ltd ヘモグロビン類の測定方法
JP2010236909A (ja) * 2009-03-30 2010-10-21 Sekisui Medical Co Ltd ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP2011209040A (ja) * 2010-03-29 2011-10-20 Sekisui Medical Co Ltd ヘモグロビン類測定用カラム充填剤、ヘモグロビンA1cの測定方法、並びに、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730920A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980582A4 (en) * 2013-03-29 2016-12-07 Tosoh Corp Cation exchangers for liquid chromatography, process for the preparation thereof and use
JPWO2014157670A1 (ja) * 2013-03-29 2017-02-16 東ソー株式会社 液体クロマトグラフィー用カチオン交換体、その製造方法及びその用途
US12011461B2 (en) 2017-03-15 2024-06-18 Orca Biosystems, Inc. Compositions and methods of hematopoietic stem cell transplants

Also Published As

Publication number Publication date
US20140162369A1 (en) 2014-06-12
KR20140035934A (ko) 2014-03-24
CN103649745A (zh) 2014-03-19
EP2730920A1 (en) 2014-05-14
JP2012032395A (ja) 2012-02-16
EP2730920A4 (en) 2015-03-11
JPWO2013008479A1 (ja) 2015-02-23
CN103649745B (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2013008479A1 (ja) ヘモグロビン類の測定方法
EP1237938B1 (en) Large-pore chromatographic beads prepared by suspension polymerization
JP5446001B2 (ja) 液体クロマトグラフィーによるヘモグロビンA1c及び異常ヘモグロビン類の測定方法
JP3927322B2 (ja) 液体クロマトグラフィー用充填剤の製造方法
JP5294941B2 (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP5749031B2 (ja) 液体クロマトグラフィー用カラム充填剤の製造方法、液体クロマトグラフィーによる試料の測定方法、及び、ヘモグロビン類の測定方法
JP2010236909A (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP2014095638A (ja) ヘモグロビンa0分画の分離方法
JP5901081B2 (ja) ヘモグロビン類測定用カラム充填剤、ヘモグロビン類測定用カラム充填剤の製造方法、及び、液体クロマトグラフィーによるヘモグロビン類の測定方法
JP2011047859A (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1cの測定方法、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、ヘモグロビン類分離用カラム充填剤の製造方法
JP2012073184A (ja) ヘモグロビン類の測定方法
JP5522772B2 (ja) カラム充填剤及びカラム充填剤の製造方法
JP6004516B2 (ja) ヘモグロビン類分離用カラム充填剤及びその製造方法
JP2014095637A (ja) 安定型ヘモグロビンA1cの測定方法
JP5259225B2 (ja) ヘモグロビン類の測定方法
JP5684331B2 (ja) ヘモグロビン類分離用カラム充填剤、ヘモグロビンA1cの測定方法、及び、ヘモグロビン類分離用カラム充填剤の製造方法
JP5294942B2 (ja) 液体クロマトグラフィー用カラム充填剤、ヘモグロビンA1c及び異常ヘモグロビン類の測定方法、並びに、液体クロマトグラフィー用カラム充填剤の製造方法
JP4203191B2 (ja) 液体クロマトグラフィー用充填剤
JP2012073183A (ja) ヘモグロビン類の測定方法
JP5731464B2 (ja) ヘモグロビンA1cの測定方法
JP2001183356A (ja) ヘモグロビン類の測定方法
JP4074393B2 (ja) 液体クロマトグラフィー用充填剤
JP5408766B2 (ja) ヘモグロビン類測定用カラム充填剤、ヘモグロビン類測定用カラム充填剤の製造方法、及び、液体クロマトグラフィーによるヘモグロビン類の測定方法
JP2013156272A (ja) ヘモグロビン類測定用カラム充填剤、ヘモグロビン類測定用カラム充填剤の製造方法、及び、液体クロマトグラフィーによるヘモグロビン類の測定方法
JP5749030B2 (ja) 液体クロマトグラフィー用カラム充填剤の製造方法、液体クロマトグラフィーによる試料の測定方法、及び、ヘモグロビン類の測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523841

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137032856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012811126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14130112

Country of ref document: US