WO2013005446A1 - 抗ウイルス性樹脂部材 - Google Patents

抗ウイルス性樹脂部材 Download PDF

Info

Publication number
WO2013005446A1
WO2013005446A1 PCT/JP2012/004395 JP2012004395W WO2013005446A1 WO 2013005446 A1 WO2013005446 A1 WO 2013005446A1 JP 2012004395 W JP2012004395 W JP 2012004395W WO 2013005446 A1 WO2013005446 A1 WO 2013005446A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiviral
resin
resin member
virus
surface potential
Prior art date
Application number
PCT/JP2012/004395
Other languages
English (en)
French (fr)
Inventor
伸樹 倉橋
信一 本島
陽子 福井
中山 鶴雄
Original Assignee
株式会社Nbcメッシュテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nbcメッシュテック filed Critical 株式会社Nbcメッシュテック
Priority to US14/127,709 priority Critical patent/US9380785B2/en
Priority to AU2012279764A priority patent/AU2012279764B2/en
Priority to IN829CHN2014 priority patent/IN2014CN00829A/en
Priority to KR1020147002597A priority patent/KR101895414B1/ko
Priority to JP2013522479A priority patent/JP6055765B2/ja
Priority to CA2841051A priority patent/CA2841051C/en
Priority to BR112013032821A priority patent/BR112013032821A2/pt
Priority to RU2014104100/05A priority patent/RU2592532C2/ru
Priority to EP12808121.3A priority patent/EP2730621B1/en
Priority to CN201280033419.6A priority patent/CN103649230B/zh
Publication of WO2013005446A1 publication Critical patent/WO2013005446A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/12Iodine, e.g. iodophors; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/015Biocides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0058Biocides

Definitions

  • the present invention relates to a resin member that inactivates viruses, and in particular, to an antiviral resin member that can inactivate various attached viruses regardless of the presence or absence of an envelope or in the presence of lipids or proteins.
  • MRSA methicillin-resistant Staphylococcus aureus
  • Patent Document 1 proposes an antibacterial film or a method in which an antibacterial substance is applied to the surface of a medical device.
  • Patent Document 2 proposes a fiber containing an antiviral substance, a fiber structure using an antiviral fiber, and the like.
  • Patent Document 1 shows an effect on fungi such as Escherichia coli, no example of a virus is shown, and therefore it is unclear whether it has an action of inactivating the virus. It is.
  • Patent Document 2 can be applied to a fibrous fabric or the like, it is unclear whether it can be applied to a film, sheet, or molded body that does not use fibers.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an antiviral resin member that can efficiently inactivate viruses and has excellent sustainability.
  • the first invention is an antiviral resin member comprising a resin, an antiviral agent, and a surface potential control agent comprising a cationic surfactant, wherein the surface potential control agent is the antiviral resin member.
  • An antiviral resin member is provided in which the surface potential of the resin is changed in a positive direction relative to the surface potential of the resin alone.
  • the antiviral agent is an iodide particle comprising iodine and at least one element selected from elements in groups 4 to 6 and groups 8 to 15 of the periodic table.
  • the antiviral resin member according to the first invention characterized in that is contained as an active ingredient.
  • elements from the fourth period to the sixth period and the groups 8 to 15 of the periodic table are Cu, Ag, Sb, Ir, Ge, Sn, Tl, Pt, Pd, Bi, Au
  • the antiviral resin member according to the second invention is characterized by being Fe, Co, Ni, Zn, In, or Hg.
  • the antiviral agent comprises at least one monovalent copper compound particle as an active ingredient.
  • a functional resin member is provided.
  • a fifth invention is characterized in that the monovalent copper compound is chloride, acetic acid compound, sulfide, iodide, bromide, peroxide, oxide, or thiocyanide.
  • the antiviral resin member described is provided.
  • a sixth invention is the antiviral member according to any one of the first to fifth inventions, wherein the antiviral resin member is a molded body that is further heated and stretched after molding. Is to provide.
  • the 7th invention forms the molded object using resin, the antiviral agent, and the surface potential control agent which consists of cationic surfactant,
  • the antiviral characterized by heat-extending the said molded object It is a manufacturing method of a conductive resin member.
  • the virus by containing an antiviral agent and a surface potential control agent in the resin, by controlling the potential so that the virus is easily adsorbed on the surface of the resin member, the virus can be efficiently used by the antiviral agent. Can be inactivated.
  • a virus having no envelope can be efficiently inactivated by including a surface potential control agent.
  • FIG. 1 is a diagram schematically showing a part of a cross section of an antiviral resin member 1 according to an embodiment of the present invention.
  • the resin member 1 having antiviral properties includes a resin 10, an antiviral agent 20, and a surface potential control agent 30, for example, as shown in FIG. 1, the antiviral agent 20 and the surface potential control.
  • the agent 30 can be dispersed and contained in the resin 10.
  • resin 10 of embodiment of this invention
  • vinyl chloride elastomers include thermoplastic
  • the antiviral agent 20 of the present embodiment is not particularly limited as long as it is a substance that inactivates viruses, but monovalent copper compound fine particles and / or iodide fine particles are preferable. Regardless, the virus can be inactivated.
  • virus inactivation mechanism of the virus inactivated fine particles is not always clear at present, some of the virus inactivated fine particles contact with moisture in the air or in the air, and some of them react with redox or active species. It is considered that the inactivation is caused by some influence on the electrical charge on the surface of the virus attached to the antiviral resin member of the embodiment or DNA.
  • the at least one iodide having antiviral properties in the present embodiment is composed of iodine and elements from the 4th to 6th and 8th to 15th groups of the periodic table.
  • Elements from the 4th period to the 6th period and the 8th group to the 15th group of the periodic table are Cu, Ag, Sb, Ir, Ge, Sn, Tl, Pt, Pd, Bi, Au, Fe, Co, Ni, Zn , In or Hg is preferred.
  • particles of iodide contained in the antiviral agent of the present embodiment CuI, AgI, SbI 3 , IrI 4 , GeI 4 , GeI 2 , SnI 2 , SnI 4 , TlI, PtI 2 , PtI 4 , PdI 2 , BiI 3 , AuI, AuI 3 , FeI 2 , CoI 2 , NiI 2 , ZnI 2 , HgI, and InI 3 are more preferably selected.
  • the monovalent copper compound having antiviral properties in this embodiment is preferably chloride, acetic acid compound, sulfide, iodide, bromide, peroxide, oxide, or thiocyanide.
  • the monovalent copper compound particles contained in the antiviral agent of the present embodiment are at least one selected from the group consisting of CuCl, Cu (CH 3 COO), CuBr, CuI, CuSCN, Cu 2 S and Cu 2 O. More preferably, the particles are selected.
  • the particles of iodide or monovalent copper compound from the group consisting of CuI, AgI, SnI 4 , CuCl, CuBr, CuSCN, which are excellent in storage stability in air. More preferably, at least one kind of particles is selected.
  • the virus that can be inactivated in the antiviral agent of the present embodiment is not particularly limited, and various viruses can be inactivated regardless of the type of genome or the presence or absence of an envelope.
  • the size of the particles of the antiviral agent is not particularly limited and can be appropriately set by those skilled in the art. However, in consideration of a decrease in the strength of the resin member, it is preferably 3 ⁇ m or less. Further, in the present embodiment, it is not particularly limited and can be appropriately set by those skilled in the art, but the size of the particles is preferably 1 nm or more from the viewpoint of production, handling and chemical stability of the particles. . In addition, in this specification, an average particle diameter means a volume average particle diameter.
  • the content of the antiviral agent is not particularly limited, and can be appropriately set by those skilled in the art.
  • the resin member 1 preferably has a range of 0.5 mass% or more and 40 mass% or less. If it is less than 0.5% by mass, the antiviral properties are less effective, and practically sufficient antiviral properties are obtained when the content is 40% by mass or less. If the content is more than that, the strength of the resin member decreases.
  • only the surface layer portion of the resin member may be filled with the antiviral agent. That is, it suffices to fill the antiviral agent only in the portion that exhibits the antiviral effect.
  • the antiviral agent is applied only to the sheath portion by making the core-sheath structure. It is also possible to fill. For this reason, it becomes possible to reduce content of an antiviral agent, and while suppressing the strength fall in a resin member, a high antiviral effect can be acquired and it becomes possible to manufacture more cheaply.
  • the amount of the antiviral agent eluted from the surface layer of the resin member as a metal ion when immersed in physiological saline for 60 minutes is preferably in the range of 0.1 mg / m 2 to 100 mg / m 2 .
  • Antiviral effect is less than 0.1 mg / m 2 is reduced, when it exceeds 100 mg / m 2, antiviral effect is also not much different as compared to 100 mg / m 2 or less.
  • the elution amount refers to the elution amount as a metal ion of an antiviral agent per unit surface area that exhibits an antiviral effect.
  • the surface potential control agent 30 When the surface potential control agent 30 is contained in the resin, the surface potential of the resin is controlled in the positive direction as compared with the case of the resin alone.
  • the surface potential control agent 30 of the present embodiment is not particularly limited as long as the surface potential of the resin can be changed to the plus side, but a cationic surfactant is preferably used.
  • the surface potential of the resin is generally negative and the surface potential of the virus is negative regardless of the type of genome and the presence or absence of the envelope, it is difficult for the virus to be adsorbed on the resin surface. Therefore, even if the resin contains only an antiviral agent, the antiviral effect is hardly exhibited.
  • the surface potential control agent 30 in the resin 10 the surface potential of the resin 10 is controlled in the positive direction so that the virus is easily adsorbed to the resin 10 (antiviral resin member 1). An antiviral effect can be efficiently expressed.
  • Examples of the cationic surfactant that can be used as the surface potential control agent 30 in the present embodiment are tetraalkyl (4 to 100 carbon atoms (hereinafter, the carbon number is also referred to as Cn (n is a positive integer)).
  • Ammonium salts eg lauryltrimethylammonium chloride, didecyldimethylammonium chloride, dioctyldimethylammonium bromide and stearyltrimethylammonium bromide
  • trialkyl (C3-80) benzylammonium salts eg lauryldimethylbenzylammonium chloride
  • alkyl (C2 To 60) pyridinium salts eg cetylpyridinium chloride
  • polyoxyalkylene (C2-4) trialkylammonium salts eg polyoxyethylene trimethyl ammonium)
  • Quaternary ammonium salt types such as sapamine type quaternary ammonium salts (eg stearamide ethyl diethyl methyl ammonium methosulfate), and higher aliphatic amines (C12-60, eg laurylamine, stearylamine, cetylamine, cured Inorganic acids (eg
  • the state and shape of the surface potential control agent are not particularly limited and can be appropriately set by those skilled in the art.
  • the liquid surface potential control agent is contained in the resin, foaming or the like occurs.
  • a solid surface potential control agent is preferred.
  • the content of the surface potential control agent is not particularly limited and can be appropriately set by those skilled in the art, but a range of 0.01% by mass or more and 10.0% by mass or less is preferable. If it is less than 0.01% by mass, the surface potential of the resin cannot be changed sufficiently, and if it exceeds 10.0% by mass, tackiness will appear on the resin surface.
  • the antiviral resin member 1 includes any functional material in addition to the antiviral agent 20 and the surface potential control agent 30 in order to impart a desired function to the resin 10. But you can.
  • the functional material include antibacterial agents, antifungal agents, and catalysts.
  • master batch pellets of resin pellets containing a high concentration of antiviral agent are pre-manufactured, and the master batch pellets are in a certain ratio to the surface potential control agent and resin pellets. And then melt-kneading to produce an antiviral resin member.
  • a commercially available antiviral agent is pulverized into nano-order particles using a jet mill, hammer mill, ball mill, vibration mill, bead mill or the like. It does not specifically limit regarding a grinding
  • an antiviral agent is mixed with a commercially available resin pellet, and this is mixed uniformly in the resin with a kneading extruder, and after cooling, it is finely cut with a pelletizer, Master batch pellets containing a high concentration are obtained.
  • a surface potential control agent may be added together with the antiviral agent to obtain a master batch pellet containing the surface potential control agent.
  • the antiviral resin member 1 when manufactured as a molded product, it can be formed by a method such as injection molding or blow molding.
  • the antiviral resin member 1 in the present invention is, for example, a film shape, a fiber shape, a cloth shape, a mesh shape (network structure), a honeycomb, in addition to those formed by a molding process such as injection molding or blow molding.
  • the shape of a shape, a nonwoven fabric shape, etc. is also included.
  • not only a member formed in a fixed shape but also a member formed in the form of a film, a fiber or the like is referred to as a molded body, and the production thereof is also referred to as molding.
  • the antiviral resin member 1 of the present invention can be manufactured in various forms (shape, size, etc.) suitable for the purpose of use.
  • the antiviral resin member 1 When the antiviral resin member 1 is manufactured as a sheet or film, it can be formed by a T-die method, an inflation method, or the like. Moreover, when manufacturing as a filament (fiber), it can form by the melt spinning method etc. Moreover, when manufacturing as a nonwoven fabric, it can manufacture by the existing manufacturing methods, such as the spun bond method.
  • the resin 10 is manufactured in a form suitable for the purpose of use, and it is impregnated with a monovalent copper compound and / or iodide as an antiviral agent 20 in the form of ions and the like, and is deposited inside the resin 10. Also good.
  • the location where the antiviral agent 20 is present can be controlled by the time and amount of impregnation with the monovalent copper compound and / or iodide ion.
  • FIG. 2 shows how the precipitation state of the antiviral agent 20 changes when the impregnation time and the amount of impregnation with the monovalent copper compound and / or iodide ions are changed.
  • the resin 10 is a granular material, and its cross section is schematically shown.
  • the antiviral agent 20 is present on the surface of the resin 10
  • the surface layer is obtained
  • the surface layer is obtained by changing the impregnation time and the amount of impregnation. And three types are present inside.
  • the heating and stretching process will be described.
  • the antiviral resin member 1 molded by the above method is heated and stretched.
  • the antiviral resin member 1 which is a molded body formed into a fiber shape, a sheet shape, or a film shape is used.
  • antiviral properties can be easily improved.
  • the heating and stretching process may be composed of a plurality of stretching processes.
  • the product of the stretching ratios in each stretching process is the total stretching ratio.
  • a heating extending process consists of a process of extending
  • the stretching method is not particularly limited, and any known stretching method such as a hot roll stretching method, a hot plate stretching method, a tubular stretching method, a stretching blow method, or a laser stretching method may be employed. A higher antiviral effect can be obtained by heating and stretching.
  • stretch methods include, for example, biaxial stretch blow molding for molded products.
  • a higher antiviral effect can be obtained by stretching a preform made in advance by injection molding at a high magnification in two longitudinal and transverse directions and blowing high pressure air into the preform.
  • a film made by the T-die method or the inflation method is used as the antiviral resin member 1, it may be continuously uniaxially or biaxially stretched. This is a process of pulling in a certain direction while heating the film. Therefore, when producing the film which is the antiviral resin member 1 by the T-die method or the inflation method, a higher antiviral effect can be obtained by the stretching step.
  • the film of the T die method is stretched by a flat stretching method. Specifically, in the film running direction (longitudinal direction), the film is stretched by the difference in rotational speed of the take-up roller, and in the lateral direction, the film is gripped with a clip and spread sideways.
  • the tubular method is used for stretching.
  • the film formed by extrusion is heated as it is with a preheating heater, and in the heater section, the longitudinal direction is stretched by the take-up speed of the roll, and the lateral direction is stretched by air pressure.
  • the antiviral resin member 1 of the present embodiment may be in the form of a fiber, for example, a filament fiber.
  • the filament fiber is generally subjected to a drawing process in order to improve the arrangement of molecules constituting the fiber after spinning. Therefore, when a filament fiber obtained by spinning a polymer material containing the antiviral agent 2 as the antiviral resin member 1 is used, a higher antiviral effect can be obtained by this drawing step compared to undrawn yarn.
  • the stretching ratio in the stretching step is appropriately selected depending on the material to be stretched and the stretching method, but is usually set so that the total stretching ratio is 1.5 times or more and 10.0 times or less.
  • the draw ratio is less than 1.5 times, a large change in the antiviral effect cannot be obtained.
  • the draw ratio exceeds 10.0 times, the draw tension becomes extremely high, so that the resin member is likely to be cut and the workability may be lowered.
  • the mechanism of greatly improving the antiviral effect when stretching is not necessarily clear, but in the case of a fibrous antiviral resin member 1, for example, in the resin that has been cooled and solidified in the spinning process, Since it is cooled and solidified from the molten state, the cooling speed differs between the surface layer portion (skin layer) and the inner layer portion (core layer) close to the core portion. Therefore, it is considered that the fiber structure formed in the surface layer part is different from the structure of the fiber inner layer part.
  • the stretching is performed under a heating condition that is equal to or higher than the glass transition point.
  • the structure of the surface layer portion that is different from the inner layer portion has a small difference from the structure of the inner layer portion due to the heat stretching.
  • the virus inactivating fine particles are easily contacted with moisture.
  • This change in structure is thought to inactivate the virus surface charge, DNA, etc., and inactivate it.
  • the antiviral resin member 1 having a sheet shape or film shape other than the fiber shape.
  • the antiviral resin member 1 of the present embodiment includes fibers, agricultural materials such as house films and tunnel house films, stationery such as clear folders and label tapes, sheets, chairs, sofas, outer wall materials, sashes, Doors, blinds, ceiling boards, floor boards, windows and other building materials, wallpaper, carpets, resin tiles and other interior materials, vehicle interior materials, clothing, innerwear, socks, gloves, shoe covers, shoes and other footwear, pajamas , Mats, sheets, pillows, pillow covers, blankets, towels, quilts and quilt covers and other bedding, hats, handkerchiefs, towels, carpets, curtains, air purifiers and air conditioners, ventilation fans, vacuum cleaners, electric fans, etc.
  • stationery such as clear folders and label tapes, sheets, chairs, sofas, outer wall materials, sashes, Doors, blinds, ceiling boards, floor boards, windows and other building materials, wallpaper, carpets, resin tiles and other interior materials, vehicle interior materials, clothing, innerwear, socks, gloves, shoe covers, shoes and other footwear, pajamas , Mat
  • Fishing nets such as ginger and stationary nets, filters for water treatment, filters for drinking water, filters for ballast water treatment, Ninging material, film-like member adhered to the surface of the gulf structure with adhesive or adhesive, member adhered to the surface of a ship such as a fishing boat or tanker, sheet-like member to the intake wall of the power plant, water intake It can be applied to various water contact surface members such as prefilters for mouths, water intake inner surfaces, plate coolers, drain pipes, water supply pipes, or products of fiber structures such as insect screens and meshes for screen printing. Therefore, the present invention is a useful member that can provide various products excellent in various fields.
  • Example 1 Copper iodide fine particles obtained by pulverizing a commercially available copper (I) iodide powder (manufactured by Nippon Chemical Industry Co., Ltd.) to a mean particle size of 150 nm by dry pulverization were obtained.
  • Polyethylene resin pellets, masterbatch pellets, and cationic surfactant are mixed and injection molded so that 3% by weight of copper iodide and 0.5% by weight of cationic surfactant (Lion Corporation, Arcard 22-80) are added.
  • a resin member having antiviral properties as a molded body was obtained by injection molding with a machine.
  • Example 2 In the antiviral resin member, the same as in Example 1 except that polyethylene resin pellets, master batch pellets, and cationic surfactant were mixed so as to be 6% by mass of copper iodide and 1% by mass of cationic surfactant. The molding member which has antiviral property on the conditions of this was obtained.
  • Example 3 Instead of the cationic surfactant used in Example 1, a cationic surfactant (Lion Co., Ltd., ARCARD 2HP flakes) was used, and in the antiviral resin member, 3% by mass of copper iodide, cationic interface A resin member having antiviral properties was obtained under the same conditions as in Example 1 except that polyethylene resin pellets, master batch pellets, and a cationic surfactant were mixed so that the activator was 0.1% by mass.
  • a cationic surfactant Lion Co., Ltd., ARCARD 2HP flakes
  • Example 4 In the antiviral resin member, the same as Example 3 except that polyethylene resin pellets, masterbatch pellets, and cationic surfactant were mixed so as to be 6% by mass of copper iodide and 0.5% by mass of cationic surfactant. Thus, a resin member having antiviral properties was obtained.
  • Example 5 Instead of the cationic surfactant used in Example 1, a cationic surfactant (Lion Corporation, Armac HT Flakes) was used. In the antiviral resin member, 3% by mass of copper iodide, cationic interface A resin member having antiviral properties was obtained under the same conditions as in Example 1 except that polyethylene resin pellets, master batch pellets, and cationic surfactant were mixed so as to be 1% by mass of the activator.
  • a cationic surfactant Lion Corporation, Armac HT Flakes
  • Example 6 In the antiviral resin member, the same as in Example 5 except that polyethylene resin pellets, master batch pellets, and cationic surfactant were mixed so as to be 6% by mass of copper iodide and 0.1% by mass of cationic surfactant. Thus, a resin member having antiviral properties was obtained.
  • Example 7 As an antiviral agent, silver iodide fine particles obtained by pulverizing commercially available silver (I) powder (manufactured by Wako Pure Chemical Industries, Ltd., for chemical use) by dry pulverization to an average particle size of 1.6 ⁇ m were obtained.
  • Polyethylene resin pellets, master batch pellets, and cationic surfactant are mixed and injection molded so that the silver iodide content is 10% by mass and the cationic surfactant (Lion Corporation, Arcard 22-80) is 5% by mass.
  • a resin member having antiviral properties as a molded body was obtained by injection molding with a machine.
  • Example 8 In the antiviral resin member, the same as Example 7 except that polyethylene resin pellets, masterbatch pellets, and cationic surfactant were mixed so as to be 20% by mass of silver iodide and 2% by mass of cationic surfactant. The molding member which has antiviral property on the conditions of this was obtained.
  • Example 9 As an antiviral agent, commercially available copper chloride powder (Wako Pure Chemical Industries, Ltd., Wako first grade) was obtained by dry pulverization to obtain copper chloride fine particles pulverized to an average particle diameter of 150 nm.
  • Polyethylene resin pellets (manufactured by Asahi Kasei Chemicals Co., Ltd.) as a base resin were added so that the obtained copper chloride would be 50% by mass and supplied to a biaxial melt kneader to obtain master batch pellets.
  • Polyethylene resin pellets, masterbatch pellets, and cationic surfactant are mixed so that 30% by mass of copper chloride and 1% by mass of cationic surfactant (Lion Co., Ltd., Arcard 22-80) are injected into the injection molding machine.
  • a resin member having antiviral properties as a molded body was obtained by injection molding.
  • Example 10 In the antiviral resin member, the same as in Example 9 except that polyethylene resin pellets, masterbatch pellets, and cationic surfactant were mixed so as to be 40% by mass of copper chloride and 0.01% by mass of cationic surfactant. A molded member having antiviral properties under the conditions was obtained.
  • Example 11 Silver iodide fine particles obtained by pulverizing commercially available copper oxide powder (Wako Pure Chemical Industries, Ltd., Wako First Grade) as an antiviral agent by dry pulverization to an average particle diameter of 400 nm were obtained.
  • Polyethylene resin pellets (manufactured by Asahi Kasei Chemicals Co., Ltd.) as a base resin were added so that the obtained copper oxide would be 30% by mass and supplied to a biaxial melt kneader to obtain master batch pellets.
  • Polyethylene resin pellets, masterbatch pellets, and cationic surfactant are mixed so that the copper oxide content is 0.5 mass% and the cationic surfactant (Lion Corporation, Arcard 22-80) is 10 mass%.
  • a resin member having antiviral properties as a molded body was obtained by injection molding.
  • Example 12 In the antiviral resin member, the same as in Example 11 except that polyethylene resin pellets, master batch pellets, and cationic surfactant were mixed so as to be 5% by mass of copper oxide and 3% by mass of cationic surfactant. A resin member having antiviral properties under the conditions was obtained.
  • Example 2 In the antiviral resin member, a resin member was obtained under the same conditions as in Example 1, except that the surfactant was not contained and the polyethylene resin pellets and the master batch pellets were mixed so as to be 3% by mass of copper iodide. It was.
  • Comparative Example 3 Comparative Example 1 except that the antiviral resin member was mixed with polyethylene resin pellets so as to contain 0.5% by mass of a cationic surfactant (Lion Corporation, ARCARD 22-80) without containing copper iodide. A resin member was obtained under the same conditions.
  • a cationic surfactant Lion Corporation, ARCARD 22-80
  • Comparative Example 4 Comparative Example 3 except that the antiviral resin member was mixed with polyethylene resin pellets so as to contain 0.5% by mass of a cationic surfactant (Lion Co., Ltd., Arcard 2HP flakes) without containing copper iodide. A resin member was obtained under the same conditions.
  • a cationic surfactant Lion Co., Ltd., Arcard 2HP flakes
  • Comparative Example 5 Comparative Example 3 except that the antiviral resin member was mixed with polyethylene resin pellets so as to contain 0.5% by mass of a cationic surfactant (made by Lion Corporation, Armac HT Flakes) without containing copper iodide. A resin member was obtained under the same conditions.
  • a cationic surfactant made by Lion Corporation, Armac HT Flakes
  • Example 6 Comparative Example 6
  • a nonionic surfactant manufactured by Lion Corporation, Electro Stripper TS-3B
  • the antiviral resin member 3% by mass of copper iodide, nonion A resin member was obtained under the same conditions as in Example 1 except that polyethylene resin pellets, master batch pellets, and cationic surfactant were mixed so that the amount of the surfactant was 0.5% by mass.
  • Example 7 In place of the cationic surfactant used in Example 1, an anionic surfactant (Taika Power LN2450, manufactured by Teika Co., Ltd.) was used. In the antiviral resin member, 3% by mass of copper iodide, anionic interface A resin member was obtained under the same conditions as in Example 1 except that polyethylene resin pellets, masterbatch pellets, and a cationic surfactant were mixed so that the activator was 0.5% by mass.
  • an anionic surfactant Teika Power LN2450, manufactured by Teika Co., Ltd.
  • Table 1 shows the configurations of the molded members of Examples 1 to 6 and Comparative Examples 1 to 7 described above.
  • Example 13 Copper iodide fine particles obtained by pulverizing commercially available copper (I) powder (manufactured by Nippon Chemical Industry Co., Ltd.) to a mean particle size of 120 nm by dry pulverization were obtained.
  • Polyethylene resin pellets, masterbatch pellets, and cationic surfactants are mixed so that 3% by weight of copper iodide and 0.1% by weight of cationic surfactant (Lion Corporation, ARCARD 2HP flakes) are added.
  • a sheet-shaped resin member having an antiviral property of 50 ⁇ m in thickness was obtained with a molding machine.
  • Example 14 In the sheet molded member, the same conditions as in Example 13 except that polyethylene resin pellets, masterbatch pellets, and cationic surfactant were mixed so as to be 5% by mass of copper iodide and 0.1% by mass of cationic surfactant. Thus, a sheet-like resin member having antiviral properties was obtained.
  • Example 15 Instead of the polyethylene resin pellets used in Example 13, polypropylene resin pellets (manufactured by Nippon Polypro Co., Ltd.) were used, and a sheet-like antiviral property was obtained under the same conditions as in Example 13 except that the thickness was 300 ⁇ m. A resin member was obtained.
  • Example 16 In the sheet molded member, the same conditions as in Example 15 except that polypropylene resin pellets, master batch pellets, and cationic surfactant were mixed so that the copper iodide was 5% by mass and the cationic surfactant was 0.1% by mass. Thus, a sheet-like resin member having antiviral properties was obtained.
  • Example 17 In the sheet molded member, the sheet-like resin member obtained in Example 13 was biaxially stretched at a draw ratio of 1.5 times by a tenter to obtain a sheet-like resin member having antiviral properties.
  • Example 18 In the sheet molded member, the sheet-like resin member obtained in Example 15 was biaxially stretched at a stretch ratio of 10 times with a tenter to obtain a sheet-like resin member having antiviral properties.
  • Example 19 In the sheet molded member, the same conditions as in Example 13 except that polyethylene resin pellets, master batch pellets, and cationic surfactant were mixed so that the copper iodide was 0.3% by mass and the cationic surfactant was 0.1% by mass. Thus, a sheet-like resin member having antiviral properties was obtained.
  • Example 20 Copper iodide fine particles obtained by pulverizing a commercially available copper (I) iodide powder (manufactured by Nippon Chemical Industry Co., Ltd.) to a mean particle size of 150 nm by dry pulverization were obtained.
  • a polyester resin manufactured by Unitika Co., Ltd.
  • a base resin was added so that the obtained copper iodide was 20% by mass, and the resultant was supplied to a biaxial melt kneader to obtain a master batch pellet.
  • Monofilament spinning by mixing polyethylene resin pellets, masterbatch pellets and cationic surfactant so that 3% by weight of copper iodide and 0.1% by weight of cationic surfactant (Lion Corporation, Arcard 22-80) It was melt-spun using an apparatus (manufactured by Chubu Chemical Machinery Co., Ltd.), cooled and solidified by passing through a water bath heated to 60 ° C., and a polyester monofilament having a fiber diameter of 300 ⁇ m was wound at a spinning speed of 20 m / min. .
  • the wound yarn is passed through a wet drawing apparatus that can be heated with steam at a drawing temperature of 100 ° C., a feeding speed of 20 m / min, a winding speed of 70 m / min, and a fiber diameter of 100 ⁇ m drawn 3.5 times.
  • a resin fiber having antiviral properties was obtained.
  • Example 20 resin fibers were obtained in the same manner as in Example 20, except that the masterbatch pellet and the cationic surfactant were not mixed and the antiviral agent was not contained.
  • Table 3 shows the configurations of the resin fibers of Example 20 and Comparative Example 10 described above.
  • influenza virus influenza A / Kitakyushu / 159/93 (H3N2)
  • MDCK cells as a virus with an envelope
  • norovirus as a virus without an envelope.
  • the feline calicivirus which is generally used as a substitute virus for the above was used.
  • injection molding, sheet-like member The injection molding and sheet-like members (20 mm ⁇ 20 mm) of Examples and Comparative Examples were placed in a plastic petri dish, and 25 ⁇ L of virus solution was dropped and allowed to act at room temperature for 60 minutes. At this time, by covering the upper surface of the test piece of the resin member with a PP film (20 mm ⁇ 20 mm), the contact area between the virus solution and the test piece was made constant and the test was performed. After acting for 60 minutes, 975 ⁇ L of SCDLP medium was added to stop the reaction, and the virus was washed out by pipetting.
  • dilution was performed with a MEM diluent until the virus solution after each reaction reached 10 ⁇ 2 to 10 ⁇ 5 (10-fold serial dilution) to prepare a sample solution.
  • 100 ⁇ L of the sample solution was inoculated on MDCK cells cultured in a petri dish. Number of plaques formed after allowing to stand for 60 minutes to adsorb the virus to cells, overlaying 0.7% agar medium, culturing in 34 ° C, 5% CO 2 incubator for 48 hours, fixing with formalin and staining with methylene blue Were counted, and the virus infectivity titer (PFU / 0.1 mL, Log 10); (PFU: plaque-forming units) was calculated.
  • Example 20 and Comparative Example 10 (in an amount such that the fiber surface area becomes 400 mm 2 ) were placed in a sterilized 1.5 mL tube, and 200 ⁇ L of virus solution was dropped and allowed to act at room temperature for 60 minutes. After acting for 60 minutes, 1800 ⁇ L of SCDLP medium was added, and the virus was washed out by vortexing. Thereafter, dilution was performed with a MEM diluent until each reaction sample was 10 ⁇ 2 to 10 ⁇ 5 (10-fold serial dilution). 100 ⁇ L of the sample solution was inoculated on MDCK cells cultured in a petri dish.
  • the surface potential was measured using a zeta potential measurement system (ELSZ-1 manufactured by Otsuka Electronics Co., Ltd.) after cutting out the resin members of Examples and Comparative Examples to a size of 10 ⁇ 25 mm.
  • ELSZ-1 zeta potential measurement system manufactured by Otsuka Electronics Co., Ltd.
  • Table 4 summarizes the measurement results of the antiviral resin members which are the molded members of Examples 1 to 12 and Comparative Examples 1 to 7 described above.
  • Comparative Examples 6 and 7 contain nonionic and anionic surfactants, but the surface potential does not change in the positive direction.
  • the infection titer of influenza (with envelope) virus is lower than that of Comparative Examples 1 and 2 that do not contain a surfactant, but infection with feline calici (without envelope) virus. The price has not decreased.
  • Table 5 summarizes the measurement results of the antiviral resin members which are the sheet members of Examples 13 to 19 and Comparative Examples 8 to 9.
  • Example 19 in which the content of the antiviral agent was less than the preferred range had a higher infectious value than the other examples in the range, and the metal ion elution amount was also less than the preferred range.
  • Table 6 summarizes the measurement results of the fibrous antiviral resin members of Example 20 and Comparative Example 10.
  • the resin member having antiviral properties obtained in the present invention has antiviral properties.
  • Resin 20 Antiviral agent 30: Surface potential control agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】効率よくウイルスを不活化でき、かつ持続性に優れた抗ウイルス性樹脂部材を提供する。 【解決手段】樹脂と抗ウイルス剤と表面電位制御剤とを含む抗ウイルス性樹脂部材であって、前記表面電位制御剤は前記抗ウイルス性樹脂部材の表面の電位を前記樹脂単体での電位よりもプラス方向に電位を変化させることを特徴とする抗ウイルス性樹脂部材。

Description

抗ウイルス性樹脂部材
 本発明はウイルスを不活化する樹脂部材に関し、特にエンベロープの有無に関わらず、また脂質やタンパクの存在下でも、付着した様々なウイルスを不活化することができる抗ウイルス性樹脂部材に関する。
 近年、SARS(重症急性呼吸器症候群)やノロウイルス、鳥インフルエンザなどウイルス感染による死者が報告されている。さらに現在、交通の発達やウイルスの突然変異によって、世界中にウイルス感染が広がる「パンデミック(感染爆発)」の危機に直面している。さらに新型インフルエンザや口蹄疫による大きな被害も出てきており、緊急の対策が急務である。このような事態に対応するために、ワクチンによる抗ウイルス剤の開発も急がれているが、ワクチンの場合、その特異性により、感染を防ぐことができるのは特定のウイルスに限定される。
 また病院や診療所においては、保菌者あるいは感染者によって院内へ持ち込まれたMRSA(メチシリン耐性黄色ブドウ球菌)や抗生剤投与によって黄色ブドウ球菌からMRSAへと変異した株が、患者から直接、あるいは医療従事者、または白衣やパジャマ、シーツ、手袋などの使用物品、壁やエアコンなどの設備を含む環境を介して、患者・医療従事者に接触感染を生じる院内感染が社会的にも大きな問題になってきている。したがって、様々なウイルスやバクテリアに有効な、抗菌、抗ウイルス効果を発揮することができる抗ウイルス性を有する部材の開発が強く望まれている。
 これらの問題を解決するために、特許文献1では抗菌性フィルムや、抗菌性物質を医療装置表面へ適用した方法が提案されている。特許文献2では抗ウイルス性物質を含む繊維や、抗ウイルス性繊維を用いた繊維構造体などが提案されている。
特表2009-523890号公報 特許4584339号公報
 しかしながら、特許文献1のマスクについては大腸菌などの菌類に対する効果が示されているものの、ウイルスについての実施例は示されておらず、したがって、ウイルスを不活化する作用を有するか否かについては不明である。
 また、特許文献2の抗ウイルス性繊維構造体については、繊維状の布帛などには適用できるものの、繊維を用いないフィルムやシート、成形体については適用できるか不明である。
 本発明は、このような従来の問題を解決するためになされたもので、効率よくウイルスを不活化でき、かつ持続性に優れた抗ウイルス性樹脂部材を提供することを目的とする。
 第1の発明は、樹脂と、抗ウイルス剤と、カチオン系界面活性剤からなる表面電位制御剤と、を含む抗ウイルス性樹脂部材であって、前記表面電位制御剤は前記抗ウイルス性樹脂部材の表面の電位を前記樹脂単体の表面の電位よりもプラス方向に変化させることを特徴とする抗ウイルス性樹脂部材を提供するものである。
 第2の発明は、前記抗ウイルス剤は、ヨウ素と、周期律表の第4周期から第6周期かつ8族から15族の元素のうちの少なくとも1種の元素と、からなるヨウ化物の粒子を有効成分として含むことを特徴とする第1の発明に記載の抗ウイルス性樹脂部材を提供するものである。
 第3の発明は、前記周期律表の第4周期から第6周期かつ8族から15族の元素が、Cu、Ag、Sb、Ir、Ge、Sn、Tl、Pt、Pd、Bi、Au、Fe、Co、Ni、Zn、In、又はHgであることを特徴とする第2の発明に記載の抗ウイルス性樹脂部材を提供するものである。
 第4の発明は、前記抗ウイルス剤は、少なくとも1種の一価の銅化合物の粒子を有効成分として含むことを特徴とする第1から第3の発明のいずれか一つに記載の抗ウイルス性樹脂部材を提供するものである。
 第5の発明は、前記一価の銅化合物が、塩化物、酢酸化合物、硫化物、ヨウ化物、臭化物、過酸化物、酸化物、またはチオシアン化物であることを特徴とする第4の発明に記載の抗ウイルス性樹脂部材を提供するものである。
 第6の発明は、前記抗ウイルス性樹脂部材は、成形後、さらに加熱延伸された成形体であることを特徴とする第1から第5の発明のいずれか1つに記載の抗ウイルス性部材を提供するものである。
 第7の発明は、樹脂と、抗ウイルス剤と、カチオン系界面活性剤からなる表面電位制御剤と、を用いて成形体を形成し、前記成形体を加熱延伸することを特徴とする抗ウイルス性樹脂部材の製造方法である。
 本発明によれば、抗ウイルス剤と表面電位制御剤を樹脂中に含有することで、樹脂部材の表面にウイルスが吸着しやすくなるように電位を制御することにより、抗ウイルス剤により効率よくウイルスを不活化することができる。特にエンベロープを持たないウイルスに対しても、表面電位制御剤を含むことで効率よくウイルスを不活化することができる。さらに、樹脂中に抗ウイルス剤と表面電位制御剤を含有することで抗ウイルス剤が剥離しにくく、より長期間ウイルス不活化効果が持続する、抗ウイルス性を有する樹脂部材を提供することができる。
本実施形態の抗ウイルス性を有する樹脂部材の模式図である。 一価の銅化合物および/またはヨウ化物のイオンを含浸させる含浸時間と含浸させる量を変化させた場合の、抗ウイルス剤の析出状態が変化する様子を示した図である。
 以下、本発明の実施形態について図1を用いてさらに詳述する。
 図1は、本発明の実施形態である抗ウイルス性を有する樹脂部材1の断面の一部を模式的に表した図である。抗ウイルス性を有する樹脂部材1は、樹脂10と、抗ウイルス剤20と、表面電位制御剤30と、を含んで構成され、たとえば、図1に示すように、抗ウイルス剤20と表面電位制御剤30とが、樹脂10に分散して含有される形態とすることができる。
 本発明の実施形態の樹脂10としては、特に限定されないが、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、EVA樹脂、ポリメチルペンテン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂などの熱可塑性樹脂、シリコーン樹脂、ポリスチレンエラストマーなどのスチレン系エラストマー、ポリエチレンエラストマー、ポリプロピレンエラストマーなどのオレフィン系エラストマー、ポリウレタンエラストマーなどのポリウレタン系エラストマー、塩ビ系エラストマー、ポリエステル系エラストマー、ナイロン系エラストマーなどの熱可塑性エラストマーが挙げられる。
 本実施形態の抗ウイルス剤20は、ウイルスを不活化する物質であれば特に限定されないが、一価の銅化合物微粒子および/またはヨウ化物微粒子が好ましく、これらの微粒子であれば、エンベロープの有無に係らずウイルスを不活化可能である。
 ウイルス不活化微粒子のウイルスの不活化機構については現在のところ必ずしも明確ではないが、ウイルス不活化微粒子が空気中あるいは飛沫中の水分と接触すると、その一部が、酸化還元反応したり、活性種を発生させることにより、実施形態の抗ウイルス性樹脂部材に付着したウイルス表面の電気的チャージやDNAなどに何らかの影響を与えて不活化させるものと考えられる。
 本実施形態における抗ウイルス性を有する少なくとも1種のヨウ化物は、ヨウ素と周期律表の第4周期から第6周期かつ8族から15族の元素とからなる。周期律表の第4周期から第6周期かつ8族から15族の元素は、Cu、Ag、Sb、Ir、Ge、Sn、Tl、Pt、Pd、Bi、Au、Fe、Co、Ni、Zn、In、またはHgとするのが好適である。さらに、本実施形態の抗ウイルス剤に含有されるヨウ化物の粒子として、CuI、AgI、SbI、IrI、GeI、GeI、SnI、SnI、TlI、PtI、PtI、PdI、BiI、AuI、AuI、FeI、CoI、NiI、ZnI、HgI、およびInIからなる群から少なくとも1つ選択される粒子とすることが一層好適である。
 一方、本実施形態における抗ウイルス性を有する一価の銅化合物としては、塩化物、酢酸化合物、硫化物、ヨウ化物、臭化物、過酸化物、酸化物、またはチオシアン化物とすることが好適である。さらに、本実施形態の抗ウイルス剤に含有される一価の銅化合物の粒子として、CuCl、Cu(CHCOO)、CuBr、CuI、CuSCN、CuSおよびCuOからなる群から少なくとも1つ選択される粒子とすることが一層好適である。
 特に、本実施形態の抗ウイルス剤20においては、ヨウ化物または一価の銅化合物の粒子のうち、空気中における保存安定性に優れるCuI、AgI、SnI、CuCl、CuBr、CuSCNからなる群から少なくとも1種選択される粒子とすることが一層好適である。
 本実施形態の抗ウイルス剤において不活性化できるウイルスについては特に限定されず、ゲノムの種類や、エンベロープの有無等に係ることなく、様々なウイルスを不活化することができる。例えば、ライノウイルス、ポリオウイルス、ロタウイルス、口蹄疫ウイルス、ノロウイルス、エンテロウイルス、ヘパトウイルス、アストロウイルス、サポウイルス、E型肝炎ウイルス、A型、B型、C型インフルエンザウイルス、パラインフルエンザウイルス、ムンプスウイルス(おたふくかぜ)、麻疹ウイルス、ヒトメタニューモウイルス、RSウイルス、ニパウイルス、ヘンドラウイルス、黄熱ウイルス、デングウイルス、日本脳炎ウイルス、ウエストナイルウイルス、B型、C型肝炎ウイルス、東部および西部馬脳炎ウイルス、オニョンニョンウイルス、風疹ウイルス、ラッサウイルス、フニンウイルス、マチュポウイルス、グアナリトウイルス、サビアウイルス、クリミアコンゴ出血熱ウイルス、スナバエ熱、ハンタウイルス、シンノンブレウイルス、狂犬病ウイルス、エボラウイルス、マーブルグウイルス、コウモリ、リッサウイルス、ヒトT細胞白血病ウイルス、ヒト免疫不全ウイルス、ヒトコロナウイルス、SARSコロナウイルス、ヒトポルボウイルス、ポリオーマウイルス、ヒトパピローマウイルス、アデノウイルス、ヘルペスウイルス、水痘、帯状発疹ウイルス、EBウイルス、サイトメガロウイルス、天然痘ウイルス、サル痘ウイルス、牛痘ウイルス、モラシポックスウイルス、パラポックスウイルスなどを挙げることができる。
 本実施形態において、抗ウイルス剤の粒子の大きさは特に限定されず、当業者が適宜設定することができるが、樹脂部材の強度の低下を考慮すると3μm以下であることが好ましい。また、本実施形態においては特に限定されず、当業者が適宜設定可能であるが、粒子の大きさは1nm以上とすることが、粒子の製造上、取扱上および化学的安定性の観点より好ましい。なお、本明細書において、平均粒子径とは、体積平均粒子径のことをいう。
 本実施形態において、抗ウイルス剤の含有量は特に限定されず、当業者が適宜設定することができる。樹脂部材1全体に抗ウイルス剤を含有する場合には、樹脂部材1において0.5質量%以上40質量%以下の範囲が好ましい。0.5質量%未満であると抗ウイルス性は効果が低くなり、40質量%以下の充填で実用上十分な抗ウイルス性が得られており、それ以上充填すると樹脂部材の強度が低下する。
 本実施形態において、樹脂部材全体に抗ウイルス剤を充填する以外に樹脂部材の表層部分だけに抗ウイルス剤を充填してもよい。つまり、抗ウイルス効果を発現させる部分のみ抗ウイルス剤を充填すればよい。例えば、フィルム形状では2層フィルムにすることで効果の出したい面のみに抗ウイルス剤を充填することも可能であり、また繊維形状においては芯鞘構造にすることで鞘部のみに抗ウイルス剤を充填することも可能である。このため、抗ウイルス剤の含有量を少なくすることが可能となり、樹脂部材中の強度低下を抑えつつ、高い抗ウイルス効果を得ることができ、より安価に製造することが可能となる。
 この場合、生理食塩水に60分間浸漬させた際に、樹脂部材の表層部から溶出する抗ウイルス剤の金属イオンとしての溶出量が0.1mg/m2以上100mg/m2以下の範囲が好ましい。0.1mg/m2未満であると抗ウイルス効果が低くなり、100mg/m2を超えると、抗ウイルス効果が100mg/m2以下と比較しても大差はなくなる。なお本明細書において、溶出量とは抗ウイルス効果を発現する単位表面積あたりの抗ウイルス剤の金属イオンとしての溶出量のことをいう。
 溶出量の測定方法は、サンプルとなる抗ウイルス性樹脂部材を生理食塩水に60分間浸漬させ後に、溶出した金属イオンの量を定量し、浸漬面の単位面積あたりの溶出量を算出する。
 表面電位制御剤30は、樹脂に含有することで、樹脂単体の場合よりも、樹脂の表面の電位をプラス方向に制御するものである。本実施形態の表面電位制御剤30としては、樹脂の表面の電位をプラス側に変化させることができるものであれば特に限定されないが、カチオン系界面活性剤を用いることが好ましい。
 樹脂の表面電位は一般的にマイナスであり、ゲノムの種類や、エンベロープの有無等に係ることなくウイルスの表面電位もマイナスであるため、樹脂表面にウイルスは吸着しにくい。よって、樹脂に抗ウイルス剤のみを含有しても抗ウイルス効果は発現されにくい。表面電位制御剤30を樹脂10に含有することにより、樹脂10の表面電位をプラス方向に制御することでウイルスが樹脂10(抗ウイルス性樹脂部材1)に吸着しやすくなり、抗ウイルス剤20による抗ウイルス効果を効率よく発現することができる。
 本実施形態における表面電位制御剤30として用いることができるカチオン系界面活性剤としては、例えば、テトラアルキル(炭素数4~100(以下、炭素数をCn(nは正の整数)とも記載する。))アンモニウム塩(例えばラウリルトリメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、ジオクチルジメチルアンモニウムブロマイドおよびステアリルトリメチルアンモニウムブロマイド)、トリアルキル(C3~80)ベンジルアンモニウム塩(例えばラウリルジメチルベンジルアンモニウムクロライド)、アルキル(C2~60)ピリジニウム塩(例えばセチルピリジニウムクロライド)、ポリオキシアルキレン(C2~4)トリアルキルアンモニウム塩(例えばポリオキシエチレントリメチルアンモニウムクロライド)、サパミン型第4級アンモニウム塩(例えばステアラミドエチルジエチルメチルアンモニウムメトサルフェート)などの第4級アンモニウム塩型や、高級脂肪族アミン(C12~60、例えばラウリルアミン、ステアリルアミン、セチルアミン、硬化牛脂アミンおよびロジンアミン)の無機酸(例えば塩酸、硫酸、硝酸およびリン酸)塩または有機酸(C2~22、例えば酢酸、プロピオン酸、ラウリル酸、オレイン酸、安息香酸、コハク酸、アジピン酸およびアゼライン酸)塩、脂肪族アミン(C1~30)のEO付加物等の無機酸(例えば塩酸、硫酸、硝酸およびリン酸)塩または有機酸(C2~22、例えば酢酸、プロピオン酸、ラウリル酸、オレイン酸、安息香酸、コハク酸、アジピン酸およびアゼライン酸)塩および3級アミン(C3~30、例えばトリエタノールアミンモノステアレートおよびステアラミドエチルジエチルメチルエタノールアミン)の無機酸(例えば塩酸、硫酸、硝酸およびリン酸)塩または有機酸(C2~22、例えば酢酸、プロピオン酸、ラウリル酸、オレイン酸、安息香酸、コハク酸、アジピン酸およびアゼライン酸)塩などのアミン塩型などが挙げられる。
 本実施形態において、表面電位制御剤の状態・形状は特に限定されず、当業者が適宜設定することができるが、液状の表面電位制御剤であると樹脂に含有する際に発泡などが起こるため、固体の表面電位制御剤であることが好ましい。
 本実施形態において、表面電位制御剤の含有量は特に限定されず、当業者が適宜設定することができるが、0.01質量%以上10.0質量%以下の範囲が好ましい。0.01質量%未満であると樹脂の表面電位を十分に変化させることができず、10.0質量%を超えると樹脂表面にタック性がでる。
 このほか、本発明の実施形態において、抗ウイルス性樹脂部材1は、抗ウイルス剤20と表面電位制御剤30のほか、所望の機能を樹脂10に付与するために、任意の機能性材料を含んでもよい。当該機能性材料としては、抗菌剤、防黴剤、および触媒などを挙げることができる。
 続いて、抗ウイルス性を有する樹脂部材1の製造方法について、より具体的に説明する。
 抗ウイルス性樹脂部材の合理的かつ安価な製造方法として、高濃度の抗ウイルス剤を含有した樹脂ペレットのマスターバッチペレットを予め製造し、マスターバッチペレットを表面電位制御剤と樹脂ペレットに一定の割合で混合し、さらに溶融混練して抗ウイルス性を有する樹脂部材を製造する。
 まず、市販の抗ウイルス剤をジェットミル、ハンマーミル、ボールミル、振動ミル、ビーズミルなどによりナノオーダーの粒子に粉砕する。粉砕方法に関しては特に限定されず、乾式、湿式の両方が利用可能である。抗ウイルス剤として3μm以下の粒子を使用する場合については必ずしも粉砕工程を行う必要はない。また、抗ウイルス剤を合成することによりナノオーダーの粒子を得てもよく、この場合も粉砕工程は必要ない。
 マスターバッチペレットの製造方法としては、抗ウイルス剤を市販の樹脂ペレットと混合し、これを混練押出機にて抗ウイルス剤を樹脂内部に均一に含有させ、冷却後、ペレタイザにて細かくカットし、高濃度に含有したマスターバッチペレットを得る。
 抗ウイルス剤を高濃度に含有したマスターバッチペレットを、表面電位制御剤と、上記樹脂ペレットと同じ樹脂ペレットに所定の割合になるように混合し、これを溶融混練し、成形機にて成形することで、抗ウイルス剤、表面電位制御剤が樹脂中に均一に分散された抗ウイルス性を有する樹脂部材1を得ることができる。
 なお、マスターバッチペレットを作成する段階で、抗ウイルス剤とともに表面電位制御剤を添加して、表面電位制御剤を含むマスターバッチペレットを得てもよい。
 また、抗ウイルス性樹脂部材1は、成形品として製造する場合には射出成形、ブロー成形などの方法で形成することができる。
 なお本発明における、抗ウイルス性樹脂部材1は、射出成形やブロー成形などの成形処理によって形成されるもの以外にも、例えば、フィルム状、繊維状、布状、メッシュ状(網状構造)、ハニカム状、不織布状などの形態のものも含む。本明細書においては一定の形の部材に形成されたものだけでなくフィルムや繊維等の形態で形成されたものについても成形体といい、これらを製造することを成形ともいう。本発明の抗ウイルス性樹脂部材1は、使用目的に合った様々な形態(形状、大きさ等)で製造することが可能である。抗ウイルス性樹脂部材1をシート、フィルムとして製造する場合にはTダイ法、インフレーション法などで形成することができる。また、フィラメント(繊維)として製造する場合には溶融紡糸法などにより形成することができる。また、不織布として製造する場合にはスパンボンド法などの既存の製造方法により製造することができる。
 次に、本発明おける抗ウイルス性樹脂部材1の他の製造方法について説明する。まず樹脂10のみを使用目的に合った形態で製造し、そこに抗ウイルス剤20としての一価の銅化合物および/またはヨウ化物をイオンなどの状態で含浸させ、樹脂10の内部に析出させてもよい。一価の銅化合物および/またはヨウ化物のイオンを含浸させる時間と含浸させる量によって抗ウイルス剤20が存在する場所を制御できる。ここで、図2には、一価の銅化合物および/またはヨウ化物のイオンを含浸させる含浸時間と含浸させる量を変化させた場合の、抗ウイルス剤20の析出状態が変化する様子を示した図を示す。なお、図2においては、樹脂10が粒状物であり、その断面を模式的に示している。図2では、含浸時間と含浸量を変化させることで得られる、(a)抗ウイルス剤20が樹脂10の表面部に存在するもの、(b)表層部に存在するもの、(c)表層部および内部に存在するもの、の3種類を示している。
 次に、加熱延伸工程について説明する。加熱延伸工程では、上記の方法で成形された抗ウイルス性樹脂部材1を加熱して伸ばす工程であり、特に繊維状、シート状、フィルム状に成形した成形体である抗ウイルス性樹脂部材1に対して行うことで簡単に抗ウイルス性を向上させることができるものである。加熱延伸工程は複数の延伸工程で構成されていても良い。加熱延伸工程が複数の延伸工程を有する場合は、各延伸工程における延伸倍率の積が、総延伸倍率となる。なお、加熱延伸工程が1回の延伸する工程からなる場合には、この1回の延伸する工程における延伸倍率が総延伸倍率となる。
 延伸方法についても特に限定されるものではなく、ホットロール延伸法、熱板延伸法、チューブラー延伸法、延伸ブロー法、レーザー延伸法等、公知のいずれの延伸方法を採用しても良い。加熱延伸することで、より高い抗ウイルス効果が得られる。
 延伸方法としては他にも例えば、成形体では2軸延伸ブロー成形法がある。あらかじめ射出成形でつくったプリフォームを縦・横2方向に高倍率で延伸し、高圧空気を吹き込んで成形することにより、より高い抗ウイルス効果が得られる。
 また例えば、抗ウイルス性樹脂部材1として、Tダイ法やインフレーション法で作られたフィルムを用いる場合であれば、続けて一軸延伸あるいは二軸延伸される場合がある。これはフィルムを加熱しながら一定方向に引っ張る処理である。よってTダイ法やインフレーション法で抗ウイルス性樹脂部材1であるフィルムを作成する場合、その延伸工程により、より高い抗ウイルス効果が得られる。Tダイ法のフィルムはフラット延伸法で延伸される。具体的にはフィルム走行方向(縦方向)に関しては引き取りローラーの回転速度差で延伸され、横方向に関してはクリップでフィルムを把持し横に拡げる。縦方向に延伸し次に横方向に延伸する逐次二軸延伸や、縦・横同時に延伸する同時二軸延伸や、縦―横―縦の三段階など複数段階で延伸する多段延伸などがある。
 インフレーション法のフィルムの場合は、チューブラー法にて延伸をする。押出製膜したフィルムをそのまま予熱ヒーターで加熱した後、ヒーター部で、縦方向はロールの引き取り速度で、横方向は空気圧で延伸する。
 また例えば、上述の通り本実施形態の抗ウイルス性樹脂部材1は繊維状でもよく、たとえばフィラメント繊維として形成してもよい。フィラメント繊維については、一般的に紡糸した後に繊維を構成する分子の配列をよくするために、延伸工程を行っている。従って、抗ウイルス性樹脂部材1として抗ウイルス剤2を含む高分子材料を紡糸して得られるフィラメント繊維を用いる場合、この延伸工程により未延伸糸に比べより高い抗ウイルス効果が得られる。
 延伸工程での延伸倍率は、被延伸処理物、延伸方法に応じて適宜選定されるが、通常、総延伸倍率が1.5倍以上10.0倍以下になるように設定される。延伸倍率が1.5倍未満の場合には、抗ウイルス効果の大きな変化は得られない。また、延伸倍率が10.0倍を超える場合には、延伸張力が極めて高くなるため、樹脂部材が切れ易くなり、加工性が低下する場合がある。
 延伸を加えると抗ウイルス効果が大きく向上する機構については現在のところ必ずしも明確ではないが、たとえば繊維状の抗ウイルス性樹脂部材1の場合には、紡糸工程で冷却固化された段階の樹脂においては、溶融状態から冷却されて固化されているために、表層部(スキン層)と芯部に近い内層部(コア層)において冷却スピードが異なる。そのため、表層部に形成される繊維構造は繊維内層部の構造と差があると考えられる。その状態で加熱延伸を行うと、ガラス転移点以上の加熱条件下で延伸が行われるために、内層部とは異なった表層部の構造が、加熱延伸により、内層部の構造との差が少なくなる構造に変化することで、ウイルス不活化微粒子が水分と接触しやすい構造となる。この構造の変化によってウイルス表面のチャージやDNA等に何らかの影響を与えて不活化させるものと考えられる。繊維状以外のシート状やフィルム状の抗ウイルス性樹脂部材1についても同様である。
 したがって、本実施形態の抗ウイルス性樹脂部材1は、繊維や、ハウス用フィルム、トンネルハウス用フィルムなどの農業資材、クリアフォルダ、ラベルテープなどの文房具、シート、椅子、ソファー、外壁材、サッシ、ドア、ブラインド、天井板、床板、窓などの建装材、壁紙、カーペット、樹脂タイルなどの内装材、車両用内装材、衣類、インナーウェア、靴下、手袋、靴カバー、靴等の履物、パジャマ、マット、シーツ、枕、枕カバー、毛布、タオルケット、蒲団および蒲団カバーなどの寝装材、帽子、ハンカチ、タオル、絨毯、カーテン、空気清浄機やエアコン、換気扇、電気掃除機、扇風機などのフィルター、生簀や定置網などの漁網、水処理用のフィルター、飲料水用フィルター、バラスト水処理用のフィルター、配管内のライニング材、湾岸構造物表面に接着剤や粘着剤で付着させたフィルム状部材、漁船やタンカーなどの船舶表面にシート状として接着させた部材、発電所の取水口内壁へのシート状部材、取水口用プレフィルター、取水口内面、プレートクーラー、排水管、給水管など、様々な接水面用部材または防虫網やスクリーン印刷用メッシュなどの繊維構造体の製品へ応用が可能となる。従って、本発明は、様々な分野に優れた各種製品を提供することができる有用な部材である。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
 (抗ウイルス性を有する射出成形部材の作製)
 (実施例1)
 市販のヨウ化銅(I)粉末(日本化学産業株式会社製)を乾式粉砕にて、平均粒子径150nmに粉砕したヨウ化銅微粒子を得た。
 得られたヨウ化銅を42質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて調製し、2軸溶融混練機に供給し、マスターバッチペレットを得た。
 ヨウ化銅3質量%、カチオン系界面活性剤(ライオン株式会社製、アーカード22-80)0.5質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合し、射出成形機にて射出成形により成形体である抗ウイルス性を有する樹脂部材を得た。
 (実施例2)
 抗ウイルス性樹脂部材において、ヨウ化銅6質量%、カチオン系界面活性剤1質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例1と同様の条件で抗ウイルス性を有する成形部材を得た。
 (実施例3)
 実施例1で用いたカチオン系界面活性剤の代わりに、カチオン系界面活性剤(ライオン株式会社製、アーカード2HPフレーク)を用い、抗ウイルス性樹脂部材において、ヨウ化銅3質量%、カチオン系界面活性剤0.1質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例1と同様の条件で抗ウイルス性を有する樹脂部材を得た。
 (実施例4)
 抗ウイルス性樹脂部材において、ヨウ化銅6質量%、カチオン系界面活性剤0.5質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例3と同様の条件で抗ウイルス性を有する樹脂部材を得た。
 (実施例5)
 実施例1で用いたカチオン系界面活性剤の代わりに、カチオン系界面活性剤(ライオン株式会社製、アーマックHTフレーク)を用い、抗ウイルス性樹脂部材において、ヨウ化銅3質量%、カチオン系界面活性剤1質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例1と同様の条件で抗ウイルス性を有する樹脂部材を得た。
 (実施例6)
 抗ウイルス性樹脂部材において、ヨウ化銅6質量%、カチオン系界面活性剤0.1質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例5と同様の条件で抗ウイルス性を有する樹脂部材を得た。
 (実施例7)
 抗ウイルス剤として、市販のヨウ化銀(I)粉末(和光純薬工業株式会社製、化学用)を乾式粉砕にて、平均粒子径1.6μmに粉砕したヨウ化銀微粒子を得た。
 得られたヨウ化銀を30質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて調製し、2軸溶融混練機に供給し、マスターバッチペレットを得た。
 ヨウ化銀10質量%、カチオン系界面活性剤(ライオン株式会社製、アーカード22-80)5質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合し、射出成形機にて射出成形により成形体である抗ウイルス性を有する樹脂部材を得た。
 (実施例8)
 抗ウイルス性樹脂部材において、ヨウ化銀20質量%、カチオン系界面活性剤2質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例7と同様の条件で抗ウイルス性を有する成形部材を得た。
 (実施例9)
 抗ウイルス剤として、市販の塩化銅(I)粉末(和光純薬工業株式会社製 和光一級)を乾式粉砕にて、平均粒子径150nmに粉砕した塩化銅微粒子を得た。
 得られた塩化銅を50質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて調製し、2軸溶融混練機に供給し、マスターバッチペレットを得た。
 塩化銅30質量%、カチオン系界面活性剤(ライオン株式会社製、アーカード22-80)1質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合し、射出成形機にて射出成形により成形体である抗ウイルス性を有する樹脂部材を得た。
 (実施例10)
 抗ウイルス性樹脂部材において、塩化銅40質量%、カチオン系界面活性剤0.01質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例9と同様の条件で抗ウイルス性を有する成形部材を得た。
 (実施例11)
 抗ウイルス剤として、市販の酸化銅(I)粉末(和光純薬工業株式会社製 和光一級)を乾式粉砕にて、平均粒子径400nmに粉砕したヨウ化銀微粒子を得た。
 得られた酸化銅を30質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて調製し、2軸溶融混練機に供給し、マスターバッチペレットを得た。
 酸化銅0.5質量%、カチオン系界面活性剤(ライオン株式会社製、アーカード22-80)10質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合し、射出成形機にて射出成形により成形体である抗ウイルス性を有する樹脂部材を得た。
 (実施例12)
 抗ウイルス性樹脂部材において、酸化銅5質量%、カチオン系界面活性剤3質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例11と同様の条件で抗ウイルス性を有する樹脂部材を得た。
 (比較例1)
 ヨウ化銅、界面活性剤を含有せずポリエチレン樹脂ペレットのみで、射出成形機にて射出成形部材を得た。
 (比較例2)
 抗ウイルス性樹脂部材において、界面活性剤を含有せず、ヨウ化銅3質量%になるようにポリエチレン樹脂ペレットとマスターバッチペレットを混合した以外は、実施例1と同様の条件で樹脂部材を得た。
 (比較例3)
 抗ウイルス性樹脂部材において、ヨウ化銅を含有せず、カチオン系界面活性剤(ライオン株式会社製、アーカード22-80)0.5質量%になるようにポリエチレン樹脂ペレットと混合した以外は、比較例1と同様の条件で樹脂部材を得た。
 (比較例4)
 抗ウイルス性樹脂部材において、ヨウ化銅を含有せず、カチオン系界面活性剤(ライオン株式会社製、アーカード2HPフレーク)0.5質量%になるようにポリエチレン樹脂ペレットと混合した以外は、比較例3と同様の条件で樹脂部材を得た。
 (比較例5)
 抗ウイルス性樹脂部材において、ヨウ化銅を含有せず、カチオン系界面活性剤(ライオン株式会社製、アーマックHTフレーク)0.5質量%になるようにポリエチレン樹脂ペレットと混合した以外は、比較例3と同様の条件で樹脂部材を得た。
 (比較例6)
 実施例1で用いたカチオン系界面活性剤の代わりに、ノニオン系界面活性剤(ライオン株式会社製、エレクトロストリッパーTS‐3B)を用い、抗ウイルス性樹脂部材において、ヨウ化銅3質量%、ノニオン系界面活性剤0.5質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例1と同様の条件で樹脂部材を得た。
 (比較例7)
 実施例1で用いたカチオン系界面活性剤の代わりに、アニオン系界面活性剤(テイカ株式会社製、テイカパワーLN2450)を用い、抗ウイルス性樹脂部材において、ヨウ化銅3質量%、アニオン系界面活性剤0.5質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例1と同様の条件で樹脂部材を得た。
 以上、説明した実施例1~6及び比較例1~7の成形部材の構成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
(抗ウイルス性を有するシート部材の作製)
 (実施例13)
 市販のヨウ化銅(I)粉末(日本化学産業株式会社製)を乾式粉砕にて、平均粒子径120nmに粉砕したヨウ化銅微粒子を得た。
 得られたヨウ化銅が42質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて調製し、2軸溶融混練機に供給し、マスターバッチペレットを得た。
 ヨウ化銅3質量%、カチオン系界面活性剤(ライオン株式会社製、アーカード2HPフレーク)0.1質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合し、Tダイ押出成形機にて厚み50μmの抗ウイルス性を有するシート状の樹脂部材を得た。
 (実施例14)
 シート成形部材において、ヨウ化銅5質量%、カチオン系界面活性剤0.1質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例13と同様の条件で抗ウイルス性を有するシート状の樹脂部材を得た。
 (実施例15)
 実施例13で用いたポリエチレン樹脂ペレットの代わりに、ポリプロピレン樹脂ペレット(日本ポリプロ株式会社製)を用い、厚みを300μmにした以外は、実施例13と同様の条件で抗ウイルス性を有するシート状の樹脂部材を得た。
 (実施例16)
 シート成形部材において、ヨウ化銅5質量%、カチオン系界面活性剤0.1質量%になるようにポリプロピレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例15と同様の条件で抗ウイルス性を有するシート状の樹脂部材を得た。
 (実施例17)
 シート成形部材において、実施例13で得られたシート状の樹脂部材を、テンターによる延伸倍率1.5倍で2軸延伸加工をすることで抗ウイルス性を有するシート状の樹脂部材を得た。
 (実施例18)
 シート成形部材において、実施例15で得られたシート状の樹脂部材を、テンターによる延伸倍率10倍で2軸延伸加工をすることで抗ウイルス性を有するシート状の樹脂部材を得た。
 (実施例19)
 シート成形部材において、ヨウ化銅0.3質量%、カチオン系界面活性剤0.1質量%になるようにポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合した以外は、実施例13と同様の条件で抗ウイルス性を有するシート状の樹脂部材を得た。
 (比較例8)
 ヨウ化銅、界面活性剤を含有せずポリエチレン樹脂ペレットのみで、Tダイ押出成形機にて厚み50μmのシート状の樹脂部材を得た。
 (比較例9)
 ヨウ化銅、界面活性剤を含有せずポリプロピレン樹脂ペレットのみで、Tダイ押出成形機にて厚み300μmのシート状の樹脂部材を得た。
 以上、説明した実施例13~19及び比較例8~9のシート状の樹脂部材の構成を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 
 (抗ウイルス性を有する繊維の作製)
 (実施例20)
 市販のヨウ化銅(I)粉末(日本化学産業株式会社製)を乾式粉砕にて、平均粒子径150nmに粉砕したヨウ化銅微粒子を得た。
 得られたヨウ化銅を20質量%になるように、ベース樹脂としてのポリエステル樹脂(ユニチカ株式会社製)を加えて調製し、2軸溶融混練機に供給し、マスターバッチペレットを得た。
 ヨウ化銅3質量%、カチオン系界面活性剤(ライオン株式会社製、アーカード22-80)0.1質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、カチオン系界面活性剤を混合し、モノフィラメント紡糸装置(株式会社中部化学機械製作所製)を用いて溶融紡糸し、60℃に加温した水槽を通過させることで冷却固化させ、20m/minの紡糸速度で繊維径300μmのポリエステルモノフィラメントを巻き取った。そして、巻き取られた糸を、蒸気で加熱可能な湿式延伸装置部に、延伸温度100℃、送り出し速度20m/min、巻き取り速度70m/minで通過させ、3.5倍に延伸した繊維径100μmの抗ウイルス性を有する樹脂繊維を得た。
 (比較例10)
 実施例20において、マスターバッチペレット、カチオン系界面活性剤を混合させず、抗ウイルス剤を含有しない以外は、実施例20と同様の方法にて樹脂繊維を得た。
 以上、説明した実施例20及び比較例10の樹脂繊維の構成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 (抗ウイルス性評価方法)
 樹脂部材のウイルス不活化性の測定は、エンベロープを持つウイルスとして、MDCK細胞を用いて培養したインフルエンザウイルス(influenza A/北九州/159/93(H3N2))を用い、エンベロープを持たないウイルスとして、ノロウイルスの代替ウイルスとして一般によく用いられるネコカリシウイルスを用いた。
 (射出成形、シート状部材)
 実施例および比較例の射出成形、シート状部材(20mm×20mm)をプラスチックシャーレにいれ、ウイルス液25μLを滴下し、室温で60分間作用させた。このとき樹脂部材の試験品の上面をPPフィルム(20mm×20mm)で覆うことで、ウイルス液と試験品の接触面積を一定にし、試験を行った。60分間作用させたのち、反応を停止させるためSCDLP培地を975μL添加し、ピペッティングによりウイルスを洗い出した。その後、各反応後のウイルス液が10-2~10-5になるまでMEM希釈液にて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレに培養したMDCK細胞にサンプル液100μLを接種した。60分間静置しウイルスを細胞へ吸着させた後、0.7%寒天培地を重層し、48時間、34℃、5%CO2インキュベータにて培養後、ホルマリン固定、メチレンブルー染色を行い形成されたプラーク数をカウントして、ウイルスの感染価(PFU/0.1mL、Log10);(PFU:plaque-formingunits)を算出した。
 (繊維)
 実施例20および比較例10の繊維(繊維表面積が400mm2になる量)を滅菌済みの1.5mLチューブに入れ、ウイルス液200μLを滴下し、室温で60分間作用させた。60分間作用させたのち、SCDLP培地1800μLを添加し、ボルテックスによりウイルスを洗い出した。その後、各反応サンプルが10-2~10-5になるまでMEM希釈液にて希釈を行った(10倍段階希釈)。シャーレに培養したMDCK細胞にサンプル液100μLを接種した。60分間静置しウイルスを細胞へ吸着させた後、0.7%寒天培地を重層し、48時間、34℃、5%CO2インキュベータにて培養後、ホルマリン固定、メチレンブルー染色を行い形成されたプラーク数をカウントして、ウイルスの感染価(PFU/0.1mL,Log10);(PFU:plaque-forming units)を算出した。
 (表面電位評価方法)
 表面電位は、実施例および比較例の樹脂部材を10×25mmの大きさに切り取り、ゼータ電位測定システム(大塚電子株式会社製、ELSZ-1)を用いて測定した。
 (溶出量測定方法)
 実施例および比較例のシート状部材(40mm×40mm)を5mLチューブに入れ、生理食塩水4mLに60分間浸漬させた。60分間浸漬させた後、生理食塩水に溶出した銅イオンの量を、原子吸光光度計(日立ハイテクノロジーズ社製)を用いて定量した。そして、浸漬させた部材の単位表面積あたりの溶出量を算出した。
 以上、説明した実施例1~12及び比較例1~7の成形部材である抗ウイルス性樹脂部材における測定結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 
 上記の表4の樹脂部材の結果より、実施例1~12ではいずれもエンベロープを持つインフルエンザウイルスの感染価が低下していることが確認された。比較例1~7と比べ、抗ウイルス剤とカチオン系界面活性剤の両物質がないと抗ウイルス性が発現しないことを確認した。また、実施例1~6、10、11からカチオン系界面活性剤を含有することで界面活性剤を含まない樹脂部材単体の場合(比較例1、2)よりも表面電位がプラス方向に変化していることが確認された。
 さらに、比較例6、7ではノニオン、アニオン系の界面活性剤を含有しているが、表面電位はプラス方向には変化していない。また、比較例6、7は、界面活性剤を含有しない比較例1、2と比べるとインフルエンザ(エンベロープを持つ)ウイルスの感染価は低下しているが、ネコカリシ(エンベロープを持たない)ウイルスの感染価は低下していない。
 このことから、ノニオン系、アニオン系の界面活性剤によりインフルエンザウイルスの感染価が低下しているものと考えられるが、カチオン系の界面活性剤より効果は低い。またエンベロープを持たないネコカリシウイルスには効果がないことが確認された。一方、実施例1、2、4、6~12については、エンベロープを持たないネコカリシウイルスについても、効果的に不活化できることが確認された。
 実施例13~19及び比較例8~9のシート部材である抗ウイルス性樹脂部材における測定結果を表5にまとめた。
Figure JPOXMLDOC01-appb-T000005
 
 上記の表5のシート状の樹脂部材の結果より、実施例13~19では、比較例8、9に比べ、感染価は低下しており、また表面電位はプラス方向に変化していることが確認された。なお、抗ウイルス剤の含有量が好ましい範囲より少ない実施例19は範囲内の他の実施例に比べて感染価が高く、金属イオン溶出量も好ましい範囲よりも少なかった。
 実施例20と比較例10の繊維状の抗ウイルス性樹脂部材における測定結果を表6にまとめた。
Figure JPOXMLDOC01-appb-T000006
 
 上記の表6の繊維状の樹脂部材の結果より、実施例20では、比較例10に比べ、感染価は低下しており、また表面電位はプラス方向に変化していることが確認された。
 以上のことから、樹脂の種類によらず、抗ウイルス効果があることが確認された。また、表4、表5、表6から、本発明の樹脂部材は、その形態によらず抗ウイルス効果があることが確認された。
 よって、本発明で得られた抗ウイルス性を有する樹脂部材は、抗ウイルス性があることが確認された。
10:樹脂
20:抗ウイルス剤
30:表面電位制御剤

Claims (7)

  1.  樹脂と、抗ウイルス剤と、カチオン系界面活性剤からなる表面電位制御剤と、を含む抗ウイルス性樹脂部材であって、前記表面電位制御剤は前記抗ウイルス性樹脂部材の表面の電位を前記樹脂単体の表面の電位よりもプラス方向に変化させることを特徴とする抗ウイルス性樹脂部材。
  2.  前記抗ウイルス剤は、ヨウ素と、周期律表の第4周期から第6周期かつ8族から15族の元素のうちの少なくとも1種の元素と、からなるヨウ化物の粒子を有効成分として含むことを特徴とする請求項1に記載の抗ウイルス性樹脂部材。
  3.  前記周期律表の第4周期から第6周期かつ8族から15族の元素が、Cu、Ag、Sb、Ir、Ge、Sn、Tl、Pt、Pd、Bi、Au、Fe、Co、Ni、Zn、In、又はHgであることを特徴とする請求項2に記載の抗ウイルス性樹脂部材。
  4.  前記抗ウイルス剤は、少なくとも1種の一価の銅化合物の粒子を有効成分として含むことを特徴とする請求項1から3のいずれか1つに記載の抗ウイルス性樹脂部材。
  5.  前記一価の銅化合物が、塩化物、酢酸化合物、硫化物、ヨウ化物、臭化物、過酸化物、酸化物、またはチオシアン化物であることを特徴とする請求項4に記載の抗ウイルス性樹脂部材。
  6.  前記抗ウイルス性樹脂部材は、成形後、さらに加熱延伸された成形体であることを特徴とする請求項1から5のいずれか1つに記載の抗ウイルス性樹脂部材。
  7.  樹脂と、抗ウイルス剤と、カチオン系界面活性剤からなる表面電位制御剤と、を用いて樹脂に抗ウイルス剤とカチオン系界面活性剤が分散した成形体を形成し、
     前記成形体を加熱延伸することを特徴とする抗ウイルス性樹脂部材の製造方法。
PCT/JP2012/004395 2011-07-06 2012-07-06 抗ウイルス性樹脂部材 WO2013005446A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US14/127,709 US9380785B2 (en) 2011-07-06 2012-07-06 Antiviral resin member
AU2012279764A AU2012279764B2 (en) 2011-07-06 2012-07-06 Antiviral resin member
IN829CHN2014 IN2014CN00829A (ja) 2011-07-06 2012-07-06
KR1020147002597A KR101895414B1 (ko) 2011-07-06 2012-07-06 항바이러스성 수지 부재
JP2013522479A JP6055765B2 (ja) 2011-07-06 2012-07-06 抗ウイルス性樹脂部材
CA2841051A CA2841051C (en) 2011-07-06 2012-07-06 Antiviral resin member
BR112013032821A BR112013032821A2 (pt) 2011-07-06 2012-07-06 membro de resina antiviral e método para a produção do mesmo
RU2014104100/05A RU2592532C2 (ru) 2011-07-06 2012-07-06 Противовирусное полимерное составляющее
EP12808121.3A EP2730621B1 (en) 2011-07-06 2012-07-06 Antiviral resin member
CN201280033419.6A CN103649230B (zh) 2011-07-06 2012-07-06 抗病毒性树脂部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011150381 2011-07-06
JP2011-150381 2011-07-06

Publications (1)

Publication Number Publication Date
WO2013005446A1 true WO2013005446A1 (ja) 2013-01-10

Family

ID=47436808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004395 WO2013005446A1 (ja) 2011-07-06 2012-07-06 抗ウイルス性樹脂部材

Country Status (11)

Country Link
US (1) US9380785B2 (ja)
EP (1) EP2730621B1 (ja)
JP (1) JP6055765B2 (ja)
KR (1) KR101895414B1 (ja)
CN (1) CN103649230B (ja)
AU (1) AU2012279764B2 (ja)
BR (1) BR112013032821A2 (ja)
CA (1) CA2841051C (ja)
IN (1) IN2014CN00829A (ja)
RU (1) RU2592532C2 (ja)
WO (1) WO2013005446A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170096566A1 (en) * 2014-08-29 2017-04-06 Lg Chem, Ltd. Composition for forming conductive pattern, method of forming conductive pattern using the same, and resin structure having conductive pattern
KR101904674B1 (ko) * 2017-11-10 2018-10-05 홍성철 기능성 비닐 및 그 기능성 비닐의 제조방법
JPWO2019045110A1 (ja) * 2017-09-04 2020-10-01 株式会社Nbcメッシュテック 抗菌・抗ウイルス性組成物
JP6856163B1 (ja) * 2020-09-18 2021-04-07 凸版印刷株式会社 粘着シート及びその製造方法
KR20210148148A (ko) 2019-04-04 2021-12-07 리껭테크노스 가부시키가이샤 항바이러스성 도막 형성용 도료, 도막, 및 적층 필름
WO2023190973A1 (ja) * 2022-03-31 2023-10-05 株式会社Nbcメッシュテック 抗菌・抗ウイルス性樹脂部材
EP4057814A4 (en) * 2019-11-12 2023-11-29 Iasis Molecular Sciences, Inc. ANTIMICROBIAL AND ANTIVIRAL BIOLOGICALLY ACTIVE POLYMER COMPOSITES ACTIVE AGAINST SARS-COV-2 AND OTHER VIRAL, BACTERIAL AND FUNGAL TARGETS, AND RELATED METHODS, MATERIALS, COATINGS AND DEVICES
JP7565237B2 (ja) 2021-03-11 2024-10-10 積水成型工業株式会社 抗ウィルス性透明シート

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3693102A4 (en) 2017-10-03 2021-06-02 Toyo Seikan Group Holdings, Ltd. COPPER METAL FINE PARTICLES AND METHOD OF MANUFACTURING THEREOF
CN111867375B (zh) * 2018-03-09 2022-09-23 富士胶片株式会社 抗菌膜、抗菌组合物、带抗菌膜的基材及赋予抗菌性的方法
KR101939945B1 (ko) * 2018-05-31 2019-01-17 홍성철 중첩 기능성 비닐 및 그의 제조방법
TWI757704B (zh) * 2020-03-16 2022-03-11 克米龍有限公司 抑制病毒不織布
US20230365762A1 (en) * 2020-09-24 2023-11-16 Marzullo S.A. Additive based on micro and nano particles of zinc, silver and copper metal, useful for imparting viricidal activity to a polymer matrix
CN112744345B (zh) * 2021-01-29 2022-03-25 中集船舶海洋工程设计研究院有限公司 船舶
KR20240112434A (ko) 2023-01-12 2024-07-19 한국기술교육대학교 산학협력단 항바이러스 고분자 수지 및 그 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199200A (ja) * 1997-09-26 1999-04-13 Toray Ind Inc 透析用カテーテルおよびその製造方法
JP2007513959A (ja) * 2003-12-10 2007-05-31 エスディー ファーマシューティカルズ インコーポレイティッド 抗ウイルス性薬学的組成物
JP2009523890A (ja) 2006-01-18 2009-06-25 ハイドロマー インコーポレイテッド 微生物付着防止用の非浸出性表面活性フィルム組成物
WO2010026730A1 (ja) * 2008-09-03 2010-03-11 Nbc株式会社 抗ウイルス剤
JP2010084050A (ja) * 2008-10-01 2010-04-15 Sumitomo Chemical Co Ltd 薬剤含有樹脂成形体の製造方法および薬剤含有樹脂成形体
WO2010067873A1 (ja) * 2008-12-12 2010-06-17 国立大学法人広島大学 抗ウイルス性衛生用繊維製品
JP4584339B2 (ja) 2008-02-20 2010-11-17 ダイワボウホールディングス株式会社 抗ウイルス物質、抗ウイルス繊維及び抗ウイルス繊維構造物
JP2010275196A (ja) * 2009-05-26 2010-12-09 Nippon Soda Co Ltd 透明膜形成液状抗菌剤組成物
JP2012024566A (ja) * 2010-06-25 2012-02-09 Nbc Meshtec Inc 拭き取りシート
JP2012071040A (ja) * 2010-09-29 2012-04-12 Unitika Ltd 衛生マスク
JP2012072100A (ja) * 2010-09-29 2012-04-12 Unitika Ltd 抗ウイルス剤担持シート及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023127A1 (fr) * 1996-07-16 1999-05-14 Toray Industries, Inc. Polymere greffe et moulages realises a partir de celui-ci pour fournitures medicales
CA2276680C (en) * 1997-11-04 2006-05-16 Toray Industries, Inc. Graft polymer and moulded medical articles employing this
BR0015656A (pt) 1999-11-19 2002-08-06 Procter & Gamble Artigo de cuidado pessoal descartável, substancialmente seco, e processos para condicionamento e para limpeza de pele e/ou do cabelo
CN1303599A (zh) 1999-11-23 2001-07-18 中国科学院化学研究所 一种抗菌软质材料和用途
US7276254B2 (en) * 2002-05-07 2007-10-02 Xerox Corporation Emulsion/aggregation polymeric microspheres for biomedical applications and methods of making same
US8585753B2 (en) * 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US7807199B2 (en) * 2006-08-30 2010-10-05 Allen Thomas K Antimicrobial composition
CN101544887A (zh) * 2008-02-28 2009-09-30 王广武 蓄光-自发光抗菌和抗病毒活性材料及制造方法
JP5702526B2 (ja) 2009-04-30 2015-04-15 Esファイバービジョンズ株式会社 抗ウイルス性を有する硫酸化セルロースを担持させた繊維集合体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199200A (ja) * 1997-09-26 1999-04-13 Toray Ind Inc 透析用カテーテルおよびその製造方法
JP2007513959A (ja) * 2003-12-10 2007-05-31 エスディー ファーマシューティカルズ インコーポレイティッド 抗ウイルス性薬学的組成物
JP2009523890A (ja) 2006-01-18 2009-06-25 ハイドロマー インコーポレイテッド 微生物付着防止用の非浸出性表面活性フィルム組成物
JP4584339B2 (ja) 2008-02-20 2010-11-17 ダイワボウホールディングス株式会社 抗ウイルス物質、抗ウイルス繊維及び抗ウイルス繊維構造物
WO2010026730A1 (ja) * 2008-09-03 2010-03-11 Nbc株式会社 抗ウイルス剤
JP2010084050A (ja) * 2008-10-01 2010-04-15 Sumitomo Chemical Co Ltd 薬剤含有樹脂成形体の製造方法および薬剤含有樹脂成形体
WO2010067873A1 (ja) * 2008-12-12 2010-06-17 国立大学法人広島大学 抗ウイルス性衛生用繊維製品
JP2010275196A (ja) * 2009-05-26 2010-12-09 Nippon Soda Co Ltd 透明膜形成液状抗菌剤組成物
JP2012024566A (ja) * 2010-06-25 2012-02-09 Nbc Meshtec Inc 拭き取りシート
JP2012071040A (ja) * 2010-09-29 2012-04-12 Unitika Ltd 衛生マスク
JP2012072100A (ja) * 2010-09-29 2012-04-12 Unitika Ltd 抗ウイルス剤担持シート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730621A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170096566A1 (en) * 2014-08-29 2017-04-06 Lg Chem, Ltd. Composition for forming conductive pattern, method of forming conductive pattern using the same, and resin structure having conductive pattern
JP2017526754A (ja) * 2014-08-29 2017-09-14 エルジー・ケム・リミテッド 導電性パターン形成用組成物、これを用いた導電性パターンの形成方法と、導電性パターンを有する樹脂構造体
JPWO2019045110A1 (ja) * 2017-09-04 2020-10-01 株式会社Nbcメッシュテック 抗菌・抗ウイルス性組成物
JP7376355B2 (ja) 2017-09-04 2023-11-08 株式会社Nbcメッシュテック 抗菌・抗ウイルス性組成物
KR101904674B1 (ko) * 2017-11-10 2018-10-05 홍성철 기능성 비닐 및 그 기능성 비닐의 제조방법
KR20210148148A (ko) 2019-04-04 2021-12-07 리껭테크노스 가부시키가이샤 항바이러스성 도막 형성용 도료, 도막, 및 적층 필름
EP4057814A4 (en) * 2019-11-12 2023-11-29 Iasis Molecular Sciences, Inc. ANTIMICROBIAL AND ANTIVIRAL BIOLOGICALLY ACTIVE POLYMER COMPOSITES ACTIVE AGAINST SARS-COV-2 AND OTHER VIRAL, BACTERIAL AND FUNGAL TARGETS, AND RELATED METHODS, MATERIALS, COATINGS AND DEVICES
JP6856163B1 (ja) * 2020-09-18 2021-04-07 凸版印刷株式会社 粘着シート及びその製造方法
JP2022051037A (ja) * 2020-09-18 2022-03-31 凸版印刷株式会社 粘着シート及びその製造方法
JP7565237B2 (ja) 2021-03-11 2024-10-10 積水成型工業株式会社 抗ウィルス性透明シート
WO2023190973A1 (ja) * 2022-03-31 2023-10-05 株式会社Nbcメッシュテック 抗菌・抗ウイルス性樹脂部材

Also Published As

Publication number Publication date
CA2841051C (en) 2019-05-07
EP2730621A4 (en) 2014-12-03
JPWO2013005446A1 (ja) 2015-02-23
CN103649230B (zh) 2016-11-23
US20140127321A1 (en) 2014-05-08
RU2014104100A (ru) 2015-08-20
IN2014CN00829A (ja) 2015-04-03
JP6055765B2 (ja) 2016-12-27
AU2012279764B2 (en) 2015-08-13
KR101895414B1 (ko) 2018-09-05
KR20140058526A (ko) 2014-05-14
RU2592532C2 (ru) 2016-07-20
US9380785B2 (en) 2016-07-05
EP2730621A1 (en) 2014-05-14
CA2841051A1 (en) 2013-01-10
EP2730621B1 (en) 2016-09-28
BR112013032821A2 (pt) 2017-01-31
AU2012279764A1 (en) 2014-01-30
CN103649230A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP6055765B2 (ja) 抗ウイルス性樹脂部材
US20240065273A1 (en) Antimicrobial/antiviral composition
Perera et al. Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles
JP6063666B2 (ja) 抗ウイルス性を有する繊維およびその製造方法
JP5285199B2 (ja) 抗菌性および抗ウィルス性のポリマー材料
US20180000088A1 (en) Antimicrobial polymer systems using multifunctional organometallic additives for polyurethane hosts
US20110154557A1 (en) Antimicrobial apparel and fabric and coverings
JP2016088916A (ja) 抗ウイルス・抗菌性貼付けテープ
JP3374079B2 (ja) 防黴抗菌エアフィルタ
US20150044267A1 (en) Advanced fabric technology and filters
JP7333076B2 (ja) 帯電防止性抗菌防黴膜材
WO2014193875A1 (en) Antimicrobial and antiviral polymeric materials
EP3003030A1 (en) Antimicrobial and antiviral polymeric materials
JP3215729U (ja) 抗ウイルス・抗菌性貼付けテープ
JP3195611U (ja) 抗ウイルス・抗菌性ファイリング用具
TWI854960B (zh) 抗菌/抗病毒性組成物
JP2000008222A (ja) 防カビ効果を有する熱可塑性繊維
WO2023190965A1 (ja) 抗菌・抗ウイルス樹脂組成物
CN107604651A (zh) 一种负离子保健面料及其浸泡剂与应用
JP2008007912A (ja) ポリ乳酸繊維並びにそれを用いた布帛および繊維製品
KR20230123040A (ko) 그래핀 복합 성형체를 함유하는 원사
JP2003105624A (ja) 防黴および防ダニ効果を有する熱可塑性繊維
TW202348253A (zh) 抗菌及抗病毒性樹脂零件
Sombatsompop Ratchanee Chinkamonthong, Apisit Kositchaiyong and

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522479

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14127709

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2841051

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012808121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012808121

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147002597

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012279764

Country of ref document: AU

Date of ref document: 20120706

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014104100

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032821

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013032821

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131219