WO2023190965A1 - 抗菌・抗ウイルス樹脂組成物 - Google Patents

抗菌・抗ウイルス樹脂組成物 Download PDF

Info

Publication number
WO2023190965A1
WO2023190965A1 PCT/JP2023/013357 JP2023013357W WO2023190965A1 WO 2023190965 A1 WO2023190965 A1 WO 2023190965A1 JP 2023013357 W JP2023013357 W JP 2023013357W WO 2023190965 A1 WO2023190965 A1 WO 2023190965A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antiviral
resin composition
fiber
copper compound
Prior art date
Application number
PCT/JP2023/013357
Other languages
English (en)
French (fr)
Inventor
良枝 藤森
健 佐藤
朋和 長尾
Original Assignee
株式会社Nbcメッシュテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nbcメッシュテック filed Critical 株式会社Nbcメッシュテック
Publication of WO2023190965A1 publication Critical patent/WO2023190965A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Definitions

  • the present invention relates to an antibacterial/antiviral resin composition that can inactivate attached bacteria and viruses.
  • Patent Document 1 molded products such as filters and antiviral films that have antibacterial and antiviral properties have been developed (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • An object of the present invention is to provide a novel antibacterial/antiviral resin composition.
  • a monovalent antibacterial/antiviral agent can be used as a monovalent antibacterial/antiviral agent in a resin composition having an L* value of 0 or more and less than 40 in the L*a*b* color system of JIS Z 8781-4.
  • the present inventors have discovered that a resin composition containing monovalent copper compound particles exhibits higher antibacterial and antiviral properties than a resin composition that contains monovalent copper compound particles but does not satisfy the above L* value range, and has completed the present invention. .
  • the gist of the present invention is as follows.
  • the monovalent copper compound particles contain particles of one or more compounds selected from the group consisting of CuCl, CuOOCCH 3 , CuI, CuBr, Cu 2 O, Cu 2 S, and CuSCN.
  • the antibacterial/antiviral resin composition according to [1] which contains one or more selected from the group consisting of carbon black, titanium black, and phthalocyanine.
  • a novel antibacterial/antiviral resin composition can be provided.
  • the antibacterial/antiviral resin composition of the present embodiment includes a resin and monovalent copper compound particles, and has an L* value of 0 or more in the L*a*b* color system of JIS Z 8781-4 40 less than
  • the L* value represents the brightness (lightness) of a color
  • the a* value and b* value represent the hue and saturation of the color. represents degree.
  • the antibacterial/antiviral resin composition of this embodiment which has a JIS Z 8781-4 L* value of 0 or more and less than 40, has a black appearance, for example.
  • the resin composition of this embodiment may be modified using dyes and pigments. You can color things. Among these, it is preferable to use pigments (organic pigments and inorganic pigments) from the viewpoint of durability. Alternatively, dyes and pigments of multiple colors may be mixed so that the L* value in the L*a*b* color system of JIS Z 8781-4 is 0 or more and less than 40. Note that the L* value in the L*a*b* color system defined in JIS Z 8781-4 can be measured using, for example, a color difference meter.
  • the content of dyes and pigments is not particularly limited, and for example, it is adjusted so that the L* value is 0 or more and less than 40 according to the measured value of a color difference meter. You can do something like this.
  • the amount of dye and pigment in 100% by mass of the antibacterial/antiviral resin composition, can be 0.05% by mass or more and 2.0% by mass or less, preferably 0.1% by mass or more and 1.5% by mass or less. .
  • Organic pigments include azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone series, perylene series, perinone series, isoindolinone series, isoindoline series, dioxazine series, thioindigo series, anthraquinone series, quinophthalone series, metal complexes). pigments, diketopyrrolopyrrole pigments, etc.), dye lake pigments, etc.
  • Inorganic pigments include barium sulfate, zinc white, lead sulfate, yellow lead, zinc yellow, red iron oxide (red iron oxide (III)), cadmium red, ultramarine blue, deep blue, chromium oxide green, cobalt green, amber, carbon black, bone.
  • examples include metal oxide powders such as black, graphite, titanium black, iron black, synthetic iron black, titanium oxide, and iron tetroxide, metal sulfide powders, and metal powders.
  • dyes examples include azo dyes, anthraquinone dyes, phthalocyanine dyes, quinone imine dyes, quinoline dyes, nitro dyes, carbonyl dyes, methine dyes, and the like.
  • the resin constituting the resin composition of this embodiment is not particularly limited and can be selected as appropriate.
  • thermoplastic resin such as polyimide resin, polycarbonate resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyacetal resin, polyarylate resin, polysulfone resin, silicone resin, styrene elastomer such as polystyrene elastomer, polyethylene elastomer, polypropylene elastomer, etc.
  • examples include polyurethane elastomers such as olefin elastomers and polyurethane elastomers, thermoplastic elastomers such as vinyl chloride elastomers, polyester elastomers, and nylon elastomers.
  • the antibacterial/antiviral resin composition of this embodiment contains monovalent copper compound particles as an antibacterial/antiviral agent.
  • Monovalent copper compound particles are originally known to have very high antibacterial and antiviral properties, and although the mechanism is not clear, when they come into contact with moisture in the air or droplets, monovalent copper ions is eluted, and the eluted monovalent copper ions release electrons when they come into contact with bacteria or viruses, and at that time, the generated active species are thought to cause some damage.
  • the monovalent copper compound particles are preferably chloride, acetate (acetate compound), sulfide, iodide, bromide, peroxide, oxide, thiocyanide, or a mixture thereof.
  • selecting at least one type of monovalent copper compound particles from the group consisting of CuCl, CuOOCCH 3 , CuI, CuBr, Cu 2 O, Cu 2 S, and CuSCN provides antiviral and antibacterial properties. It is more preferable from the viewpoint of improvement, and it is even more preferable to include particles of CuI (copper (I) iodide).
  • the content of monovalent copper compound particles in the antibacterial/antiviral resin composition of the present embodiment can be appropriately set depending on the desired antibacterial performance and antiviral performance.
  • the content can be 0.5% by mass or more and less than 40% by mass, preferably 1% by mass or more and less than 8% by mass based on 100% by mass.
  • the particle size of the monovalent copper compound particles is not particularly limited and can be appropriately set by those skilled in the art, but it is preferable that the average particle size is 1 nm or more and less than 500 nm. This is because if the average particle diameter is less than 1 nm, the material becomes unstable, and if the average particle diameter is 500 nm or more, the antibacterial and antiviral effects will be lower than if it is less than 500 nm.
  • the average particle diameter refers to the volume average particle diameter.
  • the volume average particle diameter can be measured, for example, based on the laser Doppler method (dynamic/electrophoretic light scattering method).
  • the measuring device is not particularly limited, for example, a zeta potential/particle size measuring system (manufactured by Otsuka Electronics) can be used.
  • the antibacterial/antiviral resin composition of this embodiment can reduce the infectivity of various viruses and inactivate various viruses, regardless of the type of genome, the presence or absence of envelopes, etc. .
  • this virus include rhinovirus, poliovirus, foot-and-mouth disease virus, rotavirus, norovirus, enterovirus, hepatovirus, astrovirus, sapovirus, hepatitis E virus, influenza A, B, and C viruses, and parainfluenza virus.
  • ⁇ Mumps virus ⁇ Measles virus ⁇ Human metapneumovirus ⁇ RS virus ⁇ Nipah virus ⁇ Hendra virus ⁇ Yellow fever virus ⁇ Dengue virus ⁇ Japanese encephalitis virus ⁇ West Nile virus ⁇ Hepatitis B and C viruses ⁇ Eastern and Western horses Encephalitis virus, Onyonnyon virus, rubella virus, Lassa virus, Junin virus, Machupo virus, Guanarito virus, Sabia virus, Crimean
  • the antibacterial/antiviral resin composition of the present embodiment is not particularly limited in terms of bacteria that can be inactivated, and can sterilize various bacteria regardless of their characteristics such as Gram-positive/negative, aerobic/anaerobic, etc. I can do it.
  • Specific bacteria include, for example, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus, Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus pertussis, Haemophilus enteritidis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Vibrio, Salmonella enterica, Vibrio cholerae, and Shigella. , anthrax, Mycobacterium tuberculosis, Clostridium botulinum, Clostridium tetani, and Streptococcus.
  • the resin composition of this embodiment may contain components other than the monovalent copper compound particles.
  • Other ingredients include plasticizers, desiccants, hardeners, anti-skinning agents, flattening agents, anti-sag agents, anti-mold agents, ultraviolet absorbers, heat absorbers, lubricants, surfactants, and thickeners. , viscosity modifiers, stabilizers, dryness modifiers, pigments, dispersants, antifungal compositions, antiallergen compositions, catalysts, antireflection materials, and materials with heat-shielding properties. Two or more types of other components may be included.
  • the mode in which other components are contained is not particularly limited, and they may be dispersed inside the resin composition, and some of the other components dispersed inside the resin composition may be dispersed inside the resin composition. It may be exposed from the surface of the resin composition, or it may be fixed to the surface of the resin composition.
  • the antibacterial/antiviral resin composition of this embodiment can be made into, for example, a film, a sheet, a molded article, as well as a fiber or a fibrous structure.
  • the fibers may be short fibers or long fibers, and may be monofilaments or multifilaments. Examples of the fibrous structure include fabrics, woven and knitted fabrics, nonwoven fabrics, mixed paper, and the like.
  • masterbatch pellets are prepared in which monovalent copper compound particles, which are antibacterial and antiviral agents, are mixed (dispersed). Masterbatch pellets are manufactured, for example, as follows.
  • the monovalent copper compound particles After mixing pulverized monovalent copper compound particles and a known dispersant to coat the surface of the monovalent copper compound particles with the dispersant, the monovalent copper compound particles are mixed with resin pellets, and then kneaded and extruded. By using a machine, monovalent copper compound particles are dispersed inside the resin pellets. Alternatively, by mixing crushed monovalent copper compound particles and a dispersant with resin pellets and using a kneading extruder, the dispersant is drawn around the monovalent copper compound fine particles during kneading, and as a result, The monovalent copper compound fine particles are coated with a dispersant, and the monovalent copper compound fine particles are dispersed inside the resin pellet.
  • the resin containing the monovalent copper compound particles is finely cut using a pelletizer to obtain masterbatch pellets in which the monovalent copper compound particles are mixed (dispersed). Note that the proportion (concentration) of monovalent copper compound particles during the production of masterbatch pellets can be appropriately set by those skilled in the art.
  • the obtained masterbatch pellets are melt-kneaded using a molding machine with the above-mentioned dyes and pigments, resins, and other components as necessary to produce a spinning raw material. Then, by subjecting the obtained spinning raw material to a melt spinning process, the fiber according to the present embodiment can be obtained.
  • the melt spinning method is not limited to a specific method, and any known method can be used.
  • the spinning temperature the resin can be discharged from the spinneret in a moderately low viscosity state, and the subsequent drawing process can be carried out without causing deterioration or thermal decomposition of the resin or significantly destabilizing the spinning process.
  • a temperature range suitable for the fiber material may be appropriately selected as long as it is within a range in which high-strength fibers can be obtained.
  • a spinning raw material is discharged from a spinneret, and the discharged fibrous spinning raw material is cooled and solidified to form fibers.
  • the discharged spinning raw material is cooled to a solidification temperature or lower in a medium such as air, water, or glycerin to solidify it.
  • a medium such as air, water, or glycerin
  • the air temperature and wind speed can be set arbitrarily, but in order to suppress molecular orientation, it is desirable that the wind speed is low and the temperature is not too low. If the degree of molecular orientation is high at the time of cooling, it may be difficult to draw the fibers when a heating drawing step is performed in the next step, making it difficult to obtain antibacterial and antiviral effects.
  • the winding speed can be set to any speed. However, if the winding speed is lower than the free fall speed of the molten undrawn yarn, a uniform undrawn yarn may not be obtained, which may lead to a decrease in drawability.
  • the solidified thread may be directly subjected to the heating stretching process without being wound up.
  • the heating drawing process is a process of heating and stretching the fibers (undrawn yarn) wound up in the spinning process.
  • the heating stretching step may include a plurality of stretching steps.
  • the heating stretching step has a plurality of stretching steps, the product of the stretching ratios in each stretching step becomes the total stretching ratio.
  • the heating stretching step consists of one stretching step, the stretching ratio in this one stretching step becomes the total stretching ratio.
  • the fiber which is an example of the antibacterial/antiviral resin composition of this embodiment, exhibits even more excellent antibacterial/antiviral properties by heating and stretching, and efficiently inactivates bacteria and viruses attached to the fiber surface etc. can do.
  • the fiber when the fiber is a monofilament, the antibacterial and antiviral effects can be further enhanced by heating and stretching.
  • the mechanism by which the antibacterial and antiviral effects are greatly improved by heating and stretching is not entirely clear at present, the following reasons may be considered.
  • the surface layer of the fibers is directly cooled and solidified, and the antibacterial and antiviral agents present in the inner layer of the fibers than the surface layer are absorbed by the outside of the fibers.
  • the structure makes it difficult for it to come into contact with moisture.
  • the cooling speed of the inner layer portion is lower than the cooling speed of the surface layer portion. Therefore, the fiber structure of the surface layer is considered to be different from the fiber structure of the inner layer.
  • the fiber structure in the surface layer is changed to a fiber structure in which the antibacterial/antiviral agent and moisture outside the fiber easily come into contact because the stretching is performed under heating conditions above the glass transition point. Become.
  • the fiber structure of the surface layer approaches the fiber structure of the inner layer due to heating and stretching, it is thought that this may have some influence on charges, DNA, etc. on the surface of bacteria and viruses, thereby inactivating them.
  • the stretching method is not particularly limited, and any known stretching method such as a hot roll stretching method, a hot plate stretching method, a tubular stretching method, a stretch blowing method, a laser stretching method, etc. can be appropriately employed.
  • a hot roll stretching method a hot plate stretching method, a tubular stretching method, a stretch blowing method, a laser stretching method, etc.
  • the undrawn yarn can be drawn to a high ratio by changing the rotational speed of the hot rolls combined in multiple stages.
  • the stretching ratio is appropriately selected depending on the fineness of the material to be stretched, but is usually set so that the total stretching ratio is 3.0 to 7.0 times, preferably 4.0 to 6.0 times. be done.
  • the stretching ratio is set to 3.0 or more and 7.0 or less, the molecules are more oriented and a fiber with higher strength can be obtained.
  • the stretching ratio is less than 3.0 times, the antibacterial and antiviral effects are lower than when the stretching ratio is 3.0 times or more, and the strength of the resulting fibers is lowered.
  • the stretching ratio exceeds 7.0 times, the stretching tension becomes extremely high, which may result in frequent yarn breakage and reduced spinning properties.
  • the fiber that is an example of the antibacterial/antiviral resin composition according to this embodiment may have a core-sheath structure.
  • the core part is formed of a normal resin (resin that does not contain monovalent copper compound particles)
  • the sheath part contains monovalent copper compound particles
  • the L*a* of JIS Z 8781-4 is formed.
  • the cross-sectional shape perpendicular to the longitudinal direction of the fiber of the core-sheath structure is not particularly limited, it is preferable that the cross-sectional shape is circular, and it is preferable that the core part and the sheath part are also formed concentrically.
  • the ratio of the area of the core to the area of the sheath is not particularly limited, and can be set as appropriate by the user.
  • the fiber that is an example of the antibacterial/antiviral resin composition of this embodiment can be used as woven fabrics, knitted fabrics, nonwoven fabrics, papers such as mixed paper, and the like.
  • This fiber is used in sheet products such as clothing, bedding, bedding materials, masks, handkerchiefs, towels, carpets, curtains, exterior wall materials, construction materials, interior materials, air purifiers, air conditioners, ventilation fans, and electrical appliances.
  • Example 1 Copper (I) iodide was used as the monovalent copper compound particles.
  • Polyethylene masterbatch pellets (Cufitec (registered trademark) MB-PE manufactured by NBC Meshtech) containing copper (I) iodide (particle size: 350 nm) as an active ingredient: 5 wt%, polypropylene containing carbon black-based black pigment Masterbatch pellets: 5 wt% and polypropylene resin: 90 wt% were melted and mixed. The resulting mixture is melted using a melt extruder installed in a melt spinning device, discharged from a spinneret installed in the melt spinning device, and taken out at a predetermined speed while cooling in a water tank to form a resin composition.
  • the fiber diameter of the obtained antibacterial/antiviral fiber was 150 ⁇ m.
  • the black pigment was 1.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • copper iodide (I) was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • Example 2 The same method as in Example 1 was used except that the polypropylene masterbatch containing a carbon black-based black pigment was changed to a polypropylene masterbatch containing a titanium black-based black pigment: 1.5 wt%, and a polypropylene resin: 93.5 wt%.
  • the black pigment was 0.3% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • copper iodide (I) was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • Example 3 Antibacterial and antibacterial treatments were carried out in the same manner as in Example 1, except that the polypropylene masterbatch containing a carbon black-based black pigment was changed to a polypropylene masterbatch containing a phthalocyanine-based black pigment: 1.0 wt%, and a polypropylene resin: 94 wt%.
  • the black pigment was 0.2% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • copper iodide (I) was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • Example 4 Copper (I) iodide was used as the monovalent copper compound particles.
  • Polyethylene masterbatch pellets (Cufitec (registered trademark) MB-PE manufactured by NBC Meshtech) containing copper (I) iodide (particle size: 350 nm) as an active ingredient: 5 wt%, polypropylene containing carbon black-based black pigment Masterbatch pellets: 5 wt% and polyethylene resin: 90 wt% were melted and mixed.
  • the resulting mixture was formed into a film using a twin-screw extruder (Laboplasto Mill (registered trademark) manufactured by Toyo Seiki Co., Ltd.) to obtain an antibacterial/antiviral film of the resin composition of Example 4.
  • the thickness of the obtained film was 120 ⁇ m, and copper (I) iodide was 2.0% by mass in 100% by mass of the antibacterial/antiviral film.
  • the black pigment was 1.0% by mass in 100% by mass of the obtained antibacterial/antiviral film.
  • copper (I) iodide was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral film.
  • Comparative example 1 The antibacterial/antiviral fiber of Comparative Example 1 was obtained by spinning in the same manner as in Example 1 except that the carbon black-based black pigment was not added.
  • the fiber diameter of the obtained antibacterial/antiviral fiber was 150 ⁇ m.
  • L* 85.2. there were.
  • copper iodide (I) was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • Comparative example 2 The antibacterial/antiviral fiber of Comparative Example 2 was obtained by spinning in the same manner as in Example 2 except that the titanium black-based black pigment was not added.
  • the fiber diameter of the obtained antibacterial/antiviral fiber was 150 ⁇ m.
  • L* 57.3. there were.
  • copper iodide (I) was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • Comparative example 3 The antibacterial/antiviral fiber of Comparative Example 3 was obtained by spinning in the same manner as in Example 3 except that the phthalocyanine black pigment was not added.
  • the fiber diameter of the obtained antibacterial/antiviral fiber was 150 ⁇ m.
  • L* 63.1. there were.
  • copper iodide (I) was 2.0% by mass in 100% by mass of the obtained antibacterial/antiviral fiber.
  • Example 4 A film was formed in the same manner as in Example 4, except that no carbon black-based black pigment was added, to obtain an antibacterial/antiviral film of Comparative Example 4.
  • Comparative example 5 Comparative example 4 fibers were obtained.
  • the fiber diameter of the obtained fiber was 150 ⁇ m.
  • the black pigment was 1.0% by mass in 100% by mass of the obtained fibers.
  • Examples 1 to 4 which contain monovalent copper compound particles that are antibacterial agents and have an L* value of 0 or more and less than 40, are below the detection limit value or below 3 Log CFU in 18 hours. It showed excellent antibacterial properties.
  • Comparative Examples 1 to 4 in which the L* value was higher than 40, the antibacterial properties were lower than all the Examples even though they contained monovalent copper compound particles, which are antibacterial agents.
  • Comparative Example 5 which had an L* value of 0 or more but less than 40 but did not contain monovalent copper compound particles as an antibacterial agent, bacteria had grown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】 新規な抗菌・抗ウイルス樹脂組成物を提供する。 【解決手段】 有効成分として一価の銅化合物粒子を含む抗菌・抗ウイルス性を有する樹脂組成物であって、JIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満である抗菌・抗ウイルス樹脂組成物。

Description

抗菌・抗ウイルス樹脂組成物
 本発明は、付着した細菌やウイルスを不活化できる抗菌・抗ウイルス樹脂組成物に関する。
 新型コロナウイルス感染症(COVID-19)によるパンデミックにより、私たちの生活様式が大きく変化している。通常の生活でもマスクや消毒剤が必須となり、今まで医療従事者からの関心が高かった抗ウイルス関連製品についても、一般消費者からの関心が高くなってきた。中でも室内環境を整えるための空気清浄機や空調機についての需要が高くなっており、抗菌性能だけでなく、抗ウイルス機能を求める声も高まっている。
 これらの課題を解決するために、抗菌・抗ウイルス性を有するフィルタや抗ウイルスフィルムなどの成型品が開発されている(例えば、特許文献1、特許文献2、特許文献3)。
国際公開第2011/040048号 特開2005-007346号公報 特開2021-066874号公報
 商品設計の自由度の観点などから抗菌・抗ウイルス性を有する素材についてより多くの選択肢が存在することが好ましい。
 本発明は、新規な抗菌・抗ウイルス樹脂組成物を提供することを目的とする。
 本発明者らは、鋭意検討の結果、JIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満である樹脂組成物に、抗菌・抗ウイルス剤として一価の銅化合物粒子を含有させると、一価の銅化合物粒子を含むが上記L*値の範囲を満足しない樹脂組成物よりも高い抗菌・抗ウイルス性を示すことを見出し、本発明を完成させた。
 本発明の要旨は以下のとおりである。
[1]
 有効成分として一価の銅化合物粒子を含む抗菌・抗ウイルス性を有する樹脂組成物であって、
 JIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満である抗菌・抗ウイルス樹脂組成物。
[2]
 黒色顔料を含む[1]に記載の抗菌・抗ウイルス樹脂組成物。
[3]
 黒色染料で染色されている[1]に記載の抗菌・抗ウイルス樹脂組成物。
 [4]
 前記抗菌・抗ウイルス樹脂組成物が繊維、フィルム、またはシートである、[1]から[3]のいずれか一つに記載の抗菌・抗ウイルス樹脂組成物。
[5]
 前記一価の銅化合物粒子が、塩化物、酢酸物、硫化物、ヨウ化物、臭化物、過酸化物、酸化物、チオシアン化物、またはそれらの混合物である、[1]に記載の抗菌・抗ウイルス樹脂組成物。
[6]
 前記一価の銅化合物粒子として、CuCl、CuOOCCH、CuI、CuBr、CuO、CuS、およびCuSCNからなる群から1種類または2種以上選択される化合物の粒子を含有する、[1]に記載の抗菌・抗ウイルス樹脂組成物。
[7]
 前記一価の銅化合物粒子として、CuIの粒子を含有する、[1]に記載の抗菌・抗ウイルス樹脂組成物。
[8]
 カーボンブラック、チタンブラック、およびフタロシアニンからなる群から選択される1種または2種以上を含有する、[1]に記載の抗菌・抗ウイルス樹脂組成物。
 本発明によれば、新規な抗菌・抗ウイルス樹脂組成物を提供することができる。
 以下、本実施形態の抗菌・抗ウイルス樹脂組成物について詳述する。
 まず、本実施形態の抗菌・抗ウイルス樹脂組成物は、樹脂と一価の銅化合物粒子とを含み、JIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満である。
 日本工業規格であるJIS Z 8781-4のL*a*b*表色系におけるL*値は色の明るさ(明度)を表し、a*値、b*値は色相と彩度を示す色度を表す。
 JIS Z 8781-4のL*値が0以上40未満である本実施形態の抗菌・抗ウイルス樹脂組成物は例えば黒色の外観を有する。
 本実施形態の樹脂組成物についてJIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満であるようにするために、例えば、染顔料を使用して樹脂組成物を着色することができる。このうち、耐久性の点から顔料(有機顔料、無機顔料)を使用することが好ましい。また、複数色の染顔料を混ぜてJIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満であるようにしてもよい。
 なお、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値は、例えば色差計を用いて測定することができる。また、染顔料を使用して樹脂組成物を着色する場合の染顔料の含有量は特に限定されず、例えば色差計の測定値に応じてL*値が0以上40未満になるように調整するなどすればよい。例えば抗菌・抗ウイルス性樹脂組成物100質量%中、染顔料は、0.05質量%以上2.0質量%以下、好ましくは0.1質量%以上1.5質量%以下とすることができる。
 有機顔料としては、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料等を挙げることができる。
 無機顔料としては、硫酸バリウム、亜鉛華、硫酸鉛、黄色鉛、亜鉛黄、べんがら(赤色酸化鉄(III))、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑、アンバー、カーボンブラック、ボーンブラック、グラファイト、チタンブラック、鉄黒、合成鉄黒、酸化チタン、四酸化鉄などの金属酸化物粉、金属硫化物粉、金属粉等が挙げられる。
 染料としては、アゾ系染料、アントラキノン系染料、フタロシアニン系染料、キノンイミン系染料、キノリン系染料、ニトロ系染料、カルボニル系染料、メチン系染料等を挙げることができる。
 このうち、カーボンブラック、チタンブラック、およびフタロシアニンからなる群から選択される1種または2種以上を含有することが、抗ウイルス性及び抗菌性を向上させる観点から好ましい。
 本実施形態の樹脂組成物を構成する樹脂は、特に限定されず、適宜選択できる。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、AES樹脂、EVA樹脂、ポリメチルペンテン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂などの熱可塑性樹脂、シリコーン樹脂、ポリスチレンエラストマーなどのスチレン系エラストマー、ポリエチレンエラストマー、ポリプロピレンエラストマーなどのオレフィン系エラストマー、ポリウレタンエラストマーなどのポリウレタン系エラストマー、塩ビ系エラストマー、ポリエステル系エラストマー、ナイロン系エラストマーなどの熱可塑性エラストマーが挙げられる。
 また本実施形態の抗菌・抗ウイルス樹脂組成物は、抗菌・抗ウイルス剤として一価の銅化合物粒子を含む。一価の銅化合物粒子はもともと非常に高い抗菌・抗ウイルス性があることが知られており、そのメカニズムについては明確ではないが、空気中あるいは飛沫中の水分と接触すると、一価の銅イオンが溶出し、溶出した一価の銅イオンは細菌やウイルスと接触することで電子を放出し、その際に、発生した活性種により何らかのダメージを与えると考えられる。一価の銅化合物粒子として、具体的には、塩化物、酢酸物(酢酸化合物)、硫化物、ヨウ化物、臭化物、過酸化物、酸化物、チオシアン化物またはそれらの混合物であることが好ましい。このうち、一価の銅化合物粒子が、CuCl、CuOOCCH、CuI、CuBr、CuO、CuS、およびCuSCNからなる群から少なくとも1種類選択されることが、抗ウイルス性及び抗菌性を向上させる観点からより好ましく、CuI(ヨウ化銅(I))の粒子を含むことがさらにより好ましい。
 本実施形態の抗菌・抗ウイルス樹脂組成物における一価の銅化合物粒子の含有量は所望する抗菌性能及び抗ウイルス性能に応じて適宜設定することができるが、例えば、抗菌・抗ウイルス樹脂組成物100質量%に対して0.5質量%以上、40質量%未満、好ましくは1質量%以上、8質量%未満とすることができる。
 一価の銅化合物粒子の粒子径は特に限定されず当業者が適宜設定可能であるが、平均粒子径が1nm以上、500nm未満であるのが好ましい。平均粒子径が1nm未満では物質的に不安定となり、平均粒子径が500nm以上である場合は、500nm未満と比べて、抗菌・抗ウイルス効果が低くなるからである。なお、本明細書において、平均粒子径とは、体積平均粒子径をいう。体積平均粒子径は、例えばレーザードップラー法(動的・電気泳動光散乱法)に基づき測定することができる。測定装置は特に限定されないが、例えばゼータ電位・粒経測定システム(大塚電子製)を用いることができる。
 本実施形態の抗菌・抗ウイルス樹脂組成物は、ゲノムの種類や、エンベロープの有無等にかかわることなく、様々なウイルスの感染力を低下したり、様々なウイルスを不活化したりすることができる。このウイルスとしては、例えば、ライノウイルス・ポリオウイルス・口蹄疫ウイルス・ロタウイルス・ノロウイルス・エンテロウイルス・ヘパトウイルス・アストロウイルス・サポウイルス・E型肝炎ウイルス・A型、B型、C型インフルエンザウイルス・パラインフルエンザウイルス・ムンプスウイルス(おたふくかぜ)・麻疹ウイルス・ヒトメタニューモウイルス・RSウイルス・ニパウイルス・ヘンドラウイルス・黄熱ウイルス・デングウイルス・日本脳炎ウイルス・ウエストナイルウイルス・B型、C型肝炎ウイルス・東部および西部馬脳炎ウイルス・オニョンニョンウイルス・風疹ウイルス・ラッサウイルス・フニンウイルス・マチュポウイルス・グアナリトウイルス・サビアウイルス・クリミアコンゴ出血熱ウイルス・スナバエ熱・ハンタウイルス・シンノンブレウイルス・狂犬病ウイルス・エボラウイルス・マーブルグウイルス・コウモリリッサウイルス・ヒトT細胞白血病ウイルス・ヒト免疫不全ウイルス・ヒトコロナウイルス・SARSコロナウイルス・ヒトポルボウイルス・ポリオーマウイルス・ヒトパピローマウイルス・アデノウイルス・ヘルペスウイルス・水痘・帯状発疹ウイルス・EBウイルス・サイトメガロウイルス・天然痘ウイルス・サル痘ウイルス・牛痘ウイルス・モラシポックスウイルス・パラポックスウイルス・ジカウイルス・新型コロナウイルス(covid-19)などを挙げることができる。
 さらに本実施形態の抗菌・抗ウイルス性樹脂組成物は、不活化できる細菌についても特に限定されず、グラム陽性・陰性、好気性・嫌気性などの性質にかかわらず様々な細菌等を殺菌することができる。具体的な細菌としては、例えば、大腸菌、黄色ブドウ球菌、表皮ブドウ球菌、連鎖球菌、肺炎球菌、インフルエンザ菌、百日咳菌、腸炎菌、肺炎桿菌、緑膿菌、ビブリオ、サルモネラ菌、コレラ菌、赤痢菌、炭疽菌、結核菌、ボツリヌス菌、破傷風菌、レンサ球菌などを挙げることができる。
 本実施形態の樹脂組成物は、一価の銅化合物粒子以外の他の成分を含有していてもよい。他の成分としては、可塑剤、乾燥剤、硬化剤、皮張り防止剤、平坦化剤、たれ防止剤、防カビ剤、紫外線吸収剤、熱線吸収剤、潤滑剤、界面活性剤、増粘剤、粘性調整剤、安定剤、乾燥調整剤、顔料、分散剤、防黴組成物、抗アレルゲン組成物、触媒、反射防止材料、遮熱特性を持つ材料を挙げることができる。他の成分は、2種類以上が含まれてもよい。他の成分が含有される態様は特に限定されるものではなく、樹脂組成物の内部に分散されるようにしてもよく、樹脂組成物の内部に分散する他の成分の一部が樹脂組成物の表面から露出するようにしてもよく、樹脂組成物の表面に固着されるようにしてもよい。
 なお、本実施形態の抗菌・抗ウイルス樹脂組成物は例えばフィルム、シート、成形体の他、繊維または繊維構造体とすることができる。繊維としては短繊維でも長繊維でもよく、モノフィラメントでもマルチフィラメントでもよい。繊維構造体としては、布帛、織編物、不織布、混抄紙などが挙げられる。
 次に、本実施形態の抗菌・抗ウイルス樹脂組成物の製造方法の一例について詳述する。なお、以下においては本実施形態の抗菌・抗ウイルス樹脂組成物を繊維とした場合を例に挙げて説明する。
 まず抗菌・抗ウイルス剤である一価の銅化合物粒子が混合(分散)されたマスターバッチペレットを作製する。マスターバッチペレットは、例えば以下のようにして製造する。
 粉砕した一価の銅化合物粒子と公知の分散剤を混合して、一価の銅化合物粒子の表面を分散剤で被覆した後、この一価の銅化合物粒子を樹脂ペレットと混合し、混練押出機を用いることにより、一価の銅化合物粒子を樹脂ペレットの内部に分散させる。或いは、粉砕した一価の銅化合物粒子と分散剤を、樹脂ペレットと混合し、混練押出機を用いることにより、混練中に一価の銅化合物微粒子の周囲に分散剤が引き寄せられ、その結果、一価の銅化合物微粒子が分散剤で被覆されるとともに、この一価の銅化合物微粒子を樹脂ペレットの内部に分散させる。混練物を冷却した後、ペレタイザを用いて一価の銅化合物粒子を含有させた樹脂を細かくカットし、一価の銅化合物粒子が混合(分散)されたマスターバッチペレットを得る。なお、マスターバッチペレットの製造時における一価の銅化合物粒子の割合(濃度)は、当業者が適宜設定することができる。
 得られたマスターバッチペレットは、成型機を用いて上述した染顔料や樹脂、必要に応じてその他の成分と溶融混錬し、紡糸原料を製造する。そして、得られた紡糸原料を溶融紡糸工程に供することにより、本実施形態に係る繊維を得ることができる。溶融紡糸方法については、特定の方法に限定されるものではなく、公知の方法を用いることができる。紡糸温度については、樹脂粘度が適度に低い状態で紡糸口金から吐出することができ、また、樹脂の劣化や熱分解を起こすことなく、紡糸工程が著しく不安定化することなく、後の延伸処理によって高強度の繊維を得ることができる範囲であれば、繊維材料に合った温度域を適宜選定すればよい。
 溶融紡糸工程においては、紡糸原料を紡糸口金から吐出し、吐出された繊維状の紡糸原料を冷却して固化し、繊維とする。具体的には、吐出された紡糸原料を例えば空気、水、グリセリン等の媒体中で固化温度以下まで冷却して固化させる。水冷式での冷却の場合、60℃程度に加温し、徐冷却することにより、繊維が水槽に導入された際に揺動せずに水槽を通過することができるため、冷却時の安定性に優れる。空冷の場合には、空気の温度、風速は任意に設定できるが、分子配向を抑制するためには風速は低く、温度はあまり低すぎないことが望ましい。冷却の時点で分子配向の度合いが高いと、次工程で加熱延伸工程を行う場合には、繊維が延伸されにくくなり、抗菌・抗ウイルス効果が得られにくくなる場合がある。
 そして、固化させた繊維を巻き取る。巻き取り速度は、任意の速度を設定することができる。ただし、巻き取り速度が溶融未延伸糸の自由落下速度よりも低速の場合には、均一な未延伸糸が得られなくなり、延伸性の低下を招く場合がある。なお、次工程で加熱延伸工程を行う場合には、固化させた糸を巻き取らずに、そのまま加熱延伸工程に供するようにしてもよい。
 次に、加熱延伸工程について説明する。加熱延伸工程では、紡糸工程で巻き取られた繊維(未延伸糸)を加熱して伸ばす工程である。加熱延伸工程は複数の延伸工程を有していてもよい。加熱延伸工程が複数の延伸工程を有する場合は、各延伸工程における延伸倍率の積が、総延伸倍率となる。なお、加熱延伸工程が1回の延伸する工程からなる場合には、この1回の延伸する工程における延伸倍率が総延伸倍率となる。
 本実施形態の抗菌・抗ウイルス樹脂組成物の一例である繊維は、加熱延伸することでさらに優れた抗菌・抗ウイルス性を発現し、繊維表面等に付着した細菌やウイルスを効率良く不活性化することができる。特に繊維がモノフィラメントである場合、加熱延伸によって抗菌・抗ウイルス効果をより高めることができる。加熱延伸によって抗菌・抗ウイルス効果が大きく向上する機構については現在のところ必ずしも明確ではないが、以下の理由が考えられる。紡糸工程において溶融状態の繊維は、冷却が始まると繊維の表層部が直接冷却固化され、表層部よりも繊維の内側の部分(内層部)に存在する抗菌・抗ウイルス剤は、繊維の外部の水分と接触しにくい構造になる。一方、内層部は表層部を介して冷却固化されるために、内層部の冷却スピードは、表層部の冷却スピードよりも低くなる。そのため、表層部の繊維構造は、内層部の繊維構造と異なると考えられる。その状態で加熱延伸を行うと、ガラス転移点以上の加熱条件下で延伸が行われるために、表層部の繊維構造は、抗菌・抗ウイルス剤と繊維の外部の水分が接触しやすい繊維構造となる。しかも、加熱延伸によって、表層部の繊維構造は、内層部の繊維構造に近づくため、細菌やウイルスの表面のチャージやDNA等に何らかの影響を与えて不活性化させるものと考えられる。
 延伸方法については特に限定されるものではなく、ホットロール延伸法、熱板延伸法、チューブラー延伸法、延伸ブロー法、レーザー延伸法等、公知の延伸方法を適宜採用することができる。ホットロール延伸法で加熱延伸される場合、多段に組み合わされたホットロールの回転数を変更することにより、未延伸糸を高倍率に延伸することができる。
 延伸倍率は、被延伸物の繊度に応じて適宜選定されるが、通常、総延伸倍率が3.0以上7.0倍以下、好ましくは4.0以上6.0倍以下になるように設定される。延伸倍率を3.0以上7.0倍以下とすることにより、より分子が配向して、より強度の高い繊維を得ることができる。延伸倍率が3.0倍未満である場合には、延伸倍率が3.0倍以上である場合と比較して抗菌・抗ウイルス効果が低く、また、得られる繊維の強度が低下する。また、延伸倍率が7.0倍を超える場合には、延伸張力が極めて高くなるため、糸切れが多発し製糸性が低下する場合がある。
 なお、本実施形態に係る抗菌・抗ウイルス樹脂組成物の一例である繊維は、芯鞘構造を有していてもよい。その場合、例えば、芯部は通常の樹脂(一価の銅化合物粒子を含まない樹脂)で形成し、鞘部に一価の銅化合物粒子を含有し、JIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満である樹脂で形成することにより、繊維の強度を向上させることができるだけでなく、一価の銅化合物粒子の含有量も低減できるという利点がある。芯部の樹脂と鞘部の樹脂は、同一であってもよいし異なる樹脂であってもよい。
 芯鞘構造の繊維の長手方向と直交する断面形状は、特に限定されるものではないが、断面形状を円形とすることが好ましく、芯部および鞘部も同心円状に形成することが好ましい。繊維の長手方向と直交する断面において、芯部の面積と鞘部の面積の比率は特に限定されるものではなく、使用者が適宜、設定することができる。
 本実施形態の抗菌・抗ウイルス樹脂組成物の一例である繊維は、織物、編物、不織布、混抄紙などの紙類などとして使用することが可能である。そして、この繊維は、衣類、寝具、寝装材、マスク、ハンカチ、タオル、絨毯、カーテン、外壁材、建装材、内装材などのシート状の製品や、空気清浄機やエアコン、換気扇、電気掃除機、扇風機、空調用、車両用などのフィルタ、生簀や定置網などの漁網、水処理用のフィルタ、飲料水用フィルタ、バラスト水処理用のフィルタ、防護衣類、防護ネット、防虫網、鶏舎用ネットなど、様々な製品に使用することができる。従って、本実施形態の抗菌・抗ウイルス樹脂組成物の一例である繊維は、様々な分野に優れた各種製品を提供することができる有用な材料である。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
 (実施例1)
 一価の銅化合物粒子としてヨウ化銅(I)を用いた。有効成分としてヨウ化銅(I)(粒子径:350nm)を含有するポリエチレンマスターバッチペレット(NBCメッシュテック社製Cufitec(登録商標)MB-PE):5wt%、カーボンブラック系黒色顔料を含有するポリプロピレンマスターバッチペレット:5wt%、およびポリプロピレン樹脂:90wt%とする量を、溶融して混合した。
 得られた混合物を、溶融紡糸装置に設けられる溶融押出機を用いて溶融し、溶融紡糸装置に設けられる紡糸口金から吐出し、水槽にて冷却しながら所定の速度で引き取ることで、樹脂組成物である抗菌・抗ウイルス性繊維を得た。得られた抗菌・抗ウイルス性繊維の繊維径は150μmであった。
 得られた抗菌・抗ウイルス性繊維100質量%中、黒色顔料は1.0質量%であった。
 また、得られた抗菌・抗ウイルス性繊維100質量%中、ヨウ化銅(I)は2.0質量%であった。
 得られた抗菌・抗ウイルス性繊維について、色差計(コニカミノルタ社製、色計測機器CR-10(式差計)、以下同じ)を用い、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=16.5であった。
(実施例2)
 カーボンブラック系黒色顔料を含有するポリプロピレンマスターバッチを、チタンブラック系黒色顔料 を含有するポリプロピレンマスターバッチ:1.5wt%、ポリプロピレン樹脂:93.5wt%に変えた以外は実施例1と同様の方法にて抗菌・抗ウイルス性繊維を作成した。得られた抗菌・抗ウイルス性繊維の繊維径は150μmで、この時のJIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=1.8であった。
 得られた抗菌・抗ウイルス性繊維100質量%中、黒色顔料は0.3質量%であった。
 また、得られた抗菌・抗ウイルス性繊維100質量%中、ヨウ化銅(I)は2.0質量%であった。
(実施例3)
 カーボンブラック系黒色顔料を含有するポリプロピレンマスターバッチを、フタロシアニン系黒色顔料を含有するポリプロピレンマスターバッチ:1.0wt%、ポリプロピレン樹脂:94wt%に変えた以外は実施例1と同様の方法にて抗菌・抗ウイルス性繊維を作成した。得られた抗菌・抗ウイルス性繊維の繊維径は150μmで、この時のJIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=35であった。
 得られた抗菌・抗ウイルス性繊維100質量%中、黒色顔料は0.2質量%であった。
 また、得られた抗菌・抗ウイルス性繊維100質量%中、ヨウ化銅(I)は2.0質量%であった。
 (実施例4)
 一価の銅化合物粒子としてヨウ化銅(I)を用いた。有効成分としてヨウ化銅(I)(粒子径:350nm)を含有するポリエチレンマスターバッチペレット(NBCメッシュテック社製Cufitec(登録商標)MB-PE):5wt%、カーボンブラック系黒色顔料を含有するポリプロピレンマスターバッチペレット:5wt%、およびポリエチレン樹脂:90wt%とする量を、溶融して混合した。得られた混合物を、2軸押出機(東洋精機社製 ラボプラストミル(登録商標))を用いてフィルム化し、実施例4の樹脂組成物である抗菌・抗ウイルス性フィルムを得た。得られたフィルムの厚みは120μmで、抗菌・抗ウイルス性フィルム100質量%中、ヨウ化銅(I)は2.0質量%であった。この時のJIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=35.6であった。
 得られた抗菌・抗ウイルス性フィルム100質量%中、黒色顔料は1.0質量%であった。
 また、得られた抗菌・抗ウイルス性フィルム100質量%中、ヨウ化銅(I)は2.0質量%であった。
 (比較例1)
 カーボンブラック系黒色顔料を入れないこと以外は実施例1と同様の方法で紡糸し、比較例1の抗菌・抗ウイルス性繊維を得た。得られた抗菌・抗ウイルス性繊維の繊維径は150μmであった。
 得られた抗菌・抗ウイルス性繊維について、色差計を用い、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=85.2であった。
 また、得られた抗菌・抗ウイルス性繊維100質量%中、ヨウ化銅(I)は2.0質量%であった。
 (比較例2)
 チタンブラック系黒色顔料を入れないこと以外は実施例2と同様の方法で紡糸し、比較例2の抗菌・抗ウイルス性繊維を得た。得られた抗菌・抗ウイルス性繊維の繊維径は150μmであった。
 得られた抗菌・抗ウイルス性繊維について、色差計を用い、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=57.3であった。
 また、得られた抗菌・抗ウイルス性繊維100質量%中、ヨウ化銅(I)は2.0質量%であった。
 (比較例3)
 フタロシアニン系黒色顔料を入れないこと以外は実施例3と同様の方法で紡糸し、比較例3の抗菌・抗ウイルス性繊維を得た。得られた抗菌・抗ウイルス性繊維の繊維径は150μmであった。
 得られた抗菌・抗ウイルス性繊維について、色差計を用い、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=63.1であった。
 また、得られた抗菌・抗ウイルス性繊維100質量%中、ヨウ化銅(I)は2.0質量%であった。
 (比較例4)
 カーボンブラック系黒色顔料を入れないこと以外は実施例4と同様の方法でフィルム化し、比較例4の抗菌・抗ウイルス性フィルムを得た。得られた抗菌・抗ウイルスフィルムの厚みは120μmで、色差計を用い、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=61.7であった。
 また、得られた抗菌・抗ウイルス性フィルム100質量%中、ヨウ化銅(I)は2.0質量%であった。
 (比較例5)
 有効成分としてヨウ化銅(I)(粒子径:350nm)を含有するマスターバッチペレットを入れず、ポリエチレン樹脂量を95wt%としたこと以外は、実施例1と同様の方法で紡糸し、比較例4の繊維を得た。得られた繊維の繊維径は150μmであった。
 得られた抗菌・抗ウイルス性繊維について、色差計を用い、JIS Z 8781-4で規定されるL*a*b*表色系におけるL*値を測定したところ、L*=7.6であった。
 得られた繊維100質量%中、黒色顔料は1.0質量%であった。
 <抗ウイルス性の測定>
 実施例1~4、比較例1~5における抗ウイルス性の測定は、インフルエンザウイルスを用い、JIS L 1922「プラーク測定法」に準じて測定した。結果を表1に示す。なお対照として用いた標準布は、JIS L 0803準拠 試験用添付白布 綿(カナキン3号)とした。
Figure JPOXMLDOC01-appb-T000001
 表1から理解できるとおり、抗ウイルス剤である一価の銅化合物粒子を含有し、L*値が0以上40未満である、すべての実施例において、優れた抗ウイルス性能を示した。これに対し、抗ウイルス剤である一価の銅化合物粒子を含有していても、L*値が40より高い比較例1~4では抗ウイルス性が実施例1~4よりも低い結果となった。また、L*値が0以上40未満であるものの、抗ウイルス剤である一価の銅化合物粒子を含有していない比較例5では抗ウイルス効果が見られなかった。
<抗菌性の測定>
 実施例1~4、比較例1~5における抗菌性の測定は、黄色ブドウ球菌を用い、JIS L 1902に準じて測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から理解できるとおり、抗菌剤である一価の銅化合物粒子を含有し、L*値が0以上40未満である実施例1~4は、18時間で検出限界値以下もしくは3Log CFU以下という優れた抗菌性を示した。これに対し、抗菌剤である一価の銅化合物粒子を含有していても、L*値が40より高い比較例1~4では抗菌性がすべての実施例よりも低い結果となった。また、L*値が0以上40未満であるものの、抗菌剤である一価の銅化合物粒子を含有していない比較例5では菌が増殖してしまっていた。
 

Claims (8)

  1.  有効成分として一価の銅化合物粒子を含む抗菌・抗ウイルス性を有する樹脂組成物であって、
     JIS Z 8781-4のL*a*b*表色系におけるL*値が0以上40未満である抗菌・抗ウイルス樹脂組成物。
  2.  黒色顔料を含む請求項1に記載の抗菌・抗ウイルス樹脂組成物。
  3.  黒色染料で染色されている請求項1に記載の抗菌・抗ウイルス樹脂組成物。
  4.  前記抗菌・抗ウイルス樹脂組成物が繊維、フィルム、またはシートである、請求項1から3のいずれか一つに記載の抗菌・抗ウイルス樹脂組成物。
  5.  前記一価の銅化合物粒子が、塩化物、酢酸物、硫化物、ヨウ化物、臭化物、過酸化物、酸化物、チオシアン化物、またはそれらの混合物である、請求項1に記載の抗菌・抗ウイルス樹脂組成物。
  6.  前記一価の銅化合物粒子として、CuCl、CuOOCCH、CuI、CuBr、CuO、CuS、およびCuSCNからなる群から1種類または2種以上選択される化合物の粒子を含有する、請求項1に記載の抗菌・抗ウイルス樹脂組成物。
  7.  前記一価の銅化合物粒子として、CuIの粒子を含有する、請求項1に記載の抗菌・抗ウイルス樹脂組成物。
  8.  カーボンブラック、チタンブラック、およびフタロシアニンからなる群から選択される1種または2種以上を含有する、請求項1に記載の抗菌・抗ウイルス樹脂組成物。
     
PCT/JP2023/013357 2022-03-31 2023-03-30 抗菌・抗ウイルス樹脂組成物 WO2023190965A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060136 2022-03-31
JP2022060136 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190965A1 true WO2023190965A1 (ja) 2023-10-05

Family

ID=88202192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013357 WO2023190965A1 (ja) 2022-03-31 2023-03-30 抗菌・抗ウイルス樹脂組成物

Country Status (2)

Country Link
TW (1) TW202345698A (ja)
WO (1) WO2023190965A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503658A (ja) * 2010-12-20 2014-02-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 熱伝導性ポリマーを含んでなる成形熱可塑性物品
JP2014181335A (ja) * 2013-03-21 2014-09-29 Nbc Meshtec Inc 殺菌・抗ウイルス性を有するラテックス部材の製造方法
JP2017014388A (ja) * 2015-07-01 2017-01-19 旭化成株式会社 ポリアミド樹脂組成物及び成形体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503658A (ja) * 2010-12-20 2014-02-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 熱伝導性ポリマーを含んでなる成形熱可塑性物品
JP2014181335A (ja) * 2013-03-21 2014-09-29 Nbc Meshtec Inc 殺菌・抗ウイルス性を有するラテックス部材の製造方法
JP2017014388A (ja) * 2015-07-01 2017-01-19 旭化成株式会社 ポリアミド樹脂組成物及び成形体

Also Published As

Publication number Publication date
TW202345698A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US20240065273A1 (en) Antimicrobial/antiviral composition
CN101705527B (zh) 抗菌抗静电多功能尼龙6纤维及其制备和应用
CN109706533B (zh) 一种抗菌防霉丙纶长丝及其制备方法
WO2013005446A1 (ja) 抗ウイルス性樹脂部材
TW201210477A (en) Insecticide-containing netlike fabric
EP3388561B1 (en) Polylactic acid resin fiber, polylactic acid long fiber, polylactic acid short fiber, and polylactic acid fiber
CN111662505A (zh) 一种抑菌无纺材料及其制备方法
JP6063666B2 (ja) 抗ウイルス性を有する繊維およびその製造方法
JP4162657B2 (ja) 抗細菌活性及び抗真菌活性を有する物品
DE102017112130A1 (de) Polyester- und Polyolefinformmassen mit bioaktiven Eigenschaften und daraus hergestellte Formkörper
EP3003030B1 (en) Antimicrobial and antiviral polymeric materials
Zhu et al. Preparation of antimicrobial fabric using magnesium-based PET masterbatch
WO2023190965A1 (ja) 抗菌・抗ウイルス樹脂組成物
DE1544788C3 (de) Fäden oder Fasern aus einem modifizierten Acrylnitrilpolymerisat
KR20170028852A (ko) 항균 섬유의 제조 방법
CN217399079U (zh) 一种抑菌性异形超细聚酯poy丝的制备设备
Tutak et al. Development of bio-active polypropylene fiber containing QA-POSS nanoparticles
KR100894494B1 (ko) 심초형 복합방사 단섬유 및 그의 제조방법
KR102418999B1 (ko) 항균 및 항바이러스 성형체의 제조방법 및 이를 포함하는 성형체
TWI739613B (zh) 抗菌奈米銅纖維紗製造方法
JP2004124269A (ja) トルマリン含有繊維
WO2003035973A1 (fr) Produit textile a activite anti-algues
WO2018063116A2 (en) Acrylic/modacrylic fiber having anti-odor effect
JP2008007912A (ja) ポリ乳酸繊維並びにそれを用いた布帛および繊維製品
JPH04281010A (ja) 抗菌性塩化ビニリデン系繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780973

Country of ref document: EP

Kind code of ref document: A1