WO2023190973A1 - 抗菌・抗ウイルス性樹脂部材 - Google Patents

抗菌・抗ウイルス性樹脂部材 Download PDF

Info

Publication number
WO2023190973A1
WO2023190973A1 PCT/JP2023/013373 JP2023013373W WO2023190973A1 WO 2023190973 A1 WO2023190973 A1 WO 2023190973A1 JP 2023013373 W JP2023013373 W JP 2023013373W WO 2023190973 A1 WO2023190973 A1 WO 2023190973A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antiviral
resin member
resin
emulsion
Prior art date
Application number
PCT/JP2023/013373
Other languages
English (en)
French (fr)
Inventor
良枝 藤森
朋和 長尾
Original Assignee
株式会社Nbcメッシュテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nbcメッシュテック filed Critical 株式会社Nbcメッシュテック
Publication of WO2023190973A1 publication Critical patent/WO2023190973A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid

Definitions

  • the present invention relates to an antibacterial/antiviral resin member that can inactivate attached bacteria and viruses.
  • Patent Document 1 molded products such as filters and antiviral films that have antibacterial and antiviral properties have been developed (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • the main resin materials used for filters are highly water-repellent resins (substrate) such as polypropylene (PP), which is inexpensive and easy to process.
  • substrate such as polypropylene (PP)
  • PP polypropylene
  • Antibacterial and antiviral resin members had poor contact efficiency with viruses and bacteria, and did not have sufficient antibacterial and antiviral performance.
  • An object of the present invention is to provide an antibacterial/antiviral resin member that can efficiently inactivate bacteria and viruses attached to its surface.
  • the present inventors determined that the amount of electrical charge of the antibacterial/antiviral resin member should be 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 , preferably 0 ⁇ C/m 2 or more and 0.7 ⁇ C/m 2 It has been found that by making it less than 10%, the contact efficiency with bacteria and viruses can be improved, and the antibacterial performance and antiviral performance can be improved.
  • the first invention includes a base formed of a resin and an antibacterial/antiviral agent contained in the base, and has a charge amount of 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 . It is a characteristic antibacterial and antiviral resin material.
  • a second invention is an antibacterial/antiviral resin member according to the first invention, characterized in that an O/W emulsion is coated on the surface of the base.
  • a third invention is the antibacterial/antiviral resin member according to the first invention, characterized in that an oil-soluble substance is attached to the surface of the base.
  • a fourth invention is the antibacterial/antiviral resin according to the third invention, wherein the oil-soluble substance is one or more selected from the group consisting of liquid paraffin, mineral oil, and fatty acid ester. It is a member.
  • a fifth invention is the antibacterial/antiviral resin member according to the third invention or the fourth invention, characterized in that a surfactant is attached to the surface of the base.
  • a sixth invention is the antibacterial/antiviral resin member according to the fifth invention, wherein the surfactant is a nonionic surfactant.
  • a seventh invention is the sixth invention, wherein the nonionic surfactant is one or more types selected from the group consisting of polyoxyalkyl ether, polyoxyethylene alkyl ether, and polyoxypropylene alkyl ether. It is an antibacterial and antiviral resin member characterized by the following.
  • an antibacterial/antiviral resin member that can efficiently inactivate bacteria and viruses attached to the surface.
  • the antibacterial/antiviral resin member of the present embodiment includes a base made of resin and an antibacterial/antiviral agent contained in the base, and has a charge amount of 0 ⁇ C/m 2 or more and 7 ⁇ C/m 2 less than
  • the amount of electrical charge of the antibacterial/antiviral resin member is determined by a method based on method C (triboelectric charge measurement method) of JIS L 1094:2020 "Testing method for charging property of textiles and knitted materials". It refers to the amount of electrical charge when an acrylic cloth made of acrylic fibers is used as a friction cloth under conditions of a temperature of 20° C. ⁇ 2° C. and a relative humidity of 40% ⁇ 2%.
  • the base body constituting the antibacterial/antiviral resin member of this embodiment is a material for fixing an antibacterial/antiviral agent, which will be described later, and is made of resin.
  • resins that can be used as the base material include polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, AS resin, AES resin, EVA resin, polymethylpentene resin, polyvinyl chloride resin, polyvinylidene chloride resin, Thermoplastic resins such as polymethyl acrylate resin, polyvinyl acetate resin, polyamide resin, polyimide resin, polycarbonate resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyacetal resin, polyarylate resin, polysulfone resin, silicone resin, polystyrene elastomer, etc.
  • Examples include olefin elastomers such as styrene elastomers, polyethylene elastomers, and polypropylene elastomers, polyurethane elastomers such as polyurethane elastomers, and thermoplastic elastomers such as vinyl chloride elastomers, polyester elastomers, and nylon elastomers.
  • olefin elastomers such as styrene elastomers, polyethylene elastomers, and polypropylene elastomers
  • polyurethane elastomers such as polyurethane elastomers
  • thermoplastic elastomers such as vinyl chloride elastomers, polyester elastomers, and nylon elastomers.
  • the number of resins constituting the base body may be one, or two or more types may be used.
  • the shape and form of the substrate constituting the antibacterial/antiviral resin member of this embodiment is not particularly limited, and in addition to sheet-like materials such as woven fabrics, knitted fabrics, non-woven fabrics, sheets, and films, It may be in the form of a molded body.
  • the antibacterial/antiviral agent contained in the above-mentioned substrate is a substance that exhibits antibacterial and antiviral properties, and known substances such as organic and inorganic substances can be used.
  • Organic antibacterial and antiviral agents include thiazole, isothiazole, imidazole, pyridine, triazine, aldehyde, phenol, biguanide, nitrile, halogen, anilide, disulfide, and thiocarbamate.
  • synthetic organic antibacterial and antiviral agents such as organosilicon quaternary ammonium salts, quaternary ammonium salts, amino acids, organometallics, alcohols, carboxylic acids, and esters, as well as hinokitiol and chitosan-based agents. Examples include natural organic antibacterial and antiviral agents.
  • Inorganic antibacterial and antiviral agents include silver, copper, zinc, platinum, zinc compounds, silver compounds, copper compounds, metal oxide catalysts supported with metals or metal oxides, and zeolites ion-exchanged with metal ions. , activated carbon, mesoporous silica, silica gel, etc.
  • shape of the inorganic antibacterial/antiviral agent is not particularly limited, but from the viewpoint of further improving antibacterial performance and antiviral performance, fine particles are preferable.
  • the particle diameter of the fine particles is not particularly limited, but from the viewpoint of further improving antibacterial performance and antiviral performance, it is preferable that the volume average particle diameter is 1.0 nm or more and 500 nm or less.
  • the volume average particle diameter can be measured, for example, by the laser Doppler method (dynamic/electrophoretic light scattering method), and for the measurement, for example, a zeta potential/particle size measurement system (manufactured by Otsuka Electronics) can be used. I can do it.
  • the laser Doppler method dynamic/electrophoretic light scattering method
  • a zeta potential/particle size measurement system manufactured by Otsuka Electronics
  • inorganic antibacterial and antiviral agents can reduce the infectivity of various viruses and inactivate them, regardless of the type of genome or the presence or absence of envelopes.
  • Viruses that can be inactivated by the antibacterial/antiviral resin member of this embodiment include, for example, rhinovirus, poliovirus, foot-and-mouth disease virus, rotavirus, norovirus, enterovirus, hepatovirus, astrovirus, sapovirus, hepatitis E virus, Influenza virus types A, B, C, parainfluenza virus, mumps virus, measles virus, human metapneumovirus, respiratory syncytial virus, Nipah virus, Hendra virus, yellow fever virus, dengue virus, Japanese encephalitis virus, West Nile Viruses: Hepatitis B and C viruses, Eastern and Western equine encephalitis virus, Onyonnyon virus, Rubella virus, Lassa virus, Junin virus, Machupovirus, Guanarito virus, Sabia virus, Crimean-Congo hemorrhagic fever virus, Sand fly Fever, Hantavirus, Sin Nombre virus, Rabies virus, Ebola virus, Marburg
  • Bacteria that can be inactivated by the antibacterial/antiviral resin member of this embodiment include various bacteria regardless of their characteristics, such as Gram-positive/negative, aerobic/anaerobic, etc. Specifically, for example, , Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus, Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus pertussis, Haemophilus enteritidis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Vibrio, Salmonella enterica, Vibrio cholerae, Shigella, Anthrax, Mycobacterium tuberculosis, Botulinum. Examples include Clostridium tetani and Streptococcus.
  • the antibacterial/antiviral agent contained in the substrate may be one type of substance, or may be two or more types of substances.
  • at least two types of substances may be used as an antibacterial/antiviral agent: one that exhibits only antibacterial properties and one that only exhibits antiviral properties, and one that exhibits both antibacterial and antiviral properties.
  • At least one substance may be used.
  • An example of an antibacterial/antiviral agent that exhibits both antibacterial and antiviral properties is a monovalent copper compound.
  • the form in which the antibacterial/antiviral agent is contained in the substrate is not particularly limited, and may be dispersed inside the substrate, and at least a portion of the antibacterial/antiviral agent dispersed inside the substrate. may be exposed from the surface of the substrate, or the antibacterial/antiviral agent may be fixed to the surface of the substrate. From the viewpoint of increasing the contact efficiency between the antibacterial and antiviral agent and bacteria and viruses, the antibacterial and antiviral agent is preferably fixed to the surface of the substrate.
  • the content of the antibacterial/antiviral agent can be appropriately set depending on the desired antibacterial and antiviral performance, but for example, the content of the antibacterial/antiviral agent may be 0.1% by mass or more based on 100% by mass of the antibacterial/antiviral resin member. It can be less than 80% by mass, and preferably 0.1% by mass or more and 15% by mass or less.
  • the substrate may contain other components (hereinafter also simply referred to as "other components") other than the antibacterial and antiviral agents.
  • Other ingredients include plasticizers, desiccants, hardeners, anti-skinning agents, flattening agents, anti-sag agents, anti-mold agents, ultraviolet absorbers, heat absorbers, lubricants, surfactants, and thickeners. , viscosity modifiers, stabilizers, dryness modifiers, pigments, dispersants, antifungal compositions, antiallergen compositions, catalysts, antireflection materials, and materials with heat-shielding properties. Two or more types of other components may be included.
  • the form in which the other components are contained in the substrate is not particularly limited, and they may be dispersed inside the substrate, so that some of the other components dispersed inside the substrate are removed from the surface of the substrate. It may be exposed or fixed to the surface of the substrate.
  • the antibacterial/antiviral resin member of this embodiment has a temperature of 20°C, which is measured by a method based on method C (triboelectric charge measurement method) of JIS L 1094:2020 "Electrostatic test method for woven and knitted fabrics".
  • the amount of electrical charge (hereinafter also simply referred to as "the amount of charged charge") when using acrylic cloth made of acrylic fiber as the friction cloth is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 . If the amount of electrical charge is 7 ⁇ C/m 2 or more, the efficiency of contact with bacteria and viruses attached to the surface becomes poor, and bacteria and viruses cannot be inactivated efficiently.
  • the amount of electrical charge of the antibacterial/antiviral resin member may be 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 , but from the viewpoint of further improving antibacterial and antiviral performance, it is 0 ⁇ C/m 2 or more and less than 0 ⁇ C/m 2 or more. Preferably it is less than 7 ⁇ C/m 2 .
  • the amount of electrical charge of an antibacterial/antiviral resin member varies depending on the type and blending ratio of the materials that make up the base, so by adjusting the composition of the resin that makes up the base, it can be adjusted to between 0 ⁇ C/m2 and 7 ⁇ C. / m2 .
  • the amount of electrical charge of the antibacterial/antiviral resin member can also be adjusted by coating the surface of the substrate with an O/W emulsion.
  • the amount of electrical charge on an antibacterial/antiviral resin member varies depending on the composition and amount of O/W emulsion applied to the surface of the substrate, so the composition and amount of application of the O/W emulsion must be adjusted.
  • the composition of the material that makes up the substrate is more limited than when adjusting the amount of charged charge by the composition of the resin that makes up the substrate. This makes it easier to apply antibacterial and antiviral resin components to more applications.
  • the emulsion It is easy to adjust the amount of solid content (non-volatile components) on the substrate surface by adjusting the concentration.
  • an emulsion refers to a system in which one of two immiscible substances (an oil-soluble substance and a water-soluble substance) is dispersed as fine droplets in the other liquid phase.
  • O/W emulsions oil-in-water emulsions
  • W/O emulsions water-in-oil emulsions
  • the O/W emulsion contains at least an oil-soluble substance for forming droplets and a water-soluble substance for dispersing the droplets.
  • the oil-soluble substance may be any oil-soluble substance that is liquid, paste, or solid at room temperature, and is not particularly limited, but examples include isostearic acid, isopalmitic acid, oleic acid, palmitoleic acid, linoleic acid, and ricinolein.
  • Fatty acids such as acids, lanolin derivatives such as lanolin, lanolin alcohol, and hydrogenated lanolin alcohol, higher alcohols such as cetanol, hexyldecanol, isostearyl alcohol, stearyl alcohol, octyldodecanol, oleyl alcohol, cetostearyl alcohol, and behenyl alcohol, cholesterol derivatives, and Examples include fatty acid esters derived from animal and vegetable oils such as phytosterol derivatives, fatty acid oligomer esters, paraffin, mineral oil, fatty acid esters (PEO), and one or more of these can be used.
  • the water-soluble substance may be liquid at room temperature and is not particularly limited, but for example, water can be used.
  • the oil-soluble substance is selected from the group consisting of liquid paraffin, mineral oil, and fatty acid ester (PEO). It is preferable to use at least one type of water-soluble substance, and it is preferable to use water as the water-soluble substance.
  • the fatty acid ester which is one of the oil-soluble substances, is not limited in terms of carbon number, and may be a saturated fatty acid ester or an unsaturated fatty acid ester. From the viewpoint of more efficiently inactivating bacteria and viruses, the fatty acid ester that can be used as the oil-soluble substance is preferably a liquid fatty acid ester having 15 to 50 carbon atoms.
  • the content of the oil-soluble substance in the O/W emulsion may be appropriately adjusted so that the amount of electrical charge on the antibacterial/antiviral resin member is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 . It can be 3% by mass or more and 15% by mass or less based on 100% by mass (100% by mass of O/W emulsion).
  • the O/W emulsion only needs to contain at least an oil-soluble substance and a water-soluble substance, but preferably contains a surfactant in order to stably disperse oil droplets in water.
  • the surfactant is not particularly limited, and both anionic surfactants and nonionic surfactants can be used.
  • anionic surfactant one having a carboxylic acid, sulfonic acid, or phosphoric acid structure as a hydrophilic group can be used.
  • carboxylic acid surfactants include fatty acid salts and cholates, which are the main components of soaps.
  • sulfonic acid surfactants include sodium linear alkylbenzene sulfonate and sodium lauryl sulfate, which are often used in synthetic detergents.
  • fatty acid soda soap, potassium oleate soap, carboxylic acid salts such as alkyl ether carboxylates, sodium lauryl sulfate, sodium higher alcohol sulfate, triethanolamine lauryl sulfate, polyoxyethylene sodium lauryl ether sulfate, Sulfates such as sodium oxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyl ether disulfonate, sodium alkanesulfonate, and sulfonates such as the sodium salt of aromatic sulfonic acid formalin condensate;
  • Examples include alkyl phosphate potassium salt, sodium hexametaphosphate, dialkyl sulfosuccinic acid, and the like. These surfactants may be used alone or in combination.
  • nonionic surfactants include alkylphenol ethylene oxide adducts, higher alcohol ethylene oxide adducts, polyoxyethylene fatty acid esters, fatty acid ethylene oxide adducts and polyethylene glycol fatty acid esters, higher alkylamine ethylene oxide adducts and fatty acid amide ethylene oxide adducts, Polyoxyethylene alkylamines and polyoxyethylene fatty acid amides, polypropylene glycol ethylene oxide adducts, nonionic surfactants fatty acid esters of glycerin and pentaerythritol, fatty acid esters of sorbitol and sorbitan, fatty acid esters of sucrose, alkyl polyglycoside fatty acids, alkanols Examples include amides. These surfactants may be used alone or in combination.
  • nonionic surfactants compared to anionic surfactants, nonionic surfactants form larger micelles and can hold a large amount of oil-soluble substances, so it is preferable to use nonionic surfactants.
  • nonionic surfactants one or more selected from the group consisting of polyoxyalkyl ether, polyoxyethylene alkyl ether, and polyoxypropylene alkyl ether is particularly preferred.
  • the content of the surfactant in the O/W emulsion may be adjusted appropriately so that the amount of electrical charge on the antibacterial/antiviral resin member is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 and is not particularly limited.
  • the amount may be 0.025 to 5% by weight based on 100% by weight of the coating liquid (100% by weight of O/W emulsion).
  • the non-volatile components contained in the coating liquid adhere to the surface of the substrate, and the amount of electrical charge on the antibacterial/antiviral resin member is adjusted by this non-volatile component.
  • the nonvolatile components include oil-soluble substances and surfactants among the components of the coating liquid mentioned above.
  • the content of non-volatile components in the O/W emulsion is appropriately adjusted so that the amount of electrical charge when acrylic is used as a friction cloth for antibacterial/antiviral resin members is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2
  • the amount may be 0.4 to 30% by mass based on 100% by mass of the coating liquid (100% by mass of O/W emulsion), although it is not particularly limited.
  • the nonvolatile components contained in the O/W emulsion adhere to and remain on the surface of the substrate.
  • Oil-soluble substances remain on the surface of the substrate.
  • the non-volatile A mixture containing an oil-soluble substance and a surfactant as components remains (adheres) on the surface of the substrate.
  • the amount of nonvolatile components of the O/W emulsion attached to the substrate in the antibacterial/antiviral resin member
  • the content of non-volatile components may be appropriately adjusted so that the amount of electrical charge is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 , but for example, based on 100% by mass of the antibacterial/antiviral resin member, It can be 0.1% by mass or more and 20% by mass or less.
  • the amount of nonvolatile components of the O/W emulsion that adheres to the substrate (the content of nonvolatile components in antibacterial and antiviral resin materials) It is preferably 0.3% by mass or more and 12% by mass or less based on 100% by mass of the resin member.
  • the above-mentioned amount of non-volatile components attached means the total amount of attached non-volatile components of the O/W emulsion that adheres to the substrate, if there are two or more types of non-volatile components that adhere to the substrate.
  • the O/W emulsion has only one type of non-volatile component, it means the amount of the one type of non-volatile component attached.
  • the blending ratio of the surfactant and oil-soluble substance in the non-volatile components is
  • the mass ratio can be 0.1:100 to 20:100 (surfactant: oil-soluble substance), and from the viewpoint of more efficiently inactivating bacteria and viruses, the mass ratio is 0.5. :100 to 10:100 (surfactant: oil-soluble substance).
  • the amount of electrical charge of the antibacterial/antiviral resin member is adjusted by the type or blending ratio of the material constituting the base, the amount of electrical charge of the antibacterial/antiviral resin member is 0 ⁇ C/m 2 or more, 7 ⁇ C/m 2
  • the antibacterial/antiviral resin member of the present embodiment can be manufactured by containing an antibacterial/antiviral agent in the base material, which has been adjusted in advance to have an antibacterial/antiviral agent.
  • the method of containing the antibacterial/antiviral agent in the substrate can be appropriately determined depending on the form of containing the antibacterial/antiviral agent, and is not particularly limited.
  • the amount of electrical charge of the antibacterial/antiviral resin member is adjusted in advance to be 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 .
  • the antibacterial/antiviral resin member of this embodiment can be manufactured by adding an antibacterial/antiviral agent to the prepared base material, mixing it, and molding it into a predetermined shape.
  • the charge amount of the antibacterial/antiviral resin member should be 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 in advance.
  • the antibacterial/antiviral resin member of this embodiment can be manufactured by adhering the antibacterial/antiviral agent to the prepared base.
  • the method of fixing the antibacterial/antiviral agent to the substrate is not particularly limited, and conventionally known methods can be used.
  • the antibacterial/antiviral resin member when adjusting the amount of electrical charge of the antibacterial/antiviral resin member by coating the surface of the substrate with an O/W emulsion, the antibacterial/antiviral resin member
  • the antibacterial/antiviral resin of this embodiment is coated with an O/W emulsion that has been adjusted in advance so that the electric charge amount is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 and dried. parts can be manufactured.
  • the method for coating the O/W emulsion on the surface of the substrate is not particularly limited, and conventionally known methods can be used. For example, methods such as a dipping method, a spray method, a roll coater method, a bar coater method, a spin coat method, a gravure printing method, an offset printing method, a screen printing method, and an inkjet printing method can be used.
  • copper compound particles are ground into nano-order particles using a jet mill, hammer mill, ball mill, vibration mill, bead mill, etc.
  • the pulverization method is not particularly limited, and both dry and wet methods can be used.
  • the pulverized copper compound particles are dispersed in a dispersion medium such as water, methanol, ethanol, MEK (methyl ethyl ketone), acetone, xylene, toluene, or the like.
  • a dispersant such as a surfactant is added as necessary, and the process is dispersed and crushed using equipment such as a bead mill, ball mill, sand mill, roll mill, vibration mill, or homogenizer.Furthermore, silane monomer is added, and copper A slurry in which compound particles are dispersed is prepared.
  • the slurry prepared as described above is applied to a resin as a substrate by dipping, spraying, roll coater, bar coater, spin coating, gravure printing, offset printing, screen printing, inkjet printing, etc. Apply using the following method.
  • the solvent dispersion medium
  • the copper compound particles are fixed by chemically bonding the functional groups on the substrate surface with the silane monomer through graft polymerization by reheating or by irradiation with radiation such as infrared rays, ultraviolet rays, electron beams, and ⁇ rays.
  • a resin (substrate containing an antibacterial/antiviral agent) is obtained.
  • an O/W emulsion which has been adjusted in advance so that the amount of electrical charge of the antibacterial/antiviral resin member is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 is applied. Apply and dry.
  • the coating method as mentioned above, methods such as dipping method, spray method, roll coater method, bar coater method, spin coat method, gravure printing method, offset printing method, screen printing method, inkjet printing method, etc. can be used. I can do it.
  • the drying method may be any method as long as volatile components are removed from the O/W emulsion coated on the surface of the substrate, and any conventionally known method can be used. Through these operations, the antibacterial/antiviral resin member of this embodiment can be obtained.
  • masterbatch pellets are prepared in which copper compound particles, which are antibacterial and antiviral agents, are mixed (dispersed). Masterbatch pellets are manufactured, for example, as follows.
  • this antibacterial/antiviral agent is mixed with resin pellets, By using a kneading extruder, the antibacterial/antiviral agent is dispersed inside the resin pellets.
  • the dispersant is drawn around the copper compound fine particles during kneading, and as a result, the copper compound fine particles are mixed with the dispersant.
  • a coated antibacterial/antiviral agent is produced and the antibacterial/antiviral agent is dispersed inside the resin pellet.
  • the resin containing the antibacterial/antiviral agent is finely cut using a pelletizer to obtain masterbatch pellets in which the antibacterial/antiviral agent is mixed (dispersed).
  • the proportion (concentration) of the antibacterial/antiviral agent at the time of manufacturing the masterbatch pellets can be appropriately set by those skilled in the art.
  • the obtained masterbatch pellets are melted and kneaded with a resin using a molding machine, and molded to obtain a resin (substrate) in which an antibacterial/antiviral agent is dispersed.
  • a resin substrate in which an antibacterial/antiviral agent is dispersed.
  • methods such as injection molding and blow molding can be used.
  • the antibacterial/antiviral resin member of the present embodiment may be in the form of a sheet, film, fiber, cloth, mesh (network structure), honeycomb, nonwoven fabric, etc. It can be manufactured in various forms (shapes, sizes, etc.) to suit the purpose of use.
  • the resin in which the antibacterial/antiviral agent is dispersed can be molded by a T-die method, an inflation method, or the like.
  • the resin in which the antibacterial/antiviral agent is dispersed can be molded by melt spinning, etc., and can be made into irregularly shaped threads, core-sheath threads, etc. You can also do it.
  • the resin in which the antibacterial/antiviral agent is dispersed can be molded by melt spinning, etc., and can be made into irregularly shaped threads, core-sheath threads, etc. You can also do it.
  • the resin in which the antibacterial/antiviral agent is dispersed can be molded by melt spinning, etc., and can be made into irregularly shaped threads, core-sheath threads, etc. You can also do it.
  • the resin in which the antibacterial/antiviral agent is dispersed can be molded by melt spinning, etc., and can be made into irregularly shaped threads, core-sheath threads, etc. You can also do it.
  • the resin in which the antibacterial/antiviral agent is dispersed can be molded by melt
  • the substrate contains components other than the antibacterial/antiviral agent
  • the other components can be contained in the substrate together with the antibacterial/antiviral agent.
  • the surface of the substrate thus obtained (the resin in which the antibacterial/antiviral agent is dispersed) is coated with the antibacterial/antiviral resin material so that the amount of electrical charge is 0 ⁇ C/m 2 or more and less than 7 ⁇ C/m 2 .
  • a pre-adjusted O/W emulsion is applied and dried.
  • the coating method as mentioned above, methods such as dipping method, spray method, roll coater method, bar coater method, spin coat method, gravure printing method, offset printing method, screen printing method, inkjet printing method, etc. can be used. can.
  • the drying method may be any method as long as volatile components are removed from the O/W emulsion coated on the surface of the substrate, and any conventionally known method can be used. Through these operations, the antibacterial/antiviral resin member of this embodiment can be obtained.
  • the antibacterial/antiviral resin member of this embodiment obtained by the above manufacturing method can be used not only for basic fiber structures such as woven fabrics, knitted fabrics, and nonwoven fabrics, but also for clothing, bedding, bedding materials, masks, handkerchiefs, towels, Sheet-like products such as carpets, curtains, exterior wall materials, construction materials, interior materials, air purifiers, air conditioners, ventilation fans, vacuum cleaners, electric fans, filters for air conditioners, vehicles, etc., protective clothing, protective nets, Agricultural materials such as insect-proof nets, nets for poultry houses, films for houses, films for tunnel houses, fin materials for air conditioners, molded bodies such as trays for plant factories, panels, sashes, doors, blinds, ceiling boards, floor boards, windows, etc. It can be used as a member for constructing building materials, interior materials, exterior wall materials, etc.
  • Polyethylene masterbatch pellets containing copper (I) iodide (CuI) as an antibacterial/antiviral agent and polyethylene resin and polypropylene resin are melted and mixed so that the masterbatch pellets are 10 wt%.
  • a mixture containing 1% by mass of copper(I) chloride was obtained.
  • the obtained mixture is melted using a melt extruder installed in a melt spinning device, discharged from a spinneret installed in the melt spinning device, and taken off at a predetermined speed while cooling in a water tank to produce copper iodide ( I) Containing fibers were obtained.
  • the fiber diameter of the obtained copper (I) iodide-containing fiber was 150 ⁇ m, and the volume average particle diameter of copper iodide was 350 nm.
  • Example 1 Using the copper (I) iodide-containing fibers obtained above, a woven fabric (plain weave; 60 mesh) was woven using a rapier loom (manufactured by Dornier). A cloth impregnated with an O/W emulsion (Merry W, Marubishi Yuka Kogyo Co., Ltd.) containing 1.3% by mass of a nonionic surfactant (polyoxyethylene alkyl ether) and 26% by mass of mineral oil during weaving.
  • the antibacterial/antiviral resin composition (fabric) of Example 1 was obtained by weaving while applying the O/W emulsion to the fibers.
  • the content (adhesion amount) of nonvolatile components in the O/W emulsion was 7.1% by mass based on 100% by mass of the antibacterial/antiviral fiber.
  • Example 2 A Russell knit (28 mesh) was knitted using the copper (I) iodide-containing fiber obtained above using a Russell warp knitting machine (manufactured by Karl Mayer). A roll impregnated with an O/W emulsion (Marubishi Yuka Kogyo Co., Ltd. Merry W) containing 2.0% by mass of a nonionic surfactant (polyoxyethylene alkyl ether) and 20% by mass of mineral oil during knitting.
  • the antibacterial/antiviral resin composition (knitted fabric) of Example 2 was obtained by passing fibers through the fabric and knitting while applying an O/W emulsion to the fibers. In the antibacterial/antiviral resin composition of Example 2, the content (adhesion amount) of nonvolatile components in the O/W emulsion was 10.0% by mass based on 100% by mass of the antibacterial/antiviral fiber.
  • Example 3 Using the copper (I) iodide-containing fibers obtained above, a woven fabric (plain weave; 60 mesh) was woven using a rapier loom (manufactured by Dornier). O/W emulsion containing 0.2% by mass of nonionic surfactant (polyoxyethylene alkyl ether) and 9.5% by mass of mineral oil during weaving (nonvolatile component concentration 10.0w/wt%; Marubishi Yuka Kogyo Co., Ltd.
  • the antibacterial/antiviral resin composition (fabric) of Example 3 was obtained by placing a cloth impregnated with Merry W) and weaving while applying the O/W emulsion to the fibers. In the antibacterial/antiviral resin composition of Example 3, the content (adhesion amount) of nonvolatile components in the O/W emulsion was 1.4% by mass based on 100% by mass of the antibacterial/antiviral fiber.
  • Example 4 Using the copper (I) iodide-containing fibers obtained above, a woven fabric (plain weave; 60 mesh) was woven using a rapier loom (manufactured by Dornier). O/W emulsion containing 0.04% by mass of nonionic surfactant (polyoxyethylene alkyl ether) and 4.9% by mass of mineral oil during weaving (concentration of non-volatile components: 5w/wt%; Marubishi Yuka Kogyo Co., Ltd.)
  • the antibacterial/antiviral resin composition (fabric) of Example 4 was obtained by placing a cloth impregnated with Merry W) and weaving while applying the O/W emulsion to the fibers. In the antibacterial/antiviral resin composition of Example 4, the content (adhesion amount) of nonvolatile components in the O/W emulsion was 0.4% by mass based on 100% by mass of the antibacterial/antiviral fiber.
  • Comparative example 1 The method was the same as in Example 1, except that weaving was carried out without placing the cloth impregnated with O/W emulsion (Merry W, Marubishi Yuka Kogyo Co., Ltd.) (i.e., O/W emulsion was impregnated with copper iodide (I). )
  • An antibacterial/antiviral resin composition (fabric) of Comparative Example 1 was obtained in the same manner as in Example 1 except that the fibers contained therein were not coated.
  • Comparative example 2 The same method as in Example 2 was carried out except that the fibers were not passed through a roll impregnated with an O/W emulsion (Merry W, Marubishi Yuka Kogyo Co., Ltd.) (i.e., the O/W emulsion was impregnated with copper(I) iodide).
  • An antibacterial/antiviral resin composition (knitted fabric) of Comparative Example 2 was obtained in the same manner as in Example 2 except that the fibers contained therein were not coated.
  • Comparative example 3 After spinning fibers using polyethylene masterbatch pellets that do not contain copper (I) iodide (CuI) as an antibacterial/antiviral agent, weaving was performed in the same manner as in Example 1, and the resin composition of Comparative Example 3 was obtained. I got something (fabric). In the resin composition of Comparative Example 3, the content of nonvolatile components remaining on the surface of the fabric was 7.1% by mass based on 100% by mass of the fibers.
  • CuI copper iodide

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental Sciences (AREA)
  • Textile Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】 表面に付着した細菌やウイルスを効率よく不活化できる抗菌・抗ウイルス性樹脂部材を提供する。 【解決手段】 樹脂で形成された基体と、前記基体に含有される抗菌・抗ウイルス剤と、を含み、帯電電荷量が0μC/m以上7μC/m未満であることを特徴とする抗菌・抗ウイルス性樹脂部材。

Description

抗菌・抗ウイルス性樹脂部材
 本発明は、付着した細菌やウイルスを不活化できる抗菌・抗ウイルス性樹脂部材に関する。
 新型コロナウイルス感染症(COVID-19)によるパンデミックにより、私たちの生活様式が大きく変化している。通常の生活でもマスクや消毒剤が必須となり、今まで医療従事者からの関心が高かった抗ウイルス関連製品についても、一般消費者の関心が高くなってきた。中でも室内環境を整えるための空気清浄機や空調機についての需要が高くなっており、抗菌性能だけでなく、抗ウイルス機能を求める声も高まっている。
 これらの課題を解決するために、抗菌・抗ウイルス性を有するフィルタや抗ウイルスフィルムなどの成型品が開発されている(例えば、特許文献1、特許文献2、特許文献3)。
国際公開第2011/040048号 特開2005-007346号公報 特開2021-066874号公報
 しかしながら、フィルタに用いられる樹脂素材は、安価でかつ加工しやすいポリプロピレン(PP)など、撥水性の高い樹脂(基体)が主流で、抗菌・抗ウイルス剤を単に基体表面に固定しただけの従来の抗菌・抗ウイルス性樹脂部材は、ウイルスや菌との接触効率が悪く、抗菌性能や抗ウイルス性能が十分ではなかった。
 本発明は、表面に付着した細菌やウイルスを効率よく不活化できる抗菌・抗ウイルス性樹脂部材を提供することを目的とする。
 本発明者らは、鋭意検討の結果、抗菌・抗ウイルス性樹脂部材の帯電電荷量を0μC/m以上、7μC/m未満、好ましくは、0μC/m以上、0.7μC/m未満とすることで、細菌やウイルスとの接触効率を向上させることができ、抗菌性能や抗ウイルス性能を向上できることを見出した。
 すなわち第1の発明は、樹脂で形成された基体と、前記基体に含有される抗菌・抗ウイルス剤と、を含み、帯電電荷量が0μC/m以上、7μC/m未満であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 また、第2の発明は、第1の発明において、前記基体の表面にO/Wエマルションが塗工されていることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 また、第3の発明は、第1の発明において、前記基体の表面に油溶性物質が付着していることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 また、第4の発明は、第3の発明において、前記油溶性物質が、流動パラフィン、鉱油、及び脂肪酸エステルからなる群から選択される一種以上であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 また、第5の発明は、第3の発明又は第4の発明において、前記基体の表面に界面活性剤が付着していることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 また、第6の発明は、第5の発明において、前記界面活性剤が、ノニオン系界面活性剤であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 また、第7の発明は、第6の発明において、前記ノニオン系界面活性剤が、ポリオキシアルキルエーテル、ポリオキシエチレンアルキルエーテル、及びポリオキシプロピレンアルキルエーテルからなる群から選択される一種以上であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 本発明によれば、表面に付着した細菌やウイルスを効率よく不活化できる抗菌・抗ウイルス性樹脂部材を提供することができる。
 以下、本発明の一実施形態について説明する。
 本実施形態の抗菌・抗ウイルス性樹脂部材は、樹脂で形成された基体と、基体に含有される抗菌・抗ウイルス剤と、を含み、帯電電荷量が0μC/m以上、7μC/m未満である。なお、本明細書において、抗菌・抗ウイルス性樹脂部材の帯電電荷量は、JIS L 1094:2020「織物及び編物の帯電性試験方法」のC法(摩擦帯電電荷量測定法)に準じた方法で測定される、温度20℃±2℃,相対湿度40%±2%の状態の条件下において、摩擦布としてアクリル繊維からなるアクリル布を用いた場合の帯電電荷量を指す。
 本実施形態の抗菌・抗ウイルス性樹脂部材を構成する基体は、後述する抗菌・抗ウイルス剤を固定するための材料であり、樹脂で形成されている。
 基体の材料として用いることができる樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、AES樹脂、EVA樹脂、ポリメチルペンテン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂などの熱可塑性樹脂、シリコーン樹脂、ポリスチレンエラストマーなどのスチレン系エラストマー、ポリエチレンエラストマー、ポリプロピレンエラストマーなどのオレフィン系エラストマー、ポリウレタンエラストマーなどのポリウレタン系エラストマー、塩ビ系エラストマー、ポリエステル系エラストマー、ナイロン系エラストマーなどの熱可塑性エラストマーが挙げられる。
 基体を構成する樹脂は、1種類であってもよいが、2種以上が用いられてもよい。
 本実施形態の抗菌・抗ウイルス性樹脂部材を構成する基体の形状や形態は特に限定されず、織物、編物、不織布、シート、フィルムなどのシート状のものに加え、所定の形状に成型された成型体状のものであってもよい。
 前述した基体に含有される抗菌・抗ウイルス剤は、抗菌性能及び抗ウイルス性能を発揮する物質であり、有機系、無機系など公知の物質を用いることができる。
 有機系の抗菌・抗ウイルス剤としては、チアゾール系、イソチアゾール系、イミダゾール系、ピリジン系、トリアジン系、アルデヒド系、フェノール系、ビグアナイド系、ニトリル系、ハロゲン系、アニリド系、ジスルフィド系、チオカーバメート系、有機珪素四級アンモニウム塩系、四級アンモニウム塩系、アミノ酸系、有機金属系、アルコール系、カルボン酸系、エステル系などの合成有機系抗菌抗ウイルス剤や、ヒノキチオール系、キトサン系などの天然有機系抗菌・抗ウイルス剤が挙げられる。
 無機系の抗菌・抗ウイルス剤としては、銀、銅、亜鉛、白金、亜鉛化合物、銀化合物、銅化合物、金属もしくは金属酸化物が担持された金属酸化物触媒、金属イオンでイオン交換されたゼオライト、活性炭、メソポーラスシリカ、シリカゲルなどが挙げられる。なお、無機系の抗菌・抗ウイルス剤の形状は、特に限定されるものではないが、抗菌性能や抗ウイルス性能をさらに向上させる観点からは、微粒子であることが好ましい。微粒子の粒子径は、特に限定されるものではないが、抗菌性能や抗ウイルス性能をさらに向上させる観点からは、体積平均粒子径が1.0nm以上500nm以下であることが好ましい。ここで、体積平均粒子径は、例えばレーザードップラー法(動的・電気泳動光散乱法)により測定することができ、測定には、例えばゼータ電位・粒経測定システム(大塚電子製)を用いることができる。
 前述した抗菌・抗ウイルス剤の中でも、抗菌性能や抗ウイルス性能をさらに向上させる観点からは、無機系の抗菌・抗ウイルス剤を用いることが好ましく、銅化合物を用いることがより好ましく、一価の銅化合物を用いることが特に好ましい。無機系の抗菌・抗ウイルス剤は、ゲノムの種類や、エンベロープの有無等にかかわることなく、様々なウイルスの感染力を低下したり、様々なウイルスを不活化したりすることができる。
 本実施形態の抗菌・抗ウイルス性樹脂部材により不活化できるウイルスとしては、例えば、ライノウイルス・ポリオウイルス・口蹄疫ウイルス・ロタウイルス・ノロウイルス・エンテロウイルス・ヘパトウイルス・アストロウイルス・サポウイルス・E型肝炎ウイルス・A型、B型、C型インフルエンザウイルス・パラインフルエンザウイルス・ムンプスウイルス(おたふくかぜ)・麻疹ウイルス・ヒトメタニューモウイルス・RSウイルス・ニパウイルス・ヘンドラウイルス・黄熱ウイルス・デングウイルス・日本脳炎ウイルス・ウエストナイルウイルス・B型、C型肝炎ウイルス・東部および西部馬脳炎ウイルス・オニョンニョンウイルス・風疹ウイルス・ラッサウイルス・フニンウイルス・マチュポウイルウス・グアナリトウイルス・サビアウイルス・クリミアコンゴ出血熱ウイルス・スナバエ熱・ハンタウイルス・シンノンブレウイルス・狂犬病ウイルス・エボラウイルス・マーブルグウイルス・コウモリリッサウイルス・ヒトT細胞白血病ウイルス・ヒト免疫不全ウイルス・ヒトコロナウイルス・SARSコロナウイルス・ヒトポルボウイルス・ポリオーマウイルス・ヒトパピローマウイルス・アデノウイルス・ヘルペスウイルス・水痘・帯状発疹ウイルス・EBウイルス・サイトメガロウイルス・天然痘ウイルス・サル痘ウイルス・牛痘ウイルス・モラシポックスウイルス・パラポックスウイルス・ジカウイルス・新型コロナウイルスなどを挙げることができる。
 本実施形態の抗菌・抗ウイルス性樹脂部材により不活化できる細菌としては、グラム陽性・陰性、好気性・嫌気性などの性質にかかわらず様々な細菌を挙げることができ、具体的には、例えば、大腸菌、黄色ブドウ球菌、表皮ブドウ球菌、連鎖球菌、肺炎球菌、インフルエンザ菌、百日咳菌、腸炎菌、肺炎桿菌、緑膿菌、ビブリオ、サルモネラ菌、コレラ菌、赤痢菌、炭疽菌、結核菌、ボツリヌス菌、破傷風菌、レンサ球菌を挙げることができる。
 なお、基体に含有される抗菌・抗ウイルス剤は、1種類の物質であってもよく、2種類以上の物質であってもよい。例えば、抗菌性能のみを発揮する物質と、抗ウイルス性能のみを発揮する物質の少なくとも2種類の物質を、抗菌・抗ウイルス剤として用いてもよく、抗菌性能と抗ウイルス性能の両方の性能を発揮する物質を少なくとも1種用いてもよい。抗菌性能と抗ウイルス性能の両方の性能を発揮する抗菌・抗ウイルス剤としては、例えば、一価の銅化合物を例示することができる。
 抗菌・抗ウイルス剤が基体に含有される形態は、特に限定されるものではなく、基体の内部に分散されるようにしてもよく、基体の内部に分散する抗菌・抗ウイルス剤の少なくとも一部が基体の表面から露出するようにしてもよく、抗菌・抗ウイルス剤が基体の表面に固着されるようにしてもよい。抗菌・抗ウイルス剤と菌やウイルスとの接触効率を高める観点からは、抗菌・抗ウイルス剤は、基体の表面に固着されることが好ましい。
 抗菌・抗ウイルス剤の含有量は、所望する抗菌性能及び抗ウイルス性能に応じて適宜設定することができるが、例えば、抗菌・抗ウイルス性樹脂部材100質量%に対して0.1質量%以上80質量%未満とすることができ、0.1質量%以上15質量%以下であることが好ましい。
 基体には、上述した抗菌・抗ウイルス剤に加えて、抗菌・抗ウイルス剤以外の他の成分(以下、単に「他の成分」ともいう)が含有されていてもよい。他の成分としては、可塑剤、乾燥剤、硬化剤、皮張り防止剤、平坦化剤、たれ防止剤、防カビ剤、紫外線吸収剤、熱線吸収剤、潤滑剤、界面活性剤、増粘剤、粘性調整剤、安定剤、乾燥調整剤、顔料、分散剤、防黴組成物、抗アレルゲン組成物、触媒、反射防止材料、遮熱特性を持つ材料を挙げることができる。他の成分は、2種類以上が含まれてもよい。他の成分が基体に含有される形態は、特に限定されるものではなく、基体の内部に分散されるようにしてもよく、基体の内部に分散する他の成分の一部が基体の表面から露出するようにしてもよく、基体の表面に固着されるようにしてもよい。
 本実施形態の抗菌・抗ウイルス性樹脂部材は、JIS L 1094:2020「織物及び編物の帯電性試験方法」のC法(摩擦帯電電荷量測定法)に準じた方法で測定される、温度20℃±2℃及び湿度40%±2%%の条件下において、摩擦布としてアクリル繊維からなるアクリル布を用いた場合の帯電電荷量(以下、単に「帯電電荷量」ともいう)が0μC/m以上7μC/m未満である。帯電電荷量が7μC/m以上である場合には、表面に付着した細菌やウイルスとの接触効率が悪くなり、細菌やウイルスを効率よく不活化することができない。抗菌・抗ウイルス性樹脂部材の帯電電荷量は、0μC/m以上7μC/m未満であればよいが、抗菌性能や抗ウイルス性能をさらに向上させる観点からは、0μC/m以上0.7μC/m未満であることが好ましい。
 抗菌・抗ウイルス性樹脂部材の帯電電荷量は、基体を構成する材料の種類や配合比率に依存して変化するため、基体を構成する樹脂の組成を調整することで、0μC/m以上7μC/m未満にすることができる。一方、抗菌・抗ウイルス性樹脂部材の帯電電荷量は、基体表面にO/Wエマルションを塗工することで調整することもできる。抗菌・抗ウイルス性樹脂部材の帯電電荷量は、基体表面に塗工されるO/Wエマルションの組成や塗布量に依存して変化するため、O/Wエマルションの組成や塗布量を調整することで、0μC/m以上7μC/m未満にすることができる。基体表面にO/Wエマルションを塗工して帯電電荷量を調整する場合は、基体を構成する樹脂の組成により帯電電荷量を調整する場合と比較して、基体を構成する材料の組成が制限されにくく、抗菌・抗ウイルス性樹脂部材をより多くの用途に適用しやすくなる。また、基体表面にO/Wエマルションを塗工して帯電電荷量を調整する場合は、O/Wエマルション以外の物質を基体表面に付着して帯電電荷量を調整する場合と比較して、エマルション濃度で基体表面の固形分(不揮発成分)の量を調整しやすい。
 ここで、エマルションとは、互いにまざりあわない二つの物質(油溶性物質と水溶性物質)の一方がもう一方の液相に微細な液滴として分散した系のことを指し、水溶性物質中に油溶性物質からなる液滴が分散したO/Wエマルション(水中油滴分散型エマルション)と油溶性物質中に水溶性物質の液滴が分散したW/Oエマルション(油中水滴分散型エマルション)がある。本実施形態では、帯電電荷量を調整するために、これらのエマルションのうち、O/Wエマルションを用いることが好ましい。
 O/Wエマルションは、少なくとも、液滴を形成するための油溶性物質と、液滴を分散するための水溶性物質を含む。油溶性物質は、常温で液体もしくはペースト状や固体の油溶性物質であればよく、特に限定されるものではないが、例えば、イソステアリン酸、イソパルミチン酸、オレイン酸、パルミトレイン酸、リノール酸、リシノレイン酸等の脂肪酸、ラノリン、ラノリンアルコール、水素添加ラノリンアルコール等のラノリン誘導体、セタノール、ヘキシルデカノール、イソステアリルアルコール、ステアリルアルコール、オクチルドデカノール、オレイルアルコール、セトステアリルアルコール、ベヘニルアルコール等の高級アルコール、コレステロール誘導体及びフィトステロール誘導体等の動植物油由来の脂肪酸エステル及び脂肪酸オリゴマーエステル、パラフィン、鉱油、脂肪酸エステル(PEO)などが挙げられ、これらの1種又は2種以上を用いることができる。水溶性物質は、常温で液体であればよく、特に限定されるものではないが、例えば、水を用いることができる。抗菌・抗ウイルス性樹脂部材帯電電荷量が0μC/m以上、7μC/m未満になりやすいことから、油溶性物質としては流動パラフィン、鉱油、及び脂肪酸エステル(PEO)からなる群から選択される1種以上を用いることが好ましく、水溶性物質としては水を用いることが好ましい。
 なお、油溶性物質の一つである脂肪酸エステルは、炭素数について限定されるものではなく、また、飽和脂肪酸エステルであっても、不飽和脂肪酸エステルであってもよい。細菌やウイルスをより効率よく不活化する観点からは、油溶性物質として用いることができる脂肪酸エステルは、炭素数15~50の液体状の脂肪酸エステルであることが好ましい。
 O/Wエマルションにおける油溶性物質の含有量は、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満になるように適宜調整すればよく、例えば、塗液100質量%(O/Wエマルション100質量%)に対して3質量%以上15質量%以下とすることができる。
 O/Wエマルションは、少なくとも、油溶性物質と水溶性物質を含んでいればよいが、水中に油滴を安定して分散させるため、さらに界面活性剤を含んでいることが好ましい。界面活性剤は、特に限定されるものではなく、アニオン系界面活性剤とノニオン系界面活性剤のいずれも使用することができる。
 アニオン系界面活性剤としては、親水基としてカルボン酸、スルホン酸、あるいはリン酸構造を持つものを用いることができる。また、カルボン酸系の界面活性剤としては、例えば石鹸の主成分である脂肪酸塩やコール酸塩を例示することができる。また、スルホン酸系の界面活性剤としては、合成洗剤に多く使われる直鎖アルキルベンゼンスルホン酸ナトリウムやラウリル硫酸ナトリウムなどが挙げられる。より具体的には、脂肪酸ソーダ石鹸、オレイン酸カリウム石鹸、アルキルエーテルカルボン酸塩などのカルボン酸塩、ラウリル硫酸ナトリウム、高級アルコール硫酸ナトリウム、ラウリル硫酸トリエタノールアミン、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどの硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、芳香族スルホン酸ホルマリン縮合物のナトリウム塩などのスルホン酸塩、アルキルリン酸カリウム塩、ヘキサメタリン酸ナトリウム、ジアルキルスルホコハク酸などが挙げられる。これらの界面活性剤は単独または複数を組み合わせて用いてもよい。
 また、ノニオン系界面活性剤としては、アルキルフェノールエチレンオキシド付加物および高級アルコールエチレンオキシド付加物、ポリオキシエチレン脂肪酸エステル、脂肪酸エチレンオキシド付加物およびポリエチレングリコール脂肪酸エステル、高級アルキルアミンエチレンオキシド付加物および脂肪酸アミドエチレンオキシド付加物、ポリオキシエチレンアルキルアミンおよびポリオキシエチレン脂肪酸アミド、ポリプロピレングリコールエチレンオキシド付加物、非イオン界面活性剤グリセリンおよびペンタエリスリトールの脂肪酸エステル、ソルビトールおよびソルビタンの脂肪酸エステル、ショ糖の脂肪酸エステル、アルキルポリグリコシド脂肪酸、アルカノールアミドなどが挙げられる。これらの界面活性剤は単独または複数を組み合わせて用いてもよい。
 上述した界面活性剤の中でも、アニオン系界面活性剤に比べて、ノニオン系界面活性剤の方が大きなミセルを形成し、大量の油溶性物質を保持できるため、ノニオン系界面活性剤を用いることが好ましい。特に、ノニオン系界面活性剤の中でも、ポリオキシアルキルエーテル、ポリオキシエチレンアルキルエーテル、及びポリオキシプロピレンアルキルエーテルからなる群から選択される一種以上であることが特に好ましい。
 O/Wエマルションにおける界面活性剤の含有量は、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満になるように適宜調整すればよく、特に限定されるものではないが、例えば、塗液100質量%(O/Wエマルション100質量%)に対して0.025~5質量%とすることができる。
 O/Wエマルションを基体の表面に塗工することで、基体表面には、塗液に含まれる不揮発成分が付着し、この不揮発成分よって抗菌・抗ウイルス性樹脂部材の帯電電荷量が調整される。なお、不揮発成分は、上述した塗液の成分のうち、油溶性物質、界面活性剤が挙げられる。O/Wエマルションにおける不揮発成分の含有量は、抗菌・抗ウイルス性樹脂部材の摩擦布としてアクリルを用いた場合の帯電電荷量が0μC/m以上、7μC/m未満になるように適宜調整すればよく、特に限定されるものではないが、例えば、塗液100質量%(O/Wエマルション100質量%)に対して0.4~30質量%とすることができる。
 O/Wエマルションを基体に塗布して得られる本実施形態の抗菌・抗ウイルス性樹脂部材では、O/Wエマルションに含まれる不揮発成分が基体の表面に付着して残存する。このため、例えば、水溶性物質と油溶性物質を含むO/Wエマルションを基体に塗工して製造される本実施形態の抗菌・抗ウイルス性樹脂部材では、O/Wエマルションの不揮発成分として、油溶性物質が基体の表面に残存する。また、例えば、水溶性物質と油溶性物質と界面活性剤を含むO/Wエマルションを基体に塗工して製造される本実施形態の抗菌・抗ウイルス性樹脂部材では、O/Wエマルションの不揮発成分として、油溶性物質と界面活性剤を含む混合物が基体の表面に残存(付着)する。
 O/Wエマルションを基体に塗工して製造される本実施形態の抗菌・抗ウイルス性樹脂部材において、基体に付着するO/Wエマルションの不揮発成分の付着量(抗菌・抗ウイルス性樹脂部材における不揮発成分の含有量)は、帯電電荷量が0μC/m以上、7μC/m未満になるように適宜調整すればよいが、例えば、抗菌・抗ウイルス性樹脂部材100質量%に対して、0.1質量%以上20質量%以下とすることができる。細菌やウイルスをより効率よく不活化する観点からは、基体に付着するO/Wエマルションの不揮発成分の付着量(抗菌・抗ウイルス性樹脂部材における不揮発成分の含有量)は、抗菌・抗ウイルス性樹脂部材100質量%に対して、0.3質量%以上12質量%以下であることが好ましい。なお、前述した不揮発成分の付着量は、基体に付着するO/Wエマルションの不揮発成分が2種類以上である場合、それら2種以上の不揮発成分の付着量の合計を意味し、基体に付着するO/Wエマルションの不揮発成分が1種類のみである場合、その1種の不揮発成分の付着量を意味する。
 O/Wエマルションの不揮発成分として界面活性剤と油溶性物質(界面活性剤と油溶性物質を含む混合物)が基体に付着している場合、不揮発成分における界面活性剤と油溶性物質の配合比率は、例えば、質量比で0.1:100~20:100(界面活性剤:油溶性物質)とすることができ、細菌やウイルスをより効率よく不活化する観点からは、質量比で0.5:100~10:100(界面活性剤:油溶性物質)であることが好ましい。
 次に、本実施形態の抗菌・抗ウイルス性樹脂部材の製造方法について説明する。
 抗菌・抗ウイルス性樹脂部材の帯電電荷量を、基体を構成する材料の種類や配合比率により調整する場合、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満となるように予め調整しておいた基体に、抗菌・抗ウイルス剤を含有することで、本実施形態の抗菌・抗ウイルス性樹脂部材を製造することができる。
 抗菌・抗ウイルス剤を基体に含有する方法は、抗菌・抗ウイルス剤の含有形態に応じて適宜設定することができ、特に限定されるものではない。例えば、抗菌・抗ウイルス剤を基体の内部に分散させるような場合には、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満となるように予め調整しておいた基体の原料に抗菌・抗ウイルス剤を添加して混合し、所定の形状に成型することで、本実施形態の抗菌・抗ウイルス性樹脂部材を製造することができる。また、例えば、抗菌・抗ウイルス剤を基体の表面に固着するような場合には、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満となるように予め調整しておいた基体に対して、抗菌・抗ウイルス剤を固着することで、本実施形態の抗菌・抗ウイルス性樹脂部材を製造することができる。基体に対して抗菌・抗ウイルス剤を固着する方法は、特に限定されるものではなく、従来公知の方法を用いることができる。
 また、抗菌・抗ウイルス性樹脂部材の帯電電荷量を、基体表面にO/Wエマルションを塗工して調整する場合、抗菌・抗ウイルス剤を含有した基体に対し、抗菌・抗ウイルス性樹脂部材の電電荷量が0μC/m以上、7μC/m未満となるように予め調整しておいたO/Wエマルションを塗工して乾燥させることで、本実施形態の抗菌・抗ウイルス性樹脂部材を製造することができる。
 基体表面にO/Wエマルションを塗工する方法は、特に限定されるものではなく、従来公知の方法を用いることができる。例えば、浸漬法、スプレー法、ロールコーター法、バーコーター法、スピンコート法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット印刷法などの方法を用いることができる。
 次に、銅化合物粒子(抗菌・抗ウイルス剤)が固着した樹脂(基体)表面にO/Wエマルションを塗工して、本実施形態の抗菌・抗ウイルス性樹脂部材を製造する方法の一例について詳述する。
 まず銅化合物粒子をジェットミル、ハンマーミル、ボールミル、振動ミル、ビーズミルなどによりナノオーダーの粒子に粉砕する。粉砕方法に関しては特に限定されず、乾式、湿式の両方が利用可能である。
 次に、粉砕した銅化合物粒子を、水、メタノール、エタノール、MEK(methyl ethyl ketone)、アセトン、キシレン、トルエンなどの分散媒に分散させる。このとき、他の材料、例えば補強材や機能性材料を混合する場合には、これらの材料を加える。続いて、必要に応じて界面活性剤などの分散剤を加え、ビーズミルやボールミル、サンドミル、ロールミル、振動ミル、ホモジナイザーなどの装置を用いて分散・解砕し、さらに、シランモノマーを添加し、銅化合物粒子を分散したスラリーを作製する。
 以上のようにして作製したスラリーを、基体としての樹脂に、浸漬法、スプレー法、ロールコーター法、バーコーター法、スピンコート法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット印刷法などの方法で塗工する。このとき、必要に応じて、加熱乾燥などで溶剤(分散媒)を除去する。続いて、再加熱によるグラフト重合や、赤外線、紫外線、電子線、γ線などの放射線照射によるグラフト重合により、基体表面の官能基と、シランモノマーとを化学結合させることで、銅化合物粒子が固着した樹脂(抗菌・抗ウイルス剤を含有する基体)を得る。
 さらにこのようにして得られた基体の表面に、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満となるように予め調整しておいたO/Wエマルションを塗工して乾燥する。塗工方法には、上述と同様に、浸漬法、スプレー法、ロールコーター法、バーコーター法、スピンコート法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット印刷法などの方法を用いることができる。また、乾燥方法は、基体表面に塗工されたO/Wエマルションから揮発成分が除去されるものであればよく、従来公知の方法を用いることができる。これらの操作により、本実施形態の抗菌・抗ウイルス性樹脂部材を得ることができる。
 また、銅化合物粒子(抗菌・抗ウイルス剤)が分散した樹脂(基体)表面にO/Wエマルションを塗工して、本実施形態の抗菌・抗ウイルス性樹脂部材を製造する方法の一例について詳述する。
 まず抗菌・抗ウイルス剤である銅化合物粒子が混合(分散)されたマスターバッチペレットを作製する。マスターバッチペレットは、例えば以下のようにして製造する。
 粉砕した銅化合物粒子と公知の分散剤を混合して、銅化合物粒子の表面が分散剤で被覆された抗菌・抗ウイルス剤を生成した後、この抗菌・抗ウイルス剤を樹脂ペレットと混合し、混練押出機を用いることにより、抗菌・抗ウイルス剤を樹脂ペレットの内部に分散させる。或いは、粉砕した銅化合物粒子と分散剤を樹脂ペレットと混合し、混練押出機を用いることにより、混練中に銅化合物微粒子の周囲に分散剤が引き寄せられ、その結果、銅化合物微粒子が分散剤で被覆された抗菌・抗ウイルス剤を生成するとともに、この抗菌・抗ウイルス剤を樹脂ペレットの内部に分散させる。混練物を冷却した後、ペレタイザを用いて抗菌・抗ウイルス剤を含有させた樹脂を細かくカットし、抗菌・抗ウイルス剤が混合(分散)されたマスターバッチペレットを得る。なお、マスターバッチペレットの製造時における抗菌・抗ウイルス剤の割合(濃度)は、当業者が適宜設定することができる。
 得られたマスターバッチペレットは、成型機を用いて樹脂と溶融混錬し、成型することで、抗菌・抗ウイルス剤が分散された樹脂(基体)を得ることができる。成型については、射出成型、ブロ―成型などの方法を用いることができる。
 なお、本実施形態の抗菌・抗ウイルス性樹脂部材は、成型品以外にも、例えば、シート状、フィルム状、繊維状、布状、メッシュ状(網状構造)、ハニカム状、不織布状などの形態のものも含み、使用目的に合った様々な形態(形状、大きさ等)で製造することが可能である。抗菌・抗ウイルス性樹脂部材をシート状やフィルム状として製造する場合、抗菌・抗ウイルス剤が分散された樹脂は、Tダイ法、インフレーション法などで成型することができる。また、抗菌・抗ウイルス性樹脂部材を繊維状として製造する場合、抗菌・抗ウイルス剤が分散された樹脂は、溶融紡糸法などにより成型することができ、異形糸、芯鞘糸などにすることもできる。特に芯鞘糸にする際は、鞘部に抗菌・抗ウイルス剤を含む樹脂を使うことで、抗菌・抗ウイルス剤の使用量を減らしつつも、抗菌・抗ウイルス性を発揮することができるため好ましい。また、抗菌・抗ウイルス性樹脂部材を不織布状として製造する場合、抗菌・抗ウイルス剤が分散された樹脂は、スパンボンド法などの既存の方法により成型することができる。
 また、基体に抗菌・抗ウイルス剤以外の他の成分を含有する場合には、抗菌・抗ウイルス剤とともに他の成分を基体に含有させることができる。
 このようにして得られた基体(抗菌・抗ウイルス剤が分散された樹脂)の表面に、抗菌・抗ウイルス性樹脂部材の帯電電荷量が0μC/m以上、7μC/m未満となるように予め調整しておいたO/Wエマルションを塗工して乾燥する。塗工方法には、上述と同様、浸漬法、スプレー法、ロールコーター法、バーコーター法、スピンコート法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット印刷法などの方法を用いることができる。また、乾燥方法は、基体表面に塗工されたO/Wエマルションから揮発成分が除去されるものであればよく、従来公知の方法を用いることができる。これらの操作により、本実施形態の抗菌・抗ウイルス性樹脂部材を得ることができる。
 上述の製造方法により得られた本実施形態の抗菌・抗ウイルス性樹脂部材は、織物、編物、不織布など基本的な繊維構造物はもちろん、衣類、寝具、寝装材、マスク、ハンカチ、タオル、絨毯、カーテン、外壁材、建装材、内装材などのシート状の製品や、空気清浄機やエアコン、換気扇、電気掃除機、扇風機、空調用、車両用などのフィルタ、防護衣類、防護ネット、防虫網、鶏舎用ネット、ハウス用フィルム、トンネルハウス用フィルムなどの農業資材、エアコンのフィン材、植物工場用のトレーなどの成型体、パネル、サッシ、ドア、ブラインド、天井板、床板、窓などの建装材、内装材、外壁材などを構成するための部材として使用することができる。
 以上説明した本実施形態の抗菌・抗ウイルス性樹脂部材によれば、表面に付着した細菌やウイルスを効率よく不活化することができる。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
<ヨウ化銅(I)含有繊維の作成>
 抗菌・抗ウイルス剤としてのヨウ化銅(I)(CuI)とポリエチレン樹脂を含有するポリエチレンマスターバッチペレットと、ポリプロピレン樹脂とを、マスターバッチペレットが10wt%となるように溶融して混合し、ヨウ化銅(I)を1質量%含有する混合物を得た。得られた混合物を、溶融紡糸装置に設けられる溶融押出機を用いて溶融し、溶融紡糸装置に設けられる紡糸口金から吐出し、水槽にて冷却しながら所定の速度で引き取ることでヨウ化銅(I)含有繊維を得た。得られたヨウ化銅(I)含有繊維の繊維径は150μm、ヨウ化銅の体積平均粒子径は350nmであった。
(実施例1)
 上述で得られたヨウ化銅(I)含有繊維を用いて、レピア織機(ドルニエ社製)により織物(平織り;60メッシュ)を製織した。製織時にノニオン系界面活性剤(ポリオキシエチレンアルキルエーテル)を1.3質量%と鉱油を26質量%含むO/Wエマルション(丸菱油化工業(株)メリーW)を含侵させた布を載せ、繊維にO/Wエマルションを塗布しながら製織することで実施例1の抗菌・抗ウイルス性樹脂組成物(織物)を得た。実施例1の抗菌・抗ウイルス性樹脂組成物において、O/Wエマルションの不揮発成分の含有量(付着量)は、抗菌・抗ウイルス性繊維100質量%に対し7,1質量%であった。
(実施例2)
 上述で得られたヨウ化銅(I)含有繊維を用いて、ラッセル経編機(カールマイヤー社製)により、ラッセル編(28メッシュ)を製編した。製編時にノニオン系界面活性剤(ポリオキシエチレンアルキルエーテル)を2.0質量%と鉱油を20質量%含むO/Wエマルション(丸菱油化工業(株)メリーW)を含侵させたロールに繊維を通し、繊維にO/Wエマルションを塗布しながら製編することで実施例2の抗菌・抗ウイルス性樹脂組成物(編物)を得た。実施例2の抗菌・抗ウイルス性樹脂組成物において、O/Wエマルションの不揮発成分の含有量(付着量)は、抗菌・抗ウイルス性繊維100質量%に対し10.0質量%であった。
(実施例3)
 上述で得られたヨウ化銅(I)含有繊維を用いて、レピア織機(ドルニエ社製)により織物(平織り;60メッシュ)を製織した。製織時にノニオン系界面活性剤(ポリオキシエチレンアルキルエーテル)を0.2質量%と鉱油を9.5質量%含むO/Wエマルション(不揮発成分濃度10.0w/wt%;丸菱油化工業(株)メリーW)を含侵させた布を載せ、繊維にO/Wエマルションを塗布しながら製織することで実施例3の抗菌・抗ウイルス性樹脂組成物(織物)を得た。実施例3の抗菌・抗ウイルス樹脂組成物において、O/Wエマルションの不揮発成分の含有量(付着量)は抗菌・抗ウイルス性繊維100質量%に対し1.4質量%であった。
(実施例4)
 上述で得られたヨウ化銅(I)含有繊維を用いて、レピア織機(ドルニエ社製)により織物(平織り;60メッシュ)を製織した。製織時にノニオン系界面活性剤(ポリオキシエチレンアルキルエーテル)を0.04質量%と鉱油を4.9質量%含むO/Wエマルション(不揮発成分濃5w/wt%;丸菱油化工業(株)メリーW)を含侵させた布を載せ、繊維にO/Wエマルションを塗布しながら製織することで実施例4の抗菌・抗ウイルス性樹脂組成物(織物)を得た。実施例4の抗菌・抗ウイルス樹脂組成物において、O/Wエマルションの不揮発成分の含有量(付着量)は抗菌・抗ウイルス性繊維100質量%に対し0.4質量%であった。
(比較例1)
 O/Wエマルション(丸菱油化工業(株)メリーW)を含侵させた布を載せずに製織する以外は実施例1と同様の方法(すなわち、O/Wエマルションをヨウ化銅(I)含有繊維に塗工しないこと以外は実施例1と同様の方法)で比較例1の抗菌・抗ウイルス性樹脂組成物(織物)を得た。
(比較例2)
 O/Wエマルション(丸菱油化工業(株)メリーW)を含侵させたロールに繊維を通さない以外は実施例2と同様の方法(すなわち、O/Wエマルションをヨウ化銅(I)含有繊維に塗工しないこと以外は実施例2と同様の方法)で比較例2の抗菌・抗ウイルス性樹脂組成物(編物)を得た。
(比較例3)
 抗菌・抗ウイルス剤としてのヨウ化銅(I)(CuI)を含有していないポリエチレンマスターバッチペレットを用いて繊維を紡糸後、実施例1と同様の方法で製織し、比較例3の樹脂組成物(織物)を得た。比較例3の樹脂組成物において、織物表面に残る不揮発成分の含有量は繊維100質量%に対し7.1質量%であった。
<帯電電荷量の測定>
 実施例1~4、比較例1~3の各サンプルにおける帯電電荷量の測定は、JIS L 1094「織物及び編物の帯電性試験方法」のC法(摩擦帯電電荷量測定法)に準じた方法で行われ、温度20±2℃及び湿度40%±2%の条件下において、摩擦布としてアクリル繊維からなるアクリル布を用いて帯電電荷量を測定した。結果を表1に示す。
<抗ウイルス性の測定>
 実施例1~4、比較例1~3の各サンプルにおける抗ウイルス性の測定は、インフルエンザウイルスを用い、JIS L 1922「プラーク測定法」に準じて測定した。結果を表1に示す。なお対照として用いた標準布は、JIS L 0803準拠 試験用添付白布 綿(カナキン3号)とした。また、下記表1に示す時間(2時間及び24時間)は、抗菌・抗ウイルス性樹脂組成物とウイルスとの接触を開始してからの経過時間である。
Figure JPOXMLDOC01-appb-T000001
 上記の結果より、表面にO/Wエマルションが塗布されている実施例1~4については帯電電荷量が小さいためウイルスと効率よく接触することができ、2時間という短時間で検出限界以下という高い抗ウイルス性を発揮したが、帯電電荷量の高い比較例1、2については、抗菌・抗ウイルス剤が含まれているにもかかわらず、検出限界以下になるのに24時間もかかることが確認できた。また抗菌・抗ウイルス剤が含まれていない比較例3では抗ウイルス効果が見られなかった。以上の結果より、本実施形態の抗菌・抗ウイルス性樹脂組成物を用いることで、ウイルスを効率よく不活化できることが確認できた。
<抗菌性の測定>
 実施例1~4、比較例1~3の各繊維における抗菌性の測定は、黄色ブドウ球菌を用い、JIS L 1902に準じて測定した。結果を表2に示す。なお対照として用いた標準布は、JIS L 0803準拠 試験用添付白布 綿(カナキン3号)とした。また、下記表2に示す時間(2時間及び24時間)は、抗菌・抗ウイルス性樹脂組成物と菌との接触を開始してからの経過時間である。
Figure JPOXMLDOC01-appb-T000002
 上記の結果より、表面にO/Wエマルションが塗布されている実施例1~4については帯電電荷量が小さいため黄色ブドウ球菌と効率よく接触することができ、2時間という短時間で検出限界以下という高い抗菌性を発揮したが、帯電電荷量の高い比較例1、2については、抗菌・抗ウイルス剤が含まれているにもかかわらず、検出限界以下になるのに24時間もかかることが確認できた。また抗菌・抗ウイルス剤が含まれていない比較例3では抗菌効果が見られなかった。以上の結果より、本実施形態の抗菌・抗ウイルス性樹脂組成物を用いることで、ウイルス、細菌とも、効率よく不活化できることが確認できた。
 

Claims (7)

  1.  樹脂で形成された基体と、
     前記基体に含有される抗菌・抗ウイルス剤と、を含み、
     帯電電荷量が0μC/m以上7μC/m未満であることを特徴とする抗菌・抗ウイルス性樹脂部材。
  2.  前記基体の表面にO/Wエマルションが塗工されていることを特徴とする請求項1に記載の抗菌・抗ウイルス性樹脂部材。
  3.  前記基体の表面に油溶性物質が付着していることを特徴とする請求項1に記載の抗菌・抗ウイルス性樹脂部材。
  4.  前記油溶性物質が、流動パラフィン、鉱油、及び脂肪酸エステルからなる群から選択される一種以上であることを特徴とする請求項3に記載の抗菌・抗ウイルス性樹脂部材。
  5.  前記基体の表面に界面活性剤が付着していることを特徴とする請求項3又は4に記載の抗菌・抗ウイルス性樹脂部材。
  6.  前記界面活性剤が、ノニオン系界面活性剤であることを特徴とする請求項5に記載の抗菌・抗ウイルス性樹脂部材。
  7.  前記ノニオン系界面活性剤が、ポリオキシアルキルエーテル、ポリオキシエチレンアルキルエーテル、及びポリオキシプロピレンアルキルエーテルからなる群から選択される一種以上であることを特徴とする請求項6に記載の抗菌・抗ウイルス性樹脂部材。
     
PCT/JP2023/013373 2022-03-31 2023-03-30 抗菌・抗ウイルス性樹脂部材 WO2023190973A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059037 2022-03-31
JP2022-059037 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190973A1 true WO2023190973A1 (ja) 2023-10-05

Family

ID=88202257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013373 WO2023190973A1 (ja) 2022-03-31 2023-03-30 抗菌・抗ウイルス性樹脂部材

Country Status (2)

Country Link
TW (1) TW202348253A (ja)
WO (1) WO2023190973A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143498A (ja) * 1974-10-09 1976-04-14 Sazan Saijingu Co
JPS61671A (ja) * 1984-06-08 1986-01-06 サンド アクチエンゲゼルシヤフト 繊維基材の仕上方法
JPS6155264A (ja) * 1984-08-21 1986-03-19 カネボウ株式会社 撥水撥油性カ−ペツトの製造法
JPS6445869A (en) * 1987-08-13 1989-02-20 Idemitsu Kosan Co Mineral oil for fiber oil agent
WO2013005446A1 (ja) * 2011-07-06 2013-01-10 株式会社Nbcメッシュテック 抗ウイルス性樹脂部材
WO2019045110A1 (ja) * 2017-09-04 2019-03-07 株式会社Nbcメッシュテック 抗菌・抗ウイルス性組成物
CN111893780A (zh) * 2020-07-02 2020-11-06 宿迁市神龙家纺有限公司 一种抗菌防螨防霉毛毯的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143498A (ja) * 1974-10-09 1976-04-14 Sazan Saijingu Co
JPS61671A (ja) * 1984-06-08 1986-01-06 サンド アクチエンゲゼルシヤフト 繊維基材の仕上方法
JPS6155264A (ja) * 1984-08-21 1986-03-19 カネボウ株式会社 撥水撥油性カ−ペツトの製造法
JPS6445869A (en) * 1987-08-13 1989-02-20 Idemitsu Kosan Co Mineral oil for fiber oil agent
WO2013005446A1 (ja) * 2011-07-06 2013-01-10 株式会社Nbcメッシュテック 抗ウイルス性樹脂部材
WO2019045110A1 (ja) * 2017-09-04 2019-03-07 株式会社Nbcメッシュテック 抗菌・抗ウイルス性組成物
CN111893780A (zh) * 2020-07-02 2020-11-06 宿迁市神龙家纺有限公司 一种抗菌防螨防霉毛毯的制备方法

Also Published As

Publication number Publication date
TW202348253A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
JP7376355B2 (ja) 抗菌・抗ウイルス性組成物
JP5723097B2 (ja) 抗ウイルス性塗料および抗ウイルス性塗料が塗布乾燥された部材
JP6906257B2 (ja) アレルゲン低減化組成物およびアレルゲン低減化方法
JP3963941B2 (ja) 徐放性熱可塑性ポリマー組成物およびそれからなる製品
EP1964966B1 (de) Antimikrobielles textiles Glasfasermaterial
JPH08284063A (ja) エレクトレットシートおよびその製造方法およびフィルター基材
CN107858046A (zh) 一种具有自清洁和抗菌功能的超疏水涂层及其制备方法
EP1218425A1 (de) Antimikrobielle zusatzstoffe
EP1277882A2 (de) Mikrobizide Tapeten
WO2023190973A1 (ja) 抗菌・抗ウイルス性樹脂部材
JP7340657B2 (ja) 抗菌・抗ウイルス性塩化ビニル部材
DE2308711C2 (de) Verfahren zur Herstellung eines polyolefinbeschichteten fotografischen Schriftträgers mit einer kristallinen Schicht
WO2013086647A1 (es) Composición biocida de polvo activos, que comprende al menos una sal de cobre y al menos una sal de zinc y procedimiento de fabricación
DE102020125921B4 (de) Durch eine Temperaturdifferenz betreibbare, mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
JP2002179515A (ja) 抗菌剤、その製造方法、樹脂組成物、及び成形品並びに塗料
DE102020125922A1 (de) Mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
JP2019099783A (ja) 抗菌抗カビ用塗料、防藻用塗料、抗菌抗カビ性部材の製造方法、及び防藻性部材の製造方法
JP7048960B2 (ja) アレルゲン低減化組成物
JP2016075005A (ja) アレルゲン低減化壁紙およびその製造方法
EP0547261B1 (de) Beschichtetes Flächengebilde
JP2008189817A (ja) ポリエステル系繊維用難燃加工剤、難燃加工方法、及び難燃性ポリエステル系繊維
EP1419203B1 (de) Oberflächenfilm mit depotfunktion, dessen herstellung und verwendung
JP2016052624A (ja) 抗菌及び/または抗ウイルス剤による物品の表面処理方法及びその物品
DE3724573C1 (de) Suspendiermittel zur Herstellung waessriger Kunststoffdispersionen
DE60109308T2 (de) Verfahren und Vorrichtung zum Neutralisieren elektrostatischer Aufladungen an geladenen Teilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780981

Country of ref document: EP

Kind code of ref document: A1