WO2019045110A1 - 抗菌・抗ウイルス性組成物 - Google Patents

抗菌・抗ウイルス性組成物 Download PDF

Info

Publication number
WO2019045110A1
WO2019045110A1 PCT/JP2018/032677 JP2018032677W WO2019045110A1 WO 2019045110 A1 WO2019045110 A1 WO 2019045110A1 JP 2018032677 W JP2018032677 W JP 2018032677W WO 2019045110 A1 WO2019045110 A1 WO 2019045110A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antiviral
resin
virus
copper
Prior art date
Application number
PCT/JP2018/032677
Other languages
English (en)
French (fr)
Inventor
真砂子 滝野
伸樹 倉橋
良枝 藤森
信一 本島
中山 鶴雄
Original Assignee
株式会社Nbcメッシュテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nbcメッシュテック filed Critical 株式会社Nbcメッシュテック
Priority to KR1020207009632A priority Critical patent/KR20200047666A/ko
Priority to CN201880057235.0A priority patent/CN111065272A/zh
Priority to US16/638,857 priority patent/US20200359633A1/en
Priority to JP2019539712A priority patent/JP7376355B2/ja
Publication of WO2019045110A1 publication Critical patent/WO2019045110A1/ja
Priority to US18/501,310 priority patent/US20240065273A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to a composition having antibacterial and antiviral properties, an antibacterial and antiviral coating using the composition, and an antibacterial and antiviral resin member.
  • norovirus and influenza infections in facilities such as hospitals and nursing homes for the elderly and hospital-acquired infections due to drug-resistant bacteria such as MRSA are prevalent, and prompt measures are required.
  • the particles of monovalent copper compound remain after spraying, so that the antiviral effect is sustained, but the particles of monovalent copper compound are cleaned by cleaning or the like. When it is removed, there is also a problem that it is necessary to spray an antiviral spray.
  • the antiviral paint of Patent Document 2 has a high antiviral effect, but it is difficult to obtain a high antiviral effect unless a large amount of monovalent copper compound is dispersed and loaded, while a large amount of monovalent copper compound is dispersed and loaded. And there is a problem that the properties such as coating film strength and adhesion are lowered.
  • the antibacterial composition of Patent Document 3 has a high antibacterial effect, the time until the effect appears is as very long as several hours to 1 day, and the immediate effect is poor, and it is monovalent due to long-term storage. There is a problem that the copper compound is oxidized to reduce the antibacterial effect. Furthermore, in the fiber in which platinum particles are fixed to the fiber surface as in Patent Document 4, although there is an antiviral effect, there is a problem that the immediate effect of inactivating the virus in a short time is poor. Furthermore, in the antibacterial and antiviral polymer material of Patent Document 5, there is a problem that the effect is not exhibited unless the antibacterial and antiviral particles are protruded from the polymer surface. In addition, in order to exert the effect in a short time, it is necessary to increase the amount of particles to be protruded, so it is also necessary to increase the amount of antibacterial and antiviral particles contained in the polymer material.
  • the present invention is an antimicrobial and antiviral composition having excellent immediate effect even if the content of monovalent copper compound is low, an antimicrobial and antiviral coating,
  • An object of the present invention is to provide an antibacterial and antiviral resin member.
  • a resin, an antibacterial and antiviral agent consisting of monovalent copper compound fine particles coated with a dispersing agent, and a hydrophilic compound dispersed in the resin and incompatible with the resin are used. It is an antibacterial and antiviral composition characterized by being.
  • the second invention is the antibacterial and antiviral composition according to the first invention, characterized in that the dispersant is an inorganic compound.
  • a third invention is an antibacterial and antiviral composition according to the first or second invention, wherein the copper compound fine particle contains at least one of copper suboxide and copper iodide. .
  • the fourth invention is an antibacterial and antiviral paint comprising the antibacterial and antiviral composition of any of the first to third inventions, wherein the surface of a coating film formed by drying and / or curing. It is an antibacterial and antiviral paint characterized in that the ratio of the polar component to the free energy is 2.0% or more and 40.0% or less.
  • a fifth invention is an antibacterial / antiviral resin member containing the antibacterial / antiviral composition of any of the first to third inventions, wherein surface free energy of the antibacterial / antiviral resin member It is an antibacterial and antiviral resin member characterized in that the ratio of the polar component to is 2.0% or more and 40.0% or less.
  • a sixth invention is the antibacterial / antiviral resin member according to the fifth invention, characterized in that the antibacterial / antiviral resin member is a molded body.
  • a seventh invention is the antibacterial and antiviral resin member according to the fifth invention, wherein the antibacterial and antiviral resin member is a fiber.
  • the eighth invention is a method for producing the antimicrobial and antiviral composition of any of the first to third inventions, wherein the resin and the hydrophilic compound are mixed to obtain a mixture, and And (d) mixing the mixture and the copper compound fine particles, and a method of producing the antibacterial and antiviral composition.
  • 9th invention is a manufacturing method of the antibacterial * antiviral resin member of 6th invention, Comprising: The process of mixing the said resin and the said copper compound microparticles
  • the method for producing an antibacterial and antiviral resin member is characterized by comprising the steps of mixing a sex compound to obtain a second mixture, and mixing the first mixture and the second mixture.
  • the present invention by coating a hydrophilic compound in the resin of the antimicrobial and antiviral composition, a coating film of the coating containing the antimicrobial and antiviral composition, and the antimicrobial and antiviral properties
  • the hydrophilic compound is also dispersed in the resin of the resin member containing the composition, and as a result, the ratio of the polar component of the surface free energy on the surface of the coating film or the resin member is increased to have both a hydrophilic group and a hydrophobic group.
  • Bacteria and viruses are easily diffused and adsorbed on the surface of a coating film or a resin member, and a member having excellent immediate effect even at a low concentration of monovalent copper compound fine particles can be provided.
  • the copper compound fine particles can be prevented from being aggregated in the resin by covering the monovalent copper compound fine particles with the dispersing agent, the copper compound fine particles can be efficiently contacted with bacteria and viruses. Furthermore, since hydrophilic compounds present in the resin are easy to adsorb moisture in the air, they exhibit high antibacterial and antiviral properties because the amount of adsorbed moisture is small even if there is a change in humidity or room temperature. You can keep doing.
  • the antibacterial and antiviral composition of the present embodiment comprises a resin as a main component, and an antibacterial and antiviral agent composed of monovalent copper compound fine particles coated with a dispersing agent (hereinafter, also simply referred to as copper compound fine particles). And hydrophilic compounds dispersed in the resin and incompatible with the resin.
  • polyvinyl alcohol PVA
  • polyvinyl pyrrolidone PVP
  • polyethylene oxide PEO
  • hydroxypropyl cellulose HPC
  • polyethylene glycol PEG
  • Water soluble synthetic polymers such as polyacrylamide (PAAM), polyacrylic acid (PAA), sodium polyacrylate, polyethyleneimine, carboxymethyl starch, dialdehyde starch, alginate, polystyrene sulfonate, carboxymethyl cellulose (CMC), polysaccharide, Polyoxyethylene-polyoxypropylene copolymer, poly-N-alkyl acrylamide, hydroxyethyl cellulose, poly-N-isopropyl acrylamide (PNIAAm), CONDO And acrylamide-acrylate copolymers such as itin sulfate, dextran sul
  • the hydrophilic compound is not compatible with the resin that is the main component of the antibacterial and antiviral composition described later, and forms an independent discontinuous phase such as a spherical sea island, lamella and cylinder. It features.
  • a discontinuous phase of a hydrophilic compound is mixed in a resin which is a main component of the antibacterial and antiviral composition of the present embodiment to form a phase separation structure, whereby the antibacterial and antiviral composition is used as a paint.
  • the surface of the coating after drying or curing of the paint is rendered hydrophilic, or when the antimicrobial and antiviral composition is applied to a resin member, the surface of the resin member is rendered hydrophilic, and the result is As described later, it is characterized in that the diffusibility of viruses and bacteria on the surface is enhanced, and the antibacterial and antiviral effects are improved.
  • phase separation of this embodiment will be described.
  • the discontinuous phase (small domain) generated by the aggregation of the hydrophilic compound is finely dispersed in the hydrophobic resin.
  • the hydrophilic compound and the resin are macroscopically uniform but microscopically phase separated.
  • the size of the discontinuous phase consisting of a hydrophilic compound is generally said to be 1 ⁇ m or less.
  • the hydrophilic compound is present without being compatible with the resin. You can use it as long as you
  • the user can appropriately select any resin which is incompatible with the above-mentioned hydrophilic compound.
  • this resin demonstrates, when demonstrating the antimicrobial and antiviral coating material and antimicrobial and antiviral resin member which used antimicrobial and antiviral composition.
  • the antibacterial and antiviral composition of the present embodiment is further a monovalent copper compound as an antibacterial and antiviral agent which is a substance capable of inactivating either a fungus (such as a fungus or a bacterium) or a virus or both. Containing fine particles of Specifically as a monovalent
  • the shape and the like of the antibacterial and antiviral agents are not particularly limited, but may be, for example, powder, paste, liquid, fine particles and the like.
  • the particle diameter of the antibacterial and antiviral agent is not particularly limited and can be appropriately set by those skilled in the art, but the average particle diameter is preferably 1 nm or more and less than 1 ⁇ m. When the average particle size is less than 1 nm, the material becomes unstable, and when the average particle size is 1 ⁇ m or more, the antibacterial and antiviral effects are lower than in the case of less than 1 ⁇ m, and the antibacterial and antiviral composition during storage The stability of the In addition, in this specification, an average particle diameter means volume average particle diameter.
  • the volume average particle size can be measured, for example, based on the laser Doppler method (dynamic / electrophoretic light scattering method).
  • a measuring apparatus is not specifically limited, For example, a zeta electric potential and particle diameter measuring system (made by Otsuka Electronics) can be used.
  • the antibacterial and antiviral agent of the present embodiment is characterized in that the surface of the copper compound fine particle is coated with a dispersing agent in order to prevent aggregation of the antibacterial and antiviral agent.
  • a dispersing agent organic compounds such as polymer dispersants, surfactants, and plasticizers and inorganic compounds such as metal soap can be appropriately used, but in the present embodiment, the contact with bacteria and virus is enhanced.
  • Inorganic compounds are preferably used because they can easily exert their antibacterial and antiviral effects. For example, since the zeta potential of inorganic compounds such as zirconia, aluminum oxide and titanium oxide has a positive potential at pH 7, and viruses generally have a negative potential, copper compounds are fine particles of these inorganic compounds.
  • the term "coating" refers to the presence of a dispersant on the surface of at least a portion of the copper compound particles.
  • the metal soap as a dispersant is fine particles, is excellent in dispersibility in a resin, and imparts sufficient smoothness to the resin.
  • metal soaps fatty acids such as stearic acid, oleic acid, ricinoleic acid, octylic acid, lauric acid and metals such as lithium, magnesium, calcium, barium and zinc are used.
  • metal hydroxides examples include aluminum hydroxide, zirconium hydroxide, zinc hydroxide and iron hydroxide.
  • metal oxides include magnesium oxide, barium oxide, calcium oxide, aluminum oxide, tin oxide, titanium oxide, zinc oxide, zirconium oxide, iron oxide, tungsten oxide and the like.
  • metal peroxide examples include barium peroxide, titanium peroxide and calcium peroxide. In addition, only 1 type may be used for these inorganic compounds, and 2 or more types may be mixed and used. Further, the size of the fine particles of the inorganic compound is not particularly limited, but the average particle size is preferably 1.0 nm or more and 300 nm or less.
  • viruses that can be inactivated by the antibacterial and antiviral composition of the present embodiment include various viruses regardless of the type of genome, the presence or absence of an envelope, and the like.
  • this virus for example, rhinovirus, poliovirus, foot-and-mouth disease virus, rotavirus, norovirus, enterovirus, hepatovirus, astrovirus, sapovirus, hepatitis E virus, A, B or C influenza virus, parainfluenza virus , Mumps virus (mumps), measles virus, human metapneumovirus, RS virus, Nipa virus, Hendra virus, yellow fever virus, dengue virus, Japanese encephalitis virus, West Nile virus, hepatitis B or C virus, eastern and western horses Encephalitis virus, Onnonyon virus, Rubella virus, Lassa virus, Junin virus, Machu Povirus, Guanarito virus, Savia virus, Crimea Congo hemorrhagic fever virus, Su Airborne fever ⁇ Hantavirus, Shinnon virus
  • bacteria that can be inactivated by the antibacterial and antiviral composition according to the present embodiment are not particularly limited, and various bacteria can be mentioned regardless of their properties such as gram positive, negative, aerobic and anaerobic.
  • E. coli, S. aureus, S. epidermidis, Streptococcus, Streptococcus pneumoniae, H. influenzae, B. pertussis, S. Enteritidis, P. pneumoniae, P. aeruginosa, Vibrio, Salmonella, cholera, Shigella, anthrax, tuberculosis, Botulinum bacteria, tetanus bacteria, streptococcus etc. can be mentioned.
  • a hydrophilic compound is mixed with a resin which is a main component of the above-mentioned antibacterial and antiviral composition.
  • a mixing method a stirrer, a homogenizer, a bead mill, a ball mill, a triple roll, and other devices can be used.
  • various additives such as a flame retardant, a flame retardant auxiliary, a stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a pigment, a filler, and the like according to the purpose.
  • the following ingredients can be suitably blended.
  • the copper compound fine particles used in the present embodiment are pulverized into nano-order particles by a jet mill, a hammer mill, a ball mill, a vibration mill, a bead mill or the like.
  • the grinding method is not particularly limited, and both dry and wet methods can be used.
  • an inorganic compound for coating the copper compound fine particles is added.
  • the copper compound fine particles and the inorganic compound are brought into contact and crushed, and the inorganic compound adheres to the surface of the copper compound fine particles by electrostatic attraction at the same time as the inorganic compound having a smaller particle diameter is generated.
  • An antibacterial and antiviral agent is obtained in which copper compound fine particles are coated with an inorganic compound.
  • An antibacterial and antiviral composition is obtained by mixing this antibacterial and antiviral agent with a mixture of a resin and a hydrophilic compound.
  • a copper compound As a method of coating a metal hydroxide, metal oxide or metal peroxide as an inorganic compound on the surface of a copper compound particle, a copper compound is dispersed in an aqueous solution in which the metal compound is dissolved. If the metal compound is deposited on the surface of the copper compound fine particle, or if the metal compound is chemically adsorbed onto the surface of the fine particle, or the copper compound fine particle is dispersed in a solvent in which the metal compound is dispersed. Good.
  • Another method is mechanochemical method.
  • mother particles in this embodiment, copper compound fine particles in this embodiment
  • child particles inorganic compounds in this embodiment
  • mother particles are crushed by a rolling ball mill, high-speed rotary crusher, high-speed air flow impact method
  • child particles are buried in mother particles by applying a strong pressure to a machine, a medium agitation type mill, or a mechanical fusion device.
  • the copper compound fine particles to be the mother particles be previously crushed to a desired particle diameter by the above-mentioned method.
  • an apparatus capable of creating mother particles and child particles there is a super mixer of Kawata Co., Ltd. in the rotary wing system, a paint shaker of Asada Iron Works Co., Ltd. in the shaking system, a hybridization system (registered trademark) made by Nara Machinery Co., Ltd. Examples thereof include Mechanofusion (registered trademark) by Hosokawa Micron Ltd., a medium-flow dryer, and the like, but the present invention is not particularly limited thereto.
  • an apparatus that can grind and coat child particles such as an automatic mortar, a high-speed rotary crusher, a high-speed air-flow impact crusher, and a rolling ball mill, There is no need to smash it.
  • the antibacterial and antiviral paint of the present embodiment comprises the above-mentioned antibacterial and antiviral composition.
  • the antibacterial and antiviral paint of this embodiment has a ratio of polar component ⁇ sp to surface free energy ⁇ s (hereinafter referred to as “polar ratio R ⁇ p”) in the dried and / or hardened state (that is, the state of the coating). It is characterized by being .0% or more and 40.0% or less.
  • the polarity ratio R ⁇ p of the coating film when the antibacterial and antiviral coating material of the present embodiment is in a dried and / or cured state will be described.
  • the surface free energy ⁇ s refers to energy that a molecule (or atom) present on a solid surface or a liquid surface has extra in comparison with a molecule (or atom) present inside a solid or a liquid.
  • the surface free energy ⁇ s is defined by the following equation (1)
  • the polarity ratio R ⁇ p is defined by the following equation (2).
  • ⁇ sp is a polar component in the surface free energy ⁇ s
  • ⁇ sd is a nonpolar component in the surface free energy ⁇ s.
  • the surface free energy ⁇ s, the nonpolar component ⁇ sd and the polar component ⁇ sp are values in a state in which the antibacterial and antiviral paint of this embodiment is dried and / or cured.
  • ⁇ s When measuring the surface free energy ⁇ s, first, apply a measurement liquid (using water and diiodomethane) to the surface of the coating in a dried and / or cured state to be measured, and use each liquid for measurement.
  • the contact angle ( ⁇ ) of is measured with a contact angle meter.
  • the polar component ⁇ sp and the nonpolar component ⁇ sd are calculated based on the value of the contact angle obtained and the following equation (3).
  • the surface tension ⁇ L, the nonpolar component ⁇ Ld and the polar component ⁇ Lp can be measured in advance for the two measurement liquids (water and diiodomethane).
  • the polar component ⁇ sp and the nonpolar component ⁇ sd can be calculated by solving the simultaneous equations in which the contact angles ⁇ of the two measurement liquids are respectively substituted into the equation (3). Substituting the obtained nonpolar component ⁇ sd and the polar component ⁇ sp into the above equation (1), the surface free energy ⁇ s is calculated, and this surface free energy ⁇ s and the polar component ⁇ sp are substituted into the above equation (2), The polarity ratio R ⁇ p can be calculated.
  • the polarity ratio R ⁇ p of the coating in the dried and / or cured state can be adjusted by the addition amount of the hydrophilic compound.
  • the polarity ratio R ⁇ p of the coating film is preferably 2.0% or more and 40.0% or less. More preferably, the polarity ratio R ⁇ p is 5% or more and 30% or less.
  • the antibacterial effect / antiviral effect is not sufficient as compared with the case where the polarity ratio R ⁇ p is 2.0% or more.
  • the polarity ratio R ⁇ p is 5% or more.
  • the polarity ratio R ⁇ p is preferably 40% or less.
  • the remaining component of the antibacterial and antiviral paint is substantially contained when the antibacterial and antiviral paint is subjected to drying treatment or the like. Mean that they are in a solid state.
  • the cured state of the antibacterial and antiviral paint even if dust etc. adhere to the surface of the coating film formed when applying the antibacterial and antiviral paint and drying etc. The state that dust etc. are not taken in. Dust and the like attached can be easily removed by air blow or the like.
  • the cured state of the antibacterial and antiviral paint indicates at least the state of the surface of the coating, and the inside of the coating may not necessarily be completely cured.
  • the user can appropriately select as long as the resin is not compatible with the above-mentioned hydrophilic compound.
  • a thermoplastic resin, a thermosetting resin, and a radiation curable resin that is cured by irradiation with an electron beam or ultraviolet light are used. Two or more of these resins may be combined.
  • thermoplastic resins olefin resins such as polyethylene and polypropylene, chlorinated polyethylene, polystyrene resin, polyvinyl acetate resin, polyurethane resin, polyester resin, acrylic acid, acrylic ester, methacrylic acid, methacrylic resin Copolymers having an acid ester as the main chain, acrylic / styrene resins, fluorine resins, cellulose resins such as cotton nitrate, ethylcellulose, etc., castor oil, linseed oil, drying oils such as soy sauce, shellac, copal etc. Of natural resins and the like.
  • thermosetting resin phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, acrylic silicone resin, alkyd resin, polyurethane resin, thermosetting acrylic resin, and the like
  • thermosetting polyimide resins thermosetting resins.
  • radiation-curable resins such as electron beams and ultraviolet rays are monomers, oligomers, polymers, etc., which can increase the crosslink density after curing, can enhance the effect of improving the surface hardness, and are transparent.
  • polyfunctional (meth) acrylate compounds such as polyfunctional (meth) acrylate monomers, polyfunctional (meth) acrylate oligomers, or polyfunctional (meth) acrylate polymers are preferable.
  • a photopolymerization initiator may be added, and as the photopolymerization initiator, for example, anthraquinone, acetophenone, isopropylbenzoin ether, isobutylbenzoin ether, ethyl anthraquinone, carbazole, xanthone, 4-chlorobenzophenone O-Benzoyl methyl benzoate, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1-one, p-dimethylaminobenzoic acid isoamyl ester, p-dimethylaminobenzoic acid Acid ethyl ester, 2,2-dimethoxy 2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-hydroxycyclohexene Ph
  • the antimicrobial and antiviral paint of this embodiment can be applied to various target members to impart antimicrobial and antiviral properties.
  • a fiber structure, a film, and a sheet can be mentioned, for example.
  • a fiber structure which can form a coating film a textile and a nonwoven fabric are mentioned, for example.
  • a mask, a filter for air conditioners, a filter for air cleaners, a filter for vacuum cleaners, a filter for ventilation fans For example, filters for vehicles, filters for air conditioning, clothing, protective clothes, bedding, nets for screen doors, nets for poultry houses, etc. may be mentioned.
  • These fiber structures are polyester, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polytetramethylene terephthalate, nylon, acrylic, polytetrafluoroethylene, polyvinyl alcohol, Kevlar, polyacrylic acid, polymethacrylic Containing high molecular weight materials such as methyl acid, rayon, cupra, tencel, polynozic, acetate, triacetate, cotton, hemp, wool, silk, bamboo, etc. and metals such as aluminum, iron, stainless steel, brass, copper, tungsten, titanium etc. It is made of fiber.
  • the material of the film includes polyester, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyvinylidene fluoride, polyvinyl alcohol, polyvinyl acetate, polyimide, polyamide imide, polytetrafluoroethylene, tetrafluoroethylene, ethylene copolymer and the like Those containing a resin are mentioned.
  • polycarbonate resin sheet polycarbonate resin sheet, film vinyl chloride sheet, fluorine resin sheet, polyethylene sheet, silicone resin sheet, nylon sheet, nylon sheet, ABS sheet, sheet made of polymer such as ABS sheet, titanium, aluminum, stainless steel, magnesium,
  • seat containing metals, such as a brass is mentioned.
  • films and sheets are wallpaper, windows, ceilings, seat for vehicles, doors, blinds, chairs, sofas, flooring, equipment for handling bacteria and viruses, interior materials such as trains and cars, etc. It can be used in various fields such as interior materials for buildings in hospitals, agricultural materials, and sheet shutters.
  • the anti-bacterial and anti-viral paint of the present embodiment is directly applied to molded articles such as panels, construction materials, interior materials, writing instruments, handrails, hand straps, straps, telephones, toys, doorknobs, etc. May be formed.
  • the polymer molded body include molded bodies formed of ABS, polycarbonate, nylon, polypropylene, polystyrene, polyacetal, polyester and the like.
  • the molded object of a metal the molded object formed with aluminum, zinc, magnesium, a brass, stainless steel, titanium etc. is mentioned, for example.
  • a thin film of metal formed by electroplating, electroless plating, etc., painting, printing, etc. may be applied in advance to the surface of the molded metal.
  • a mixture of a resin and a hydrophilic compound, and a pulverized antimicrobial / antiviral agent (copper compound fine particles coated with a dispersant) are prepared, By mixing these, the antibacterial and antiviral paint of this embodiment can be obtained.
  • Various additives such as flame retardants, flame retardant aids, stabilizers, UV absorbers, plasticizers, and lubricants, pigments, fillers, and other ingredients are appropriately added to the antibacterial and antiviral coatings according to the purpose. can do.
  • the antibacterial and antiviral resin member of the present embodiment is composed of the aforementioned antibacterial and antiviral composition. And in the antibacterial and antiviral resin member of the present embodiment, the ratio of the polar component ⁇ sp to the surface free energy ⁇ s of the resin member (hereinafter referred to as the polarity ratio R ⁇ p) is 2.0% or more and 40.0% or less It is characterized by
  • the polarity ratio R ⁇ p of the antibacterial and antiviral resin member of the present embodiment is defined by the above-mentioned formulas (1) to (3) described in the above-mentioned antibacterial and antiviral paint.
  • the solvent can be removed by heating and dried, or the resin material can be cured by reheating or irradiation with infrared rays, ultraviolet rays, electron beams, ⁇ rays, or the like. Therefore, in the above formulas (1) and (2), the surface free energy ⁇ s, the nonpolar component ⁇ sd and the polar component ⁇ sp are values in the state in which the antibacterial and antiviral resin member of this embodiment is dried and / or cured. It is. Moreover, about said Formula (3), it becomes the surface of an antibacterial * antiviral resin member instead of the surface of a coating film.
  • the polarity ratio R ⁇ p is preferably 40.0% or less.
  • the polarity ratio R ⁇ p of the antibacterial and antiviral resin member is preferably 5.0% or more and 30.0% or less, and more preferably 10.0% or more and 20.0% or less. In order to improve the antibacterial and antiviral effects, the polarity ratio R ⁇ p is preferably 5.0% or more, more preferably 10.0% or more.
  • the content of the hydrophilic compound is not particularly limited and can be appropriately set by those skilled in the art, but with respect to 100% by mass of the antibacterial and antiviral resin member, It is preferable that it is 0.01 to 50.0 mass%.
  • the polarity ratio R ⁇ p of the antibacterial / antiviral resin member is compared with the case where the content of the hydrophilic compound is 0.01% by mass or more. It can not be raised enough.
  • the content of the hydrophilic compound exceeds 50.0% by mass, the strength of the antibacterial / antiviral resin member is reduced compared to the case where the content of the hydrophilic compound is 50.0% by mass or less. Do. Moreover, even if the content of the hydrophilic compound is 0.01% by mass or more and 50.0% by mass or less, if the content of the hydrophilic compound is larger than the content of the antibacterial and antiviral agent, the antibacterial Since the strength of the antiviral resin member may decrease, the content of the hydrophilic compound is preferably less than or equal to the content of the antibacterial and antiviral agent.
  • the resin which is a base material of the antibacterial and antiviral resin member is not particularly limited as long as it is a resin incompatible with the above-mentioned hydrophilic compound, but, for example, polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, ABS resin , AS resin, EVA resin, polymethylpentene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polymethyl acrylate resin, polyvinyl acetate resin, polyamide resin, polyamide resin, polyimide resin, polycarbonate resin, polyethylene terephthalate resin, polytetramethylene terephthalate Resin, polybutylene terephthalate resin, polyacetal resin, polyarylate resin, polysulfone resin, nylon resin, acrylic resin, polyvinylidene fluoride resin, polyethylene tetrafluoroethylene resin, polytetrafluro resin
  • Thermoplastic resins such as ethylene resin, polyvinyl alcohol resin, Kevl
  • Polyurethane elastomers vinyl chloride elastomers, polyester elastomers, thermoplastic elastomers such as nylon elastomers, rayon, Cupra (registered trademark), Tencel (registered trademark), polynodic, acetate, and triacetate. Two or more of these resins may be combined.
  • the use of a liquid hydrophilic compound may cause foaming or the like, so that it is solid. It is preferable to use a hydrophilic compound.
  • the antibacterial and antiviral resin member of the present embodiment only needs to contain the above-mentioned antibacterial and antiviral composition, and may contain other components as long as the object of the present invention can be achieved.
  • the shape and the like are also not limited.
  • the antibacterial and antiviral resin member of the present embodiment is a molded product, or has a sheet-like, film-like, fibrous, cloth-like, mesh-like (net-like structure), honeycomb-like, non-woven or like shape It may be done.
  • nanofibers fibers having an average fiber diameter of 5 nm or more and less than 1 ⁇ m
  • an average fiber diameter means the average value of the fiber diameter of several nanofibers.
  • the fiber diameter of nanofibers can be measured by observing the nanofibers with a microscope. Specifically, a plurality of nanofibers are observed with an electron microscope or the like, several nanofibers are randomly selected in the obtained observation image, and the fiber diameter of each nanofiber is measured by image processing software. The average value of the fiber diameter can be calculated.
  • a second master prepared by producing a first masterbatch pellet (first mixture), which is a resin pellet containing an antibacterial and antiviral agent, and mixing a hydrophilic compound and a resin pellet as a base material at a predetermined weight ratio.
  • first masterbatch pellet first mixture
  • second mixture second mixture
  • the first master batch pellet and the second master batch pellet are melt-kneaded to form the kneaded product into a predetermined shape, whereby the antibacterial and antiviral resin member according to the present embodiment can be obtained.
  • the first masterbatch pellet is produced, for example, as follows. First, the pulverized copper compound fine particles and the dispersing agent are mixed to form an antibacterial and antiviral agent in which the surface of the copper compound fine particles is coated with the dispersing agent, and then this antibacterial and antiviral agent is mixed with the resin pellet, By using a kneading extruder, the antibacterial and antiviral agent is dispersed inside the resin pellet.
  • the dispersing agent is drawn around the copper compound fine particles during kneading, and as a result, the copper compound fine particles are dispersed by the dispersing agent.
  • the antibacterial and antiviral agent is dispersed inside the resin pellet.
  • the resin containing the antibacterial and antiviral agent is finely cut using a pelletizer to obtain a first master batch pellet containing the antibacterial and antiviral agent.
  • the person skilled in the art can appropriately set the ratio (concentration) of the antibacterial and antiviral agent at the time of production of the first master batch pellet.
  • the second masterbatch pellet is produced, for example, as follows. First, the hydrophilic compound and the resin pellet are mixed at a predetermined weight ratio to obtain a mixture.
  • a resin pellet the same thing as the resin pellet used for manufacture of the 1st master batch pellet is used. The resulting mixture is melt-kneaded to obtain a second masterbatch pellet.
  • An antibacterial / antiviral agent and a hydrophilic compound are dispersed in a resin of a substrate by molding a melt-kneaded first master batch pellet and a second master batch pellet using a molding machine. -An antiviral resin member can be obtained.
  • the antibacterial and antiviral resin member according to the present embodiment can be molded by a method such as injection molding or blow molding when manufactured as a molded article.
  • the antibacterial / antiviral resin member according to the present embodiment is, for example, sheet-like, film-like, fibrous, cloth-like, mesh-like (net-like structure), honeycomb-like, nonwoven fabric-like, etc. It is possible to manufacture in various forms (shape, size, etc.) suitable for the purpose of use, including the form.
  • an antimicrobial and antiviral resin member as a sheet or film, it can be formed by a T-die method, an inflation method, or the like.
  • an antimicrobial and antiviral resin member as a fibrous form it can form by the melt-spinning method etc.
  • it can manufacture by the existing manufacturing methods, such as a spun bond method.
  • a plasticizer, a desiccant, a curing agent, an anti-skinning agent, a flattening agent, an anti-sagging agent, an antifungal agent, an ultraviolet absorber, and the like in the antibacterial and antiviral resin member according to the present embodiment.
  • a heat ray absorbent, a lubricant, a surfactant, a thickener, a viscosity modifier, a stabilizer, a drying regulator and the like may be added.
  • These additives may be used alone or in combination of two or more.
  • other antiviral compositions, antibacterial compositions, anti-glare compositions, anti-allergen compositions, catalysts, anti-reflective materials, materials having heat shielding properties and the like may be added and used.
  • the antibacterial and antiviral resin members according to the present embodiment include fibers, agricultural materials such as films for houses, films for tunnel houses, molded articles such as trays for plant factories, panels, construction materials, interior materials, writing instruments , Handrails, Straps, Telephones, Toys, Door knobs, Clear folders, Stationery such as label tapes, Sheets, Shrink materials that shrink when heated, Chairs, Sofas, Exterior walls, Sashes, Doors, Blinds, Ceilings, Floors, Windows Interior materials such as construction materials, wallpaper, carpets, resin tiles, interior materials for trains and vehicles, clothing, innerwear, socks, gloves, shoe covers, footwear such as shoes, pajamas, mats, sheets, pillows, pillows Covering materials such as covers, blankets, towel nets, coverings and coverings, hats, handkerchiefs, towels, carpets, curtains, air purifiers and air conditioners, ventilation fans, electric Detonators, filters such as fans, fishing nets such as raw fish and fixed nets, filters for water treatment, filters for drinking water, filters for
  • the 2nd master batch pellet which mixed a hydrophilic compound with a resin pellet by a predetermined
  • a spinning raw material is manufactured by mixing and melt-kneading a 1st master batch pellet and a 2nd master batch pellet.
  • the fiber which concerns on this embodiment can be obtained by using the obtained spinning raw material for a melt spinning process.
  • the melt spinning method is not limited to a specific method, and known methods can be used.
  • the resin can be discharged from the spinneret in a state where the resin viscosity is appropriately low, and further, the stretching process is carried out without significantly destabilizing the spinning process without causing deterioration or thermal decomposition of the resin.
  • a temperature range suitable for the fiber material may be appropriately selected.
  • the spinning material is discharged from a spinneret, and the discharged fibrous spinning material is cooled and solidified to form fibers.
  • the discharged spinning raw material is cooled to a solidification temperature or lower in a medium such as air, water, glycerin or the like to solidify it.
  • a medium such as air, water, glycerin or the like to solidify it.
  • the fiber can be passed through the water tank without shaking when it is introduced into the water tank by heating to about 60 ° C and gradual cooling. Excellent.
  • air cooling although the temperature of the air and the wind speed can be arbitrarily set, it is desirable that the wind speed is low and the temperature is not too low to suppress molecular orientation.
  • the degree of molecular orientation is high at the time of cooling, in the case where the heating and drawing step is performed in the next step, the fiber may be difficult to be drawn, and the antibacterial and antiviral effects may be difficult to be obtained.
  • the take-up speed can be set to any speed. However, in the case where the winding speed is lower than the free falling speed of the molten undrawn yarn, a uniform undrawn yarn can not be obtained, which may lead to a decrease in the drawability.
  • the solidified yarn may be used as it is without being wound up.
  • the heating and drawing step is a step of heating and stretching the fiber (undrawn yarn) wound up in the spinning step.
  • the heat drawing process may have a plurality of drawing processes.
  • the product of the drawing ratio in each drawing process is the total drawing ratio.
  • the draw ratio in the single drawing step is the total draw ratio.
  • the fiber according to the present embodiment can exhibit further excellent antibacterial and antiviral properties by heat drawing, and can efficiently inactivate bacteria and viruses attached to the fiber surface and the like.
  • heat drawing can further enhance the antibacterial and antiviral effects.
  • the mechanism by which the antibacterial and antiviral effects are greatly improved by heat drawing is not always clear at present, the following reasons can be considered.
  • the surface layer portion of the fiber is directly cooled and solidified, and the antibacterial and antiviral agent present in the portion (inner layer portion) inside the fiber than the surface layer portion is outside the fiber. It becomes a structure that is hard to contact with water.
  • the fiber structure of the surface layer portion is considered to be different from the fiber structure of the inner layer portion. If the heat drawing is performed in that state, the fiber structure of the surface layer portion is a fiber structure in which the antibacterial / antiviral agent and the water outside the fiber are easily in contact with each other, since the drawing is performed under the heating condition above the glass transition temperature. Become. Moreover, since the fiber structure of the surface layer part approaches the fiber structure of the inner layer part by heating and drawing, it is considered that the charge of the surface of bacteria and virus, DNA and the like are affected in some way and inactivated.
  • stretching method it does not specifically limit about the extending
  • stretching methods such as a hot roll extending
  • the hot roll drawing method When heated and drawn by the hot roll drawing method, the undrawn yarn can be drawn at a high magnification by changing the number of revolutions of the hot roll combined in multiple stages.
  • the draw ratio is appropriately selected according to the fineness of the object to be drawn, but generally, the total draw ratio is set to be 3.0 to 7.0 times, preferably 4.0 to 6.0 times. Be done. By setting the draw ratio to 3.0 or more and 7.0 or less, more molecules can be oriented, and fibers having higher strength can be obtained. When the draw ratio is less than 3.0 times, the antibacterial and antiviral effects are lower than in the case where the draw ratio is 3.0 times or more, and the strength of the obtained fiber is reduced. When the draw ratio exceeds 7.0 times, the draw tension becomes extremely high, so yarn breakage frequently occurs and the spinning property may be lowered.
  • the fiber of the antibacterial and antiviral resin member according to the present embodiment may have a core-sheath structure.
  • the core is formed of a normal resin (a resin not containing an antibacterial / antiviral agent)
  • the sheath is formed of a resin containing an antibacterial / antiviral agent or a hydrophilic compound. Not only the strength can be improved, but also the content of the antibacterial and antiviral agent can be reduced.
  • the resin of the core and the resin of the sheath may be the same or different.
  • the cross-sectional shape orthogonal to the longitudinal direction of the fiber of the core-sheath structure is not particularly limited, but it is preferable to make the cross-sectional shape circular, and it is preferable to form the core and the sheath concentrically.
  • the ratio of the area of the core portion to the area of the sheath portion is not particularly limited, and can be appropriately set by the user.
  • a plasticizer, a desiccant, a hardening agent, an anti-skinning agent, a leveling agent, an anti-sagging agent, an anti-mold agent, an ultraviolet ray as an additive to the fiber of the antibacterial and antiviral resin member according to the present embodiment
  • Absorbents, heat ray absorbents, lubricants, surfactants, thickeners, viscosity modifiers, stabilizers, drying modifiers and the like may be added. These additives may be used alone or in combination of two or more.
  • other antiviral compositions, antibacterial compositions, anti-glare compositions, anti-allergen compositions, catalysts, anti-reflective materials, materials having heat shielding properties and the like may be added and used.
  • the fibers of the antibacterial and antiviral resin member according to the present embodiment can be used as woven fabrics, knitted fabrics, nonwoven fabrics, papers such as mixed paper, and the like. And this fiber is sheet-like products such as clothing, bedding, bedding materials, masks, handkerchiefs, towels, carpets, curtains, outer wall materials, building materials, interior materials, air cleaners, air conditioners, ventilation fans, electricity Vacuum cleaners, fans, air conditioning, filters for vehicles, etc., fishing nets such as ginger and nets, filters for water treatment, filters for drinking water, filters for ballast water treatment, protective clothing, protective nets, insect nets, for poultry houses It can be used for various products such as the net. Therefore, the fiber according to the present embodiment is a useful material that can provide various products excellent in various fields.
  • Examples 1 to 3 40.0 g of commercially available copper (I) iodide powder (manufactured by Wako Pure Chemical Industries, Ltd.) as fine particles of monovalent copper compound, and zirconium oxide particles (manufactured by Nippon Denko Corporation) 60 as fine particles of inorganic compound. After 0 g was predispersed in 900.0 g of methanol, it was crushed and dispersed by a bead mill to obtain a slurry of copper iodide particles coated with zirconium oxide having an average particle diameter of 140 nm. In addition, an average particle diameter here means the thing of volume average particle diameter.
  • polyvinyl pyrrolidone (PVP) and an olefin resin are prepared, mixed in a toluene solvent, dispersed using a ball mill, and then the above-mentioned zirconium oxide-coated copper iodide particles are added and further dispersed, Antibacterial and antiviral paint was obtained.
  • PVP polyvinyl pyrrolidone
  • olefin resin an olefin resin
  • the resulting antimicrobial / antiviral paint was coated on a polypropylene sheet (200 ⁇ m thick) using a bar coater (# 20) and dried to obtain a sheet coated with the antimicrobial / antiviral paint. At this time, the thickness of the coating film was 2 ⁇ m.
  • Example 4 A sheet coated with the antibacterial and antiviral paint was obtained under the same conditions as in Example 1 except that polyethylene glycol (PEG) was used instead of polyvinyl pyrrolidone.
  • PEG polyethylene glycol
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • Example 5 A sheet coated with the antibacterial and antiviral paint was obtained under the same conditions as in Example 1 except that a urethane resin was used instead of the olefin resin.
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • Example 6 A sheet coated with the antibacterial and antiviral paint was obtained under the same conditions as in Example 5 except that polyethylene glycol was used instead of polyvinyl pyrrolidone.
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • Example 7 A sheet coated with the antibacterial and antiviral paint was obtained under the same conditions as in Example 1 except that an acrylic resin was used instead of the olefin resin.
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • Example 8 40.0 g of a commercially available copper suboxide powder (manufactured by Wako Pure Chemical Industries, Ltd.) as fine particles of a monovalent copper compound, and 60.0 g of zirconium oxide particles (manufactured by Nippon Denko Corporation) as fine particles of an inorganic compound After pre-dispersing in 900.0 g of methanol, it was crushed and dispersed in a bead mill to obtain a slurry of copper oxide particles coated with zirconium oxide having an average particle diameter of 140 nm.
  • an average particle diameter here means the thing of volume average particle diameter.
  • polyvinyl pyrrolidone and an olefin resin are prepared, mixed in a toluene solvent, dispersed using a ball mill, and then the above-mentioned copper oxide particles coated with zirconium oxide are added, and further dispersed, antibacterial, anti I got a viral paint.
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • the resulting antimicrobial / antiviral paint was coated on a polypropylene sheet (200 ⁇ m thick) using a bar coater (# 20) and dried to obtain a sheet coated with the antimicrobial / antiviral paint. At this time, the thickness of the coating film was 2 ⁇ m.
  • Example 9 A sheet coated with the antibacterial and antiviral paint was obtained under the same conditions as in Example 8 except that a urethane resin was used instead of the olefin resin.
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • Example 10 A sheet coated with the antibacterial and antiviral paint was obtained under the same conditions as in Example 8 except that acrylic resin was used instead of olefin resin and polyethylene glycol was used instead of polyvinyl pyrrolidone.
  • the mass% of each raw material contained in the antibacterial and antiviral paint is as shown in Table 1 below.
  • the resulting paint was coated on a polypropylene sheet (200 ⁇ m thick) using a bar coater (# 20) and dried to obtain a sheet coated with the paint. At this time, the thickness of the coating film was 2 ⁇ m.
  • Example 2 A sheet coated with a paint was obtained under the same conditions as in Example 1 except that the copper iodide particles coated with zirconium oxide were not contained, and were mixed and dispersed.
  • the mass% of each raw material contained in this paint is as shown in Table 2 below.
  • Example 3 A sheet coated with a paint was obtained under the same conditions as in Example 1 except that polyvinyl pyrrolidone was not contained, and mixed and dispersed. The mass% of each raw material contained in this paint is as shown in Table 2 below.
  • Example 4 A sheet coated with a paint was obtained under the same conditions as in Example 5 except that the copper iodide particles coated with zirconium oxide were not contained, and were mixed and dispersed.
  • the mass% of each raw material contained in this paint is as shown in Table 2 below.
  • Example 5 A sheet coated with a paint was obtained under the same conditions as in Example 5 except that the polyvinyl pyrrolidone was not contained, and was mixed and dispersed.
  • the mass% of each raw material contained in this paint is as shown in Table 2 below.
  • Example 6 A sheet coated with a paint was obtained under the same conditions as in Example 10 except that the copper oxide coated with zirconium oxide was not contained, and was mixed and dispersed.
  • the mass% of each raw material contained in this paint is as shown in Table 2 below.
  • Example 7 A sheet coated with a paint was obtained under the same conditions as in Example 10 except that polyethylene glycol was not contained, and mixing and dispersion were performed.
  • the mass% of each raw material contained in this paint is as shown in Table 2 below.
  • influenza virus influenza A / Kitakyushu / 159/93 (H3N2)
  • MDCK cells were used.
  • dilution was performed using a MEM dilution solution (10-fold serial dilution) until the virus solution after each reaction became 10 ⁇ 1 to 10 ⁇ 5 , to prepare a sample solution.
  • 100 ⁇ L of the sample solution was inoculated into MDCK cells cultured in a petri dish.
  • the cells inoculated with the sample solution in a 5% CO 2 incubator for 60 minutes are allowed to stand for 60 minutes, and after the virus is adsorbed to the cells, 0.7% agar medium is overlaid, and for 48 hours, 34 ° C., 5%.
  • the virus was cultured using a CO 2 incubator.
  • sample solution 1 mL of the sample solution was dispensed into a petri dish, mixed with 1.5% agar medium. Place the inverted petri dish in an incubator at 37 ° C. and culture the bacteria for 24-48 hours, count the number of colonies, and count the number of viable bacteria (CFU / 0.1 mL, Log 10); (CFU: colony-forming units) ) Was calculated.
  • the contact angle of the liquid for measurement is a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd .; solid, made of sheets coated with the antibacterial and antiviral coatings of Examples 1 to 10 and Comparative Examples 1 to 7). It measured using liquid interface analyzer DropMaster300). From this measurement result, while calculating polar component (gamma) sp and nonpolar component (gamma) sd using said Formula (3), surface free energy (gamma) s of the coating film was computed using said Formula (1). Further, the polarity ratio R ⁇ p was calculated using the above equation (2).
  • Example 11 The paint prepared by the method of Example 3 was taken as Example 11.
  • Comparative Example 8 A method similar to Example 3 is used except that zirconium oxide particles (manufactured by Nippon Denko Corporation) as fine particles of inorganic compound are not used, that is, copper iodide particles not coated with zirconium oxide particles are used. The paint thus prepared was designated Comparative Example 8.
  • Example 11 (Antibacterial and antiviral evaluation method)
  • Comparative Example 8 The paints of Example 11 and Comparative Example 8 were applied to a polypropylene sheet in the same manner as in Example 3 and dried.
  • the resulting sheets were evaluated for their antibacterial and antiviral properties by the above-mentioned evaluation methods, and the results are shown in Table 6.
  • Example 11 in which the discoloration was small was maintained in both the antiviral property and the antibacterial property.
  • Example 12 Copper iodide which is obtained by pulverizing commercially available copper iodide (I) powder (manufactured by Nippon Kagaku Sangyo Co., Ltd.) using a dry pulverizer Nanojet Miser (manufactured by Aisin Nano Technologies, Inc., NJ-100B) to an average particle diameter of 150 nm. I got the particles. The obtained copper iodide particles were mixed with metal soap as a dispersant to prevent aggregation of the copper iodide particles.
  • a polyethylene resin pellet (manufactured by Asahi Kasei Chemicals Co., Ltd.) as a base resin is added to prepare a mixture by adding polyethylene glycol (molecular weight: 20,000) to 20% by mass of the total masterbatch pellet, and the obtained mixture is The mixture was fed to an axial melting kneader to obtain a second master batch pellet.
  • the polyethylene resin pellet, the first masterbatch pellet, and the second masterbatch pellet are mixed so as to be 5% by mass copper iodide and 3% by mass polyethylene glycol (molecular weight 20,000) throughout the injection molding member, and injected
  • Example 13 A mixture is prepared by adding polypropylene (PP) resin pellets as a base resin so that copper iodide particles mixed with a dispersant (metal soap) become 40% by mass in the total masterbatch pellets, and the obtained mixture Were fed to a twin-screw melt kneader to obtain master batch pellets.
  • PP polypropylene
  • Antibacterial activity was carried out under the same conditions as in Example 12 except that polypropylene (PP) resin pellets, masterbatch pellets and polyethylene glycol were mixed so that 5% by mass of copper iodide and 5% by mass of polyethylene glycol were obtained throughout the injection molding member. -An injection-molded member which is an antiviral resin member was obtained.
  • PP polypropylene
  • Example 14 An injection-molded member as an antibacterial and antiviral resin member was obtained under the same conditions as in Example 13 except that polyvinyl pyrrolidone (molecular weight: 10,000) was used instead of polyethylene glycol used in Example 13.
  • Example 15 A mixture is prepared by adding an ABS resin pellet as a base resin so that the dispersing agent and pulverized copper iodide particles become 30% by mass in the entire master batch pellet, and the obtained mixture is supplied to a twin-screw melt kneader And obtained a masterbatch pellet.
  • ABS resin pellets, master batch pellets, polyvinyl pyrrolidone are mixed so that 5% by mass of copper iodide and 3% by mass of polyvinylpyrrolidone (molecular weight: 10,000) in the whole injection molding member, and injection molding is performed using an injection molding machine Thus, an injection-molded member, which is an antibacterial and antiviral resin member, was obtained.
  • Example 16 is similar to Example 15 except that ABS resin pellet, master batch pellet and polyvinyl pyrrolidone are mixed so that 5% by mass of copper iodide and 5% by mass of polyvinyl pyrrolidone (molecular weight: 10,000) in the whole injection molding member An injection-molded member, which is an antibacterial and antiviral resin member, was obtained under the conditions.
  • Example 17 The slurry (40 mass%) of copper iodide particles coated with zirconium oxide having an average particle diameter of 140 nm used in Example 1 was coated on the surface of a polypropylene (PP) resin pellet using a Henschel mixer (registered trademark) . Next, the coated polypropylene resin pellet was supplied to a twin-screw melt kneader to obtain a first master batch pellet.
  • PP polypropylene
  • Henschel mixer registered trademark
  • a mixture is prepared by adding polypropylene (PP) resin so that polyethylene glycol (molecular weight: 20,000) in total 20% by mass of masterbatch pellets, and the obtained mixture is supplied to a twin-screw melt kneader, Two masterbatch pellets were obtained.
  • PP polypropylene
  • Example 11 The conditions are the same as in Example 13 except that the polypropylene resin pellet and the polyethylene glycol are mixed so that copper iodide and a dispersant (metal soap) are not contained and the polyethylene molding is 10% by mass of the entire injection molding member. An injection molded member was obtained.
  • Example 14 Under the same conditions as Example 15, except that copper iodide and dispersant (metal soap) were not contained, and ABS resin pellets and polyvinyl pyrrolidone were mixed so that polyvinyl pyrrolidone became 10 mass% in the whole injection molding member. An injection molded member was obtained.
  • Example 18 Copper iodide particles obtained by grinding a commercially available copper iodide (I) powder (manufactured by Nippon Kagaku Sangyo Co., Ltd.) to an average particle size of 150 nm using a dry-crusher Nanojet Miser (NJ-100B manufactured by Aisin Nano Technologies, Ltd.) I got The obtained copper iodide particles and metal soap which is a dispersant for preventing aggregation of copper iodide particles were mixed.
  • I copper iodide particles obtained by grinding a commercially available copper iodide (I) powder (manufactured by Nippon Kagaku Sangyo Co., Ltd.) to an average particle size of 150 nm using a dry-crusher Nanojet Miser (NJ-100B manufactured by Aisin Nano Technologies, Ltd.)
  • a polyethylene resin pellet (manufactured by Asahi Kasei Chemicals Corporation) is added as a base resin so that the obtained copper iodide particles become 40% by mass in the whole master batch pellet, a mixture is prepared, and the obtained mixture is biaxial The mixture was fed to a melt kneader to obtain master batch pellets.
  • Polyethylene resin pellets, masterbatch pellets, polyethylene glycol are mixed so that 5% by mass of copper iodide and 1% by mass of polyethylene glycol (molecular weight: 20,000) in the whole sheet-like member, using a T-die extruder
  • the sheet-like member which is an antibacterial * antiviral resin member with a thickness of 100 micrometers was obtained.
  • Example 19 The antibacterial and antiviral conditions were the same as in Example 18 except that polyethylene resin pellets, master batch pellets and polyethylene glycol were mixed so that 5% by mass of copper iodide and 5% by mass of polyethylene glycol were contained in the whole sheet member The sheet-like member which is an elastic resin member was obtained.
  • Example 20 A mixture is prepared by adding a polypropylene resin pellet as a base resin so that copper iodide particles become 40% by mass in the whole masterbatch pellet, and the obtained mixture is supplied to a twin-screw melt kneader, and the masterbatch pellet I got
  • the antibacterial and antiviral conditions were the same as in Example 18 except that polypropylene resin pellets, master batch pellets and polyethylene glycol were mixed so that 5% by mass of copper iodide and 5% by mass of polyethylene glycol were contained in the entire sheet-like member. The sheet-like member which has sex was obtained.
  • Example 16 A sheet-like member was obtained under the same conditions as in Example 18 except that polyethylene resin pellets and masterbatch pellets were mixed so that polyethylene glycol was not contained and copper iodide was 5% by mass in the entire sheet-like member. .
  • Example 17 The conditions are the same as in Example 18 except that the polyethylene resin pellets and the polyethylene glycol are mixed so that copper iodide and a dispersant (metal soap) are not contained and the polyethylene glycol is 5% by mass in the entire sheet-like member. A sheet-like member was obtained.
  • Example 18 except that a polyethylene resin pellet and polyvinyl pyrrolidone are mixed so that copper iodide and a dispersant (metal soap) are not contained, and instead of polyethylene glycol, polyvinyl pyrrolidone is 5% by mass of polyvinyl pyrrolidone in the entire sheet-like member A sheet-like member was obtained under the same conditions as in the above.
  • an influenza virus influenza A / Kitakyushu / 159/93 (H3N2)
  • MDCK cells an influenza virus (influenza A / Kitakyushu / 159/93 (H3N2)) cultured using MDCK cells
  • H3N2 influenza virus
  • the envelope is As a virus which does not have, the feline calicivirus which is generally used as a substitute virus of norovirus was used.
  • the upper surface of the sheet test product was covered with a PET film (40 mm ⁇ 40 mm) to make the contact area of the virus solution and the sheet test product constant, and the test was performed.
  • 900 ⁇ L of SCDLP medium was added to stop the reaction, and the virus was washed out by pipetting.
  • dilution was performed using a MEM dilution solution (10-fold serial dilution) until the virus solution after each reaction became 10 ⁇ 1 to 10 ⁇ 5 , to prepare a sample solution.
  • 100 ⁇ L of the sample solution was inoculated into MDCK cells cultured in a petri dish.
  • the cells inoculated with the sample solution in a 5% CO 2 incubator for 60 minutes are allowed to stand for 60 minutes, and after the virus is adsorbed to the cells, 0.7% agar medium is overlaid, and for 48 hours, 34 ° C., 5%.
  • the virus was cultured using a CO 2 incubator.
  • E. coli cultured in NB medium was used as Gram-negative bacteria, using Staphylococcus aureus cultured in NB medium as gram-positive bacteria.
  • Example 21 Copper iodide fine particles of a commercially available copper (I) iodide powder (made by Nippon Kagaku Sangyo Co., Ltd.) crushed to an average particle diameter of 150 nm using a dry-crusher Nanojet Miser (NJ-100B manufactured by Aisin Nano Technologies, Ltd.) I got The obtained copper iodide particles and metal soap which is a dispersing agent were mixed to prevent aggregation of the copper iodide particles.
  • I copper iodide powder
  • NJ-100B manufactured by Aisin Nano Technologies, Ltd.
  • a polypropylene resin pellet (made by Asahi Kasei Chemicals Co., Ltd.) as a base resin was added so as to make the obtained copper iodide 40% by mass, and supplied to a biaxial melt kneader to obtain a copper iodide master batch pellet. .
  • a commercially available polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd.) is added to a polypropylene resin pellet (manufactured by Asahi Kasei Chemicals Corporation) as a base resin so that the content thereof is 30% by mass, and supplied to a biaxial melt kneader , Polyethylene glycol masterbatch pellets were obtained.
  • a polypropylene resin pellet, a copper iodide masterbatch pellet, and a polyethylene glycol masterbatch pellet are mixed using a tumbler so as to be 1% by mass of copper iodide and 3% by mass of polyethylene glycol, melt spinning is performed, and an antibacterial of a denier of 300 D -Obtained a monofilament fiber which is an antiviral resin member.
  • Example 22 The copper iodide masterbatch pellet and the polyethylene glycol masterbatch pellet used what was prepared in Example 21.
  • Polypropylene resin pellets, copper iodide masterbatch pellets, polyethylene glycol masterbatch pellets are mixed using a tumbler so that 1% by mass of copper iodide and 3% by mass of polyethylene glycol are contained in the sheath portion, and polypropylene resin pellets are formed in the core portion
  • the core-sheath monofilament fiber which is an antibacterial and antiviral resin member having a fineness of 300 D having an area ratio of 7/3 of the core part / sheath part was obtained by melt spinning using
  • a polypropylene resin pellet and a copper iodide master batch pellet were mixed using a tumbler so as to be 1 mass% of copper iodide, and melt spinning was performed to obtain a monofilament fiber having a fineness of 300 D.
  • influenza virus influenza A / Kitakyushu / 159/93 (H3N2)
  • MDCK cells as an enveloped virus
  • the feline calicivirus commonly used as a substitute virus for norovirus was used.
  • monofilament fibers which are the antibacterial and antiviral resin members of Examples 21 and 22 and Comparative Example 19 were singly wound without gaps so as to have a width of 60 mm.
  • a glass plate wound with monofilament fiber was placed in a plastic container, 200 ⁇ L of virus solution diluted with sterile water was dropped, and the mixture was allowed to act at 25 ° C. for 15 minutes.
  • the upper surface of the monofilament fiber test product was covered with a PET film (40 mm ⁇ 40 mm) to make the contact area of the virus solution and the monofilament fiber test product constant, and the test was performed.
  • a sample solution 100 ⁇ L of the sample solution was inoculated into MDCK cells cultured in a petri dish. The cells inoculated with the sample solution in a 5% CO 2 incubator at 34 ° C. for 60 minutes are allowed to stand, and after the virus is adsorbed to the cells, 0.7% agar medium is overlaid and 48 hours, 34 ° C., 5 The virus was cultured using a% CO 2 incubator.
  • Antimicrobial evaluation method In the measurement of the antibacterial property of monofilament fiber which is an antibacterial and antiviral resin member, E. coli cultured using NB medium as a gram negative bacteria using Staphylococcus aureus cultured using NB medium as a gram positive bacteria Using.
  • monofilament fibers which are the antibacterial and antiviral resin members of Examples 21 and 22 and Comparative Example 19 were singly wound without gaps so as to have a width of 60 mm.
  • a glass plate wound with monofilament fibers was placed in a plastic container, and 100 ⁇ L of bacterial solution diluted with sterile water was dropped and allowed to act at 35 ° C. for 15 minutes.
  • the upper surface of the monofilament fiber test product was covered with a PET film (40 mm ⁇ 40 mm) to make the contact area of the bacterial solution and the monofilament fiber test product constant, and the test was performed.
  • Example 21, 22 which added the compound (polyethylene glycol) which has a polar group, high antimicrobial property and antiviral property were confirmed.
  • Comparative Example 19 in which the compound having a polar group was not added, both the antibacterial and antiviral properties were inferior. From the above results, it has been confirmed that a product having high antibacterial and antiviral properties can be provided by using the monofilament fiber which is the antibacterial and antiviral resin member of the present invention.
  • the antibacterial and antiviral composition according to the present invention constituting the antibacterial and antiviral paint and the antibacterial and antiviral resin member has antibacterial and / or antiviral properties.

Abstract

【課題】 一価の銅化合物の含有量が低量であっても、即効性に優れた抗菌・抗ウイルス性組成物を提供する。 【解決手段】 抗菌・抗ウイルス性組成物は、樹脂と、分散剤で被覆された一価の銅化合物微粒子からなる抗菌・抗ウイルス剤と、樹脂中に分散し、樹脂と相溶しない親水性化合物と、からなる。

Description

抗菌・抗ウイルス性組成物
 本発明は、抗菌・抗ウイルス性を有する組成物、また該組成物を用いた抗菌・抗ウイルス性塗料、抗菌・抗ウイルス性樹脂部材に関する。
 近年、新たなウイルス感染が脅威となってきている。例えば、SARS(重症急性呼吸器症候群)やノロウイルス、鳥インフルエンザなどのウイルスによる感染症が流行している。また、2013年には西アフリカでエボラ出血熱が流行し、2015年までにおける世界保健機関(WHO)の発表によると、感染疑い例も含め27,550名が感染し、11,235名の死亡が報告されている。
 また、病院、介護老人ホームなどの施設内におけるノロウイルスやインフルエンザの感染症、またMRSAなどの薬剤耐性菌による院内感染などが流行し、それに対する早急な対処策が求められている。
 このような背景から、ウイルスや細菌に対する高い不活性化機能を簡単に付与できる製品の開発が求められている。
 これらの課題を解決するために、分散剤に一価の銅化合物微粒子を懸濁した抗ウイルス性スプレー剤(特許文献1)や、バインダー樹脂に一価の銅化合物微粒子を添加した抗ウイルス性塗料(特許文献2)や、ヨウ化銅微粒子を機能化剤で被覆した抗ウイルス剤を添加した抗菌性組成物(特許文献3)や、プラチナナノコロイドの水溶液に繊維を浸すことで繊維表面に抗ウイルス性を有する白金粒子を定着させた繊維(特許文献4)や、酸化銅と亜酸化銅をポリマー材料に含む抗菌・抗ウイルス性のポリマー材料(特許文献5)などが開発されている。
特開2010-239897号公報 特開2010-168578号公報 特表2014-519504号公報 特開2014-122457号公報 特許5457504号公報
 しかしながら、特許文献1の抗ウイルス性スプレー剤では、噴霧後、一価の銅化合物の微粒子が噴霧された場所にとどまるため、抗ウイルス効果は持続するが、掃除などで一価の銅化合物の微粒子が除去されると、また抗ウイルス性スプレー剤を噴霧しなくてはいけないという問題があった。特許文献2の抗ウイルス性塗料は、抗ウイルス効果が高いものの、一価の銅化合物を大量に分散充填しないと高い抗ウイルス効果が出にくい一方で、一価の銅化合物を大量に分散充填すると、塗膜強度や密着性などの特性が低下するという問題があった。
 さらに、特許文献3の抗菌性組成物では、抗菌効果が高いものの、その効果が発現するまでの時間が数時間~1日と非常に長く、即効性に乏しく、また、長期保管により一価の銅化合物が酸化して、抗菌効果が低下するという課題があった。さらに、特許文献4のように繊維表面に白金粒子を定着させた繊維では、抗ウイルス効果はあるものの、短時間でウイルスを不活化する即効性に乏しいという課題があった。さらに、特許文献5の抗菌性・抗ウイルス性のポリマー材料では、抗菌性・抗ウイルス性の粒子をポリマー表面から突出させないと効果を発揮しないという課題があった。また、短時間で効果を発揮させるには、突出させる粒子の量を増やす必要があるため、ポリマー材料に含有する抗菌・抗ウイルス性の粒子も量を増やす必要があった。
 そこで本発明は、上記課題を解決するために、一価の銅化合物の含有量が低量であっても、即効性に優れた抗菌・抗ウイルス性組成物ならびに、抗菌・抗ウイルス性塗料、抗菌・抗ウイルス性樹脂部材を提供することを目的とする。
 すなわち第1の発明は、樹脂と、分散剤で被覆された一価の銅化合物微粒子からなる抗菌・抗ウイルス剤と、前記樹脂中に分散し、前記樹脂と相溶しない親水性化合物と、からなることを特徴とする抗菌・抗ウイルス性組成物である。
 また第2の発明は、第1の発明において、前記分散剤が無機化合物であることを特徴とする抗菌・抗ウイルス性組成物である。
 さらに第3の発明は、第1または第2の発明において、前記銅化合物微粒子が、亜酸化銅およびヨウ化銅のうち、少なくとも一種を含むことを特徴とする抗菌・抗ウイルス性組成物である。
 さらに第4の発明は、第1から第3のいずれかの発明の抗菌・抗ウイルス性組成物を含む抗菌・抗ウイルス性塗料であって、乾燥及び/又は硬化によって形成された塗膜の表面自由エネルギーに対する極性成分の比率が2.0%以上、40.0%以下であることを特徴とする抗菌・抗ウイルス性塗料である。
 さらに第5の発明は、第1から第3のいずれかの発明の抗菌・抗ウイルス性組成物を含む抗菌・抗ウイルス性樹脂部材であって、前記抗菌・抗ウイルス性樹脂部材の表面自由エネルギーに対する極性成分の比率が2.0%以上、40.0%以下であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 さらに第6の発明は、第5の発明において、前記抗菌・抗ウイルス性樹脂部材が成形体であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 さらに第7の発明は、第5の発明において、前記抗菌・抗ウイルス性樹脂部材が繊維であることを特徴とする抗菌・抗ウイルス性樹脂部材である。
 さらに第8の発明は、第1から第3のいずれかの発明の抗菌・抗ウイルス性組成物の製造方法であって、前記樹脂及び前記親水性化合物を混合して混合物を得る工程と、前記混合物及び前記銅化合物微粒子を混合する工程と、を含むことを特徴とする抗菌・抗ウイルス性組成物の製造方法である。
 さらに第9の発明は、第6の発明の抗菌・抗ウイルス性樹脂部材の製造方法であって、前記樹脂及び前記銅化合物微粒子を混合して第1混合物を得る工程と、前記樹脂及び前記親水性化合物を混合して第2混合物を得る工程と、前記第1混合物と前記第2混合物を混合する工程と、を有することを特徴とする抗菌・抗ウイルス性樹脂部材の製造方法である。
 本発明によれば、抗菌・抗ウイルス性組成物の樹脂中に親水性化合物が分散されることによって、該抗菌・抗ウイルス性組成物を含んだ塗料の塗膜や、該抗菌・抗ウイルス性組成物を含んだ樹脂部材の樹脂中にも親水性化合物が分散され、その結果、塗膜や樹脂部材の表面における表面自由エネルギーの極性成分の比率が高まり、親水基と疎水基の両方を持つ細菌やウイルスが、塗膜や樹脂部材の表面に拡散して吸着しやすくなり、一価の銅化合物微粒子が低濃度でも即効性に優れる部材が提供できる。また、一価の銅化合物微粒子が分散剤で被覆されることにより、樹脂中で銅化合物微粒子が凝集するのを防止できるため、銅化合物微粒子が効率よく細菌やウイルスと接触することができる。さらに、樹脂中に存在する親水性化合物は大気中の水分を吸着しやすいことから、湿度や室温の変化があっても吸着している水分に変動が少ないため、高い抗菌・抗ウイルス性を発揮し続けることができる。
 以下、本発明の実施形態である抗菌・抗ウイルス性組成物について詳述する。
 本実施形態の抗菌・抗ウイルス性組成物は、主成分となる樹脂と、分散剤で被覆された一価の銅化合物微粒子(以下、単に銅化合物微粒子ともいう)からなる抗菌・抗ウイルス剤と、樹脂中に分散して樹脂と相溶しない親水性化合物を含む。
 まず、本実施形態の抗菌・抗ウイルス性組成物に含まれる成分について説明する。本実施形態の抗菌・抗ウイルス性組成物に含まれる親水性化合物としては、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリエチレンオキシド(PEO)、ヒドロキシプロピルセルロース(HPC)、ポリエチレングリコール(PEG)、ポリアクリルアミド(PAAM)、ポリアクリル酸(PAA)、ポリアクリル酸ナトリウム、ポリエチレンイミン等の水溶性合成高分子、カルボキシメチルデンプン、ジアルデヒドデンプン、アルジネート、ポリスチレンスルホネート、カルボキシメチルセルロース(CMC)、多糖、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリ-N-アルキルアクリルアミド、ヒドロキシエチルセルロース、ポリ-N-イソプロピルアクリルアミド(PNIAAm)、コンドロイチン硫酸、デキストラン硫酸、デルマタン硫酸、メチルビニルエーテル-無水マレイン酸共重合体、エチレン-酢酸ビニル共重合体、ジメチルアクリルアミド-グリシジルメタアクリレート共重合体などのアクリルアミド-アクリレート共重合体などを挙げることができる。
 親水性化合物は、後述する抗菌・抗ウイルス性組成物の主成分となる樹脂と相溶せず、球状の海島状、ラメラ状,シリンダー状などの独立した不連続相を形成していることを特徴とする。本実施形態の抗菌・抗ウイルス性組成物の主成分となる樹脂の中に親水性化合物の不連続相が混在し、相分離構造を形成することにより、抗菌・抗ウイルス性組成物を塗料に応用した際には塗料の乾燥後、あるいは硬化後の塗膜の表面を親水性にし、あるいは抗菌・抗ウイルス性組成物を樹脂部材に応用した際には樹脂部材の表面を親水性にし、結果、後述するように、上記表面でのウイルスや菌の拡散性が高まり、抗菌・抗ウイルス効果が向上することを特徴とする。
 ここで本実施形態の相分離について説明する。本実施形態の場合、樹脂と親水性化合物を混合すると、親水性化合物が集合して生じた不連続相(小ドメイン)が、疎水性の樹脂中に微分散する。親水性化合物及び樹脂は、巨視的には均一であるが、ミクロ的には相分離している。親水性化合物からなる不連続相のサイズは、一般的には1μm以下であるといわれている。本実施形態においては、親水性化合物が不連続相(小ドメイン)であるか、不連続相同士が融合した連続相であるかにかかわらず、親水性化合物が、樹脂と相溶せずに存在している限り使用できるものである。
 また、本実施形態の抗菌・抗ウイルス性組成物の主成分となる樹脂としては、上述の親水性化合物と相溶しない樹脂であれば使用者が適宜、選択することができる。この樹脂の具体例については、抗菌・抗ウイルス性組成物を用いた抗菌・抗ウイルス性塗料や抗菌・抗ウイルス性樹脂部材を説明する際に説明する。
 本実施形態の抗菌・抗ウイルス性組成物は、さらに、菌(菌類や細菌類など)またはウイルスのいずれかまたは両方を不活性化できる物質である抗菌・抗ウイルス剤として、一価の銅化合物の微粒子を含有することを特徴とする。一価の銅化合物としては、具体的には、経時安定性や、効果の持続性の点から、亜酸化銅、ハロゲン化銅(特に、ヨウ化銅)が好適に用いられる。抗菌・抗ウイルス剤の形状なども特に限定されないが、例えば粉末状、ペースト状、液状、微粒子状などとすることができる。
 抗菌・抗ウイルス剤(銅化合物微粒子)の粒子径は特に限定されず当業者が適宜設定可能であるが、平均粒子径が1nm以上、1μm未満であるのが好ましい。平均粒子径が1nm未満では物質的に不安定となり、平均粒子径が1μm以上である場合は、1μm未満と比べて、抗菌・抗ウイルス効果が低くなり、保管時の抗菌・抗ウイルス性組成物の安定性も悪くなるからである。なお、本明細書において、平均粒子径とは、体積平均粒子径をいう。体積平均粒子径は、例えばレーザードップラー法(動的・電気泳動光散乱法)に基づき測定することができる。測定装置は特に限定されないが、例えばゼータ電位・粒経測定システム(大塚電子製)を用いることができる。
 さらに本実施形態の抗菌・抗ウイルス剤は、抗菌・抗ウイルス剤の凝集を防止するために、分散剤で銅化合物微粒子の表面が被覆されていることを特徴とする。分散剤としては、高分子系分散剤、界面活性剤、可塑剤などの有機化合物や、金属石鹸などの無機化合物が適宜使用できるが、本実施形態においては、細菌やウイルスとの接触性を高めることができ、抗菌・抗ウイルス効果が発揮しやすくなるため、無機化合物が好適に用いられる。例えば、ジルコニア、酸化アルミニウム、酸化チタンなどの無機化合物のゼータ電位はpH7で正の電位を有しており、また、ウイルスは一般に負の電位を持つことから、これらの無機化合物の微粒子で銅化合物微粒子を被覆することにより、抗菌・抗ウイルス剤及びウイルスの接触を高めることが可能となり、よって、抗ウイルス効果が発現しやすくなる。さらに銅化合物微粒子が無機化合物で被覆されることにより、銅化合物微粒子が酸化されにくくなるため、抗菌・抗ウイルス効果を持続させることができる。本明細書において、被覆とは、銅化合物微粒子の少なくとも一部の表面に分散剤が存在することをいう。
 分散剤としての金属石鹸は微粒子であり、樹脂に対する分散性に優れ、かつ樹脂に対して充分な平滑性を付与する。金属石鹸には、ステアリン酸、オレイン酸、リシノール酸、オクチル酸、ラウリン酸等の脂肪酸と、リチウム、マグネシウム、カルシウム、バリウム、亜鉛等の金属が使用される。
 無機化合物としては、金属石鹸の他に、金属水酸化物、金属酸化物や金属過酸化物が挙げられる。金属水酸化物としては、水酸化アルミニウム、水酸化ジルコニウム、水酸化亜鉛、水酸化鉄などが挙げられる。金属酸化物としては、酸化マグネシウム、酸化バリウム、酸化カルシウム、酸化アルミニウム、酸化スズ、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化鉄、酸化タングステンなどが挙げられる。金属過酸化物としては、過酸化バリウム、過酸化チタン、過酸化カルシウムなどが挙げられる。なお、これらの無機化合物は、1種だけを用いてもよいし、2種以上を混合して用いてもよい。また、無機化合物の微粒子の大きさは、特に限定されないが、平均粒子径が1.0nm以上、300nm以下であることが好ましい。
 一価の銅化合物のウイルスの不活性化機構については現在のところ必ずしも明確ではないが、一価の銅化合物が、空気中あるいは飛沫中の水分と接触すると、一価の銅イオンが溶出し、溶出した一価の銅イオンはウイルスと接触することで電子を放出し、その際に、発生した活性種により、ウイルスに何らかのダメージを与え、ウイルスを不活性化させるものと考えられる。
 本実施形態の抗菌・抗ウイルス性組成物が不活性化できるウイルスについては、ゲノムの種類や、エンベロープの有無等にかかわることなく、様々なウイルスが挙げられる。このウイルスとしては、例えば、ライノウイルス、ポリオウイルス、口蹄疫ウイルス、ロタウイルス、ノロウイルス、エンテロウイルス、ヘパトウイルス、アストロウイルス、サポウイルス、E型肝炎ウイルス、A型、B型又はC型インフルエンザウイルス、パラインフルエンザウイルス、ムンプスウイルス(おたふくかぜ)、麻疹ウイルス、ヒトメタニューモウイルス、RSウイルス、ニパウイルス、ヘンドラウイルス、黄熱ウイルス、デングウイルス、日本脳炎ウイルス、ウエストナイルウイルス、B型又はC型肝炎ウイルス、東部および西部馬脳炎ウイルス、オニョンニョンウイルス、風疹ウイルス、ラッサウイルス、フニンウイルス、マチュポウイルウス、グアナリトウイルス、サビアウイルス、クリミアコンゴ出血熱ウイルス、スナバエ熱・ハンタウイルス、シンノンブレウイルス、狂犬病ウイルス、エボラウイルス、マーブルグウイルス、コウモリリッサウイルス、ヒトT細胞白血病ウイルス、ヒト免疫不全ウイルス、ヒトコロナウイルス、SARSコロナウイルス、ヒトポルボウイルス、ポリオーマウイルス、ヒトパピローマウイルス、アデノウイルス、ヘルペスウイルス、水痘・帯状発疹ウイルス、EBウイルス、サイトメガロウイルス、天然痘ウイルス、サル痘ウイルス、牛痘ウイルス、モラシポックスウイルス、パラポックスウイルス、ジカウイルスなどを挙げることができる。
 また、本実施形態に係る抗菌・抗ウイルス性組成物によって不活性化できる菌についても特に限定されず、グラム陽性、陰性、好気性、嫌気性などの性質に関わらず様々な細菌が挙げられる。例えば、大腸菌、黄色ブドウ球菌、表皮ブドウ球菌、連鎖球菌、肺炎球菌、インフルエンザ菌、百日咳菌、腸炎菌、肺炎桿菌、緑膿菌、ビブリオ、サルモネラ菌、コレラ菌、赤痢菌、炭疽菌、結核菌、ボツリヌス菌、破傷風菌、レンサ球菌などを挙げることができる。
 次に、本実施形態に係る抗菌・抗ウイルス性組成物の製造方法の一例について、具体的に説明する。
 まず、上述した抗菌・抗ウイルス性組成物の主成分となる樹脂と、親水性化合物を混合する。混合方法は、攪拌機、ホモジナイザー、ビーズミル、ボールミル、3本ロール、その他の装置を用いることができる。本実施形態の抗菌・抗ウイルス性組成物には、目的に応じて、難燃剤、難燃助剤、安定剤、紫外線吸収剤、可塑剤、滑剤などの各種添加剤、顔料、充填剤、その他の成分を適宜配合することができる。
 次に、本実施形態で用いられる銅化合物微粒子をジェットミル、ハンマーミル、ボールミル、振動ミル、ビーズミルなどによりナノオーダーの粒子に粉砕する。粉砕方法に関しては特に限定されず、乾式、湿式の両方が利用可能である。この時、銅化合物微粒子を被覆するための無機化合物が添加される。無機化合物を添加することで、銅化合物微粒子と無機化合物が接触して砕かれ、より粒径の小さい無機化合物が生じると同時に、静電気的引力により銅化合物微粒子の表面に無機化合物が付着して、銅化合物微粒子が無機化合物で被覆された抗菌・抗ウイルス剤が得られる。この抗菌・抗ウイルス剤と、樹脂及び親水性化合物の混合物とを混合することにより、抗菌・抗ウイルス性組成物が得られる。
 無機化合物としての金属水酸化物、金属酸化物或いは金属過酸化物を銅化合物微粒子の表面に被覆する方法としては、これらの金属化合物を溶解した水溶液に銅化合物微粒子を分散することで、銅化合物微粒子の表面に金属化合物を化学的に吸着させたり、或いは、金属化合物を分散した溶媒に銅化合物微粒子を分散することで、金属化合物を銅化合物微粒子の表面に沈着させたりすることで被覆すればよい。
 また他の方法として、メカノケミカル法が挙げられる。この方法は、コアとなる母粒子(本実施形態では銅化合物微粒子)と母粒子を被覆する子粒子(本実施形態では無機化合物)を転動式ボールミル、高速回転粉砕機、高速気流衝撃法粉砕機、媒体攪拌型ミル、機械的融合装置により強い圧力を加えることで、母粒子に子粒子を埋没させる方法である。この方法を用いる場合、母粒子となる銅化合物微粒子は事前に上述の方法で所望の粒径に粉砕しておくことが好ましい。
 母粒子や子粒子を作成可能な装置としては、回転翼式では株式会社カワタのスーパーミキサー、震蕩式では浅田鉄工株式会社のペイントシェーカー、株式会社奈良機械製作所製のハイブリダイゼーションシステム(登録商標)やホソカワミクロン株式会社のメカノフュージョン(登録商標)、媒体流動乾燥機などが例示されるが、特にこれらの装置には限定されない。また、自動乳鉢、高速回転粉砕機、高速気流衝撃法粉砕機、転動式ボールミルなどのように、粉砕も子粒子の被覆もできる装置を用いる場合は、事前に母粒子となる銅化合物微粒子を粉砕する必要はない。
 次に、本実施形態の抗菌・抗ウイルス性組成物を用いた抗菌・抗ウイルス性塗料について詳述する。
 本実施形態の抗菌・抗ウイルス性塗料は、上述の抗菌・抗ウイルス性組成物からなるものである。そして本実施形態の抗菌・抗ウイルス性塗料は、乾燥及び/又は硬化した状態(すなわち、塗膜の状態)において、表面自由エネルギーγsに対する極性成分γspの比率(以下、極性比率Rγpという)が2.0%以上、40.0%以下であることを特徴とする。
 本実施形態の抗菌・抗ウイルス性塗料が乾燥及び/又は硬化した状態にあるときの塗膜の極性比率Rγpについて説明する。
 表面自由エネルギーγsとは、固体表面又は液体表面に存在する分子(或いは原子)が固体又は液体の内部に存在する分子(或いは原子)と比べて余分に持つエネルギーをいう。表面自由エネルギーγsは下記(1)式で定義され、極性比率Rγpは下記(2)式で定義される。下記(1)式において、γspは、表面自由エネルギーγs中の極性成分であり、γsdは、表面自由エネルギーγs中の非極性成分である。また、表面自由エネルギーγs,非極性成分γsd及び極性成分γspは、本実施形態の抗菌・抗ウイルス性塗料が乾燥及び/又は硬化した状態における値である。
Figure JPOXMLDOC01-appb-M000001
 表面自由エネルギーγsを測定するときには、まず、測定対象物である乾燥及び/又は硬化した状態の塗膜の表面に測定用液体(水及びジヨードメタンのそれぞれを使用)を塗布し、それぞれの測定用液体の接触角(θ)を接触角計で測定する。得られた接触角の値と下記(3)式に基づき、極性成分γsp及び非極性成分γsdが算出される。
Figure JPOXMLDOC01-appb-M000002
 2つの測定用液体(水とジヨードメタン)について、表面張力γL、非極性成分γLd及び極性成分γLpは、予め測定しておくことができる。2つの測定用液体の接触角θを上記(3)式にそれぞれ代入した連立方程式を解けば、極性成分γsp及び非極性成分γsdを算出することができる。得られた非極性成分γsdと極性成分γspを上記(1)式に代入すれば、表面自由エネルギーγsが算出され、この表面自由エネルギーγs及び極性成分γspを上記(2)式に代入すれば、極性比率Rγpを算出できる。
 表面自由エネルギーγsが同程度であっても、極性比率Rγpが高まると抗菌・抗ウイルス効果が高くなる。この理由は現在のところ必ずしも明確ではないが、極性比率Rγpが高まることにより、塗膜表面に付着した菌やウイルスが拡散しやすくなることで、抗菌・抗ウイルス剤に菌やウイルスが接触しやすくなり、抗菌・抗ウイルス効果が高まると考えられる。
 また、本実施形態の抗菌・抗ウイルス性塗料を塗布する材料が本来持っている極性比率Rγpが高くても、親水性化合物が含有されていないと抗菌・抗ウイルス効果は高くならない。この理由も明確ではないが、親水性化合物が含有されていないと、塗膜の表面において、菌やウイルスが拡散しにくくなり、抗菌・抗ウイルス剤に菌やウイルスが接触しにくいためと考えられる。
 乾燥及び/又は硬化した状態の塗膜の極性比率Rγpは、親水性化合物の添加量によって調節できる。抗菌効果・抗ウイルス効果を高めるためには、塗膜の極性比率Rγpが2.0%以上、40.0%以下であることが好ましい。より好ましくは極性比率Rγpが5%以上、30%以下である。
 極性比率Rγpが2.0%未満である場合、極性比率Rγpが2.0%以上である場合と比較して、抗菌効果・抗ウイルス効果が十分でない。抗菌効果・抗ウイルス効果を向上させるためには、より好ましくは極性比率Rγpが5%以上である。一方、極性比率Rγpが40%を超えると、極性比率Rγpが40%以下である場合と比較しても抗菌効果・抗ウイルス効果はあまり上がらない。そのため、極性比率Rγpが40%以下であることが好ましい。
 なお、本明細書において、抗菌・抗ウイルス性塗料が乾燥した状態とは、抗菌・抗ウイルス性塗料に乾燥処理等を行ったときに、抗菌・抗ウイルス性塗料の残存している成分が実質的に固体の状態にあることを意味する。また、抗菌・抗ウイルス性塗料が硬化した状態とは、抗菌・抗ウイルス性塗料を塗布・乾燥するなどしたときに形成される塗膜の表面にゴミ等が付着してもその塗膜の中にゴミ等が取り込まれない状態をいう。付着したゴミ等はエアーブローなどで容易に除去できる。また、本明細書において、抗菌・抗ウイルス性塗料が硬化した状態とは、少なくとも塗膜の表面の状態を示すものであり、必ずしも塗膜の内部まで完全に硬化していなくてもよい。
 本実施形態の抗菌・抗ウイルス性塗料の基材となる樹脂としては、上述の親水性化合物と相溶しない樹脂であれば使用者が適宜、選択することができる。具体的には、熱可塑性樹脂、熱硬化性樹脂、電子線や紫外線などの照射によって硬化する放射線硬化型樹脂が用いられる。これらの樹脂は2種類以上を組み合わせてもよい。
 熱可塑性樹脂としては、ポリエチレンやポリプロピレンや、塩素化ポリエチレンなどのオレフィン系樹脂や、ポリスチレン樹脂や、ポリ酢酸ビニル樹脂や、ポリウレタン樹脂や、ポリエステル樹脂や、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルを主鎖とする共重合体や、アクリル・スチレン樹脂や、フッ素系樹脂や、硝化綿、エチルセルロースなどの繊維素系樹脂や、ひまし油、亜麻仁油、桐油などの乾性油、シェラック、コーパルなどの天然樹脂などが挙げられる。また、熱硬化性樹脂としては、フェノール樹脂や、エポキシ樹脂や、メラミン樹脂や、尿素樹脂や、不飽和ポリエステル樹脂や、アクリルシリコーン樹脂や、アルキッド樹脂や、ポリウレタン樹脂や、熱硬化性アクリル樹脂や、熱硬化性ポリイミド樹脂などが挙げられる。
 さらに、電子線や紫外線などの放射線硬化型樹脂としては、モノマー、オリゴマー、あるいはポリマーなどであり、硬化後の架橋密度を高くすることができ、表面硬度の向上効果を高めることができ、かつ透明性の向上効果を高くすることができるという観点から、多官能(メタ)アクリレートモノマー、多官能(メタ)アクリレートオリゴマー、あるいは多官能(メタ)アクリレートポリマー等の多官能(メタ)アクリレート化合物が好ましい。また、必要に応じて光重合開始剤が添加されていてもよく、光重合開始剤としては、例えば、アントラキノン、アセトフェノン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、エチルアントラキノン、カルバゾール、キサントン、4-クロロベンゾフェノン、o-ベンゾイルメチルベンゾエート、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、p-ジメチルアミノ安息香酸イソアミルエステル、p-ジメチルアミノ安息香酸エチルエステル、2,2-ジメトキシ2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1(4-モルフォリノフェニル)-ブタノン-1,ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、メチルベンジルホルメート、フロオレノン、ベンゾフェノン、ベンズアルデヒド、フルオレン、トリフェニルアミン、ミヒラーケトン、3-メチルアセトフェノン、2-メチル-1-1[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス-(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルホスフィンオキシド等が挙げられる。
 本実施形態の抗菌・抗ウイルス性塗料は様々な対象部材に塗布することで抗菌・抗ウイルス性を付与できる。
 対象部材としては、例えば、繊維構造体、フィルム、シートを挙げることができる。塗膜が形成可能な繊維構造体としては、例えば織物や不織布が挙げられ、それらの具体的な応用例としては、マスク、エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター、衣類、防護服、寝具や、網戸用ネット、鶏舎用ネットなどのネットが挙げられる。これらの繊維構造体は、ポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ナイロン、アクリル、ポリテトラフフルオロエチレン、ポリビニルアルコール、ケブラー、ポリアクリル酸、ポリメタクリル酸メチル、レーヨン、キュプラ、テンセル、ポリノジック、アセテート、トリアセテート、綿、麻、羊毛、絹、竹、などの高分子材料や、アルミニウム、鉄、ステンレス、真鍮、銅、タングステン、チタニウムなどの金属を含む繊維で構成されている。
 フィルムの材料としては、ポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリビニルアルコール、ポリ酢酸ビニル、ポリイミド、ポリアミドイミド、ポリテトラフルオロエチレン、四フッ化エチレン-エチレン共重合体などの樹脂を含むものが挙げられる。
 また、シートとしては、ポリカーボネート樹脂シート、フィルム塩化ビニルシート、フッ素樹脂シート、ポリエチレンシート、シリコーン樹脂シート、ナイロンシート、ABSシート、ウレタンシートなどの高分子からなるシートやチタニウム、アルミニウム、ステンレス、マグネシウム、真鍮などの金属を含むシートが挙げられる。
 これらのフィルムやシートの具体的な応用例としては、壁紙や窓、天井、車両用シート、ドア、ブラインド、椅子、ソファー、床材、菌やウイルスを扱う設備や電車や車などの内装材、病院内などのビル用内装材、農業用資材、シートシャッターなど、様々な分野に利用できる。
 さらに、本実施形態の抗菌・抗ウイルス性塗料は、パネルや、建装材、内装材、筆記具、手すり、吊革、電話機、玩具、ドアノブなどの成形体に直接塗布して、膜(塗膜)を形成してもよい。高分子の成形体としては、例えば、ABSやポリカーボネート、ナイロン、ポリプロピレン、ポリスチレン、ポリアセタール、ポリエステルなどにより形成される成形体が挙げられる。また、金属の成形体としては、例えば、アルミニウム、亜鉛、マグネシウム、真鍮、ステンレス、チタニウムなどにより形成される成形体が挙げられる。金属の成形体の表面には、電気めっきや無電解めっきなどにより形成される金属の薄膜、塗装、印刷などが予め施されていても良い。
 次に、本実施形態に係る抗菌・抗ウイルス性塗料の製造方法の一例について、具体的に説明する。
 上述した抗菌・抗ウイルス性組成物の製造方法と同様に、樹脂及び親水性化合物を混合した混合物と、粉砕した抗菌・抗ウイルス剤(分散剤で被覆された銅化合物微粒子)とを用意し、これらを混合することで、本実施形態の抗菌・抗ウイルス性塗料を得ることができる。抗菌・抗ウイルス性塗料には、目的に応じて、難燃剤、難燃助剤、安定剤、紫外線吸収剤、可塑剤、滑剤などの各種添加剤、顔料、充填剤、その他の成分を適宜配合することができる。
 続いて、本実施形態の抗菌・抗ウイルス性組成物を用いた抗菌・抗ウイルス性樹脂部材について詳述する。
 本実施形態の抗菌・抗ウイルス性樹脂部材は、上述の抗菌・抗ウイルス性組成物からなるものである。そして本実施形態の抗菌・抗ウイルス性樹脂部材は、樹脂部材の表面自由エネルギーγsに対する極性成分γspの比率(以下、極性比率Rγpという)が2.0%以上、40.0%以下であることを特徴とする。
 ここで、本実施形態の抗菌・抗ウイルス性樹脂部材の極性比率Rγpについては、上述の抗菌・抗ウイルス性塗料で説明した上記(1)~(3)式によって定義される。抗菌・抗ウイルス性樹脂部材を得るときには、加熱によって溶剤を除去して乾燥させたり、再加熱や、赤外線、紫外線、電子線、γ線などの照射を行うことにより硬化させたりすることができる。このため、上記(1),(2)式において、表面自由エネルギーγs,非極性成分γsd及び極性成分γspは、本実施形態の抗菌・抗ウイルス性樹脂部材が乾燥及び/又は硬化した状態における値である。また、上記(3)式については、塗膜の表面の代わりに、抗菌・抗ウイルス性樹脂部材の表面となる。
 抗菌・抗ウイルス性塗料の塗膜の極性比率Rγpと同様に、極性比率Rγpが2.0%未満である場合、極性比率Rγが2.0%以上である場合と比較して、抗菌・抗ウイルス効果が十分でない。一方、極性比率Rγpが40.0%を超えると、極性比率Rγpが40.0%以下である場合と比較しても抗菌・抗ウイルス効果はあまり上がらない。そのため、極性比率Rγpが40.0%以下であることが好ましい。抗菌・抗ウイルス性樹脂部材の極性比率Rγpは、好ましくは5.0%以上、30.0%以下であり、より好ましくは10.0%以上、20.0%以下である。抗菌・抗ウイルス効果を向上させるために、極性比率Rγpは、好ましくは5.0%以上であり、より好ましくは10.0%以上である。
 本実施形態の抗菌・抗ウイルス性樹脂部材において、親水性化合物の含有率は特に限定されず、当業者が適宜設定することができるが、抗菌・抗ウイルス性樹脂部材100質量%に対して、0.01質量%以上、50.0質量%以下であることが好ましい。親水性化合物の含有率が0.01質量%未満であると、親水性化合物の含有率が0.01質量%以上である場合と比較して、抗菌・抗ウイルス性樹脂部材の極性比率Rγpを十分に高めることができない。また、親水性化合物の含有率が50.0質量%を超えると、親水性化合物の含有率が50.0質量%以下である場合と比較して、抗菌・抗ウイルス性樹脂部材の強度が低下する。また、親水性化合物の含有率が0.01質量%以上、50.0質量%以下であっても、親水性化合物の含有率が、抗菌・抗ウイルス剤の含有率よりも多いと、抗菌・抗ウイルス性樹脂部材の強度が低下することがあるため、親水性化合物の含有率は、抗菌・抗ウイルス剤の含有率以下にすることが好ましい。
 抗菌・抗ウイルス性樹脂部材の基材である樹脂としては、上述した親水性化合物と相溶しない樹脂であれば特に限定されないが、例えば、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、EVA樹脂、ポリメチルペンテン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリテトラメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ナイロン樹脂、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリエチレン四フッ化エチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリビニルアルコール樹脂、ケブラー(登録商標)、ポリメタクリル酸メチル樹脂、などの熱可塑性樹脂、シリコーン樹脂、ポリスチレンエラストマーなどのスチレン系エラストマー、ポリエチレンエラストマー、ポリプロピレンエラストマーなどのオレフィン系エラストマー、ポリウレタンエラストマーなどのポリウレタン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ナイロン系エラストマーなどの熱可塑性エラストマー、レーヨン、キュプラ(登録商標)、テンセル(登録商標)、ポリノジック、アセテート、トリアセテートが挙げられる。これらの樹脂は2種類以上を組み合わせてもよい。
 本実施形態の抗菌・抗ウイルス性樹脂部材に用いる際の抗菌・抗ウイルス性組成物中の親水性化合物については、液状の親水性化合物を用いると、発泡などが起こるおそれがあるため、固体の親水性化合物を用いることが好ましい。
 さらに本実施形態の抗菌・抗ウイルス性樹脂部材は、上述の抗菌・抗ウイルス性組成物を含んでいればよく、本願発明の目的を達成できる限り、他の成分を含んでいてもよいほか、その形状なども限定されない。
 例えば、本実施形態の抗菌・抗ウイルス性樹脂部材は、成形品であったり、シート状、フィルム状、繊維状、布状、メッシュ状(網状構造)、ハニカム状、不織布状などの形状を有していたりしてもよい。抗菌・抗ウイルス性樹脂部材が繊維状である場合には、ナノファイバー(5nm以上、1μm未満の平均繊維径を有する繊維)であってもよい。なお、平均繊維径とは、複数のナノファイバーの繊維径の平均値をいう。ナノファイバーの繊維径は、ナノファイバーを顕微鏡により画像観察することで測定できる。具体的には、複数のナノファイバーを電子顕微鏡などで観察し、得られた観察画像においてランダムに幾つかのナノファイバーを選択し、画像処理ソフトによって各ナノファイバーの繊維径を測定して、それら繊維径の平均値を算出することができる。
 次に、本実施形態である抗菌・抗ウイルス性樹脂部材の製造方法の一例について具体的に説明する。
 抗菌・抗ウイルス剤を含有する樹脂ペレットである第1のマスターバッチペレット(第1混合物)を製造するとともに、親水性化合物と基材となる樹脂ペレットを所定の重量割合で混合した第2のマスターバッチペレット(第2混合物)を製造する。次に、第1のマスターバッチペレットと第2のマスターバッチペレットを溶融混練し、混練物を所定形状に形成することにより、本実施形態である抗菌・抗ウイルス性樹脂部材が得られる。第1のマスターバッチペレット及び第2のマスターバッチペレットを別々に製造した後に溶融混練することにより、抗菌・抗ウイルス性樹脂部材中において、抗菌・抗ウイルス剤が親水性化合物と接触することを避けることができる。
 第1のマスターバッチペレットは、例えば以下のようにして製造する。まず、粉砕した銅化合物微粒子と分散剤を混合して、銅化合物微粒子の表面が分散剤で被覆された抗菌・抗ウイルス剤を生成した後、この抗菌・抗ウイルス剤を樹脂ペレットと混合し、混練押出機を用いることにより、抗菌・抗ウイルス剤を樹脂ペレットの内部に分散させる。或いは、粉砕した銅化合物微粒子と分散剤を樹脂ペレットと混合し、混練押出機を用いることにより、混練中に銅化合物微粒子の周囲に分散剤が引き寄せられ、その結果、銅化合物微粒子が分散剤で被覆された抗菌・抗ウイルス剤を生成するとともに、この抗菌・抗ウイルス剤を樹脂ペレットの内部に分散させる。混練物を冷却した後、ペレタイザを用いて抗菌・抗ウイルス剤を含有させた樹脂を細かくカットし、抗菌・抗ウイルス剤を含有する第1のマスターバッチペレットを得る。なお、第1のマスターバッチペレットの製造時における抗菌・抗ウイルス剤の割合(濃度)は、当業者が適宜設定することができる。
 第2のマスターバッチペレットは、例えば以下のようにして製造する。まず、親水性化合物及び樹脂ペレットを所定の重量割合で混合して混合物を得る。ここで、樹脂ペレットとしては、第1のマスターバッチペレットの製造に用いられた樹脂ペレットと同じ物を用いる。得られた混合物を溶融混練することにより、第2のマスターバッチペレットを得る。
 成形機を用いて、第1のマスターバッチペレット及び第2のマスターバッチペレットを溶融混練したものを成形することで、抗菌・抗ウイルス剤及び親水性化合物が基材の樹脂中に分散された抗菌・抗ウイルス性樹脂部材を得ることができる。
 また、本実施形態に係る抗菌・抗ウイルス性樹脂部材は、成形品として製造する場合には射出成形、ブロー成形などの方法で成形することができる。
 なお、本実施形態に係る抗菌・抗ウイルス性樹脂部材は、成形品以外にも、例えば、シート状、フィルム状、繊維状、布状、メッシュ状(網状構造)、ハニカム状、不織布状などの形態のものも含み、使用目的に合った様々な形態(形状、大きさ等)で製造することが可能である。抗菌・抗ウイルス性樹脂部材をシート状やフィルム状として製造する場合には、Tダイ法、インフレーション法などで形成することができる。また、抗菌・抗ウイルス性樹脂部材を繊維状として製造する場合には、溶融紡糸法などにより形成することができる。また、抗菌・抗ウイルス性樹脂部材を不織布状として製造する場合には、スパンボンド法などの既存の製造方法により製造することができる。
 また、本実施形態に係る抗菌・抗ウイルス性樹脂部材には、添加剤として、可塑剤、乾燥剤、硬化剤、皮張り防止剤、平坦化剤、たれ防止剤、防カビ剤、紫外線吸収剤、熱線吸収剤、潤滑剤、界面活性剤、増粘剤、粘性調整剤、安定剤、乾燥調整剤などを添加してもよい。これらの添加剤は、1種だけを用いたり、2種以上を組み合わせて用いたりすることができる。さらに、他の抗ウイルス組成物、抗菌組成物、防黴組成物、抗アレルゲン組成物、触媒、反射防止材料、遮熱特性を持つ材料などを添加して使用してもよい。
 本実施形態に係る抗菌・抗ウイルス性樹脂部材は、繊維や、ハウス用フィルム、トンネルハウス用フィルムなどの農業資材、植物工場用のトレーなどの成形体、パネル、建装材、内装材、筆記具、手すり、吊革、電話機、玩具、ドアノブ、クリアフォルダ、ラベルテープなどの文房具、シート、加熱した際に収縮するシュリンク材、椅子、ソファー、外壁材、サッシ、ドア、ブラインド、天井板、床板、窓などの建装材、壁紙、カーペット、樹脂タイルなどの内装材、電車・車両用内装材、衣類、インナーウェア、靴下、手袋、靴カバー、靴等の履物、パジャマ、マット、シーツ、枕、枕カバー、毛布、タオルケット、蒲団および蒲団カバーなどの寝装材、帽子、ハンカチ、タオル、絨毯、カーテン、空気清浄機やエアコン、換気扇、電気掃除機、扇風機などのフィルター、生簀や定置網などの漁網、水処理用のフィルター、飲料水用フィルター、バラスト水処理用のフィルター、配管内のライニング材、湾岸構造物表面に接着剤や粘着剤で付着させたフィルム状部材、漁船やタンカーなどの船舶表面にシート状として接着させた部材、発電所の取水口内壁へのシート状部材、取水口用プレフィルター、取水口内面、プレートクーラー、排水管、給水管など、様々な接水面用部材または防虫網やスクリーン印刷用メッシュなどの繊維構造体の製品へ応用が可能となる。従って、本実施形態に係る抗菌・抗ウイルス性樹脂部材は、様々な分野に優れた各種製品を提供することができる有用な部材である。
 抗菌・抗ウイルス性樹脂部材としての繊維の製造方法の一例についていて具体的に説明する。
 抗菌・抗ウイルス剤を含有する樹脂ペレットである第1のマスターバッチペレットを製造するとともに、親水性化合物を樹脂ペレットに所定の重量割合で混合した第2のマスターバッチペレットを製造する。そして、第1のマスターバッチペレットと第2のマスターバッチペレットを混合し溶融混練することにより、紡糸原料を製造する。そして、得られた紡糸原料を溶融紡糸工程に供することにより、本実施形態に係る繊維を得ることができる。溶融紡糸方法については、特定の方法に限定されるものではなく、公知の方法を用いることができる。紡糸温度については、樹脂粘度が適度に低い状態で紡糸口金から吐出することができ、また、樹脂の劣化や熱分解を起こすことなく、紡糸工程が著しく不安定化することなく、後の延伸処理によって高強度の繊維を得ることができる範囲であれば、繊維材料に合った温度域を適宜選定すれば良い。
 溶融紡糸工程においては、紡糸原料を紡糸口金から吐出し、吐出された繊維状の紡糸原料を冷却して固化し、繊維とする。具体的には、吐出された紡糸原料を例えば空気、水、グリセリン等の媒体中で固化温度以下まで冷却して固化させる。水冷式での冷却の場合、60℃程度に加温し徐冷却することにより、繊維が水槽に導入された際に揺動せずに水槽を通過することができるため、冷却時の安定性に優れる。空冷の場合には、空気の温度、風速は任意に設定できるが、分子配向を抑制するためには風速は低く、温度はあまり低すぎないことが望ましい。冷却の時点で分子配向の度合いが高いと、次工程で加熱延伸工程を行う場合には、繊維が延伸されにくくなり、抗菌・抗ウイルス効果が得られにくくなる場合がある。
 そして、固化させた繊維を巻き取る。巻き取り速度は、任意の速度を設定することができる。ただし、巻き取り速度が溶融未延伸糸の自由落下速度よりも低速の場合には、均一な未延伸糸が得られなくなり、延伸性の低下を招く場合がある。なお、次工程で加熱延伸工程を行う場合には、固化させた糸を巻き取らずに、そのまま加熱延伸工程に供するようにしてもよい。
 次に、加熱延伸工程について説明する。加熱延伸工程では、紡糸工程で巻き取られた繊維(未延伸糸)を加熱して伸ばす工程である。加熱延伸工程は複数の延伸工程を有していてもよい。加熱延伸工程が複数の延伸工程を有する場合は、各延伸工程における延伸倍率の積が、総延伸倍率となる。なお、加熱延伸工程が1回の延伸する工程からなる場合には、この1回の延伸する工程における延伸倍率が総延伸倍率となる。
 本実施形態に係る繊維は、加熱延伸することでさらに優れた抗菌・抗ウイルス性を発現し、繊維表面等に付着した細菌やウイルスを効率良く不活性化することができる。特に繊維がモノフィラメントである場合、加熱延伸によって抗菌・抗ウイルス効果をより高めることができる。加熱延伸によって抗菌・抗ウイルス効果が大きく向上する機構については現在のところ必ずしも明確ではないが、以下の理由が考えられる。紡糸工程において溶融状態の繊維は、冷却が始まると繊維の表層部が直接冷却固化され、表層部よりも繊維の内側の部分(内層部)に存在する抗菌・抗ウイルス剤は、繊維の外部の水分と接触しにくい構造になる。一方、内層部は表層部を介して冷却固化されるために、内層部の冷却スピードは、表層部の冷却スピードよりも低くなる。そのため、表層部の繊維構造は、内層部の繊維構造と異なると考えられる。その状態で加熱延伸を行うと、ガラス転移点以上の加熱条件下で延伸が行われるために、表層部の繊維構造は、抗菌・抗ウイルス剤と繊維の外部の水分が接触しやすい繊維構造となる。しかも、加熱延伸によって、表層部の繊維構造は、内層部の繊維構造に近づくため、細菌やウイルスの表面のチャージやDNA等に何らかの影響を与えて不活性化させるものと考えられる。
 延伸方法については特に限定されるものではなく、ホットロール延伸法、熱板延伸法、チューブラー延伸法、延伸ブロー法、レーザー延伸法等、公知の延伸方法を適宜採用することができる。ホットロール延伸法で加熱延伸される場合、多段に組み合わされたホットロールの回転数を変更することにより、未延伸糸を高倍率に延伸することができる。
 延伸倍率は、被延伸物の繊度に応じて適宜選定されるが、通常、総延伸倍率が3.0以上7.0倍以下、好ましくは4.0以上6.0倍以下になるように設定される。延伸倍率を3.0以上7.0倍以下とすることにより、より分子が配向して、より強度の高い繊維を得ることができる。延伸倍率が3.0倍未満である場合には、延伸倍率が3.0倍以上である場合と比較して抗菌・抗ウイルス効果が低く、また、得られる繊維の強度が低下する。また、延伸倍率が7.0倍を超える場合には、延伸張力が極めて高くなるため、糸切れが多発し製糸性が低下する場合がある。
 なお、本実施形態に係る抗菌・抗ウイルス性樹脂部材の繊維は、芯鞘構造を有していてもよい。その場合、例えば、芯部は通常の樹脂(抗菌・抗ウイルス剤を含まない樹脂)で形成し、鞘部に抗菌・抗ウイルス剤や親水性化合物を含有した樹脂で形成することにより、繊維の強度を向上させることができるだけでなく、抗菌・抗ウイルス剤の含有量も低減できるという利点がある。芯部の樹脂と鞘部の樹脂は、同一であってもよいし異なる樹脂であってもよい。
 芯鞘構造の繊維の長手方向と直交する断面形状は、特に限定されるものではないが、断面形状を円形とすることが好ましく、芯部および鞘部も同心円状に形成することが好ましい。繊維の長手方向と直交する断面において、芯部の面積と鞘部の面積の比率は特に限定されるものではなく、使用者が適宜、設定することができる。
 また、本実施形態に係る抗菌・抗ウイルス性樹脂部材の繊維には、添加剤として、可塑剤、乾燥剤、硬化剤、皮張り防止剤、平坦化剤、たれ防止剤、防カビ剤、紫外線吸収剤、熱線吸収剤、潤滑剤、界面活性剤、増粘剤、粘性調整剤、安定剤、乾燥調整剤などを添加してもよい。これらの添加剤は、1種だけを用いたり、2種以上を組み合わせて用いたりすることができる。さらに、他の抗ウイルス組成物、抗菌組成物、防黴組成物、抗アレルゲン組成物、触媒、反射防止材料、遮熱特性を持つ材料などを添加して使用してもよい。
 本実施形態に係る抗菌・抗ウイルス性樹脂部材の繊維は、織物、編物、不織布、混抄紙などの紙類などとして使用することが可能である。そして、この繊維は、衣類、寝具、寝装材、マスク、ハンカチ、タオル、絨毯、カーテン、外壁材、建装材、内装材などのシート状の製品や、空気清浄機やエアコン、換気扇、電気掃除機、扇風機、空調用、車両用などのフィルター、生簀や定置網などの漁網、水処理用のフィルター、飲料水用フィルター、バラスト水処理用のフィルター、防護衣類、防護ネット、防虫網、鶏舎用ネットなど、様々な製品に使用することができる。従って、本実施形態に係る繊維は、様々な分野に優れた各種製品を提供することができる有用な材料である。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
(実施例1から3)
 一価の銅化合物の微粒子としての市販のヨウ化銅(I)粉末(和光純薬工業株式会社製)40.0gと、無機化合物の微粒子としての酸化ジルコニウム粒子(日本電工株式会社製)60.0gを、900.0gのメタノールにプレ分散後、ビーズミルにて解砕・分散し、平均粒子径140nmの酸化ジルコニウムで被覆されたヨウ化銅粒子のスラリーを得た。なお、ここでいう平均粒子径とは、体積平均粒子径のことをいう。
 次に、ポリビニルピロリドン(PVP)、オレフィン系樹脂を用意し、トルエン溶媒中に混合し、ボールミルを用いて分散した後、上述の酸化ジルコニウムで被覆されたヨウ化銅粒子を加え、さらに分散し、抗菌・抗ウイルス性塗料を得た。実施例1~3において、抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
 得られた抗菌・抗ウイルス性塗料をポリプロピレンシート(厚み200μm)にバーコーター(#20)を用いて塗工、乾燥し抗菌・抗ウイルス性塗料を塗工したシートを得た。このとき塗膜の厚みは2μmであった。
(実施例4)
 ポリビニルピロリドンの代わりに、ポリエチレングリコール(PEG)を用いた以外は、実施例1と同様の条件で抗菌・抗ウイルス性塗料を塗工したシートを得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
(実施例5)
 オレフィン系樹脂の代わりに、ウレタン系樹脂を用いた以外は、実施例1と同様の条件で抗菌・抗ウイルス性塗料を塗工したシートを得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
(実施例6)
 ポリビニルピロリドンの代わりに、ポリエチレングリコールを用いた以外は、実施例5と同様の条件で抗菌・抗ウイルス性塗料を塗工したシートを得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
(実施例7)
 オレフィン系樹脂の代わりに、アクリル系樹脂を用いた以外は、実施例1と同様の条件で抗菌・抗ウイルス性塗料を塗工したシートを得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
(実施例8)
 一価の銅化合物の微粒子としての市販の亜酸化銅粉末(和光純薬工業株式会社製)40.0gと、無機化合物の微粒子としての酸化ジルコニウム粒子(日本電工株式会社製)60.0gを、900.0gのメタノールにプレ分散後、ビーズミルにて解砕・分散し、平均粒子径140nmの酸化ジルコニウムで被覆された亜酸化銅粒子のスラリーを得た。なお、ここでいう平均粒子径とは、体積平均粒子径のことをいう。
 次に、ポリビニルピロリドン、オレフィン系樹脂を用意し、トルエン溶媒中に混合し、ボールミルを用いて分散した後、上述の酸化ジルコニウムで被覆された亜酸化銅粒子を加え、さらに分散し、抗菌・抗ウイルス性塗料を得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
 得られた抗菌・抗ウイルス性塗料をポリプロピレンシート(厚み200μm)にバーコーター(#20)を用いて塗工、乾燥し、抗菌・抗ウイルス性塗料を塗工したシートを得た。このとき塗膜の厚みは2μmであった。
(実施例9)
 オレフィン系樹脂の代わりに、ウレタン系樹脂を用いた以外は、実施例8と同様の条件で抗菌・抗ウイルス性塗料を塗工したシートを得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。
(実施例10)
 オレフィン系樹脂の代わりに、アクリル系樹脂を用い、ポリビニルピロリドンの代わりに、ポリエチレングリコールを用いた以外は、実施例8と同様の条件で抗菌・抗ウイルス性塗料を塗工したシートを得た。抗菌・抗ウイルス性塗料に含まれる各原料の質量%は下記表1に示す通りである。 
(比較例1)
 オレフィン系樹脂のみを材料とし、トルエン溶媒中に混合し、ボールミルを用いて分散し塗料を得た。オレフィン系樹脂の質量%は下記表2に示す通り100質量%である。 
 得られた塗料をポリプロピレンシート(厚み200μm)にバーコーター(#20)を用いて塗工、乾燥し、塗料を塗工したシートを得た。このとき塗膜の厚みは2μmであった。 
(比較例2)
 酸化ジルコニウムで被覆されたヨウ化銅粒子を含有させず、混合、分散した以外は、実施例1と同様の条件で塗料を塗工したシートを得た。この塗料に含まれる各原料の質量%は下記表2に示す通りである。
(比較例3)
 ポリビニルピロリドンを含有させず、混合、分散した以外は、実施例1と同様の条件で塗料を塗工したシートを得た。この塗料に含まれる各原料の質量%は下記表2に示す通りである。 
(比較例4)
 酸化ジルコニウムで被覆されたヨウ化銅粒子を含有させず、混合、分散した以外は、実施例5と同様の条件で塗料を塗工したシートを得た。この塗料に含まれる各原料の質量%は下記表2に示す通りである。
(比較例5)
 ポリビニルピロリドンを含有させず、混合、分散した以外は、実施例5と同様の条件で塗料を塗工したシートを得た。この塗料に含まれる各原料の質量%は下記表2に示す通りである。 
(比較例6)
 酸化ジルコニウムで被覆された亜酸化銅を含有させず、混合、分散した以外は、実施例10と同様の条件で塗料を塗工したシートを得た。この塗料に含まれる各原料の質量%は下記表2に示す通りである。
(比較例7)
 ポリエチレングリコールを含有させず、混合、分散した以外は、実施例10と同様の条件で塗料を塗工したシートを得た。この塗料に含まれる各原料の質量%は下記表2に示す通りである。 
 以上、説明した実施例1~10及び比較例1~7の抗菌・抗ウイルス性塗料の構成をそれぞれ下記表1、2に示す。 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(抗ウイルス性評価方法)
 抗菌・抗ウイルス性塗料を塗工したシートのウイルス不活性化性の測定では、MDCK細胞を用いて培養したインフルエンザウイルス(influenzaA/北九州/159/93(H3N2))を用いた。
 実施例1~10および比較例1~7の抗菌・抗ウイルス性塗料を塗工したシート(50mm×50mm)をプラスチックシャーレにいれ、PBSで希釈したウイルス液100μLを滴下し、25℃で15分間作用させた。このときシート試験品の上面をPETフィルム(40mm×40mm)で覆うことで、ウイルス液とシート試験品の接触面積を一定にし、試験を行った。10分間作用させたのち、反応を停止させるためSCDLP培地を900μL添加し、ピペッティングによりウイルスを洗い出した。その後、各反応後のウイルス液が10-1~10-5になるまでMEM希釈液を用いて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレに培養したMDCK細胞にサンプル液100μLを接種した。60分間34℃、5%COインキュベータにサンプル液を接種させた細胞を静置し、ウイルスを細胞へ吸着させた後、0.7%寒天培地を重層し、48時間、34℃、5%COインキュベータを用いてウイルスを培養した。培養後、ホルマリン固定、メチレンブルー染色を行い形成されたプラーク数をカウントして、ウイルスの感染価(PFU/0.1mL、Log10);(PFU:plaque-forming units)を算出した。
(抗菌性評価方法)
 抗菌・抗ウイルス性塗料を塗工したシートの抗菌性の測定では、NB培地にて培養した大腸菌を用いた。
 実施例1~10および比較例1~7の抗菌・抗ウイルス性塗料を塗工したシート(50mm×50mm)をプラスチックシャーレにいれ、菌数が2.5×10~10×10個になるまで1/500NB培地で希釈した菌液100μLを滴下し、35℃で10分間作用させた。このときシート試験品の上面をPETフィルム(40mm×40mm)で覆うことで、菌液とシート試験品の接触面積を一定にし、試験を行った。15分間作用させたのち、反応を停止させるためSCDLP培地を4mL添加し、ピペッティングにより菌を洗い出した。その後、各反応後の菌液が10-1~10-5になるまでSCDLP液を用いて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレにサンプル液1mLを分注し、1.5%寒天培地を加えて混合した。倒置したシャーレを37℃のインキュベータ内に配置して24~48時間菌を培養後、コロニー数をカウントして、菌の生菌数(CFU/0.1mL、Log10);(CFU:colony-forming units)を算出した。
(表面自由エネルギー測定方法)
 実施例1~10および比較例1~7の抗菌・抗ウイルス性塗料を塗工したシートで測定用液体(水及びジヨードメタンを使用)の接触角を、接触角計(協和界面科学社製、固液界面解析装置DropMaster300)を用いて測定した。この測定結果より、上記(3)式を用いて極性成分γsp及び非極性成分γsdを算出するとともに、上記(1)式を用いて塗膜の表面自由エネルギーγsを算出した。また、上記(2)式を用いて極性比率Rγpを算出した。
 以上、説明した実施例1~10及び比較例1~7の抗菌・抗ウイルス性塗料を塗工したシートにおける測定結果をそれぞれ表3、4にまとめた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上の結果より、全ての実施例1~10において、感作時間が10分という短時間にも関わらず高い抗菌・抗ウイルス性が確認できたが、比較例1~7では抗菌・抗ウイルス性が確認できなかった。以上のことから、本発明の抗菌・抗ウイルス性塗料を用いると、様々な製品に簡単に抗菌・抗ウイルス性効果を付与できる。
(実施例11)
 実施例3の方法で調整された塗料を実施例11とした。
(比較例8)
 無機化合物の微粒子としての酸化ジルコニウム粒子(日本電工株式会社製)を用いないこと、すなわち、酸化ジルコニウム粒子が被覆されていないヨウ化銅粒子を用いたことを除き、実施例3と同様の方法にて調整した塗料を比較例8とした。
(保管安定性評価)
 実施例11及び比較例8のサンプルを、温度50℃、湿度90%の条件下で3ヶ月放置する促進試験を行い、試験前後の色の変化(色差ΔE)を色差計にて測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表5の結果より、酸化ジルコニウムで被覆されたヨウ化銅を用いた実施例11の塗料よりも、酸化ジルコニウムで被覆されていないヨウ化銅を用いた比較例8の方が色の変化が大きかった。これは、ヨウ化銅の表面を酸化ジルコニウムで被覆することで、一価の銅化合物が二価の銅化合物に変化することが抑制されたからであると推察される。
(抗菌・抗ウイルス性評価方法)
 実施例11、比較例8の各塗料を、実施例3と同様の方法にてポリプロピレンシートに塗工、乾燥した。得られた各シートは上述の評価方法にて、抗菌・抗ウイルス性を評価した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000008
 表6の結果より、変色の大きかった比較例8は抗ウイルス性、抗菌性共に効果が低くなったのに対し、変色の少なかった実施例11は、抗ウイルス性、抗菌性共に維持されていた。
 (抗菌・抗ウイルス性樹脂部材である射出成形部材の作製)
 (実施例12)
 市販のヨウ化銅(I)粉末(日本化学産業株式会社製)を乾式粉砕装置ナノジェットマイザー(株式会社アイシンナノテクノロジーズ製、NJ-100B)を用いて、平均粒子径150nmに粉砕したヨウ化銅粒子を得た。得られたヨウ化銅粒子と、ヨウ化銅粒子の凝集防止のため分散剤として金属石鹸と混合した。
 分散剤と混合されたヨウ化銅粒子をマスターバッチペレット全体で40質量%になるように、ベース樹脂としてのポリエチレン(PE)樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、第1のマスターバッチペレットを得た。
 ポリエチレングリコール(分子量20,000)をマスターバッチペレット全体で20質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、第2のマスターバッチペレットを得た。
 射出成形部材全体でヨウ化銅5質量%、ポリエチレングリコール(分子量20,000)3質量%になるように、ポリエチレン樹脂ペレット、第1のマスターバッチペレット、第2のマスターバッチペレットを混合し、射出成形機を用いて射出成形により抗菌・抗ウイルス性樹脂部材である射出成形部材を得た。
(実施例13)
 分散剤(金属石鹸)と混合されたヨウ化銅粒子をマスターバッチペレット全体で40質量%になるように、ベース樹脂としてのポリプロピレン(PP)樹脂ペレットを加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、マスターバッチペレットを得た。
 射出成形部材全体でヨウ化銅5質量%、ポリエチレングリコール5質量%になるように、ポリプロピレン(PP)樹脂ペレット、マスターバッチペレット、ポリエチレングリコールを混合した以外は、実施例12と同様の条件で抗菌・抗ウイルス性樹脂部材である射出成形部材を得た。
(実施例14)
 実施例13で用いたポリエチレングリコールの代わりにポリビニルピロリドン(分子量10,000)を用いた以外は、実施例13と同様の条件で抗菌・抗ウイルス性樹脂部材である射出成形部材を得た。
(実施例15)
 分散剤と粉砕したヨウ化銅粒子をマスターバッチペレット全体で30質量%になるように、ベース樹脂としてのABS樹脂ペレットを加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、マスターバッチペレットを得た。
 射出成形部材全体でヨウ化銅5質量%、ポリビニルピロリドン(分子量10,000)3質量%になるように、ABS樹脂ペレット、マスターバッチペレット、ポリビニルピロリドンを混合し、射出成形機を用いて射出成形により抗菌・抗ウイルス性樹脂部材である射出成形部材を得た。
(実施例16)
 射出成形部材全体でヨウ化銅5質量%、ポリビニルピロリドン(分子量10,000)5質量%になるように、ABS樹脂ペレット、マスターバッチペレット、ポリビニルピロリドンを混合した以外は、実施例15と同様の条件で抗菌・抗ウイルス性樹脂部材である射出成形部材を得た。
(実施例17)
 実施例1で用いた平均粒子径140nmの酸化ジルコニウムで被覆されたヨウ化銅粒子のスラリー(40質量%)を、ポリプロピレン(PP)樹脂ペレットの表面にヘンシェルミキサー(登録商標)を用いて被覆した。次に、被覆されたポリプロピレン樹脂ペレットを2軸溶融混練機に供給し、第1のマスターバッチペレットを得た。
 ポリエチレングリコール(分子量20,000)をマスターバッチペレット全体で20質量%になるように、ポリプロピレン(PP)樹脂を加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、第2のマスターバッチペレットを得た。
 射出成形部材全体でヨウ化銅5質量%、ポリエチレングリコール(分子量20,000)5質量%になるように、ポリプロピレン(PP)樹脂ペレット、第1のマスターバッチペレット、第2のマスターバッチペレットを混合し、射出成形機を用いて射出成形により抗菌・抗ウイルス性樹脂部材である射出成形部材を得た。
(比較例9)
 ポリプロピレン樹脂ペレットのみを材料とし、射出成形機を用いて射出成形部材を得た。
(比較例10)
 ポリエチレングリコールを含有させず、射出成形部材全体でヨウ化銅5質量%になるように、ポリプロピレン樹脂ペレットとマスターバッチペレットを混合した以外は、実施例13と同様の条件で射出成形部材を得た。
(比較例11)
 ヨウ化銅及び分散剤(金属石鹸)を含有させず、射出成形部材全体でポリエチレングリコール10質量%になるように、ポリプロピレン樹脂ペレットとポリエチレングリコールを混合した以外は、実施例13と同様の条件で射出成形部材を得た。
(比較例12)
 ABS樹脂ペレットのみを材料とし、射出成形機を用いて射出成形部材を得た。
(比較例13)
 ポリビニルピロリドンを含有させず、射出成形部材全体でヨウ化銅5質量%になるように、ABS樹脂ペレットとマスターバッチペレットを混合した以外は、実施例15と同様の条件で射出成形部材を得た。
(比較例14)
 ヨウ化銅及び分散剤(金属石鹸)を含有させず、射出成形部材全体でポリビニルピロリドン10質量%になるように、ABS樹脂ペレットとポリビニルピロリドンを混合した以外は、実施例15と同様の条件で射出成形部材を得た。
 以上、説明した実施例12~17及び比較例9~14の射出成形部材の構成を下記表7に示す。
Figure JPOXMLDOC01-appb-T000009
(抗菌・抗ウイルス性樹脂部材であるシート状部材の作製)
(実施例18)
 市販のヨウ化銅(I)粉末(日本化学産業株式会社製)を乾式粉砕装置ナノジェットマイザー(株式会社アイシンナノテクノロジーズ製、NJ-100B)を用いて平均粒子径150nmに粉砕したヨウ化銅粒子を得た。得られたヨウ化銅粒子と、ヨウ化銅粒子の凝集防止のための分散剤である金属石鹸とを混合した。
 得られたヨウ化銅粒子をマスターバッチペレット全体で40質量%になるように、ベース樹脂としてのポリエチレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、マスターバッチペレットを得た。
 シート状部材全体でヨウ化銅5質量%、ポリエチレングリコール(分子量20,000)1質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、ポリエチレングリコールを混合し、Tダイ押出成形機を用いて厚み100μmの抗菌・抗ウイルス性樹脂部材であるシート状部材を得た。
(実施例19)
 シート状部材全体でヨウ化銅5質量%、ポリエチレングリコール5質量%になるように、ポリエチレン樹脂ペレット、マスターバッチペレット、ポリエチレングリコールを混合した以外は、実施例18と同様の条件で抗菌・抗ウイルス性樹脂部材であるシート状部材を得た。
(実施例20)
 ヨウ化銅粒子をマスターバッチペレット全体で40質量%になるように、ベース樹脂としてのポリプロピレン樹脂ペレットを加えて混合物を調製し、得られた混合物を2軸溶融混練機に供給し、マスターバッチペレットを得た。シート状部材全体でヨウ化銅5質量%、ポリエチレングリコール5質量%になるように、ポリプロピレン樹脂ペレット、マスターバッチペレット、ポリエチレングリコールを混合した以外は、実施例18と同様の条件で抗菌・抗ウイルス性を有するシート状部材を得た。
(比較例15)
 ポリエチレン樹脂ペレットのみを材料とし、Tダイ押出成形機を用いて厚み100μmのシート状部材を得た。
(比較例16)
 ポリエチレングリコールを含有させず、シート状部材全体でヨウ化銅5質量%になるように、ポリエチレン樹脂ペレットとマスターバッチペレットを混合した以外は、実施例18と同様の条件でシート状部材を得た。
(比較例17)
 ヨウ化銅及び分散剤(金属石鹸)を含有させず、シート状部材全体でポリエチレングリコール5質量%になるように、ポリエチレン樹脂ペレットとポリエチレングリコールを混合した以外は、実施例18と同様の条件でシート状部材を得た。
(比較例18)
 ヨウ化銅及び分散剤(金属石鹸)を含有させず、ポリエチレングリコールの代わりにシート状部材全体でポリビニルピロリドン5質量%になるように、ポリエチレン樹脂ペレットとポリビニルピロリドンを混合した以外は、実施例18と同様の条件でシート状部材を得た。
 以上、説明した実施例18~20及び比較例15~18のシート状部材の構成を下記表8に示す。
Figure JPOXMLDOC01-appb-T000010
(抗ウイルス性評価方法)
 射出成形部材及びシート状部材のウイルス不活性化性の測定では、エンベロープを持つウイルスとして、MDCK細胞を用いて培養したインフルエンザウイルス(influenza A/北九州/159/93(H3N2))を用い、エンベロープを持たないウイルスとして、ノロウイルスの代替ウイルスとして一般によく用いられるネコカリシウイルスを用いた。
(射出成形部材、シート状部材)
 実施例12~17及び比較例9~14の射出成形部材と、実施例18~20及び比較例15~18のシート状部材(50mm×50mm)をプラスチックシャーレに入れ、PBSで希釈したウイルス液100μLを滴下し、25℃で15分間作用させた。このときシート試験品の上面をPETフィルム(40mm×40mm)で覆うことで、ウイルス液とシート試験品の接触面積を一定にし、試験を行った。15分間作用させたのち、反応を停止させるためSCDLP培地を900μL添加し、ピペッティングによりウイルスを洗い出した。その後、各反応後のウイルス液が10-1~10-5になるまでMEM希釈液を用いて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレに培養したMDCK細胞にサンプル液100μLを接種した。60分間34℃、5%COインキュベータにサンプル液を接種させた細胞を静置し、ウイルスを細胞へ吸着させた後、0.7%寒天培地を重層し、48時間、34℃、5%COインキュベータを用いてウイルスを培養した。培養後、ホルマリン固定、メチレンブルー染色を行い形成されたプラーク数をカウントして、ウイルスの感染価(PFU/0.1mL、Log10);(PFU:plaque-forming units)を算出した。
(抗菌性評価方法)
 射出成形部材及びシート状部材の抗菌性の測定では、グラム陽性菌として、NB培地にて培養した黄色ブドウ球菌を用い、グラム陰性菌として、NB培地で培養した大腸菌を用いた。
(射出成形部材、シート状部材)
 実施例12~17及び比較例9~14の射出成形部材と、実施例18~20及び比較例15~18のシート状部材(50mm×50mm)をプラスチックシャーレに入れ、菌数が2.5×10~10×10個になるまで1/500NB培地で希釈した菌液100μLを滴下し、35℃で60分間作用させた。このときシート試験品の上面をPETフィルム(40mm×40mm)で覆うことで、菌液とシート試験品の接触面積を一定にし、試験を行った。60分間作用させたのち、反応を停止させるためSCDLP培地を4mL添加し、ピペッティングにより菌を洗い出した。その後、各反応後の菌液が10-1~10-5になるまでSCDLP液を用いて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレにサンプル液1mLを分注し、1.5%寒天培地を加えて混合した。倒置したシャーレを37℃のインキュベータ内に配置して24~48時間菌を培養後、コロニー数をカウントして、菌の生菌数(CFU/0.1mL、Log10);(CFU:colony-forming units)を算出した。
(表面自由エネルギー測定方法)
 実施例12~17及び比較例9~14の射出成形部材と、実施例18~20及び比較例15~18のシート状部材の表面での測定用液体(水及びジヨードメタンを使用)のそれぞれの接触角を、接触角計(協和界面科学社製、固液界面解析装置DropMaster300)を用いて測定した。この測定結果を基に、上記(3)式を用いて極性成分γsp及び非極性成分γsdを算出するとともに、上記(1)式を用いて、射出成形部材やシート状部材の表面自由エネルギーγsを算出した。また、上記(2)式を用いて極性比率Rγpを算出した。
 以上、説明した実施例12~17及び比較例9~14の射出成形部材である抗菌・抗ウイルス性樹脂部材における測定結果を下記表9にまとめた。
Figure JPOXMLDOC01-appb-T000011
 上記表9の射出成形部材の結果から理解できるとおり、基材の樹脂中に、抗菌・抗ウイルス剤、親水性化合物及び分散剤を含み、かつ極性比率Rγpが2.0%以上である実施例12~17では、比較例9~14と比べ、ウイルスの感染価が大きく低下し、生菌数も大きく減少していることが確認された。
 実施例18~20及び比較例15~18のシート状部材である抗菌・抗ウイルス性樹脂部材における測定結果を下記表10にまとめた。
Figure JPOXMLDOC01-appb-T000012
 上記表10のシート状部材の結果から理解できるとおり、基材の樹脂中に、抗菌・抗ウイルス剤(分散剤で被覆された銅化合物微粒子)及び親水性化合物を含む実施例18~20では、比較例15~18と比べ、ウイルスの感染価が大きく低下し、生菌数も大きく減少していることが確認された。
 以上のことから、基材の樹脂の種類によらず、抗菌及び/又は抗ウイルス効果があることが確認された。また、上記表9及び表10から、本発明の抗菌・抗ウイルス性樹脂部材は、その形態によらず抗菌及び/又は抗ウイルス効果があることが確認された。
(抗菌・抗ウイルス性樹脂部材である繊維の作製)
(実施例21)
 市販のヨウ化銅(I)粉末(日本化学産業株式会社製)を乾式粉砕装置ナノジェットマイザー(株式会社アイシンナノテクノロジーズ製、NJ-100B)を用いて平均粒子径150nmに粉砕したヨウ化銅微粒子を得た。得られたヨウ化銅粒子と、ヨウ化銅粒子の凝集防止のため分散剤である金属石鹸とを混合した。
 得られたヨウ化銅を40質量%になるように、ベース樹脂としてのポリプロピレン樹脂ペレット(旭化成ケミカルズ株式会社製)を加え、2軸溶融混練機に供給し、ヨウ化銅マスターバッチペレットを得た。
 市販のポリエチレングリコール(三洋化成工業株式会社製)をその含有量が30質量%になるように、ベース樹脂としてのポリプロピレン樹脂ペレット(旭化成ケミカルズ株式会社製)に加え、2軸溶融混練機に供給し、ポリエチレングリコールマスターバッチペレットを得た。
 ヨウ化銅1質量%、ポリエチレングリコール3質量%になるように、ポリプロピレン樹脂ペレット、ヨウ化銅マスターバッチペレット、ポリエチレングリコールマスターバッチペレットを、タンブラーを用いて混合し、溶融紡糸を行い繊度300Dの抗菌・抗ウイルス性樹脂部材であるモノフィラメント繊維を得た。
(実施例22)
 ヨウ化銅マスターバッチペレット、ポリエチレングリコールマスターバッチペレットは実施例21で調製したものを用いた。
 鞘部にヨウ化銅1質量%、ポリエチレングリコール3質量%になるように、ポリプロピレン樹脂ペレット、ヨウ化銅マスターバッチペレット、ポリエチレングリコールマスターバッチペレットをタンブラーを用いて混合し、芯部にポリプロピレン樹脂ペレットを用いて、溶融紡糸により芯部/鞘部の面積比7/3である繊度300Dの抗菌・抗ウイルス性樹脂部材である芯鞘構造のモノフィラメント繊維を得た。
(比較例19)
 ヨウ化銅マスターバッチペレットは実施例21で調製したものを用いた。
 ヨウ化銅1質量%になるように、ポリプロピレン樹脂ペレット、ヨウ化銅マスターバッチペレットをタンブラーを用いて混合し、溶融紡糸を行い繊度300Dのモノフィラメント繊維を得た。
 以上、説明した実施例21,22及び比較例19の繊維の構成を下記表11に示す。
Figure JPOXMLDOC01-appb-T000013
(抗ウイルス性評価方法)
 モノフィラメント繊維のウイルス不活性化性の測定では、エンベロープを持つウイルスとして、MDCK細胞を用いて培養したインフルエンザウイルス(influenza A/北九州/159/93(H3N2))を用い、エンベロープを持たないウイルスとして、ノロウイルスの代替ウイルスとして一般によく用いられるネコカリシウイルスを用いた。
 ガラス板(50mm×100mm)の中央に、実施例21,22および比較例19の抗菌・抗ウイルス性樹脂部材であるモノフィラメント繊維を60mm幅となるように隙間なく一重に巻いた。モノフィラメント繊維を巻きつけたガラス板をプラスチック容器に入れ、滅菌水で希釈したウイルス液200μLを滴下し、25℃で15分間作用させた。このとき、モノフィラメント繊維試験品の上面をPETフィルム(40mm×40mm)で覆うことで、ウイルス液とモノフィラメント繊維試験品の接触面積を一定にし、試験を行った。15分間作用させたのち、反応を停止させるためSCDLP培地を20mL添加し、ピペッティングによりウイルスを洗い出した。その後、各反応後のウイルス液が10-2~10-5になるまでMEM希釈液にて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレに培養したMDCK細胞にサンプル液100μLを接種した。60分間、34℃、5%COインキュベータにサンプル液を接種させた細胞を静置し、ウイルスを細胞へ吸着させた後、0.7%寒天培地を重層し、48時間、34℃、5%COインキュベータを用いてウイルスを培養した。培養後、ホルマリン固定、メチレンブルー染色を行い形成されたプラーク数をカウントして、ウイルスの感染価(PFU/0.1mL、Log10);(PFU:plaque-forming units)を算出した。
(抗菌性評価方法)
 抗菌・抗ウイルス性樹脂部材であるモノフィラメント繊維の抗菌性の測定では、グラム陽性菌として、NB培地を用いて培養した黄色ブドウ球菌を用い、グラム陰性菌として、NB培地を用いて培養した大腸菌を用いた。
 ガラス板(50mm×100mm)の中央に、実施例21,22および比較例19の抗菌・抗ウイルス性樹脂部材であるモノフィラメント繊維を60mm幅となるように隙間なく一重に巻いた。モノフィラメント繊維を巻きつけたガラス板をプラスチック容器に入れ、滅菌水で希釈した菌液100μLを滴下し、35℃で15分間作用させた。このとき、モノフィラメント繊維試験品の上面をPETフィルム(40mm×40mm)で覆うことで、菌液とモノフィラメント繊維試験品の接触面積を一定にし、試験を行った。15分間作用させたのち、反応を停止させるためSCDLP培地を20mL添加し、ピペッティングにより菌を洗い出した。その後、各反応後の菌液が10-1~10-5になるまでSCDLP液を用いて希釈を行い(10倍段階希釈)、サンプル液を作成した。シャーレにサンプル液1mLを分注し、1.5%寒天培地を加えて混合した。倒置したシャーレを37℃のインキュベータ内に静置して24~48時間菌を培養後、コロニー数をカウントして、菌の生菌数(CFU/0.1mL、Log10);(CFU:colony-forming units)を算出した。
(表面自由エネルギー)
 実施例21,22および比較例19のモノフィラメント繊維の表面での測定用液体(水及びジヨードメタンを使用)のそれぞれの接触角を、接触角計(協和界面科学社製、自動極小接触角計 MCA-3)を用いて測定した。この測定結果を基に、上記(3)式を用いて極性成分γsp及び非極性成分γsdを算出するとともに、上記(1)式を用いてモノフィラメント繊維の表面自由エネルギーγsを算出した。また、上記(2)式を用いて極性比率Rγpを算出した。
 以上、説明した実施例21,22及び比較例19のモノフィラメント繊維における測定結果を下記表12にまとめた。
Figure JPOXMLDOC01-appb-T000014
 極性基を有する化合物(ポリエチレングリコール)を添加した実施例21,22については高い抗菌性、抗ウイルス性が確認された。この結果に対し、極性基を有する化合物を添加していない比較例19については抗菌性、抗ウイルス性ともに劣る結果となった。以上の結果より、本発明の抗菌・抗ウイルス性樹脂部材であるモノフィラメント繊維を用いることで、高い抗菌、抗ウイルス性を持った製品を提供できることが確認できた。
 よって、抗菌・抗ウイルス性塗料や抗菌・抗ウイルス性樹脂部材を構成する本発明に係る抗菌・抗ウイルス性組成物は、抗菌及び/又は抗ウイルス性があることが確認された。

Claims (9)

  1.  樹脂と、
     分散剤で被覆された一価の銅化合物微粒子からなる抗菌・抗ウイルス剤と、
     前記樹脂中に分散し、前記樹脂と相溶しない親水性化合物と、
     からなることを特徴とする抗菌・抗ウイルス性組成物。
  2.  前記分散剤が無機化合物であることを特徴とする請求項1に記載の抗菌・抗ウイルス性組成物。
  3.  前記銅化合物微粒子が、亜酸化銅およびヨウ化銅のうち、少なくとも一種を含むことを特徴とする請求項1または2に記載の抗菌・抗ウイルス性組成物。
  4.  請求項1から3のいずれか1つに記載の抗菌・抗ウイルス性組成物を含む抗菌・抗ウイルス性塗料であって、
     乾燥及び/又は硬化によって形成された塗膜の表面自由エネルギーに対する極性成分の比率が2.0%以上、40.0%以下であることを特徴とする抗菌・抗ウイルス性塗料。
  5.  請求項1から3のいずれか1つに記載の抗菌・抗ウイルス性組成物を含む抗菌・抗ウイルス性樹脂部材であって、
     前記抗菌・抗ウイルス性樹脂部材の表面自由エネルギーに対する極性成分の比率が2.0%以上、40.0%以下であることを特徴とする抗菌・抗ウイルス性樹脂部材。
  6.  前記抗菌・抗ウイルス性樹脂部材が成形体であることを特徴とする請求項5に記載の抗菌・抗ウイルス性樹脂部材。
  7.  前記抗菌・抗ウイルス性樹脂部材が繊維であることを特徴とする請求項5に記載の抗菌・抗ウイルス性樹脂部材。
  8.  請求項1から3のいずれか1つに記載の抗菌・抗ウイルス性組成物の製造方法であって、
     前記樹脂及び前記親水性化合物を混合して混合物を得る工程と
     前記混合物及び前記銅化合物微粒子を混合する工程と、
     を含むことを特徴とする抗菌・抗ウイルス性組成物の製造方法。 
  9.  請求項6に記載の抗菌・抗ウイルス性樹脂部材の製造方法であって、
     前記樹脂、前記分散剤及び前記銅化合物微粒子を混合して第1混合物を得る工程と、
     前記樹脂及び前記親水性化合物を混合して第2混合物を得る工程と、
     前記第1混合物と前記第2混合物を混合する工程と、
    を有することを特徴とする抗菌・抗ウイルス性樹脂部材の製造方法。
     
PCT/JP2018/032677 2017-09-04 2018-09-03 抗菌・抗ウイルス性組成物 WO2019045110A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207009632A KR20200047666A (ko) 2017-09-04 2018-09-03 항균·항바이러스성 조성물
CN201880057235.0A CN111065272A (zh) 2017-09-04 2018-09-03 抗菌/抗病毒性组合物
US16/638,857 US20200359633A1 (en) 2017-09-04 2018-09-03 Antimicrobial/antiviral composition
JP2019539712A JP7376355B2 (ja) 2017-09-04 2018-09-03 抗菌・抗ウイルス性組成物
US18/501,310 US20240065273A1 (en) 2017-09-04 2023-11-03 Antimicrobial/antiviral composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017169874 2017-09-04
JP2017169865 2017-09-04
JP2017-169865 2017-09-04
JP2017-169874 2017-09-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/638,857 A-371-Of-International US20200359633A1 (en) 2017-09-04 2018-09-03 Antimicrobial/antiviral composition
US18/501,310 Continuation US20240065273A1 (en) 2017-09-04 2023-11-03 Antimicrobial/antiviral composition

Publications (1)

Publication Number Publication Date
WO2019045110A1 true WO2019045110A1 (ja) 2019-03-07

Family

ID=65527446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032677 WO2019045110A1 (ja) 2017-09-04 2018-09-03 抗菌・抗ウイルス性組成物

Country Status (6)

Country Link
US (2) US20200359633A1 (ja)
JP (1) JP7376355B2 (ja)
KR (1) KR20200047666A (ja)
CN (1) CN111065272A (ja)
TW (1) TW201919477A (ja)
WO (1) WO2019045110A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203069A1 (ja) * 2019-04-04 2020-10-08 リケンテクノス株式会社 抗ウイルス性塗膜形成用塗料、塗膜、及び積層フィルム
WO2021070566A1 (ja) * 2019-10-11 2021-04-15 学校法人東京電機大学 非晶質炭素含有シート、非晶質炭素含有シート製品、および通気性シートに抗菌性または抗ウイルス性を付与する方法
KR102288357B1 (ko) * 2021-02-25 2021-08-09 박충현 항균필름 제조방법
JPWO2021215488A1 (ja) * 2020-04-24 2021-10-28
EP3964553A1 (de) * 2020-09-03 2022-03-09 SWISS KRONO Tec AG Verfahren zur herstellung eines mit einer antiviralen beschichtung versehenen trägermaterials
JP2022070302A (ja) * 2020-10-27 2022-05-13 アイカ工業株式会社 光硬化性防曇樹脂組成物及びその硬化層を有する積層体
JP7109827B1 (ja) 2021-11-16 2022-08-01 株式会社ハニック・ホワイトラボ 抗ウイルス剤
WO2023190973A1 (ja) * 2022-03-31 2023-10-05 株式会社Nbcメッシュテック 抗菌・抗ウイルス性樹脂部材
WO2024005082A1 (ja) * 2022-06-30 2024-01-04 大日本印刷株式会社 抗ウイルス性化粧シート、それを用いた抗ウイルス性粘着加工シート及び抗ウイルス性化粧板
WO2024029404A1 (ja) * 2022-08-01 2024-02-08 積水化学工業株式会社 抗ウイルス性樹脂材料、抗ウイルス性樹脂成形品の製造方法及び抗ウイルス性樹脂成形品
TWI838494B (zh) 2019-04-04 2024-04-11 日商理研科技股份有限公司 抗病毒塗膜形成用塗料、積層膜以及物品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278829B1 (ko) 2020-08-26 2021-07-19 주식회사 크라운볼펜 항균성 필기구용 손잡이
KR102300678B1 (ko) * 2020-10-16 2021-09-09 주식회사 티엘 항균성을 갖는 무기계 복합 살균 조성물 및 이의 제조방법
KR20240005704A (ko) * 2021-03-25 2024-01-12 펜 컬러 인코포레이티드 기능성 금속-함유 물품
WO2023034262A1 (en) * 2021-09-03 2023-03-09 Corning Incorporated Formulations for antimicrobial thermoset coatings
WO2023044022A1 (en) * 2021-09-16 2023-03-23 Cupron Inc. Fibers with embedded particles and methods of producing fibers with embedded particles
US11470892B1 (en) * 2021-11-18 2022-10-18 King Abdulaziz University Antimicrobial metal nanoparticle mesh air filter
KR20240010657A (ko) 2022-07-15 2024-01-24 주식회사 포스코 바이러스 불활성화 기능이 우수한 항바이러스 복합수지 조성물 및 이를 이용한 복합수지 코팅강판

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384066A (ja) * 1989-08-25 1991-04-09 Toray Ind Inc 抗菌作用を有する樹脂組成物およびその製造方法
JP2008008138A (ja) * 2006-05-29 2008-01-17 Toray Ind Inc 床材およびその製造方法
JP2009155461A (ja) * 2007-12-26 2009-07-16 Fujitsu Ltd 粉体塗料及び電子機器筐体
JP2012210557A (ja) * 2011-03-30 2012-11-01 Panasonic Corp 撥水性光触媒組成物及び撥水性光触媒塗膜
JP2014001190A (ja) * 2012-06-20 2014-01-09 Nbc Meshtec Inc 抗ウイルス組成物
JP2014118358A (ja) * 2012-12-13 2014-06-30 Showa Denko Kk 抗菌抗ウイルス性組成物及びその製造方法
JP2014519504A (ja) * 2011-05-24 2014-08-14 アジエニック,インコーポレイテッド 抗菌性金属ナノ粒子の組成物および方法
WO2014132606A1 (ja) * 2013-02-27 2014-09-04 パナソニック株式会社 亜酸化銅粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
JP2015205998A (ja) * 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 抗ウイルス性塗膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL135487A (en) 2000-04-05 2005-07-25 Cupron Corp Antimicrobial and antiviral polymeric materials and a process for preparing the same
KR20160112021A (ko) * 2008-09-03 2016-09-27 가부시키가이샤 엔비씨 메슈테크 항바이러스제
JP5723097B2 (ja) 2008-12-25 2015-05-27 株式会社Nbcメッシュテック 抗ウイルス性塗料および抗ウイルス性塗料が塗布乾燥された部材
JP5452966B2 (ja) 2009-04-06 2014-03-26 株式会社Nbcメッシュテック ウイルス不活化剤
WO2012086204A1 (ja) 2010-12-24 2012-06-28 株式会社バイオフェイス東京研究所 プラチナシールド技術、プラチナ触媒化学技術、プラチナ固定技術のいずれかを用いたプラチナ加工製品、抗ウイルス繊維、及び家電製品
US9155310B2 (en) * 2011-05-24 2015-10-13 Agienic, Inc. Antimicrobial compositions for use in products for petroleum extraction, personal care, wound care and other applications
EP2730621B1 (en) * 2011-07-06 2016-09-28 NBC Meshtec, Inc. Antiviral resin member
CN102558939A (zh) * 2011-12-30 2012-07-11 长沙科星纳米工程技术有限公司 机械化学法制备纳米氧化亚铜防污新材料的方法
JP5914890B2 (ja) * 2013-03-13 2016-05-11 パナソニックIpマネジメント株式会社 銅複合酸化チタン分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
US10744495B2 (en) * 2015-07-31 2020-08-18 Toto Ltd. Photocatalyst material and method for producing same
CN106561712A (zh) * 2016-10-28 2017-04-19 上海纳米技术及应用国家工程研究中心有限公司 一种核壳结构纳米氧化锌包覆纳米氧化铜复合抗菌剂及制备和应用
CN107022043B (zh) * 2017-04-07 2019-03-29 浙江海洋大学 一种氧化亚铜复合材料的制备方法及其用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384066A (ja) * 1989-08-25 1991-04-09 Toray Ind Inc 抗菌作用を有する樹脂組成物およびその製造方法
JP2008008138A (ja) * 2006-05-29 2008-01-17 Toray Ind Inc 床材およびその製造方法
JP2009155461A (ja) * 2007-12-26 2009-07-16 Fujitsu Ltd 粉体塗料及び電子機器筐体
JP2012210557A (ja) * 2011-03-30 2012-11-01 Panasonic Corp 撥水性光触媒組成物及び撥水性光触媒塗膜
JP2014519504A (ja) * 2011-05-24 2014-08-14 アジエニック,インコーポレイテッド 抗菌性金属ナノ粒子の組成物および方法
JP2014001190A (ja) * 2012-06-20 2014-01-09 Nbc Meshtec Inc 抗ウイルス組成物
JP2014118358A (ja) * 2012-12-13 2014-06-30 Showa Denko Kk 抗菌抗ウイルス性組成物及びその製造方法
WO2014132606A1 (ja) * 2013-02-27 2014-09-04 パナソニック株式会社 亜酸化銅粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
JP2015205998A (ja) * 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 抗ウイルス性塗膜

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799200B1 (ja) * 2019-04-04 2020-12-09 リケンテクノス株式会社 抗ウイルス性塗膜形成用塗料、塗膜、及び積層フィルム
WO2020203069A1 (ja) * 2019-04-04 2020-10-08 リケンテクノス株式会社 抗ウイルス性塗膜形成用塗料、塗膜、及び積層フィルム
TWI838494B (zh) 2019-04-04 2024-04-11 日商理研科技股份有限公司 抗病毒塗膜形成用塗料、積層膜以及物品
JP7436973B2 (ja) 2019-10-11 2024-02-22 学校法人東京電機大学 非晶質炭素含有シート、非晶質炭素含有シート製品、および通気性シートに抗菌性または抗ウイルス性を付与する方法
WO2021070566A1 (ja) * 2019-10-11 2021-04-15 学校法人東京電機大学 非晶質炭素含有シート、非晶質炭素含有シート製品、および通気性シートに抗菌性または抗ウイルス性を付与する方法
JPWO2021070566A1 (ja) * 2019-10-11 2021-04-15
JPWO2021215488A1 (ja) * 2020-04-24 2021-10-28
JP7207601B2 (ja) 2020-04-24 2023-01-18 Dic株式会社 マスターバッチ、樹脂組成物、成形品およびそれらの製造方法
EP3964553A1 (de) * 2020-09-03 2022-03-09 SWISS KRONO Tec AG Verfahren zur herstellung eines mit einer antiviralen beschichtung versehenen trägermaterials
WO2022048970A1 (de) * 2020-09-03 2022-03-10 SWISS KRONO Tec AG Harzhaltige zusammensetzung mit antimikrobiellen eigenschaften, insbesondere bioziden eigenschaften, für oberflächenbeschichtungen auf papierlagen oder holzwerkstoffplatten
JP2022070302A (ja) * 2020-10-27 2022-05-13 アイカ工業株式会社 光硬化性防曇樹脂組成物及びその硬化層を有する積層体
KR102288357B1 (ko) * 2021-02-25 2021-08-09 박충현 항균필름 제조방법
JP2023073719A (ja) * 2021-11-16 2023-05-26 株式会社ハニック・ホワイトラボ 抗ウイルス剤
JP7109827B1 (ja) 2021-11-16 2022-08-01 株式会社ハニック・ホワイトラボ 抗ウイルス剤
WO2023190973A1 (ja) * 2022-03-31 2023-10-05 株式会社Nbcメッシュテック 抗菌・抗ウイルス性樹脂部材
WO2024005082A1 (ja) * 2022-06-30 2024-01-04 大日本印刷株式会社 抗ウイルス性化粧シート、それを用いた抗ウイルス性粘着加工シート及び抗ウイルス性化粧板
WO2024029404A1 (ja) * 2022-08-01 2024-02-08 積水化学工業株式会社 抗ウイルス性樹脂材料、抗ウイルス性樹脂成形品の製造方法及び抗ウイルス性樹脂成形品

Also Published As

Publication number Publication date
TW201919477A (zh) 2019-06-01
JP7376355B2 (ja) 2023-11-08
CN111065272A (zh) 2020-04-24
JPWO2019045110A1 (ja) 2020-10-01
US20240065273A1 (en) 2024-02-29
KR20200047666A (ko) 2020-05-07
US20200359633A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP7376355B2 (ja) 抗菌・抗ウイルス性組成物
Anitha et al. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO
JP6055765B2 (ja) 抗ウイルス性樹脂部材
JP5723097B2 (ja) 抗ウイルス性塗料および抗ウイルス性塗料が塗布乾燥された部材
Hadavand et al. Preparation of modified nano ZnO/polyester/TGIC powder coating nanocomposite and evaluation of its antibacterial activity
EP3589682B1 (en) Manufacture method of nanomaterial with antibacterial properties, the material thereof, and its use
US20170265475A1 (en) Antimicrobial polymer systems using multifunctional organometallic additives for thermoset hosts
JP2017506708A (ja) 抗菌ファイバ素材、抗菌ファイバ、抗菌ファイバ製造用マスターバッチ、及び抗菌ファイバの製造方法
JP7340657B2 (ja) 抗菌・抗ウイルス性塩化ビニル部材
WO2017171066A1 (ja) 抗菌抗ウイルス性組成物
JP2017088509A (ja) 抗菌性部材
Zhou et al. Recent advances in superhydrophobic and antibacterial cellulose-based fibers and fabrics: bio-inspiration, strategies, and applications
KR20190015563A (ko) 물 및 공기 여과를 위한 청소 가능하며 일광-내성인 다기능성 나노섬유 필터 및 나노섬유 필터의 제작 과정
DE102020125922A1 (de) Mobile Vorrichtung zur Reinigung und Desinfizierung von Raumluft
JP2018197290A (ja) 抗菌抗カビ用塗料、及び該塗料を用いる抗菌抗カビ性部材の製造方法
Obasi et al. Fabrication of antimicrobial electrospun mats using polyvinyl alcohol–zinc oxide blends
JP2016500654A (ja) コーティング可能な組成物、抗菌性組成物、抗菌性物品、及びそれらの作製方法
KR101398089B1 (ko) 항균 제습기
JP2016075005A (ja) アレルゲン低減化壁紙およびその製造方法
US20220396704A1 (en) Antimicrobial Coatings
TW202348253A (zh) 抗菌及抗病毒性樹脂零件
He et al. Constructed Nano-Microcapsule Coating Coated with AgNPs for Enhanced Antibacterial Activity Effectively
EP4139515A1 (fr) Membrane composite comprenant une couche surfacique polymere fluore ou silicone comprenant de l'argent, son procede de fabrication et son utilisation en tant que virucide
US20220220664A1 (en) Antimicrobial coatings
EP4139516A1 (fr) Membrane revêtue et vernie comprenant de l'argent, son procédé de fabrication et son utilisation en tant que virucide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009632

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18851982

Country of ref document: EP

Kind code of ref document: A1