WO2013002608A2 - 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지 - Google Patents

이차전지용 전극조립체 및 이를 포함한 리튬 이차전지 Download PDF

Info

Publication number
WO2013002608A2
WO2013002608A2 PCT/KR2012/005197 KR2012005197W WO2013002608A2 WO 2013002608 A2 WO2013002608 A2 WO 2013002608A2 KR 2012005197 W KR2012005197 W KR 2012005197W WO 2013002608 A2 WO2013002608 A2 WO 2013002608A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
material layer
secondary battery
active material
electrode
Prior art date
Application number
PCT/KR2012/005197
Other languages
English (en)
French (fr)
Other versions
WO2013002608A3 (ko
Inventor
김보현
김대일
이중민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12804401.3A priority Critical patent/EP2610955B1/en
Priority to JP2013548373A priority patent/JP2014505335A/ja
Priority to CN201280003231.7A priority patent/CN103222098B/zh
Publication of WO2013002608A2 publication Critical patent/WO2013002608A2/ko
Priority to US13/740,299 priority patent/US20130130075A1/en
Publication of WO2013002608A3 publication Critical patent/WO2013002608A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode assembly for a secondary battery having improved safety in an abnormal situation and a lithium secondary battery including the same.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and a higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution.
  • lithium secondary batteries have safety problems such as ignition and explosion due to the use of organic electrolytes, and are difficult to manufacture.
  • a lithium secondary battery currently being produced uses a polyolefin-based separator to prevent a short circuit between a positive electrode and a negative electrode.
  • the separator is not only using a polymer component that melts at 200 ° C. or lower, but also undergoes a stretching process to control pore size and porosity for use as a separator, so that when exposed to high temperature, thermal shrinkage is performed to its original size.
  • thermal shrinkage has the disadvantage. Therefore, when the battery rises to a high temperature due to internal / external stimulation, the possibility of short-circuit due to the contraction or melting of the separator is increased by contact with each other, which causes electrical energy to be suddenly released to explode and ignite the battery. Is brought about. Therefore, it is essential to develop a separator in which heat shrinkage does not occur at high temperatures.
  • Such a lithium secondary battery is suddenly exposed to a voltage due to an internal short circuit, an external short circuit or an overcharge / discharge discharge of the electrode assembly, thereby exposing the battery to a risk of rupture.
  • an insulating tape is attached to a portion of the electrode assembly including the end portion of the positive electrode plate and the negative electrode plate and the electrode tab welding portion, which may be short circuited.
  • the secondary battery is electrically connected to safety devices such as positive temperature coefficient (PTC) elements, thermal fuses, and protection circuits. When the current is cut off, the battery rupture is prevented in advance.
  • PTC positive temperature coefficient
  • the present invention is to solve this problem, an object of the present invention is to provide an electrode assembly for a lithium secondary battery that can suppress the temperature rise of the battery by blocking the current when the temperature rises inside the battery to suppress further heat generation.
  • Another object of the present invention is to provide a lithium secondary battery having improved safety including the electrode assembly.
  • the present invention is a positive electrode active material layer formed on the positive electrode current collector; A negative electrode having a negative electrode active material layer formed on the negative electrode current collector; In an electrode assembly including a polyolefin-based separator interposed between the positive electrode and the negative electrode, the electrode assembly for a secondary battery provided with a PTC (Positive Temperature Coefficient) material layer formed on the upper surface of at least one of the active material layer of the positive electrode or the negative electrode do.
  • PTC Physical Temperature Coefficient
  • the effective operating temperature of the PTC material layer is characterized in that it is in the range of 80 to 140 °C.
  • the thickness of the PTC material layer is characterized in that 1 to 30 ⁇ m.
  • the area of the PTC material layer is the same as that of each active material layer.
  • the PTC material layer is characterized in that it comprises any one or a mixture of carbon black, carbon fiber.
  • the electrode assembly for the secondary battery is a stack & folding electrode assembly manufactured by folding in a state in which a bi-cell and a full-cell cross each other on a continuously cut separator film that is continuously cut, and only the bi-cell is separated.
  • Stack & Foldable Electrode Assembly manufactured by folding in a state where it is placed on the film
  • Stack & Foldable Electrode Assembly manufactured by folding only the full cell in the state where it is placed on the separation film
  • the stack & folding electrode assembly to be produced by continuously folding the bi-cell or full cell in the same direction, by folding in a state where the anode and cathode are placed on the long cut separator film Jelly-roll manufactured by winding in one direction in an electrode assembly, a positive electrode plate, a separator, and a negative electrode plate Characterized in that the at least one selected from the group consisting of the electrode assembly, and a stack type electrode assembly
  • the present invention provides a lithium secondary battery including the electrode assembly, and further provides a battery pack comprising the lithium secondary battery.
  • the battery pack is characterized in that used as a medium-large device power source.
  • the medium to large device includes a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; Characterized in that any one selected from the group consisting of electric commercial vehicles and power storage systems.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; Characterized in that any one selected from the group consisting of electric commercial vehicles and power storage systems.
  • the active material when a material of the PTC phenomenon is normally operated by adding a material that changes the characteristics of a conductor to a non-conductor at a specific temperature, that is, a PTC (positive temperature coefficient) property, during the production of the positive electrode or the negative electrode Regardless of charging or discharging, the active material exhibits a certain conductivity.
  • a material of the PTC phenomenon when a material of the PTC phenomenon is normally operated by adding a material that changes the characteristics of a conductor to a non-conductor at a specific temperature, that is, a PTC (positive temperature coefficient) property, during the production of the positive electrode or the negative electrode Regardless of charging or discharging, the active material exhibits a certain conductivity.
  • the active material When the internal temperature of the battery increases due to a short circuit or an accident, the active material is changed to a non-conductor, thereby increasing safety.
  • the battery according to the present invention can solve the safety problems that occur as the capacity of the battery increases, so that the capacity of the lithium secondary battery can be increased (2000 mAh or more / 18650 battery), and a separate battery for securing battery safety is provided. Since no protection circuit is required, the battery manufacturing cost can be reduced.
  • FIG. 1 is a view briefly showing a secondary battery electrode according to an embodiment of the present invention.
  • PTC is a material that acts as a conductor by inserting conductive particles into a polymer material, and is a generic term for materials used to prevent damage to products or electronic circuits caused by a certain temperature or overcurrent. PTC materials that have typically been used have excellent thermal and electrical protection.
  • the present invention provides an electrode assembly including an electrode having a material layer (hereinafter, referred to as a 'PTC material layer') exhibiting a positive temperature coefficient (PTC) phenomenon as described above.
  • a material layer hereinafter, referred to as a 'PTC material layer'
  • PTC positive temperature coefficient
  • the PTC material layer comprises a polymeric material and a conductive filler.
  • thermoplastic polymers used for preparing PTC materials may be employed without particular limitation.
  • the thermoplastic polymer is a semi-crystalline material, since it may be easier to obtain PTC properties in the semi-crystalline material as compared to amorphous thermoplastics.
  • the semi-crystalline thermoplastic has at least 5% crystallinity, in particular at least 10% crystallinity, more particularly at least 15% crystallinity.
  • the term "semi-crystal” means that the crystallinity has sufficient crystallinity so that the behavior of the thermoplastic material exhibits a significant amount of but not completely crystalline thermoplastic behavior.
  • thermoplastic polymers examples include high density polyethylene, linear low density polyethylene, low density polyethylene, medium density polyethylene, maleic anhydride functionalized polyethylene, maleic anhydride functionalized elastomer ethylene copolymers (eg, ExxonMobil Ethylene-acrylate copolymers such as EXXELOR VA1801 and VA1803), ethylene-butene copolymers, ethylene-octene copolymers, ethylene-methyl acrylate, ethylene-ethyl acrylate and ethylene butyl acrylate copolymers, glycidyl Polyethylene (PE), Polypropylene (PP), Maleic anhydride functionalized polypropylene, Glycidyl methacrylate modified polypropylene, including methacrylate modified polyethylene , Polyvinyl chloride (PVC), poly Polyamide, poly-tetra-fluoroethylene, including but not limited to vinyl acetate, polyvinyl acetyl,
  • the thermoplastic polymer may be a polyethylene polymer such as high density polyethylene, where “high density” refers to having a density greater than 0.94 g / cm 3 .
  • high density refers to having a density greater than 0.94 g / cm 3 .
  • the thermoplastic material as described above is commonly used, but the use of a thermoset is not excluded.
  • the amount of the thermoplastic polymer may be 30 to 90% by weight, specifically 40 to 70% by weight, more specifically 40 to 60% by weight of the total weight of the PTC composition.
  • the conductive filler may be a carbon-based material such as carbon black, carbon fiber, graphite, but is not limited thereto.
  • the amount of the conductive filler may be 10 to 70% by weight, specifically 30 to 60% by weight, more specifically 40 to 60% by weight of the total weight of the PTC composition.
  • a ceramic material such as BaTi03 may be used as the PTC material layer.
  • a semiconductive ceramic PTC material layer may be prepared by mixing and synthesizing pure BaTi03 with Y2O3 and Nb205 having valences of +3 and +5, and may substitute Pb and Sr elements in place of Ba for temperature transition.
  • the electrode assembly includes a positive electrode active material coated on a positive electrode current collector, a positive electrode terminal connected thereto, a negative electrode active material coated on a negative electrode current collector, a negative electrode connected to the negative electrode terminal, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode plate includes a positive electrode current collector made of a strip metal thin plate and a positive electrode active material layer coated on at least one surface of the positive electrode current collector.
  • the positive electrode current collector is preferably an aluminum thin plate, which is a metal thin film having excellent conductivity, and the positive electrode active material layer is not particularly limited in the present invention, and may be a composition including a known lithium-based oxide and a binder, a plasticizer, a conductive material, and the like.
  • the positive electrode plate has a positive lead attached to the positive electrode non-coating portion.
  • the negative electrode plate includes a negative electrode current collector of a strip metal thin plate and a negative electrode active material layer coated on at least one surface of the negative electrode current collector.
  • the negative electrode current collector is preferably a copper thin plate having excellent conductivity
  • the negative electrode active material layer may be a composition in which a negative electrode active material such as a carbon material and a binder, a plasticizer, a conductive material, and the like are mixed.
  • the negative electrode plate has a negative electrode lead attached to the negative electrode non-coating portion.
  • the positive electrode and the negative electrode lead are electrically connected to the surface of the positive electrode and the negative electrode non-coated portion, and for this purpose, the positive electrode and the negative electrode non-coated portion are attached to be electrically conductive by welding or conductive adhesive such as laser welding or ultrasonic welding.
  • the electrode assembly included in the present invention is not particularly limited in its form and may include all kinds of electrode assemblies, and for example, different from bi-cell and full-cell.
  • Stacked & Foldable Electrode Assembly including Winding and Winding of Separable Stacked Unit Cell of Type Stacked Unit Cell, Stack & Folded Electrode Assembly of the same type as above, same type without distinction between bicell and full cell
  • Stacked and folded electrode assembly comprising a stacked unit cell of the, Z-type stack and folding electrode assembly for folding in a zigzag direction, when the stacked unit cells are wound (winding) with a separation film, the stacked unit cells Stacking & folding electrode assembly which is continuously winding in the same direction or the stack type cell as a unit cell, not folding into a separation film, but an anode, Continuously winding electrode assembly with alternating poles placed on separator film, or Z-shaped electrode assembly winding it in zigzag direction, and general stacked electrode assembly, winding in one direction with anode plate, separator,
  • the present invention also accommodates the electrode assembly in a battery case accommodating the electrode assembly to prevent the electrode assembly from being separated, injects an electrolyte solution into the battery case, and seals the completed lithium secondary battery.
  • the battery case may be a can or a pouch.
  • the pouch-type case according to the present invention is a film of a material having a heat-adhesive surface of the upper case and the lower case facing each other and a plurality of films of different materials may be in the form of a laminated stack sequentially, wherein the upper case
  • the film layer of the lower case has a heat-adhesive polyolefin-based resin layer that serves as a sealing material, a substrate that maintains mechanical strength, and an nylon layer that serves as a barrier layer of moisture and oxygen, and a nylon that serves as a protective layer. It may be a layered configuration.
  • the contours of the combined upper and lower casings remain approximately rectangular to correspond with the contours of the battery compartment to minimize volume.
  • At least one side of the upper and lower cases may be integrally in contact with each other, and the other sides may be open to each other.
  • One of the lower case or the upper case may be formed with a space for accommodating the electrode assembly, the sealing portion is formed along the edge of the space.
  • the space accommodating the electrode assembly may be formed in both the lower case and the upper case.
  • the sealing part refers to a part in which the electrode assembly is accommodated in the space part and then sealed by heat fusion.
  • the present invention further provides a battery pack including the lithium secondary battery.
  • the battery pack according to the present invention can be used not only as a power source for small devices, but also preferably for medium and large devices including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include a power tool; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; Although an electric commercial vehicle or the system for electric power storage is mentioned, It is not limited only to these.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Electric two-wheeled vehicles including E-bikes and E-scooters; Electric golf carts; Electric trucks; Although an electric commercial vehicle or the system for electric power storage is mentioned, It is not limited only to these.
  • FIG. 1 illustrates an electrode including a PTC material layer 30 according to an embodiment of the present invention, wherein the PTC material layer 30 exhibits a positive temperature coefficient (PTC) characteristic of changing from a conductor to a non-conductor at a specific temperature.
  • PTC positive temperature coefficient
  • the PTC material layer plays a role of causing the active material to exhibit a constant conductivity regardless of charging and discharging when the battery is in normal operation, whereas the PTC material layer is a non-conductor when the internal temperature of the battery increases due to a short circuit or an accident. Change the battery to prevent proper operation.
  • the effective operating temperature of the PTC material layer 30 is preferably 80 to 140 ° C.
  • the term "effective operating temperature of the PTC material layer” may function as a fuse that cuts off the current by rapidly increasing the resistance according to the temperature at which the PTC material layer exhibits the PTC phenomenon, that is, the generation of Joule heat when an excessive current occurs.
  • the operating temperature range of the lithium secondary battery is usually -20 to 60 ° C for discharge, and charging is performed at 0 to 45 ° C.
  • the internal temperature of the battery may rise rapidly to 100 ° C. or higher, and at this time, the PTC material layer is preferably configured to operate. However, when the temperature at which the PTC phenomenon is expressed exceeds 140 ° C., the PTC phenomenon does not appear until the internal temperature of the battery is excessively increased, which is not preferable in terms of safety of the battery.
  • the PTC material layer is formed on at least one of a positive electrode and a negative electrode.
  • the PTC material layer is preferably formed on the active material layer 20 on the positive electrode current collector or the negative electrode current collector.
  • the polyolefin separator may have a thermal contraction when the internal temperature of the battery rises abruptly, so that the positive and negative electrodes positioned on both sides of the separator may be in contact with each other. Therefore, when the PTC material layer is formed on the outermost surfaces of the anode and the cathode, in particular, the surfaces facing each other, even if the separator is thermally contracted as described above, the possibility of contact with each other may be minimized, thereby preventing safety and increasing internal safety.
  • the area of the PTC material layer is preferably formed to be the same as the area of each active material layer.
  • the active material layer in which the PTC material layer is not formed may have an internal short circuit.
  • the problem of internal short circuit may occur. It is preferable that a PTC material layer intended to prevent internal short-circuit is formed in the non-coated region of the non-electrode so that the area of the PTC material layer is formed equal to the area of each active material layer.
  • the thickness of the PTC material layer is preferably formed to 1 to 30 ⁇ m.
  • the thickness of the PTC coating layer is less than 1 ⁇ m, the development of the PTC phenomenon is not easy.
  • the thickness is more than 30 ⁇ m, the volume (thickness) of the electrode is increased, which is not preferable because the energy density is low.
  • the manufacturing method of the secondary battery including the electrode assembly is briefly described as follows.
  • a positive electrode active material and a polyvinylidene fluoride as a binder are mixed to prepare a positive electrode active material slurry, which is then coated and dried on an aluminum foil which is a positive electrode current collector. Thereafter, the PTC material is coated on the cathode active material layer to prepare a cathode.
  • some conductive materials such as carbon black and ketjen black may be added to the cathode active material slurry.
  • a negative electrode active material and polyvinylidene fluoride as a binder are mixed to prepare a negative electrode active material slurry, which is then coated and dried on a copper foil which is a negative electrode current collector.
  • the negative electrode active material may be a carbon material such as amorphous carbon, crystalline carbon or SnO 2 .
  • the PTC material is coated on the anode active material layer to prepare a cathode.
  • some conductive materials such as carbon black and Ketchen black may be added to the negative electrode active material slurry.
  • the prepared positive electrode and negative electrode are wound together with a separator made of a polypropylene and polyethylene porous film, stored in a secondary battery exterior material, injected with electrolyte, and then sealed to complete the secondary battery.
  • lithium salts such as LiPF 6 , LiBF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 3 , and LiClO 4 may be selected from propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate or the like.
  • the thing dissolved in the non-aqueous organic solvent which is a mixture can be used.
  • a positive electrode active material slurry was prepared by mixing LiCoO 2 as a positive electrode active material, polyvinylidene fluoride as a binder, and Ketjen black mixture as a conductive material in N-methyl pyrrolidone at a weight ratio of 94: 4: 2. It was applied to and dried to prepare a cathode active material layer. On the positive electrode active material layer based on 100 parts by weight of LiCoO 2 , a positive electrode was prepared by applying a composition (PTC material) comprising 10 parts by weight of carbon black and 15 parts by weight of high density polyethylene.
  • PTC material composition comprising 10 parts by weight of carbon black and 15 parts by weight of high density polyethylene.
  • amorphous carbon and polyvinylidene fluoride as a binder were mixed with N-methyl pyrrolidone in a weight ratio of 95: 5 to prepare a negative electrode active material slurry. This slurry was applied to a copper foil and then dried to prepare a negative electrode active material layer.
  • a negative electrode was prepared by applying a composition (PTC material) including 10 parts by weight of carbon black and 15 parts by weight of high density polyethylene to 100 parts by weight of amorphous carbon on the negative electrode active material layer.
  • PTC material including 10 parts by weight of carbon black and 15 parts by weight of high density polyethylene to 100 parts by weight of amorphous carbon
  • Asahi polyethylene porous film was used as a separator, and what melt
  • a pouch-type lithium secondary battery was completed in the same manner as in Example 1 except that carbon fiber was used instead of carbon black.
  • a pouch-type lithium secondary battery was completed in the same manner as in Example 1 except that BaTi03 was used as the PTC material.
  • a pouch-type lithium secondary battery was completed in the same manner as in Example 1 except that no PTC material was applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 이차전지용 전극조립체 및 리튬 이차전지를 제공한다. 본 발명에 따르면, 양극집전체 상에 양극활물질층이 형성된 양극; 음극집전체 상에 음극활물질층이 형성된 음극; 상기 양극과 음극 사이에 개재되는 폴리올레핀계 분리막을 포함하는 전극조립체에 있어서, 상기 양극 또는 음극 중 적어도 어느 하나의 활물질층의 상면에는 PTC (Positive Temperature Coefficient) 물질층이 형성되는 것을 특징으로 한다. 따라서, PTC 물질층은 전지가 정상적으로 동작 중일 때는 충전, 방전에 상관없이 활물질이 일정한 도전성을 나타내도록 하는 역할을 하며, 단락이나 사고로 인하여 전지의 내부 온도가 상승하게 될 때는 부도체로 바뀌어 전지의 안전성이 증대된다.

Description

이차전지용 전극조립체 및 이를 포함한 리튬 이차전지
본 출원은 2011년 6월 30일 한국특허청에 제출된 특허출원 제10-2011-0064785호의 우선권을 청구하며, 본 명세서에서 참조로서 통합된다.
본 발명은 비정상적인 상황에서 안전성을 향상시킨 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기자동차의 에너지원으로까지 적용분야가 확대되면서 전기 화학 소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기 화학 소자는 이러한 측면에서 가장 주목받고 있는 분야이고, 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있다. 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발이 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나, 이러한 리튬 이차전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다.
상기와 같은 전지의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전지가 오작동시 사용자에게 상해를 입혀서는 안 된다는 것이며, 이러한 목적을 위하여 전지 안전규격에 의해 전지 내의 발화 및 발연 등을 엄격히 규제하고 있다. 따라서, 안전성 문제를 해결하기 위하여 많은 해결방법들이 제시되고 있다.
보다 더 근본적인 문제점으로서, 현재 생산 중인 리튬 이차전지는 양극과 음극의 단락을 방지하기 위해 폴리올레핀 계열의 분리막을 사용하고 있다. 그러나 상기 분리막은 통상 200℃ 이하에서 용융되는 고분자 성분을 사용할 뿐만 아니라 분리막으로 사용하기 위해 기공 크기 및 기공도를 조절하는 연신(stretching) 공정을 거치게 됨으로써, 고온에 노출될 경우 본래 크기대로 열수축(shrinking)되는 단점을 가지고 있다. 따라서 내부/외부 자극에 의하여 전지가 고온으로 상승할 경우 분리막의 수축 또는 용융 등으로 인하여 양극과 음극이 서로 접촉하여 단락될 가능성이 높아지게 되며, 이로 인해 전기 에너지가 급격하게 방출되어 전지의 폭발, 발화가 초래된다. 따라서, 고온에서 열수축이 일어나지 않는 분리막의 개발은 필수적이라 하겠다.
이러한 리튬 이차전지는 전극조립체의 내부 단락이나 외부 단락 또는 과충방전 등에 의하여 전압이 급상승하고, 이 때문에 전지가 파열되는 위험에 노출되어 있다. 이차전지 내부의 단락을 방지하기 위해서는 전극조립체에서 양극판과 음극판의 종단부와 전극탭 용접 부위를 포함하여 단락의 위험이 있는 부분에 절연테이프를 부착하게 된다. 또한 이차전지는 정온도계수(Positive Temperature Coefficient: PTC) 소자, 써멀퓨즈(thermal fuse) 및 보호회로(protecting circuit) 등과 같은 안전장치와 전기적으로 연결되며, 이러한 안전장치는 전지의 전압이나 온도가 급상승할 때 전류를 차단하여 전지의 파열을 미연에 방지한다.
근래에 전지의 대형화 및 고용량화에 따라 충방전시 양극/음극 발열이 증대되어 안전성 확보가 더욱 중요한 과제로 떠오르고 있다. 특히, 전지 내부에서 단락이나 과충전 등에 의해 전지 온도가 비정상적으로 급격히 상승하는 경우 전지 외부에 설치된 안전 기구만으로는 상술한 발열을 신속하게 억제하기가 어렵다.
본 발명은 이러한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 전지 내부 온도 상승시 전류를 차단하여 더 이상의 발열을 억제함으로써 전지의 온도 상승을 억제할 수 있는 리튬 이차전지용 전극조립체를 제공하는 것이다.
본 발명의 다른 목적은 상기 전극조립체를 포함하는 안전성이 향상된 리튬 이차전지를 제공하는 것이다.
상술한 과제를 해결하기 위하여, 본 발명은 양극집전체 상에 양극활물질층이 형성된 양극; 음극집전체 상에 음극활물질층이 형성된 음극; 상기 양극과 음극 사이에 개재되는 폴리올레핀계 분리막을 포함하는 전극조립체에 있어서, 상기 양극 또는 음극 중 적어도 어느 하나의 활물질층의 상면에는 PTC (Positive Temperature Coefficient) 물질층이 형성되는 이차전지용 전극조립체를 제공한다.
상기 PTC 물질층의 유효 작동 온도는 80 내지 140℃의 범위 내인 것을 특징으로 한다.
상기 PTC 물질층의 두께는 1 내지 30㎛인 것을 특징으로 한다.
상기 PTC 물질층의 면적은 각 활물질층의 면적과 동일한 것을 특징으로 한다.
상기 PTC 물질층은 카본 블랙, 카본 파이버 중 어느 하나 또는 둘의 혼합물을 포함하는 것을 특징으로 한다.
상기 이차전지용 전극조립체는 연속적으로 길게 재단된 분리 필름 위에 바이셀(Bi-cell)과 풀셀(Full-cell)이 교차하여 놓은 상태에서 폴딩하여 제조하는 스택&폴딩형 전극조립체, 바이셀만을 상기 분리필름 위에 놓은 상태에서 폴딩하여 제조하는 스택&폴딩형 전극조립체, 풀셀만을 상기 분리필름 위에 놓은 상태에서 폴딩하여 제조하는 스택&폴딩형 전극조립체, 상기 바이셀 또는 풀셀을 분리필름으로 지그재그 방향으로 폴딩하여 제조하는 Z형 스택&폴딩 전극조립체, 상기 바이셀 또는 풀셀을 동일한 방향으로 연속하여 폴딩하여 제조하는 스택&폴딩 전극조립체, 길게 재단된 분리필름 위에 양극 및 음극을 교차하여 놓은 상태에서 폴딩하여 제조하는 전극조립체, 양극판, 분리막, 음극판 순으로 배치된 상태에서 일 방향으로 와인딩하여 제조하는 젤리-롤형 전극조립체, 및 스택형 전극조립체로 이루어진 그룹으로부터 선택된 어느 하나인 것을 특징으로 한다.
또한, 본 발명은 상기 전극조립체를 포함하는 리튬 이차전지를 제공하며, 더 나아가 상기 리튬 이차전지를 포함하는 것을 특징으로 하는 전지팩을 제공한다.
상기 전지팩은 중대형 디바이스 전원으로 사용되는 것을 특징으로 한다.
상기 중대형 디바이스는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기 트럭; 전기 상용차 및 전력 저장용 시스템으로 이루어진 그룹으로부터 선택된 어느 하나인 것을 특징으로 한다.
본 발명에 의한 이차전지는, 특정 온도에서 도체에서 부도체로 바뀌는 특성, 즉 PTC(positive temperature coefficient) 특성을 나타내는 물질을 양극 또는 음극의 제조시 첨가함으로써 상기 PTC 현상의 물질이 전지가 정상적으로 동작 중일 때는 충전, 방전에 상관없이 활물질이 일정한 도전성을 나타내도록 하는 역할을 하며, 단락이나 사고로 인하여 전지의 내부 온도가 상승하게 될 때는 부도체로 바뀌어 안전성이 증대된다.
또한, 본 발명에 따른 전지는 전지의 용량이 증가함에 따라 발생하는 안전성 문제를 해결할 수 있으므로 리튬 이차전지의 고용량화(2000㎃h 이상/18650 전지)를 가능하게 하고, 전지 안전성을 확보하기 위한 별도의 보호 회로가 필요하지 않으므로 전지 제조 비용을 감소시킬 수 있다.
도 1은 본 발명의 일 실시예에 의한 이차전지용 전극을 간략하게 나타낸 도면이다.
상기와 같은 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 전극조립체 및 이를 포함하는 리튬 이차전지에 대하여 설명한다.
기능성 고분자의 한 분야로서 전기 전도성 고분자의 중요성이 점차 커지고 있다. 고분자 재료에 전기 전도성을 부여함으로써 고분자 물질의 유용한 물리·화학적 성질의 물성 및 기능성이 우수한 장점을 얻을 수 있을 뿐 아니라 생산원가 면에서도 저렴한 절약형 재료를 얻을 수 있다.
전기 전도성 고분자의 응용 분야도 대전 방지용, 자기 발열용, 또는 전자기파 흡수 등으로 다양화, 전문화되고 있으며, 이러한 용도로 여러 가지의 전도성 복합재료가 제조되고 있다. 전도성 충진제가 함유된 반결정성 고분자는 온도를 증가시키면 고분자의 용융 영역에서 열적 팽창으로 인하여 고분자 내에 있는 충진제 입자 사이의 층이 증가하게 되어 전자의 흐름이 방해를 받게 되고 따라서 온도가 증가함에 따라 저항이 갑자기 크게 증가하는 현상이 나타나는데 이를 PTC(Positive Temperature Coefficient) 현상이라고 한다.
일반적으로 많은 고분자 물질들은 절연성이 좋은 재료로 인식되어 오고 있으며, 고분자 재료는 낮은 전기 전도도로 인하여 전기 절연재로서 뛰어난 역할을 하지만 카본 블랙(carbon black), 카본 파이버(Carbon fiber), 금속 가루 등의 충진제를 넣어주면 전기 전도체로서의 역할을 한다. 첨가된 충진제들은 고분자 재료 내에서 전기적인 경로를 형성하여 전자들의 통로로 작용하게 된다. PTC란 고분자 재료에 전도성 입자를 넣어줌으로써 전도체의 역할을 하며, 특정온도나 과전류가 흐를 때 이로 인한 제품이나 전자 회로의 손상을 방지하기 위하여 사용되는 물질을 총칭한다. 전형적으로 사용되어온 PTC 물질들은 뛰어난 열적, 전기적 보호성을 갖는다.
본 발명은 상술한 바와 같은 PTC(positive temperature coefficient) 현상을 나타내는 물질층(이하, 'PTC 물질층'이라 함)이 형성된 전극을 포함하는 전극조립체를 제공한다.
상기 PTC 물질층은 고분자 재료 및 전도성 충진제를 포함하는 것이다.
상기 고분자 재료로는 PTC 물질 제조에 사용되는 통상적인 열가소성 폴리머를 특별한 제한없이 채택하여 사용할 수 있다. 구체적으로, 상기 열가소성 폴리머는 반-결정 물질이며, 이는 비정질 열가소성 물질과 비교하였을 때 반-결정 물질에서 PTC 특성을 획득하는 것이 더 용이할 수 있기 때문이다. 일 구체예에서, 상기 반-결정 열가소성 물질은 5% 이상의 결정도, 상세하게는 10% 이상의 결정도, 더욱 상세하게는 15% 이상의 결정도를 가진다. 여기서, 용어 "반-결정"은 열가소성 물질의 거동이 상당한 양의, 그러나 완전하게는 아닌 결정성 열가소성 거동을 나타내도록 하기에 충분한 결정도를 가지는 것을 의미한다.
본 발명에서 사용될 수 있는 열가소성 폴리머의 예시에는 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 중밀도 폴리에틸렌, 말레산무수물 기능기화된 폴리에틸렌, 말레산 무수물 기능기화된 엘라스토머 에틸렌 공중합체(예컨대, 엑손모빌(ExxonMobil)의 EXXELOR VA1801 및 VA1803), 에틸렌-부텐 공중합체, 에틸렌-옥텐 공중합체, 에틸렌-메틸 아크릴레이트, 에틸렌-에틸 아크릴레이트 및 에틸렌 부틸 아크릴레이트 공중합체와 같은 에틸렌-아크릴레이트 공중합체, 글리시딜 메타크릴레이트 변형 폴리에틸렌을 포함하는 폴리에틸렌(PE), 폴리프로필렌(PP), 말레산무수물 기능기화된 폴리프로필렌(maleic anhydride functionalized polypropylene), 글리시딜 메타크릴레이트 변형된 폴리프로필렌(glycidyl methacrylate modified polypropylene), 폴리비닐 클로라이드(PVC), 폴리비닐 아세테이트, 폴리비닐 아세틸, 아크릴 수지, 교대배열 폴리스티렌(syndiotactic polystyrene: sPS), PA6, PA66, PA11, PA12, PA6T, PA9T을 포함하나, 이에 제한되지 않는 폴리아미드, 폴리-테트라-플루오로에틸렌(poly-tetra-fluoroethylene: PTFE), 폴리부틸렌-테레프탈레이트(PBT), 폴리페닐렌-설파이드(PPS), 폴리아미드이미드, 폴리이미드, 폴리에틸렌 비닐 아세테이트(EVA), 글리시딜 메타크릴레이트 변형 폴리에틸렌 비닐 아세테이트, 폴리비닐알코올, 폴리(메틸 메타크릴레이트)(PMMA), 폴리이소부틸렌, 폴리(비닐리덴 클로라이드), 폴리(비닐리덴 플루오라이드)(PVDF), 폴리(메틸아크릴레이트), 폴리아크릴로니트릴, 폴리부타디엔, 폴리에틸렌-테레프탈레이트(PET), 폴리(8-아미노카프릴산), 폴리(비닐 알코올)(PVA), 폴리카프로락톤, 또는 블렌드, 혼합물, 또는 하나 이상의 폴리머의 조합을 포함하나, 이에 제한되는 것은 아니다. 일 구체예에서, 상기 열가소성 폴리머로 고밀도 폴리에틸렌과 같은 폴리에틸렌 폴리머를 사용할 수 있으며, 여기서 "고밀도"란 0.94 g/cm3 초과의 밀도를 갖는 것을 말한다. PTC 물질층에 포함되는 고분자 재료로는 상기와 같은 열가소성 물질이 통상적으로 사용되나, 열경화성 수지(thermoset)의 사용을 배제하는 것은 아니다.
상기 열가소성 폴리머의 양은 PTC 조성물 총 중량의 30 내지 90 중량%, 상세하게는 40 내지 70 중량%, 더욱 상세하게는 40 내지 60 중량%일 수 있다.
상기 전도성 충진제로는 카본 블랙, 카본 파이버, 그래파이트와 같은 카본계 물질을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 전도성 충진제의 양은 PTC 조성물 총 중량의 10 내지 70 중량%, 상세하게는 30 내지 60 중량%, 더욱 상세하게는 40 내지 60 중량%일 수 있다.
한편, PTC 물질층으로서 세라믹 물질, 예를 들어 BaTi03를 사용할 수도 있다. 또한 순수한 BaTi03 원료에 원자가가 +3, +5인 Y2O3, Nb205를 혼합, 합성하여 반도성 세라믹스 PTC 물질층을 제조할 수도 있으며, 온도 전이를 위하여 Ba 자리에 Pb, Sr 원소를 치환할 수도 있다.
상기 전극조립체는 양극집전체 상에 양극활물질이 코팅되고 양극단자가 연결된 양극, 음극집전체 상에 음극활물질이 코팅되며 음극단자가 연결된 음극 및 상기 양극과 음극 사이에 개재되는 분리막을 포함한다.
상기 양극판은 스트립 형상의 금속 박판으로 된 양극집전체와 상기 양극 집전체의 적어도 일 면에 코팅되는 양극활물질층을 구비한다. 상기 양극집전체는 도전성이 우수한 금속 박막인 알루미늄 박판이 바람직하고 상기 양극활물질층은, 본 발명에서 특별히 한정하지 아니하며 공지된 리튬계 산화물 및 바인더, 가소제, 도전재 등이 혼합된 조성물일 수 있다. 상기 양극판에는 양극 무지부에 양극리드가 부착되어 있다.
상기 음극판은 스트립 형상의 금속 박판으로 된 음극집전체와 상기 음극집전체의 적어도 일면에 코팅되는 음극활물질층을 구비한다.
상기 음극집전체는 우수한 도전성을 가지는 구리 박판이 바람직하고 상기 음극활물질층으로는 탄소재와 같은 음극활물질 및 바인더, 가소제, 도전재 등이 혼합된 조성물일 수 있다. 상기 음극판 또한 상기 양극판과 마찬가지로 음극무지부에 음극 리드가 부착되어 있다.
상기 양극 및 음극 리드는 양극 및 음극 무지부의 표면에 전기적으로 연결되어 있으며, 이를 위하여 상기 양극 및 음극 무지부에 대하여 레이저 용접이나 초음파 용접 등과 같은 용접이나 도전성 접착제에 의하여 통전 가능하도록 부착되어 있다.
본 발명에 포함되는 전극조립체는 특별히 그 형태를 한정하지 아니하고 다양한 형태의 전극조립체가 모두 포함될 수 있음은 물론이며, 예를 들어, 바이셀(Bi-cell)과 풀셀(Full-cell)이라는 서로 다른 타입의 스택형 단위셀을 교차하여 길게 재단된 분리 필름으로 와인딩(winding)하여 포함하는 스택&폴딩형 전극조립체, 상기와 같은 방식의 스택&폴딩형 전극조립체로서 바이셀과 풀셀의 구별없이 동일한 타입의 스택형 단위셀을 포함하는 스택&폴딩형 전극조립체, 상기 스택형 단위셀들을 분리 필름으로 와인딩(winding)하는 경우, 지그재그 방향으로 폴딩하는 Z형 스택&폴딩 전극조립체, 상기 스택형 단위셀들을 동일한 방향으로 연속하여 와인딩(Winding)하는 스택&폴딩 전극조립체, 또는 상기 스택형 셀을 단위셀로 하여 분리필름으로 폴딩하는 것이 아니라 양극, 음극을 교대로 분리필름 위에 놓은 상태에서 연속하여 와인딩하는 전극조립체 또는 이를 지그재그 방향으로 와인딩하는 Z형 전극조립체, 및 일반적인 스택형 전극조립체, 양극판, 분리막, 음극판 순으로 배치된 상태에서 일 방향으로 와인딩된 젤리-롤형의 전극조립체 등이 모두 포함될 수 있다.
또한, 본 발명은 상기 전극조립체를 상기 전극조립체를 수용하는 전지케이스에 수용하여 상기 전극조립체가 이탈하지 않도록 하고, 상기 전지케이스에 전해액을 주입한 후 밀봉하여 리튬 이차전지를 완성한다.
상기 전지케이스는 캔 또는 파우치일 수 있다.
본 발명에 따른 파우치형 케이스는 상기 상부 케이스와 하부 케이스가 상호 마주하는 면이 열 접착성을 갖는 소재의 필름이고 기타 다른 재질의 복수 필름이 순차적으로 적층 결합된 형태일 수 있으며, 여기서 상기 상부 케이스와 하부 케이스의 필름층은 열 접착성을 가져 실링재 역할을 하는 폴리 올레핀계 수지층, 기계적 강도를 유지하는 기재 및 수분과 산소의 배리어 층으로서 역할을 하는 알루미늄층, 기재 및 보호층으로 작용하는 나일론층으로 이루어지는 구성일 수 있다.
결합된 상부 및 하부 케이스의 외형은 부피를 최소화하기 위하여 상기 전지부의 외형과 상응될 수 있도록 대략 직사각형을 유지하고 있다.
상기 상부 및 하부 케이스는 적어도 한 변이 일체로 접하여져 있는 것일 수 있으며, 다른 변들은 상호 개방되어 있을 수 있다.
상기 하부 케이스 또는 상부 케이스 중 어느 한쪽에는 상기 전극조립체가 수용되는 공간부가 형성될 수 있으며, 상기 공간부의 가장자리를 따라서 실링부가 형성된다. 또한 전극조립체를 수용하는 공간부는 상기 하부 케이스와 상부 케이스 모두에 형성될 수도 있다.
상기 실링부는 상기 전극조립체가 공간부 내에 수용된 다음에 열융착에 의하여 실링되는 부분을 말한다.
본 발명은 더 나아가 상기 리튬 이차전지를 포함하는 전지팩을 제공한다.
본 발명에 따른 상기 전지팩은 소형 디바이스의 전원으로 사용될 수 있을 뿐만 아니라, 바람직하게는 다수의 전지셀들을 포함하는 중대형 디바이스에 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기 트럭; 전기 상용차 또는 전력 저장용 시스템 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
이하에서는 본 발명의 일 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명을 더욱 용이하게 이해할 수 있도록 하기 위한 것으로 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 PTC 물질층(30)을 포함하는 전극을 나타낸 것으로, 상기 PTC 물질층(30)은 특정 온도에서 도체에서 부도체로 바뀌는 PTC(positive temperature coefficient) 특성을 나타내는 물질층으로서, 상기 PTC 물질층은 전지가 정상적으로 동작 중일 때는 충전, 방전에 상관없이 활물질이 일정한 도전성을 나타내도록 하는 역할을 하는 반면, 단락이나 사고로 인하여 전지의 내부 온도가 상승하게 될 때는 부도체로 바뀌어 전지가 제대로 동작하지 않도록 한다.
PTC 물질층(30)의 유효 작동 온도는 80~140℃인 것이 바람직하다. 여기서 "PTC 물질층의 유효 작동 온도"라 함은 PTC 물질층이 PTC 현상을 나타내는 온도, 즉 과대 전류발생시 줄(Joule)열 발생에 따라 저항이 급격히 증가하여 전류를 차단시키는 퓨즈의 기능을 할 수 있는 온도를 의미한다. 리튬 이차전지의 사용 온도 범위는 통상 방전의 경우 -20 내지 60℃이고, 충전은 0 내지 45℃에서 이루어진다.
그러나, 과충전이나 내부 단락 등에 의해 전지의 내부 온도가 100℃ 이상으로 급격히 상승할 수 있으며, 이때 상기 PTC 물질층이 작동하도록 구성되는 것이 바람직하다. 하지만, PTC 현상이 발현되는 온도가 140℃를 넘는 경우 전지의 내부 온도가 지나치게 상승할 때까지 PTC 현상이 나타나지 않으므로 전지의 안전성 측면에서 바람직하지 못하다.
상기 PTC 물질층은 양극 또는 음극 중 적어도 어느 하나에 형성되며, 특히 본 발명에서는 양극집전체 또는 음극집전체 상의 활물질층(20) 상에 형성됨이 바람직하다. 예컨대, 폴리올레핀계 분리막은 전지의 내부 온도가 급작스럽게 상승할 경우 열수축이 발생하므로 분리막을 사이에 두고 그 양측에 위치된 양극과 음극이 상호 접촉할 우려가 있다. 따라서, 양극과 음극의 최외곽면, 특히 상호 마주보는 면에 PTC 물질층이 형성되면 상술한 바와 같이 분리막이 열수축 되더라도 상호 간에 접촉할 가능성을 최소화하여 내부 단락을 방지하여 안전성을 증대시킬 수 있다.
이때, PTC 물질층의 면적은 각 활물질층의 면적과 동일하게 형성되는 것이 바람직하다. 상기 PTC 물질층이 상기 활물질층보다 면적이 작은 경우 PTC 물질층이 형성되지 않은 활물질층은 내부 단락의 우려가 있으며, 상기 PTC 물질층이 상기 활물질층의 면적을 초과하는 경우, 내부 단락의 문제가 없는 전극의 무지부에 내부 단락을 방지하고자 하는 PTC 물질층이 형성되는 것이 되어 PTC 물질층의 면적은 각 활물질층의 면적과 동일하게 형성되는 것이 바람직하다.
또한, PTC 물질층의 두께는 1 내지 30㎛로 형성되는 것이 바람직하다. PTC 코팅층의 두께가 1㎛ 미만인 경우 PTC 현상의 발현이 용이하지 않으며, 상기 두께가 30㎛을 초과하는 경우 전극의 부피(두께)가 커지므로 에너지 밀도가 낮아져 바람직하지 않다.
이와 같은 전극조립체를 포함하는 이차전지의 제조방법을 간략하게 설명하면 다음과 같다.
우선, 양극활물질과, 바인더로서 폴리비닐리덴 플루오라이드를 혼합하여 양극활물질 슬러리를 제조한 후, 이를 양극집전체인 알루미늄 호일에 도포, 건조한다. 그 후 PTC 물질을 양극활물질층 위에 코팅하여 양극을 제조한다. 물론, 상기 양극활물질 슬러리에 카본 블랙, 켓첸 블랙 등의 도전재를 일부 첨가할 수도 있다.
또한, 음극활물질과, 바인더로서 폴리비닐리덴 플루오라이드를 혼합하여 음극활물질 슬러리를 제조한 후, 이를 음극집전체인 구리 호일에 도포, 건조한다. 상기 음극활물질은 비정질 탄소, 결정질 탄소 등의 탄소 물질 또는 SnO2을 사용할 수 있다. 그 후 PTC 물질을 음극활물질층 위에 코팅하여 음극을 제조한다. 물론, 상기 음극활물질 슬러리에 카본 블랙, 켓첸 블랙 등의 도전재를 일부 첨가할 수도 있다.
제조된 양극, 음극을 폴리프로필렌, 폴리에틸렌 재질의 다공성 필름인 분리막과 함께 권취하여 이차전지용 외장재에 수납하고 전해액을 주입한 후, 밀봉하여 이차전지를 완성한다.
이때, 전해액으로는 LiPF6, LiBF6, LiAsF6, LiCF3SO3, LiN(CF3SO2)3, LiClO4 등의 리튬염을 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트 또는 이들의 혼합물인 비수성 유기 용매에 용해시킨 것을 사용할 수 있다.
하기 실시예를 통하여 본 발명을 구체적으로 설명하나, 이는 본 발명을 상세히 설명하기 위한 하나의 실시예일뿐 본 발명의 범위가 이에 국한되는 것은 아니다.
실시예 1
양극활물질로서 LiCoO2, 바인더로서 폴리 비닐리덴 플루오라이드, 도전재로서 켓첸 블랙 혼합물을 94:4:2의 중량비로 N-메틸 피롤리돈에 혼합하여 양극활물질 슬러리를 제조하였으며, 이 슬러리를 알루미늄 호일에 도포한 후 건조시켜서 양극활물질 층을 제조하였다. 상기 양극활물질층 위에 LiCoO2 100 중량부 기준으로, 카본블랙 10 중량부 및 고밀도 폴리에틸렌 15 중량부를 포함하는 조성물 (PTC 물질)을 도포하여 양극을 제조하였다.
음극활물질로서는 비정질 탄소, 바인더로서 폴리 비닐리덴 플루오라이드를 95:5의 중량비로 N-메틸 피롤리돈에 혼합하여 음극활물질 슬러리를 제조하였다. 이 슬러리를 구리 호일에 도포한 후 건조시켜서 음극활물질 층을 제조하였다.
상기 음극활물질층 위에 비정질 탄소 100 중량부에 대하여 카본블랙 10 중량부 및 고밀도 폴리에틸렌 15 중량부를 포함하는 조성물 (PTC 물질)을 도포하여 음극을 제조하였다.
세퍼레이터로는 Asahi사의 폴리에틸렌 다공성 필름을 사용하고 전해액으로서 에틸렌 카보네이트/디메틸 카보네이트/디에틸 카보네이트의 혼합물(3:3:4 부피비)에 LiPF6를 녹인 것을 주입하였다. 이어서, 전해액 주입부를 밀봉시켜 파우치형 리튬 이차전지를 완성하였다.
실시예 2
카본블랙 대신 카본 파이버를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 리튬 이차전지를 완성하였다.
실시예 3
PTC 물질로서 BaTi03를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 리튬 이차전지를 완성하였다.
비교예 1
PTC 물질을 도포하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 리튬 이차전지를 완성하였다.
실험예
실시예 1 내지 3 및 비교예 1의 리튬 이차전지를 150℃의 핫 박스(Hot Box)에 1 시간 방치하여 안전성을 평가하였다. 그 결과를 표 1에 기재하였다.
표 1
구분 실시예 1 실시예 2 실시예 3 비교예 1
안전성 결과 아무 이상 없음 아무 이상 없음 아무 이상 없음 40분 방치 후 온도가 급격히 올라감
[부호의 설명]
10 : 전극집전체
20 : 활물질층
30 : PTC 물질층

Claims (10)

  1. 양극집전체 상에 양극활물질층이 형성된 양극; 음극집전체 상에 음극활물질층이 형성된 음극; 상기 양극과 음극 사이에 개재되는 폴리올레핀계 분리막을 포함하는 전극조립체에 있어서,
    상기 양극 또는 음극 중 적어도 어느 하나의 활물질층의 상면에는 PTC (Positive Temperature Coefficient) 물질층이 형성되는 것을 특징으로 하는 이차전지용 전극조립체.
  2. 제1항에 있어서,
    상기 PTC 물질층의 유효 작동 온도는 80 내지 140℃의 범위 내인 것을 특징으로 하는 이차전지용 전극조립체.
  3. 제1항에 있어서,
    상기 PTC 물질층의 두께는 1 내지 30㎛인 것을 특징으로 하는 이차전지용 전극조립체.
  4. 제1항에 있어서,
    상기 PTC 물질층의 면적은 각 활물질층의 면적과 동일한 것을 특징으로 하는 이차전지용 전극조립체.
  5. 제1항에 있어서,
    상기 PTC 물질층은 카본 블랙, 카본 파이버 중 어느 하나 또는 둘의 혼합물을 포함하는 것을 특징으로 하는 이차전지용 전극조립체.
  6. 제1항에 있어서,
    상기 전극조립체는 연속적으로 길게 재단된 분리필름 위에 바이셀(Bi-cell)과 풀셀(Full-cell)이 교차하여 놓은 상태에서 폴딩하여 제조하는 스택&폴딩형 전극조립체, 바이셀만을 상기 분리필름 위에 놓은 상태에서 폴딩하여 제조하는 스택&폴딩형 전극조립체, 풀셀만을 상기 분리필름 위에 놓은 상태에서 폴딩하여 제조하는 스택&폴딩형 전극조립체, 상기 바이셀 또는 풀셀을 분리필름으로 지그재그 방향으로 폴딩하여 제조하는 Z형 스택&폴딩 전극조립체, 상기 바이셀 또는 풀셀을 동일한 방향으로 연속하여 폴딩하여 제조하는 스택&폴딩 전극조립체, 길게 재단된 분리필름 위에 양극 및 음극을 교차하여 놓은 상태에서 폴딩하여 제조하는 전극조립체, 양극판, 분리막, 음극판 순으로 배치된 상태에서 일방향으로 와인딩하여 제조하는 젤리-롤형 전극조립체, 및 스택형 전극조립체로 이루어진 그룹으로부터 선택된 어느 하나인 것을 특징으로 하는 이차전지용 전극조립체.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 전극조립체를 포함하는 것을 특징으로 하는 리튬 이차전지.
  8. 제7항에 따른 리튬 이차전지를 포함하는 것을 특징으로 하는 전지팩.
  9. 제8항에 있어서,
    상기 전지팩은 중대형 디바이스의 전원으로 사용되는 것을 특징으로 하는 전지팩.
  10. 제9항에 있어서,
    상기 중대형 디바이스는 파워 툴(power tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV) 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; E-bike, E-scooter를 포함하는 전기 이륜차; 전기 골프 카트(Electric golf cart); 전기 트럭; 전기 상용차 및 전력 저장용 시스템으로 이루어진 그룹으로부터 선택된 어느 하나인 것을 특징으로 하는 전지팩.
PCT/KR2012/005197 2011-06-30 2012-06-29 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지 WO2013002608A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12804401.3A EP2610955B1 (en) 2011-06-30 2012-06-29 Electrode assembly for secondary battery and lithium secondary battery comprising same
JP2013548373A JP2014505335A (ja) 2011-06-30 2012-06-29 二次電池用電極組立体及びこれを含むリチウム二次電池
CN201280003231.7A CN103222098B (zh) 2011-06-30 2012-06-29 二次电池用电极组件和包含所述电极组件的锂二次电池
US13/740,299 US20130130075A1 (en) 2011-06-30 2013-01-14 Electrode assembly for secondary battery and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110064785 2011-06-30
KR10-2011-0064785 2011-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/740,299 Continuation US20130130075A1 (en) 2011-06-30 2013-01-14 Electrode assembly for secondary battery and lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
WO2013002608A2 true WO2013002608A2 (ko) 2013-01-03
WO2013002608A3 WO2013002608A3 (ko) 2013-04-04

Family

ID=47424709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005197 WO2013002608A2 (ko) 2011-06-30 2012-06-29 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지

Country Status (6)

Country Link
US (1) US20130130075A1 (ko)
EP (1) EP2610955B1 (ko)
JP (1) JP2014505335A (ko)
KR (1) KR101401102B1 (ko)
CN (1) CN103222098B (ko)
WO (1) WO2013002608A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258987A (zh) * 2013-05-10 2013-08-21 深圳市量能科技有限公司 一种锂离子电池及其极片的处理方法
WO2019208958A1 (ko) * 2018-04-26 2019-10-31 주식회사 엘지화학 고체 전해질 전지용 양극 및 그를 포함하는 고체 전해질 전지
CN112310563A (zh) * 2020-10-30 2021-02-02 合肥国轩高科动力能源有限公司 一种高安全性动力电池模组用汇流排及其制作方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133218A (ko) * 2013-05-10 2014-11-19 주식회사 엘지화학 안전성 향상을 위한 이차전지용 이중 파우치 및 이를 이용한 이차전지
US9627722B1 (en) * 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
CN103956499B (zh) * 2014-04-15 2016-02-10 洛阳月星新能源科技有限公司 一种用于锂离子电池中正极集流体的安全涂层制备方法
US10020545B2 (en) * 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
US10020487B2 (en) 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with voltage activated current interrupter
HUE049590T2 (hu) * 2014-11-25 2020-09-28 American Lithium Energy Corp Újratölthetõ akkumulátor belsõ áramhatárolóval és árammegszakítóval
US10396341B2 (en) 2014-11-25 2019-08-27 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter
US10608289B2 (en) 2014-12-16 2020-03-31 Lg Chem, Ltd. Method of manufacturing secondary battery electrode containing PTC material and electrode manufactured thereby
KR102396677B1 (ko) * 2015-06-05 2022-05-10 에스케이온 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR102124712B1 (ko) * 2015-07-07 2020-06-18 애플 인크. 바이폴라 배터리 설계
US20170338534A1 (en) * 2016-05-21 2017-11-23 Borgwarner Ludwigsburg Gmbh Lithium ion battery
CN107437623B (zh) * 2016-05-27 2021-02-19 宁德时代新能源科技股份有限公司 锂离子电池正极片及其制备方法
CN117638425A (zh) 2016-09-22 2024-03-01 苹果公司 用于叠堆电池设计的集电器
CN106784621A (zh) * 2016-12-23 2017-05-31 惠州拓邦电气技术有限公司 锂离子电池极片及其制作方法、锂离子电池
JP6708148B2 (ja) * 2017-03-07 2020-06-10 株式会社オートネットワーク技術研究所 車載用電池の保護回路
CN110402506B (zh) * 2017-03-14 2022-07-08 株式会社村田制作所 锂离子二次电池
CN110546790A (zh) 2017-04-21 2019-12-06 苹果公司 具有电解质扩散材料的电池单元
WO2018204379A1 (en) 2017-05-01 2018-11-08 American Lithium Energy Corporation Negative thermal expansion current interrupter
WO2018213601A2 (en) 2017-05-19 2018-11-22 Cougeller Research Llc Rechargeable battery with anion conducting polymer
WO2018220991A1 (ja) * 2017-05-30 2018-12-06 パナソニックIpマネジメント株式会社 二次電池用正極、及び二次電池
US11018343B1 (en) 2017-06-01 2021-05-25 Apple Inc. Current collector surface treatment
US10923728B1 (en) 2017-06-16 2021-02-16 Apple Inc. Current collector structures for rechargeable battery
CN107611516B (zh) * 2017-07-17 2020-06-26 上海工程技术大学 一种电池内部温度实时管理方法
CN107546362A (zh) * 2017-07-17 2018-01-05 上海工程技术大学 一种具有热释电效应的电极及其制备方法和应用
KR102223721B1 (ko) 2017-07-28 2021-03-05 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019023683A1 (en) 2017-07-28 2019-01-31 American Lithium Energy Corporation ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR
US10916741B1 (en) 2017-08-08 2021-02-09 Apple Inc. Metallized current collector devices and materials
US11189834B1 (en) 2017-08-09 2021-11-30 Apple Inc. Multiple electrolyte battery cells
US11862801B1 (en) 2017-09-14 2024-01-02 Apple Inc. Metallized current collector for stacked battery
US11335977B1 (en) 2017-09-21 2022-05-17 Apple Inc. Inter-cell connection materials
US11043703B1 (en) 2017-09-28 2021-06-22 Apple Inc. Stacked battery components and configurations
JP6825535B2 (ja) * 2017-10-20 2021-02-03 トヨタ自動車株式会社 全固体電池
US10916796B1 (en) 2018-02-02 2021-02-09 Apple Inc. Selective charging matrix for rechargeable batteries
CN108828384B (zh) * 2018-02-28 2023-12-19 中国电力科学研究院有限公司 一种电池内短路的模拟装置及模拟方法
JP6969518B2 (ja) * 2018-07-27 2021-11-24 トヨタ自動車株式会社 固体電池用電極の製造方法
KR102384970B1 (ko) 2018-08-13 2022-04-11 주식회사 엘지에너지솔루션 전극조립체 및 그 전극조립체의 제조 방법
KR102288123B1 (ko) 2018-10-05 2021-08-11 주식회사 엘지에너지솔루션 전극조립체, 그를 포함하는 이차전지 및 전지팩
CN109411760A (zh) * 2018-11-01 2019-03-01 珠海光宇电池有限公司 一种ptc安全涂层及其制备方法与应用
KR102440243B1 (ko) * 2019-02-21 2022-09-06 주식회사 엘지에너지솔루션 전극조립체
CN110429241B (zh) * 2019-08-29 2021-01-12 桑顿新能源科技(长沙)有限公司 锂电池正极及其制备方法以及锂电池、供电系统和用电设备
AU2021202525B2 (en) * 2020-06-29 2022-07-14 Dongguan Poweramp Technology Limited Electrochemical apparatus, electrical apparatus, electric vehicle, and power supply control method
US11923494B2 (en) 2020-09-08 2024-03-05 Apple Inc. Battery configurations having through-pack fasteners
US11677120B2 (en) 2020-09-08 2023-06-13 Apple Inc. Battery configurations having through-pack fasteners
US11600891B1 (en) 2020-09-08 2023-03-07 Apple Inc. Battery configurations having balanced current collectors
US11588155B1 (en) 2020-09-08 2023-02-21 Apple Inc. Battery configurations for cell balancing
CN113725555B (zh) * 2021-09-28 2023-03-10 星恒电源(滁州)有限公司 一种锂离子电池隔膜及其制备方法
CN115832198A (zh) * 2022-11-30 2023-03-21 宁德时代新能源科技股份有限公司 极片、电极组件、二次电池及用电装置
WO2024122997A1 (ko) * 2022-12-08 2024-06-13 주식회사 엘지에너지솔루션 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851517B1 (en) * 1996-12-26 2001-03-21 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC characteristics and battery using the same
JP2000058036A (ja) * 1998-08-07 2000-02-25 Hitachi Ltd 二次電池
JP3806562B2 (ja) * 1998-12-09 2006-08-09 三洋電機株式会社 非水電解液二次電池
JP4472259B2 (ja) * 2002-12-27 2010-06-02 パナソニック株式会社 電気化学素子
TWI251359B (en) * 2003-10-10 2006-03-11 Lg Cable Ltd Lithium secondary battery having PTC powder and manufacturing method thereof
US20060024579A1 (en) * 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
JP4776918B2 (ja) * 2004-12-24 2011-09-21 日立マクセルエナジー株式会社 非水電解液二次電池
KR100670485B1 (ko) * 2005-09-30 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지용 전극조립체 및 이를 포함하는 리튬 이차전지
JP2008243708A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 非水電解質二次電池および非水電解質二次電池の製造方法
JP5156826B2 (ja) * 2008-04-24 2013-03-06 シャープ株式会社 非水系二次電池
KR101091228B1 (ko) * 2008-12-30 2011-12-07 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
JP5295857B2 (ja) * 2009-04-30 2013-09-18 旭化成イーマテリアルズ株式会社 非水電解液電池用セパレータ及び非水電解液電池
KR101097258B1 (ko) * 2009-12-04 2011-12-21 삼성에스디아이 주식회사 배터리 팩
KR101093916B1 (ko) * 2009-12-15 2011-12-13 삼성에스디아이 주식회사 세퍼레이터, 그 제조방법 및 리튬 이차전지
CN101887960B (zh) * 2010-07-13 2015-07-29 清华大学 锂离子电池极耳及具有该极耳的锂离子电池
KR102155696B1 (ko) * 2013-09-13 2020-09-15 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함한 리튬 공기 전지
JP6485618B2 (ja) * 2013-11-11 2019-03-20 Tianma Japan株式会社 圧電シートならびにそれを用いたタッチパネルならびにそれらを用いた入出力装置
DE102013113718A1 (de) * 2013-12-09 2015-06-11 Buergofol GmbH UV- und lichtundurchlässige Folie mit hoher Reflexion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2610955A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258987A (zh) * 2013-05-10 2013-08-21 深圳市量能科技有限公司 一种锂离子电池及其极片的处理方法
WO2019208958A1 (ko) * 2018-04-26 2019-10-31 주식회사 엘지화학 고체 전해질 전지용 양극 및 그를 포함하는 고체 전해질 전지
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same
CN112310563A (zh) * 2020-10-30 2021-02-02 合肥国轩高科动力能源有限公司 一种高安全性动力电池模组用汇流排及其制作方法
CN112310563B (zh) * 2020-10-30 2022-07-19 合肥国轩高科动力能源有限公司 一种高安全性动力电池模组用汇流排及其制作方法

Also Published As

Publication number Publication date
CN103222098B (zh) 2016-08-03
JP2014505335A (ja) 2014-02-27
EP2610955A2 (en) 2013-07-03
EP2610955A4 (en) 2014-08-20
CN103222098A (zh) 2013-07-24
EP2610955B1 (en) 2017-12-27
US20130130075A1 (en) 2013-05-23
WO2013002608A3 (ko) 2013-04-04
KR101401102B1 (ko) 2014-05-30
KR20130004153A (ko) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2013002608A2 (ko) 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지
KR100678835B1 (ko) 보호소자를 내장한 전극 리드를 구비한 전기화학소자
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2012165758A1 (ko) 리튬 이차전지
US8049463B2 (en) Stacked battery module and battery pack
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
KR20140069099A (ko) 비수 전해액 전지용 세퍼레이터 및 비수 전해액 전지
WO2013019039A2 (ko) 안전성 향상을 위한 분리막을 포함하는 전극조립체 및 이를 포함하는 리튬 이차전지
JP7130122B2 (ja) リチウム金属を負極に使用する全固体電池
WO2016159596A1 (ko) 이차 전지용 파우치 외장재 및 이를 포함하는 파우치형 이차 전지
JP4382557B2 (ja) 非水二次電池
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
JP4218792B2 (ja) 非水二次電池
KR101841306B1 (ko) 안전성 향상을 위한 테이핑부를 포함하는 이종 분리막 전극조립체 및 이를 포함하는 리튬 이차전지
WO2022039508A1 (ko) 안전성이 향상된 전지 셀 및 이의 제조방법
WO2021075924A1 (ko) 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
WO2021034060A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2021206430A1 (ko) 전고체 전지 및 상기 전고체 전지를 제조하는 방법
WO2017146357A1 (ko) 리튬 이차전지용 전극 조립체, 이를 포함하는 리튬 이차전지 및 전지모듈
JP2004253270A (ja) Ptc素子を備えた電池極板及びこれを用いた電池
WO2019103310A1 (ko) 안전성이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR100670452B1 (ko) 전극 조립체 및 이를 이용한 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012804401

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013548373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE