WO2020226367A1 - 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막 - Google Patents

바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막 Download PDF

Info

Publication number
WO2020226367A1
WO2020226367A1 PCT/KR2020/005786 KR2020005786W WO2020226367A1 WO 2020226367 A1 WO2020226367 A1 WO 2020226367A1 KR 2020005786 W KR2020005786 W KR 2020005786W WO 2020226367 A1 WO2020226367 A1 WO 2020226367A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder resin
resin composition
pvac
pvp
separator
Prior art date
Application number
PCT/KR2020/005786
Other languages
English (en)
French (fr)
Inventor
김명수
윤수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/609,617 priority Critical patent/US20220220294A1/en
Priority to CN202080027322.9A priority patent/CN113661221B/zh
Priority to EP20802675.7A priority patent/EP3958344B1/en
Priority to PL20802675.7T priority patent/PL3958344T3/pl
Priority to ES20802675T priority patent/ES2961292T3/es
Priority to JP2021559588A priority patent/JP7278410B2/ja
Publication of WO2020226367A1 publication Critical patent/WO2020226367A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder resin composition for an electrochemical device.
  • a secondary battery such as a lithium secondary battery has an electrode assembly including a positive electrode, a negative electrode, and a separator, and the electrode assembly may be manufactured in a structure in which a separator is interposed between the positive electrode and the negative electrode.
  • Electrochemical devices as described above are produced by many companies, but their safety characteristics are different. It is very important to evaluate the safety of these electrochemical devices and ensure safety. The most important consideration is that if an electrochemical device malfunctions, it must not injure the user, and for this purpose, the safety standards strictly regulate ignition and smoke in the electrochemical device. In terms of the safety characteristics of an electrochemical device, there is a high concern that an explosion may occur when the electrochemical device is overheated, causing thermal runaway or penetrating the separator. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit extreme thermal shrinkage behavior at a temperature of 100°C or higher due to material properties and manufacturing process characteristics including stretching. There is a problem that causes the problem.
  • a separator in which a porous coating layer is formed by coating a mixture of an excess of inorganic particles and a binder resin on at least one surface of a porous substrate having a plurality of pores has been proposed. Since the inorganic particles contained in the porous coating layer have excellent heat resistance, even when the electrochemical device is overheated, insulation between the anode and the cathode is maintained to prevent a short circuit.
  • the binder resin used for the porous coating layer uses a PVDF-based polymer material in consideration of the binding between inorganic particles and the interlayer adhesion between the electrode and the separator, but has a disadvantage in that heat resistance is insufficient and the binding power in the electrolyte is lowered.
  • a method of mixing polyvinylpyrrolidone (PVP) with a PVDF-based polymer material has been proposed.
  • the heat resistance is improved by mixing PVP, but the binding power is further reduced. Accordingly, there is a demand for the development of a binder resin composition that is effective in improving binding strength and heat resistance stability.
  • An object of the present invention is to provide a binder resin composition with improved heat resistance and stability and a separator for an electrochemical device including the same.
  • the present invention is derived to solve the above-described problem.
  • the first aspect of the present invention relates to a binder resin composition for an electrochemical device, wherein the binder resin composition is a PVDF-based polymer, polyvinyl pyrrolidone (PVP), and a PVP-co-PVAc copolymer (Poly Vinyl pyrrolidone-Poly Vinyl Acetate copolymer), and the content of the PVP-co-PVAc copolymer in 100 wt% of the binder resin composition is 3 wt% to 14 wt%, and the molecular weight of PVP-co-PVAc (Mw, g /mol) is 500,000g/mol or more, and the content of PVAc polymerized units in PVP-co-PVAc is 30wt% to 85wt%.
  • the binder resin composition is a PVDF-based polymer, polyvinyl pyrrolidone (PVP), and a PVP-co-PVA
  • the molecular weight (Mw, g/mol) of the PVP-co-PVAc is 800,000 g/mol or more.
  • the content of the PVP-co-PVAc copolymer in 100 wt% of the binder resin composition is 3 wt% to 14 wt%.
  • the fourth aspect of the present invention is that according to at least one of the first to third aspects, the content of the PVAc polymerized unit in the PVP-co-PVAc is 50 wt% to 80 wt%.
  • the PVDF-based polymer is included in a range of 1 wt% to 50 wt% relative to 100 wt% of the binder composition.
  • PVDF-based polymer includes vinylidene fluoride homopolymer, PVDF-HFP, PVDF-CTFE, or two or more of them.
  • a seventh aspect of the present invention relates to a separator for an electrochemical device, wherein the separator includes a porous polymer substrate; And a porous coating layer formed on at least one surface of the porous polymer substrate, wherein the porous coating layer includes inorganic particles and a binder resin composition, and the binder resin composition is according to at least one of the first to sixth aspects.
  • the inorganic particles are BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), b 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 or two or more of them.
  • the ninth aspect of the present invention is according to at least one of the seventh to eighth aspects, wherein in the porous coating layer, the binder resin composition is in the range of 0.1 wt% to 80 wt% relative to 100 wt% of the sum of the binder resin composition and the inorganic particles. It is included.
  • a tenth aspect of the present invention relates to an electrochemical device, wherein the electrochemical device includes an anode, a cathode, and a separator interposed between the anode and the cathode, and the separator is provided on at least one of the seventh to ninth aspects. It follows.
  • the binder resin composition according to the present invention includes a polyvinylpyrrolidone-polyvinylacetate block copolymer (PVP-co-PVAc), and when it is introduced into the porous coating layer of the separator, the binding strength characteristics And heat resistance stability is remarkably improved.
  • the separator into which the binder resin composition is introduced has an effect of improving resistance characteristics and output characteristics because binding strength with electrodes is improved.
  • the heat resistance stability of the separator is improved, which significantly delays the time when a short circuit occurs. Due to this effect, when a battery is manufactured using the binder composition, the cycle characteristics of the battery are remarkably improved.
  • FIG. 1 is a schematic diagram showing a cross section of a separator according to an embodiment of the present invention.
  • the present invention relates to a binder resin composition for an electrochemical device.
  • the binder resin composition may be used, for example, as a component of a binder in a separator of an electrochemical device.
  • the electrochemical device is a device that converts chemical energy into electrical energy by an electrochemical reaction, and is a concept including a primary battery and a secondary battery, and the secondary battery is charged Over-discharge is possible and is a concept encompassing lithium ion batteries, nickel-cadmium batteries, and nickel-hydrogen batteries.
  • the separator for an electrochemical device serves as an insulating film that electrically insulates electrodes having opposite polarities in the electrochemical device, and includes, for example, a unit cell including an anode, a cathode, and a separator. cell).
  • the separator may include the binder resin composition according to the present invention.
  • inorganic particles may be included together with the binder composition.
  • the binder resin composition includes a PVDF-based polymer, polyvinylpyrrolidone (PVP), and a polyvinylpyrrolidone-polyvinylacetate block copolymer (PVP-co-PVAc). .
  • the PVDF-based polymer may be included in the range of 1wt% to 50wt% relative to 100wt% of the binder composition.
  • the PVDF-based polymer may be included in a range of 5wt% to 20wt% compared to 100wt% of the binder composition, in consideration of adhesion and pore formation of the porous coating layer.
  • the binder resin composition may be used as a binder resin component of the porous coating layer, and the porous coating layer may form pores by inducing phase separation of the PVDF-based polymer while the slurry for forming the porous coating layer is solidified under humidified conditions. .
  • the amount of the PVDF-based polymer in the binder composition is low, the components capable of phase separation are not sufficient, and thus pores are not formed at a desired level in terms of pore size and porosity.
  • the PVDF-based polymer may be a homopolymer of vinylidene fluoride (i.e., polyvinylidene fluoride), a copolymer of vinylidene fluoride and a copolymerizable monomer, or a mixture of two or more of them.
  • a fluorinated monomer and/or a chlorine-based monomer may be used as the monomer.
  • Non-limiting examples of the fluorinated monomers include vinyl fluoride; Trifluoroethylene (TrFE); Chlorofluoroethylene (CTFE); 1,2-difluoroethylene; Tetrafluoroethylene (TFE); Hexafluoropropylene (HFP); Perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) or perfluoro (propyl vinyl) ether (PPVE); Perfluoro(1,3-dioxole); Perfluoro(2,2-dimethyl-1,3-dioxole) (PDD), and one or more of them may be included.
  • the PVDF-based polymer may include vinylidene fluoride homopolymer, PVDF-HFP, PVDF-CTFE, or two or more of them.
  • polyvinylpyrrolidone is It may be represented as in Formula 1 below, and may be included in the range of 1 wt% to 20 wt% relative to 100 wt% of the binder composition.
  • the polyvinylpyrrolidone may be included in a range of 5wt% to 10wt% compared to 100wt% of the binder composition in consideration of heat resistance and pore formation of the porous coating layer.
  • the phase separation of the PVdF-based polymer is hindered in the step to be described later, so that pores are not well formed in the porous coating layer. It can be degraded.
  • the polyvinylpyrrolidone is considered to be used with a molecular weight (Mw) of 500,000 g/mol or more in terms of securing heat resistance, but is not particularly limited thereto.
  • the molecular weight (Mw) refers to a weight average molecular weight.
  • the molecular weight (Mw) may be measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • 200 mg of a polymer resin for molecular weight measurement can be diluted in a solvent such as 200 ml Tetrahydrofuran (THF) to prepare a sample of about 1000 ppm, and measured through an RI detector at 1 ml/min flow using an Agilent 1200 series GPC device. .
  • PVP-co-PVAc may be a block copolymer in which vinylpyrrolidone repeat units and vinyl acetate repeat units are copolymerized.
  • the PVP-co-PVAc may include a compound represented by Formula 2 below.
  • the PVP-co-PVAc is The binder composition may be included in a range of 3 wt% to 14 wt% relative to 100 wt%, and may be included in a range of 5 wt% to 10 wt% in consideration of heat resistance and pore formation of the porous coating layer.
  • the PVP-co-PVAc has a molecular weight (Mw, g/mol) of 500,000 or more. If it is not within the above range, the effect of improving the adhesion of the binder composition is insignificant. In one embodiment, the molecular weight may be controlled to 500,000 to 5 million, but the upper limit of the molecular weight is not particularly limited.
  • PVAc in the PVP-co-PVAc may be included in the range of 30wt% to 85wt%.
  • it is preferably 20 wt% to 80 wt%.
  • the content (wt%) of each repeating unit in the block copolymer may be analyzed using, for example, 1 H NMR or 13 C-NMR measurement method. Such an analysis may be performed using a Varian 500, but is not particularly limited thereto.
  • the separator may be a porous membrane including the binder resin composition and inorganic particles described above.
  • the separator may include a porous substrate and a porous coating layer disposed on at least one surface of the porous substrate, and the porous coating layer may include a mixture of inorganic particles and the binder resin composition according to the present invention.
  • FIG. 1 schematically shows a cross-section of a separator 100 according to an embodiment of the present invention, and shows a state in which a porous coating layer 120 is formed on both surfaces of a porous substrate 110.
  • the porous coating layer includes inorganic particles 121 and the binder composition 122 according to the present invention.
  • the separator including the porous coating layer according to the present invention will be described in more detail.
  • the porous substrate refers to a substrate having a plurality of pores formed therein as a porous ion-conducting barrier for passing ions while blocking electrical contact between a cathode and an anode.
  • the pores are interconnected with each other, so that gas or liquid can pass from one side of the substrate to the other side.
  • the material constituting such a porous substrate either an organic material or an inorganic material having electrical insulation can be used.
  • a thermoplastic resin as a constituent material of the substrate.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the thermoplastic resin and closing the pores of the porous substrate when the battery temperature is increased.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200°C is suitable, and polyolefin is particularly preferred.
  • polymer resins such as polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene It may further include at least any one of.
  • the porous substrate may be a nonwoven fabric or a porous polymer film, or a laminate of two or more of them, but is not particularly limited thereto.
  • the porous polymer substrate is any one of the following a) to e).
  • a porous composite membrane having a multilayer structure comprising two or more of the above a) to d).
  • the porous substrate preferably has a thickness of 3 ⁇ m to 12 ⁇ m or 5 ⁇ m to 12 ⁇ m.
  • the thickness thereof is less than the above value, the function of the conductive barrier is not sufficient.
  • the resistance of the separator may increase excessively.
  • the weight average molecular weight of the polyolefin is preferably 100,000 to 5 million.
  • the weight average molecular weight is less than 100,000, it may become difficult to secure sufficient mechanical properties.
  • the shutdown characteristics may deteriorate or molding may become difficult.
  • the strength of the protrusion of the porous substrate may be 300 gf or more from the viewpoint of improving the manufacturing yield.
  • the piercing strength of a porous substrate refers to the maximum piercing load (gf) measured by performing a piercing test under the conditions of a needle tip radius of curvature of 0.5 mm and a piercing speed of 2 mm/sec using a Kato tech KES-G5 handy compression tester.
  • the porous polymer substrate can be used as long as it is a planar porous polymer substrate used in an electrochemical device, for example, has high ion permeability and mechanical strength, and a pore diameter is generally 10 nm to An insulating thin film having a thickness of 100 nm and generally 5 ⁇ m to 12 ⁇ m may be used.
  • the porous coating layer may be formed on at least one surface of the porous substrate, and includes inorganic particles and the binder composition according to the present invention.
  • the porous coating layer is filled in a state in which inorganic particles are concentrated in the layer, and may have a plurality of fine pores resulting from an interstitial volume formed between the inorganic particles. These micropores have a structure connected to each other, and show a porous structure in which gas or liquid can pass from one side to the other.
  • the inorganic particles are all or at least partially coated by a binder resin composition, and are surface-bound and/or point-bonded through the binder resin.
  • the binder resin composition and inorganic particles in the porous coating layer are included in a weight ratio of 0.1:99.9 to 80:20.
  • the binder resin composition in the porous coating layer, may be included in the range of 0.1 wt% to 80 wt% relative to the sum of 100 wt% of the binder resin composition and the inorganic particles. In one embodiment of the present invention, in terms of adhesion and heat resistance, it may be included in the range of about 10 wt% to 30 wt%.
  • the average pore size of the porous coating layer may be 20nm to 1,000nm. Within the above range, the average pore size of the porous coating layer may be 800 nm or less, or 500 nm or less, and may be independently or together with 20 nm or more, 50 nm or more, or 100 nm or more.
  • the size of the pores may be calculated from shape analysis through SEM images. If the size of the pores is smaller than the above range, the pores are likely to be clogged due to the expansion of the binder resin in the porous coating layer, and if the size of the pores is outside the above range, the function as an insulating film is difficult and self-discharge characteristics deteriorate after manufacturing a secondary battery. There is.
  • the porosity of the porous coating layer is preferably 30% to 80%. If the porosity is 30% or more, it is advantageous in terms of permeability of lithium ions, and if the porosity is 80% or less, the surface opening ratio is not too high, which is suitable for securing the adhesion between the separator and the electrode.
  • the air permeability of the separator is 1500s/100cc or less.
  • the porosity and the size of the pores are measured using BEL JAPAN's BELSORP (BET equipment) using an adsorption gas such as nitrogen, or a mercury intrusion porosimetry or capillary flow measurement method ( capillary flow porosimetry).
  • the porosity may be calculated from the theoretical density of the coating layer by measuring the thickness and weight of the obtained coating layer.
  • permeability refers to the time for 100 cc of air to permeate through the separator, and as a unit thereof, seconds/100 cc are used herein, and can be used interchangeably with permeability. And is usually expressed as a Gurley value.
  • the thickness of the porous coating layer is preferably 1.5 ⁇ m to 5.0 ⁇ m on one side of the porous substrate.
  • the thickness may be preferably 1.5 ⁇ m or more, and the adhesion to the electrode is excellent within the above numerical range, and as a result, the cell strength of the battery is increased.
  • the thickness is 5.0 ⁇ m or less, it is advantageous in terms of cycle characteristics and resistance characteristics of the battery.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and/or reduction reaction does not occur in the operating voltage range (eg, 0-5V based on Li/Li+) of the applied electrochemical device.
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the degree of dissociation of an electrolyte salt, such as a lithium salt, in a liquid electrolyte.
  • the inorganic particles include high dielectric constant inorganic particles having a dielectric constant of 5 or more, and preferably 10 or more.
  • inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), b 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1) , 0 ⁇ y ⁇ 1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 or a mixture thereof.
  • inorganic particles having a lithium ion transfer capability that is, inorganic particles having a function of moving lithium ions without storing lithium but containing lithium elements may be used.
  • inorganic particles having a lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14 Li 2 O-9Al 2 O 3 -38 TiO 2 -39P 2 (LiAlTiP) x O y series glass such as O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇
  • the average particle diameter of the inorganic particles is not particularly limited, but is preferably in the range of 0.1 ⁇ m to 1.5 ⁇ m in order to form a coating layer having a uniform thickness and an appropriate porosity. If it is less than 0.1 ⁇ m, dispersibility may be lowered and 1.5 ⁇ m If it exceeds, the thickness of the formed coating layer may increase.
  • a method of manufacturing a separator according to the present invention will be described.
  • the slurry for forming a porous coating layer containing the binder resin composition and inorganic particles according to the present invention on a porous substrate and solidifying the slurry, it can be prepared by a method of integrally forming a porous coating layer on the porous substrate. have.
  • the binder resin composition is dissolved in a solvent to prepare a polymer solution, and then inorganic particles are added to the polymer solution and mixed to prepare a slurry for forming an inorganic coating layer.
  • it is applied on a porous substrate and allowed to stand for a predetermined time under conditions of about 30% to 70% relative humidity to solidify the binder resin composition.
  • the solidification means drying while the solvent is removed.
  • phase separation of the PVDF-based polymer in the binder resin composition is induced.
  • the solvent moves to the surface of the porous coating layer, and as the solvent moves to the surface of the porous coating layer, the PVDF-based polymer content increases on the surface of the porous coating layer.
  • the portion under the surface of the porous coating layer has porosity as pores are formed due to the interstitial volume between inorganic particles.
  • the above slurry can be used by appropriately selecting a polar amide solvent such as acetone, methyl ethyl ketone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide and dimethylformamide.
  • a polar amide solvent such as acetone, methyl ethyl ketone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide and dimethylformamide.
  • the slurry may be applied by a conventional coating method such as a Meyer bar, a die coater, a reverse roll coater, and a gravure coater.
  • the present invention provides a secondary battery including the separator.
  • the battery includes a negative electrode, a positive electrode, and a separator interposed between the negative electrode and the positive electrode, and the separator includes the binder resin composition according to the present invention.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the positive electrode active material may include a layered compound such as lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2, etc.), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as formula Li 1+x Mn 2-x O 4 (wherein x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site-type lithium nickel oxide represented by the formula LiNi 1-x M
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, a conductive material, and a binder resin on at least one surface of the current collector.
  • the negative electrode includes carbon such as lithium metal oxide, non-graphitized carbon, and graphite-based carbon as a negative electrode active material; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Al, B, P, Si, elements of groups 1, 2 and 3 of the periodic table, halogen, metal complex oxides such as 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); Lithium metal; Lithium alloy; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 ,
  • the conductive material is, for example, graphite, carbon black, carbon fiber or metal fiber, metal powder, conductive whisker, conductive metal oxide, activated carbon, and polyphenylene derivative It may be any one selected from the group consisting of, or a mixture of two or more conductive materials among them. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, denka black, aluminum powder, nickel powder, oxidation It may be one selected from the group consisting of zinc, potassium titanate, and titanium oxide, or a mixture of two or more conductive materials.
  • the current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated carbon, nickel, titanium, silver, or the like may be used.
  • binder resin used for the electrode a polymer commonly used for electrodes in the art may be used.
  • binder resins include, but are not limited to, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polymethylmethacrylate, polymethylmethacrylate, and polyvinylidene fluoride-co-hexafluoropropylene.
  • the electrolyte is a salt having a structure such as A + B -, and A + contains an ion consisting of an alkali metal cation such as Li + , Na + , K + or a combination thereof, and B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 ) 3 -
  • a salt containing an ion or a combination thereof such as propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethylsulfoxide, acetonitrile, dimethoxyethane, dieth
  • the present invention provides a battery module including a battery including the electrode assembly as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • a binder resin composition was prepared according to the composition of the following [Table 1]. Acetone and ethanol were mixed in a 4:1 ratio (weight ratio), and a binder resin composition of each Example and Comparative Example was added thereto to prepare a polymer solution (solid content 5 wt% concentration). Al 2 O 3 (Nihon Light Metal, LS235) was added thereto and dispersed in a ball mill method to prepare a slurry for a porous coating layer. The slurry was coated on a porous substrate (Toray B12PA1) by a dip coating method, and humidified phase separation was induced at a relative humidity (RH) of 40%. A separator was prepared in this way.
  • the air permeability meter (manufacturer: Asahi Seiko, product name: EG01-55-1MR) was used to measure the time (sec) it took for 100 cc of air to pass through the separator at a constant pressure (0.05 MPa). The average was recorded by measuring a total of 3 points at each 1 point on the left/middle/right of the sample.
  • Heat contraction rate (%) [(length before contraction-length after contraction) / length before contraction] X 100
  • the separator prepared in each Example and Comparative Example was cut into 100 mm (length) x 25 mm (width) and laminated with a cathode by hot press at 60°C, 6.5 MPa, 1s, and then UTM equipment (Instron) was used. Then, peeling was performed at an angle of 180 degrees at a speed of 300 mm/min, and the strength at this time was measured. It is desirable to secure at least 50g/25mm.
  • the negative electrode was prepared as follows. Artificial graphite (coal tar pitch) 66.1 wt%, natural graphite 26.9 wt%, SiO 1.5 wt%, carbon black 1.5 wt%, SBR binder 3 wt%, CMC 1 wt% were mixed to prepare a negative electrode slurry. This was applied to copper foil at a loading amount of 495mg/25cm 2 , dried in a vacuum oven at 100° C. for 10 hours or longer, and a negative electrode (total thickness of 159.6 ⁇ m) was prepared using a roll-type press.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명에 따른 바인더 수지 조성물은 폴리비닐피롤리돈-폴리비닐아세테에트 블록 공중합체(Polyvinylpyrrolidone-polyvinylacetate block copolymer, PVP-co-PVAc)를 포함하는 것으로서 이를 전기화학소자용 분리막의 다공성 코팅층에 도입하는 경우 결착력 특성 및 내열 안정성이 현저히 개선되는 효과가 있다.

Description

바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
본 출원은 2019년 5월 9일에 출원된 한국특허출원 제10-2019-0054534호에 기초한 우선권을 주장한다. 본 발명은 전기화학소자용 바인더 수지 조성물에 대한 것이다.
최근, 전기화학소자 분야에서 그의 안전성 확보에 대해 크게 주목하고 있다. 특히, 리튬 이차전지와 같은 이차전지는 양극, 음극 및 분리막을 구비한 전극 조립체를 갖는데, 이러한 전극 조립체는 양극과 음극 사이에 분리막이 개재된 구조로 제작될 수 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 수지의 혼합물을 코팅하여 다공성 코팅층을 형성한 분리막이 제안되었다. 다공성 코팅층에 함유된 무기물 입자들은 내열성이 뛰어나므로, 전기화학소자가 과열되는 경우에도 양극과 음극 사이의 절연을 유지하여 단락을 방지한다.
통상적으로 다공성 코팅층에 사용되는 바인더 수지는 무기물 입자간 결착 및 전극과 분리막의 층간 접착력을 고려하여 PVDF계 고분자 재료를 사용하고 있으나 내열 안전성이 미흡하고 전해액 중에서는 결착력이 저하되는 단점이 있다. 이러한 점을 고려하여 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)을 PVDF계 고분자 재료와 혼합하는 방안이 제안되고 있다. PVP의 혼합에 의해서 내열성이 개선되는 효과가 있으나 결착력이 더욱 저하된다. 이에 결착력 및 내열 안정성의 개선에 효과적인 바인더 수지 조성물의 개발이 요청되고 있다.
본 발명은 내열 안전성 및 결착력이 개선된 바인더 수지 조성물 및 이를 포함하는전기화학소자용 분리막을 제공하는 것을 목적으로 한다. 본 발명의 다른 목적 및 장점들은 하기 설명에 의해 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명은 전술한 문제를 해결하기 위해 도출된 것이다. 본 발명의 제1 측면은 전기화학소자용 바인더 수지 조성물에 대한 것으로서, 상기 바인더 수지 조성물은 PVDF계 고분자, 폴리비닐 피롤리돈(poly vinyl pyrrolidone, PVP) 및 PVP-co-PVAc 공중합체(Poly Vinyl pyrrolidone-Poly Vinyl Acetate copolymer)를 포함하며, 상기 바인더 수지 조성물 100 wt% 중 PVP-co-PVAc 공중합체의 함량은 3 wt% 내지 14 wt%인 것이고, PVP-co-PVAc의 분자량(Mw, g/mol)은 500,000g/mol 이상이며, PVP-co-PVAc에서 PVAc 중합단위의 함량은 30wt% 내지 85wt%인 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 PVP-co-PVAc의 분자량(Mw, g/mol)은 800,000g/mol 이상인 것이다.
본 발명의 제3 측면은 상기 제1 내지 제2 측면 중 적어도 어느 하나에 있어서, 상기 바인더 수지 조성물 100 wt% 중 PVP-co-PVAc 공중합체의 함량은 3wt% 내지 14wt%인 것이다.
본 발명의 제4 측면은 상기 제1 내지 제3 측면 중 적어도 어느 하나에 있어서, 상기 PVP-co-PVAc에서 PVAc 중합단위의 함량은 50wt% 내지 80wt% 인 것이다.
본 발명의 제5 측면은 상기 제1 내지 제4 측면 중 적어도 어느 하나에 있어서, 상기 PVDF계 고분자는 상기 바인더 조성물 100wt% 대비 1wt% 내지 50wt%의 범위로 포함되는 것이다.
본 발명의 제6 측면은 상기 제1 내지 제5 측면 중 적어도 어느 하나에 있어서, 상기 PVDF계 고분자는 불화비닐리덴 단독 중합체, PVDF-HFP, PVDF-CTFE 또는 이 중 둘 이상을 포함하는 것이다.
본 발명의 제7 측면은 전기화학소자용 분리막에 대한 것으로서, 상기 분리막은 다공성 고분자 기재; 상기 다공성 고분자 기재의 적어도 일면에 형성된 다공성 코팅층;을 포함하며, 상기 다공성 코팅층은 무기물 입자 및 바인더 수지 조성물을 포함하고, 상기 바인더 수지 조성물은 상기 제1 내지 제6 측면 중 적어도 어느 하나에 따른 것이다.
본 발명의 제8 측면은 상기 제7 측면에 있어서, 상기 무기물 입자는 BaTiO 3, Pb(Zr,Ti)O 3 (PZT), b 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3(PMN-PT), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, SiO 2, Y 2O 3, Al 2O 3, SiC, TiO 2 또는 이 중 둘 이상을 포함하는 것이다.
본 발명의 제9 측면은 상기 제7 내지 제8 측면 중 적어도 어느 하나에 있어서, 상기 다공성 코팅층에서, 바인더 수지 조성물과 무기물 입자의 합 100wt% 대비 바인더 수지 조성물은 0.1wt% 내지 80wt%의 범위로 포함되는 것이다.
본 발명의 제10 측면은 전기화학소자에 대한 것으로서, 상기 전기화학소자는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하며, 상기 분리막은 제7 내지 제9 측면 중 적어도 어느 하나에 따른 것이다.
본 발명에 따른 바인더 수지 조성물은 폴리비닐피롤리돈-폴리비닐아세테에트 블록 공중합체(Polyvinylpyrrolidone-polyvinylacetate block copolymer, PVP-co-PVAc)를 포함하는 것으로서 이를 분리막의 다공성 코팅층에 도입하는 경우 결착력 특성 및 내열 안정성이 현저히 개선되는 효과가 있다. 상기 바인더 수지 조성물이 도입된 분리막은 전극과의 결착력이 향상되므로 저항 특성 및 출력 특성이 개선되는 효과가 있다. 또한, 분리막에서 무기물 입자의 탈리가 방지되어 분리막의 내구성이 향상되는 효과가 있다. 이 외에도 분리막의 내열 안정성이 개선되어 단락이 발생되는 시점이 현저히 지연된다. 이러한 효과에 의해 상기 바인더 조성물을 이용하여 전지를 제조하는 경우 전지의 사이클 특성이 현저히 개선된다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용 및 다음의 바람직한 실시예의 상세한 설명과 함께 본 발명의 기술사상 및 원리를 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 일 실시양태에 따른 분리막의 단면을 개략적으로 도식화하여 나타낸 것이다.
이하 본 발명에 대해 상세하게 설명하다. 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재되고 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 발명의 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로'의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 전기화학소자용 바인더 수지 조성물에 대한 것이다. 상기 바인더 수지 조성물은 예를 들어 전기화학소자의 분리막에 바인더의 성분으로 사용될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 전기화학소자는 전기화학적 반응에 의해 화학적 에너지를 전기적 에너지로 변환시키는 장치로서, 일차 전지와 이차 전지(Secondary Battery)를 포함하는 개념이며, 상기 이차 전지는 충전과 방전이 가능한 것으로, 리튬 이온 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 포괄하는 개념이다. 본 발명의 일 측면에 따른 전기화학소자용 분리막은 전기화학소자에서 서로 반대되는 극성을 갖는 전극을 전기적으로 절연하는 절연막의 역할을 하는 것으로서 예를 들어 양극, 음극 및 분리막을 포함하는 단위 셀(unit cell)의 구성요소이다. 본 발명의 일 실시양태에 있어서, 상기 분리막은 본 발명에 따른 바인더 수지 조성물을 포함할 수 있다. 또는 상기 바인더 조성물과 함께 무기물 입자를 포함할 수 있다.
다음으로 상기 바인더 수지 조성물을 더욱 상세하게 설명한다.
상기 바인더 수지 조성물은 PVDF계 고분자, 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP) 및 폴리비닐피롤리돈-폴리비닐아세테에트 블록 공중합체(Polyvinylpyrrolidone-polyvinylacetate block copolymer, PVP-co-PVAc)를 포함한다.
PVDF계 고분자
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자는 상기 바인더 조성물 100wt% 대비 1wt% 내지 50wt%의 범위로 포함될 수 있다. 상기 PVDF계 고분자는 접착력 및 다공성 코팅층의 기공 형성의 측면을 고려했을 때, 상기 바인더 조성물 100wt% 대비 5wt% 내지 20wt%의 범위로 포함될 수 있다. 후술하는 바와 같이 상기 바인더 수지 조성물은 다공성 코팅층의 바인더 수지 성분으로 사용될 수 있으며, 상기 다공성 코팅층은 가습 조건에서 다공성 코팅층 형성용 슬러리가 고화되는 동안 PVDF계 고분자의 상분리가 유도되어 기공이 형성될 수 있다. 이때 상기 바인더 조성물에서 PVDF계 고분자의 함량이 적은 경우에는 상분리 할 수 있는 성분이 충분하지 않아 기공의 크기 및 기공도 측면에서 소망하는 수준으로 기공이 형성되지 않는다.
본 발명의 일 실시양태에 있어서, 상기 PVDF계 고분자는 불화비닐리덴의 단독 중합체(즉, 폴리불화비닐리덴), 불화비닐리덴과 공중합이 가능한 모노머와의 공중합체, 또는 이들 중 둘 이상의 혼합물일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 모노머로서는, 예를 들면 불소화된 단량체 및/또는 염소계 단량체 등을 사용할 수 있다. 상기 불소화된 단량체의 비제한적인 예로는 불화비닐; 트리플루오로에틸렌(TrFE); 클로로플루오로에틸렌(CTFE); 1,2-디플루오로에틸렌; 테트라플루오로에틸렌(TFE); 헥사플루오로프로필렌(HFP); 퍼플루오로(메틸비닐)에테르(PMVE), 퍼플루오로(에틸비닐)에테르(PEVE) 또는 퍼플루오로(프로필비닐)에테르(PPVE) 등의 퍼플루오로(알킬비닐)에테르; 퍼플루오로(1,3-디옥솔); 퍼플루오로(2,2-디메틸-1,3-디옥솔)(PDD)등이 있으며 이 중 하나 이상이 포함될 수 있다. 예를 들어 상기 PVDF계 고분자는 불화비닐리덴 단독 중합체, PVDF-HFP, PVDF-CTFE 또는 이 중 둘 이상을 포함할 수 있다.
폴리비닐피롤리돈
본 발명의 일 실시양태에 있어서, 폴리비닐피롤리돈은 아래 화학식 1과 같이 나타낼 수 있으며, 상기 바인더 조성물 100wt% 대비 1wt% 내지 20wt%의 범위로 포함될 수 있다. 상기 폴리비닐피롤리돈은 내열성 및 다공성 코팅층의 기공 형성의 측면을 고려했을 때 상기 바인더 조성물 100wt% 대비 5wt% 내지 10wt%의 범위로 포함될 수 있다. 상기 바인더 조성물 중 폴리비닐피롤리돈이 20 wt%를 초과하여 지나치게 많은 양이 포함되는 경우에는 후술하는 단계에서 PVdF계 고분자의 상분리를 방해하여 다공성 코팅층에서 기공이 잘 형성되지 않아 분리막의 기공도가 저하될 수 있다.
[화학식 1]
Figure PCTKR2020005786-appb-img-000001
한편, 본 발명의 일 실시양태에 있어서, 상기 폴리비닐피롤리돈은 내열성의 확보 측면면에서 분자량(Mw) 500,000 g/mol 이상인 것을 사용하는 것이 고려되나 특별히 이에 한정되는 것은 아니다.
한편, 본원 명세서에서, 상기 분자량(Mw)은 중량평균 분자량을 의미한다. 본 발명의 일 실시양태에 있어서, 상기 분자량(Mw)은 겔투과 크로마토그래피 (GPC) 를 이용하여 측정될 수 있다. 예를 들어, 분자량 측정 대상 고분자 수지 200mg를 200ml Tetrahydrofuran(THF) 등의 용매에 희석하여 약 1000ppm의 샘플을 제조하여 Agilent 1200 series GPC 기기를 사용하여 1ml/min Flow로 RI detector를 통하여 측정할 수 있다.
폴리비닐피롤리돈-폴리비닐아세테에트 블록 공중합체(PVP-co-PVAc)
본 발명의 일 실시양태에 있어서, PVP-co-PVAc는 비닐피롤리돈 반복 단위 및 비닐아세테이트 반복 단위가 공중합된 블록 공중합체 일 수 있다. 구체적인 일 실시양태에 있어서 상기 PVP-co-PVAc는 아래 화학식 2로 표현되는 화합물을 포함할 수 있다. 상기 PVP-co-PVAc는 상기 바인더 조성물 100wt% 대비 3wt% 내지 14wt%의 범위로 포함될 수 있으며, 내열성 및 다공성 코팅층의 기공 형성의 측면을 고려했을 때 5wt% 내지 10wt%의 범위로 포함될 수 있다.
[화학식 2]
Figure PCTKR2020005786-appb-img-000002
본 발명의 일 실시양태에 있어서, 상기 PVP-co-PVAc은 분자량(Mw, g/mol)가 500,000 이상인 것이다. 상기 범위에 미치지 못하는 경우 상기 바인더 조성물의 접착력 개선 효과가 미미하다. 일 실시양태에 있어서 상기 분자량은 50만 내지 500만으로 제어될 수 있으나 상기 분자량의 상한은 특별히 한정되는 것은 아니다.
또한, 본 발명의 일 실시양태에 있어서, 상기 PVP-co-PVAc에서 PVAc는 30wt% 내지 85wt%의 범위로 포함될 수 있다. 예를 들어, 접착력 및 내열성 개선 효과의 측면을 고려했을 때, 20wt% 내지 80wt%인 것이 바람직하다.
한편, 블록 공중합체 내의 각 반복단위의 함량(wt%)는 예를 들어 1H NMR 또는 13C-NMR 측정 방법을 이용하여 분석할 수 있다. 이러한 분석은 Varian 500 이용하여 수행될 수 있으나 특별히 이에 한정되는 것은 아니다.
다음으로 상기 바인더 조성물을 포함하는 전기화학소자용 분리막에 대해서 설명한다.
본 발명의 일 실시양태에 있어서, 상기 분리막은 전술한 바인더 수지 조성물과 무기물 입자를 포함하는 다공막일 수 있다. 또 다른 실시양태에 따르면 상기 분리막은 다공성 기재 및 상기 다공성 기재의 적어도 일측 표면에 배치된 다공성 코팅층을 포함할 수 있으며, 상기 다공성 코팅층은 무기물 입자 및 본 발명에 따른 바인더 수지 조성물의 혼합물을 포함할 수 있다. 도 1은 본 발명의 일 실시양태에 따른 분리막(100)의 단면을 개략적으로 도시한 것으로서 다공성 기재(110)의 양면에 다공성 코팅층(120)이 형성되어 있는 모습을 나타낸 것이다. 상기 다공성 코팅층은 무기물 입자(121) 및 본 발명에 따른 바인더 조성물(122)을 포함한다. 이하, 본 발명에 따른 다공성 코팅층을 포함하는 분리막에 대해 더욱 상세하게 설명한다.
상기 다공성 기재는 음극과 양극 사이의 전기적 접촉을 차단하면서 이온을 통과시키는 이온 전도성 배리어(porous ion-conducting barrier)로 내부에 복수의 기공이 형성된 기재를 의미한다. 상기 기공들은 상호간에 서로 연결된 구조로 되어 있어서 기재의 한쪽 면으로부터 다른 쪽 면으로 기체 또는 액체가 통과 가능한 것이다. 이러한 다공성 기재를 구성하는 재료는, 전기 절연성을 갖는 유기 재료 혹은 무기 재료 중 어느 것도 사용할 수 있다. 특히, 기재에 셧다운 기능을 부여하는 관점에서는, 기재의 구성 재료로서 열가소성 수지를 사용하는 것이 바람직하다. 여기에서, 셧다운 기능이란, 전지 온도가 높아졌을 경우에, 열가소성 수지가 용해하여 다공질 기재의 구멍을 폐쇄함으로써 이온의 이동을 차단하여, 전지의 열폭주를 방지하는 기능을 말한다. 열가소성 수지로서는, 융점 200℃ 미만의 열가소성 수지가 적당하며, 특히 폴리올레핀이 바람직하다.
또한, 이외에도 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌과 같은 고분자 수지 중 적어도 어느 하나를 더 포함할 수 있다. 상기 다공성 기재는 부직포 또는 다공성 고분자 필름 또는 이 중 둘 이상의 적층물 등이 있으나 특별히 여 기에 한정되는 것이 아니다.
구체적으로 상기 다공성 고분자 기재는 하기 a) 내지 e) 중 어느 하나인 것이다.
a) 고분자 수지를 용융/압출하여 성막한 다공성 필름,
b) 상기 a)의 다공성 필름이 2층 이상 적층된 다층막,
c) 고분자 수지를 용융/방사하여 얻은 필라멘트를 집적하여 제조된 부직포웹,
d) 상기 c)의 부직포 웹이 2층 이상 적층된 다층막,
e) 상기 a) 내지 d) 중 둘 이상을 포함하는 다층 구조의 다공성 복합막.
본 발명에 있어서, 상기 다공성 기재는 두께가 3㎛ 내지 12㎛ 또는 5㎛ 내지 12㎛인 것이 바람직하다. 이의 두께가 상기 수치에 미치지 못하는 경우에는 전도성 배리어의 기능이 충분하지 않으며, 반면에 상기 범위를 지나치게 초과하는 경우(즉, 너무 두꺼우면) 분리막의 저항이 과도하게 증가할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 폴리올레핀의 중량 평균 분자량은 10만 내지 500만인 것이 바람직하다. 중량 평균 분자량이 10만보다 작으면, 충분한 역학 물성을 확보하는 것이 곤란해질 경우가 있다. 또한, 500만보다 커지면, 셧다운 특성이 나빠질 경우나, 성형이 곤란해질 경우가 있다. 또한, 상기 다공성 기재의 돌자(突刺) 강도는, 제조 수율을 향상시키는 관점에서, 300gf 이상일 수 있다.
다공질 기재의 돌자강도는 Kato tech KES-G5핸디 압축시험기를 이용하여 바늘 선단의 곡률 반지름 0.5 mm, 돌자속도 2 mm/sec의 조건에서 돌자 시험을 수행해 측정하는 최대돌자하중(gf)을 가리킨다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 고분자 기재는 전기화학소자에 사용되는 평면상의 다공성 고분자 기재라면 모두 사용이 가능하며, 예컨대, 높은 이온 투과도와 기계적 강도를 가지며 기공 직경은 일반적으로 10nm 내지 100nm이고, 두께는 일반적으로 5㎛ 내지 12㎛인 절연성 박막이 사용될 수 있다.
본 발명에 있어서, 상기 다공성 코팅층은 상기 다공성 기재의 적어도 일측 표면에 형성될 수 있으며, 무기물 입자와 본 발명에 따른 바인더 조성물을 포함한다.
상기 다공성 코팅층은 층 내부에 무기물 입자들이 밀집된 상태로 충진되어 있으며, 무기물 입자간 형성된 인터스티셜 볼륨에서 기인한 다수의 미세 기공을 가질 수 있다. 이들 미세 기공이 서로 연결된 구조로 되어 있으며, 한쪽의 면으로부터 다른 쪽의 면으로 기체 혹은 액체가 통과 가능한 다공성 구조를 나타낸다. 본 발명의 일 실시양태에 있어서, 상기 무기물 입자들은 바인더 수지 조성물에 의해 표면의 전부 또는 적어도 일부가 코팅되어 있으며 상기 바인더 수지를 매개로 하여 면결착 및/또는 점결착되어 있다. 본 발명의 일 실시양태에 있어서, 상기 다공성 코팅층 중 바인더 수지 조성물과 무기물 입자는 중량비로 0.1:99.9 내지 80:20의 비율로 포함된다. 환언하여, 상기 다공성 코팅층에서, 바인더 수지 조성물과 무기물 입자의 합 100wt% 대비 바인더 수지 조성물은 0.1wt% 내지 80wt%의 범위로 포함될 수 있다. 본 발명의 일 실시양태에 있어서, 접착력 및 내열성의 측면에서, 약 10wt% 내지 30wt%의 범위로 포함될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 다공성 코팅층의 평균 기공 크기는 20nm 내지 1,000nm일 수 있다. 상기 범위 내에서 상기 다공성 코팅층의 평균 기공 크기는 800nm 이하, 또는 500nm 이하일 수 있으며, 이와 독립적으로 또는 이와 함께 20nm 이상, 50nm 이상, 또는 100nm 이상일 수 있다. 상기 기공의 크기는 SEM 이미지를 통한 형상 분석으로부터 산출될 수 있다. 기공의 크기가 상기 범위 보다 작은 경우 다공성 코팅층 내 바인더 수지의 팽창으로 기공이 폐색되기 쉬우며, 기공의 크기가 상기 범위를 벗어나는 경우에는 절연막으로서의 기능이 어렵고 이차 전지 제조 후 자가 방전 특성이 악화되는 문제가 있다.
본 발명의 일 실시양태에 있어서, 상기 다공성 코팅층의 기공도는 30% 내지 80%가 바람직하다. 기공도가 30% 이상이면 리튬 이온의 투과성 측면에서 유리하며, 기공도가 80% 이하이면, 표면 개구율이 너무 높지 않아 분리막과 전극간 접착력을 확보하는데 적합하다.
또한, 본 발명의 일 실시양태에 있어서, 상기 분리막의 통기도는 1500s/100cc 이하인 것이다.
한편, 본 발명에 있어서, 기공도와 기공의 크기는 질소 등의 흡착 기체를 이용하여 BEL JAPAN사의 BELSORP (BET 장비)를 이용하여 측정하거나 수은 압입법(Mercury intrusion porosimetry) 또는 캐필러리 흐름 측정방법(capillary flow porosimetry)과 같은 방법으로 측정될 수 있다. 또는 본 발명의 일 실시양태에 있어서, 수득된 코팅층의 두께와 무게를 측정하여 이를 코팅층의 이론 밀도로부터 기공도를 계산할 수 있다.
본 명세서에서 사용되는 용어 "통기도(permeability)"는 분리막에 대하여 100cc의 공기가 투과하는 시간을 의미하고, 그의 단위로서 본원에서는 초(second)/100cc를 사용하고 있으며, 투과도와 상호 교환하여 사용할 수 있고, 통상적으로 Gurley 값 등으로 표시된다.
상기 다공성 코팅층의 두께는 다공성 기재의 편면에서 1.5㎛ 내지 5.0㎛가 바람직하다. 상기 두께는 바람직하게는 1.5㎛ 이상으로 할 수 있으며, 상기 수치 범위내에서 전극과의 접착력이 우수하고 그 결과 전지의 셀 강도가 증가된다. 한편, 상기 두께가 5.0㎛이하이면 전지의 사이클 특성 및 저항 특성의 측면에서 유리하다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 무기물 입자는 전기 화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는 다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하 게는 10 이상인 고유전율 무기물 입자를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO 3, Pb(Zr,Ti)O 3 (PZT), b 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3(PMN-PT), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, SiO 2, Y 2O 3, Al 2O 3, SiC, TiO 2 또는 이들의 혼합체 등이 있다.
또한, 상기 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li 3PO 4), 리튬티타늄포스페이트(Li xTi y(PO 4) 3, 0 < x <2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(Li xAl yTi z(PO 4) 3, 0 < x < 2, 0 < y <1, 0 < z < 3), 14Li 2O-9Al 2O 3-38TiO 2-39P 2O 5 등과 같은 (LiAlTiP) xO y 계열 glass (0 <x < 4, 0 < y < 13), 리튬란탄티타네이트(Li xLa yTiO 3, 0 < x < 2, 0 < y < 3), Li 3.25Ge 0.25P 0.75S 4 등과 같은 리튬게르마니움티오포스페이트(Li xGe yP zS w, 0 < x < 4, 0<y < 1, 0 < z < 1, 0 < w < 5), Li 3N 등과 같은 리튬나이트라이드(Li xN y, 0 < x <4, 0 < y < 2), Li 3PO 4-Li 2S-SiS 2 등과 같은 SiS 2 계열 glass(Li xSi yS z, 0 < x < 3, 0 <y < 2, 0 < z < 4), LiI-Li 2S-P 2S 5 등과 같은 P 2S 5 계열 glass(Li xP yS z, 0 < x < 3, 0< y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
또한, 상기 무기물 입자의 평균 입경은 특별한 제한이 없으나 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 0.1㎛ 내지 1.5㎛ 범위인 것이 바람직하다.0.1㎛ 미만인 경우 분산성이 저하될 수 있고, 1.5㎛를 초과하는 경우 형성되는 코팅층의 두께가 증가할 수 있다.
다음으로 본 발명에 따른 분리막을 제조하는 방법을 설명한다. 본 발명에 따른 상기 바인더 수지 조성물 및 무기물 입자를 함유하는 다공성 코팅층 형성용 슬러리를 다공성 기재 위에 도포하고 상기 슬러리를 고화(固化)시킴으로써, 다공성 코팅층을 다공성 기재 위에 일체적으로 형성하는 방법으로 제조할 수 있다.
구체적으로, 우선 상기 바인더 수지 조성물을 용매에 용해하여, 고분자 용액을 준비한 후 상기 고분자 용액에 무기물 입자를 투입하고 혼합하여 무기 코팅층 형성용 슬러리를 준비한다. 다음으로 이를 다공성 기재 위에 도포하고 상대 습도 약 30% 내지 70%의 조건 하에 소정 시간 정치하여 바인더 수지 조성물을 고화시킨다. 상기 고화는 용매가 제거되면서 건조되는 것을 의미한다. 이때 바인더 수지 조성물 중 PVDF계 고분자의 상분리가 유도된다. 상분리의 과정에서 용매가 다공성 코팅층의 표면부로 이동하며 용매의 이동을 따라 PVDF계 고분자가 다공성 코팅층의 표면부로 이동되면서 다공성 코팅층의 표면부에 PVDF계 고분자의 함유량이 높아진다. 다공성 코팅층의 표면부 아래 부분은 무기물 입자간 인터스티셜 볼륨에 기인한 기공이 형성되면서 다공성 특성을 갖게 된다.
상기의 슬러리는 예를 들면 아세톤, 메틸에틸케톤, N-메틸피롤리돈, 디메틸아세트아미드, 디메틸포름아미드, 디메틸포름아미드 등의 극성 아미드 용매를 적절하게 선택하여 사용할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 슬러리의 도포는 마이어 바, 다이 코터, 리버스 롤 코터, 그라비아 코터 등의 종래의 도공 방식을 적용할 수 있다.
한편, 본 발명은 상기 분리막을 포함하는 이차 전지를 제공한다. 상기 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하며, 상기 분리막은 본 발명에 따른 바인더 수지 조성물을 포함하는 것이다.
본 발명에 있어서, 양극은 양극 집전체 및 상기 집전체의 적어도 일측 표면에 양극 활물질, 도전재 및 바인더 수지를 포함하는 양극 활물질층을 구비한다. 상기 양극 활물질은 리튬 망간복합 산화물(LiMn 2O 4, LiMnO 2 등), 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4 (여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiV 3O 4, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 음극은 음극 집전체 및 상기 집전체의 적어도 일측 표면에 음극 활물질, 도전재 및 바인더 수지를 포함하는 음극 활물질층을 구비한다. 상기 음극은 음극 활물질로 리튬 금속산화물, 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는, 예를 들어, 흑연, 카본블랙, 탄소 섬유 또는 금속 섬유, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 활성 카본(activated carbon) 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다. 더욱 구체적으로는 천연 흑연, 인조 흑연, 슈퍼 피(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카(denka) 블랙, 알루미늄 분말, 니켈 분말, 산화 아연, 티탄산 칼륨 및 산화 티탄으로 이루어진 군으로부터 선택된 1종 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 전극에 사용되는 바인더 수지로는 당업계에서 전극에 통상적으로 사용되는 고분자를 사용할 수 있다. 이러한 바인더 수지는 비제한적으로 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoridecotrichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetatebutyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetatepropionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸셀룰로오스 (carboxyl methyl cellulose)등의 예를 들 수 있으며, 이에 한정되는 것은 아니다.
상기와 같이 준비된 전극 조립체는 적절한 케이스에 장입하고 전해액을 주입하여 전지를 제조할 수 있다. 본 발명의 일 실시양태에 있어서, 상기 전해액은 A +B -와 같은 구조의 염으로서, A +는 Li +, Na +, K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -, C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤), 에스테르계 화합물 또는 이 중 선택된 2종 이상의 혼합물을 포함하는 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
또한, 본 발명은, 상기 전극 조립체를 포함하는 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
분리막의 제조
하기 [표 1]의 조성에 따라 바인더 수지 조성물을 준비하였다. 아세톤과 에탄올을 4:1 비율(중량비)로 혼합하고 여기에 각 실시예 및 비교예의 바인더 수지 조성물을 투입하여 고분자 용액(고형분 5wt% 농도)을 제조하였다. 여기에 Al 2O 3(일본경금속, LS235)을 투입하여 볼밀(ball mill) 방식으로 분산시켜 다공성 코팅층용 슬러리를 준비하였다. 다공성 기재(Toray사 B12PA1)위에 딥 코팅(dip coating) 방법으로 상기 슬러리를 코팅하고 상대 습도(RH) 40% 수준에서 가습 상분리를 유도하였다. 이와 같은 방법으로 분리막을 제조하였다.
무기물 입자 Al 2O 3(wt%) PVDF(wt%) PVP(wt%) PVP-co-PVAc(wt%) PVP-co-PVAc모노머 비율(wt%) PVP-co-PVAc분자량(Mw, g/mol)
비교예 1 0 50 15 35 40:60 1000,000
비교예 2 90 0 3 7 40:60 1000,000
비교예 3 80 10 0 10 40:60 1000,000
비교예 4 80 10 10 0 0 0
실시예 1 80 10 3 7 40:60 800,000
실시예 2 80 10 3 7 40:60 1000,000
비교예 5 80 10 3 7 40:60 50,000
비교예 6 80 10 3 7 40:60 300,000
실시예 3 80 10 3 7 50:50 1000,000
실시예 4 80 10 3 7 20:80 1000,000
비교예 7 80 10 3 7 10:90 1000,000
비교예 8 80 10 3 7 80:20 1000,000
실시예 5 82 10 3 5 40:60 1000,000
실시예 6 77 10 3 10 40:60 1000,000
비교예 9 85 10 3 2 40:60 1000,000
비교예 10 72 10 3 15 40:60 1000,000
코팅층 두께(㎛) 로딩량(g/cm 2) 통기도(s/100cc) 열수축율 (%, 150℃)(TD/MD) 전극 접착력(gf/25mm)
비교예 1 양면4㎛/4㎛ 7.3 33,590 0/0 231
비교예 2 양면4㎛/4㎛ 14.5 19,736 0.4/0 7
비교예 3 양면4㎛/4㎛ 14.2 943 8.0/5.0 45
비교예 4 양면4㎛/4㎛ 14.0 1,532 2.0/1.0 28
실시예 1 양면4㎛/4㎛ 13.4 832 2.1/1.9 89
실시예 2 양면4㎛/4㎛ 13.5 1,150 1.0/0.7 70
비교예 5 양면4㎛/4㎛ 12.4 432 19.0/16.0 56
비교예 6 양면4㎛/4㎛ 12.8 512 15.0/10.0 88
실시예 3 양면4㎛/4㎛ 13.0 870 1.0/1.0 65
실시예 4 양면4㎛/4㎛ 13.4 932 5.0/3.6 90
비교예 7 양면4㎛/4㎛ 13.5 910 15.0/11.0 120
비교예 8 양면4㎛/4㎛ 13.4 831 1.0/0.7 33
실시예 5 양면4㎛/4㎛ 13.5 723 4.0/3.0 63
실시예 6 양면4㎛/4㎛ 13.0 1,430 1.6/1.4 85
비교예 9 양면4㎛/4㎛ 14.2 367 12.0/9.0 41
비교예 10 양면4㎛/4㎛ 12.5 12,530 0.7/0.4 167
상기 [표 2]에서 확인할 수 있는 바와 같이 본 발명의 실시예에 따른 전지의 경우 통기도, 열수축율 및 접착력이 비교예의 전지에 비해 모두 우수한 것을 확인할 수 있었다.
실험 방법
1) 로딩량
다공성 기재의 양면에 코팅된 다공성 코팅층의 무기물 입자 및 바인더 수지 조성물의 혼합물의 단위 면적당 무게를 나타낸 것이다.
2) 통기도
통기도 측정기(제조사: Asahi Seiko, 제품명: EG01-55-1MR)를 이용하여 일정한 압력(0.05MPa)으로 100cc의 공기가 분리막을 통과하는데 걸리는 시간(sec)를 측정하였다. 샘플의 좌/중/우 각 1 point씩 총 3 point 측정하여 평균을 기록하였다.
2,000s/100cc 이상인 경우 전지 출력 저하 및 사이클 특성 저하의 원인이 될 수 있다.
3) 열수축율
각 실시예 및 비교예에서 제조된 분리막을 5cm x 5cm 크기로 재단한 후 150℃에서 30분간 유지 후 수축한 정도를 아래 식에 따라서 TD, MD 방향으로 각각 계산한 것이다. 각각 5% 이하이면 내열성이 우수한 것으로 볼 수 있다.
열수축율(%) = [(수축 전 길이 - 수축 후 길이) / 수축 전 길이] X 100
4) 전극 접착력
각 실시예 및 비교예에서 제조된 분리막을 100 mm (길이) x 25 mm (폭)으로 절단하고 음극과 60℃, 6.5MPa, 1s 조건으로 hot press 로 라미네이션 한 후 UTM 장비(Instron사)를 사용하여 300mm/min의 속도로 180도 각도로 박리하고 이때의 강도를 측정하였다. 50g/25mm 이상 확보되는 것이 바람직하다.
음극은 다음과 같이 제작하였다. 인조흑연(콜타르 피치) 66.1 wt%, 천연흑연 26.9 wt%, SiO 1.5 wt%, 카본블랙 1.5 wt%, SBR 바인더 3 wt%, CMC 1 wt%를 혼합하여 음극 슬러리를 제조하였다. 이를 495mg/25cm 2의 로딩량으로 구리 호일에 도포하고 섭씨(Celsius) 100℃의 진공오븐에서 10 시간 이상 건조하였고, 롤 형태의 프레스를 이용하여 음극(전체 두께 159.6 ㎛)을 제조하였다.

Claims (10)

  1. 전기화학소자용 바인더 수지 조성물이며,
    상기 바인더 수지 조성물은 PVDF계 고분자, 폴리비닐 피롤리돈(poly vinyl pyrrolidone, PVP) 및 PVP-co-PVAc 공중합체(Poly Vinyl pyrrolidone-Poly Vinyl Acetate copolymer)를 포함하며, 상기 바인더 수지 조성물 100 wt% 중 PVP-co-PVAc 공중합체의 함량은 3 wt% 내지 14 wt%인 것이고,
    PVP-co-PVAc의 분자량(Mw, g/mol)은 500,000g/mol 이상이며,
    PVP-co-PVAc에서 PVAc 중합단위의 함량은 30wt% 내지 85wt% 인 것인 바인더 수지 조성물.
  2. 제1항에 있어서,
    상기 PVP-co-PVAc의 분자량(Mw, g/mol)은 800,000g/mol 이상인 바인더 수지 조성물.
  3. 제1항에 있어서,
    상기 바인더 수지 조성물 100 wt% 중 PVP-co-PVAc 공중합체의 함량은 3wt% 내지 14wt%인 바인더 수지 조성물.
  4. 제1항에 있어서,
    상기 PVP-co-PVAc에서 PVAc 중합단위의 함량은 50wt% 내지 80wt% 인 것인 바인더 수지 조성물.
  5. 제1항에 있어서
    상기 PVDF계 고분자는 상기 바인더 조성물 100wt% 대비 1wt% 내지 50 wt%의 범위로 포함되는 것인 바인더 수지 조성물.
  6. 제1항에 있어서,
    상기 PVDF계 고분자는 불화비닐리덴 단독 중합체, PVDF-HFP, PVDF-CTFE 또는 이 중 둘 이상을 포함하는 것인 바인더 조성물.
  7. 다공성 고분자 기재; 상기 다공성 고분자 기재의 적어도 일면에 형성된 다공성 코팅층;을 포함하며, 상기 다공성 코팅층은 무기물 입자 및 바인더 수지 조성물을 포함하고, 상기 바인더 수지 조성물은 제1항에 따른 것인 전기화학소자용 분리막.
  8. 제7항에 있어서,
    상기 무기물 입자는 BaTiO 3, Pb(Zr,Ti)O 3 (PZT), b 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3(PMN-PT), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, SiO 2, Y 2O 3, Al 2O 3, SiC, TiO 2 또는 이 중 둘 이상을 포함하는 것인 전기화학소자용 분리막.
  9. 제7항에 있어서,
    상기 다공성 코팅층에서, 바인더 수지 조성물과 무기물 입자의 합 100wt% 대비 바인더 수지 조성물은 0.1wt% 내지 80wt%의 범위로 포함되는 것인 전기화학소자용 분리막.
  10. 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막을 포함하며, 상기 분리막은 제7항에 따른 것인 전기화학소자.
PCT/KR2020/005786 2019-05-09 2020-04-29 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막 WO2020226367A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/609,617 US20220220294A1 (en) 2019-05-09 2020-04-29 Binder resin composition and separator for electrochemical device comprising the same
CN202080027322.9A CN113661221B (zh) 2019-05-09 2020-04-29 粘合剂树脂组合物和包括该粘合剂树脂组合物的用于电化学装置的隔板
EP20802675.7A EP3958344B1 (en) 2019-05-09 2020-04-29 Binder resin composition and separator for electrochemical device comprising the same
PL20802675.7T PL3958344T3 (pl) 2019-05-09 2020-04-29 Kompozycja żywicy wiążącej i separator do urządzenia elektrochemicznego zawierający tę żywicę
ES20802675T ES2961292T3 (es) 2019-05-09 2020-04-29 Composición de resina aglutinante y separador para dispositivo electroquímico que comprende la misma
JP2021559588A JP7278410B2 (ja) 2019-05-09 2020-04-29 バインダー樹脂組成物及びこれを含む電気化学素子用の分離膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0054534 2019-05-09
KR1020190054534A KR102524662B1 (ko) 2019-05-09 2019-05-09 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막

Publications (1)

Publication Number Publication Date
WO2020226367A1 true WO2020226367A1 (ko) 2020-11-12

Family

ID=73051510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005786 WO2020226367A1 (ko) 2019-05-09 2020-04-29 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막

Country Status (9)

Country Link
US (1) US20220220294A1 (ko)
EP (1) EP3958344B1 (ko)
JP (1) JP7278410B2 (ko)
KR (1) KR102524662B1 (ko)
CN (1) CN113661221B (ko)
ES (1) ES2961292T3 (ko)
HU (1) HUE063520T2 (ko)
PL (1) PL3958344T3 (ko)
WO (1) WO2020226367A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105323A1 (zh) * 2020-11-23 2022-05-27 重庆大学 一种毛细管或异型管内表面导电电极防短路方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116979045A (zh) * 2023-08-15 2023-10-31 洛阳理工学院 一种复合氧化亚硅负极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155770A (ja) * 1999-10-26 2001-06-08 Merck Patent Gmbh リチウム電池における使用のためのポリマー電解質膜
KR20050008490A (ko) * 2003-07-15 2005-01-21 셀가드 인코포레이티드 리튬이온 전지용 고온 용융 무결성 전지 격리판
KR101341196B1 (ko) * 2012-12-10 2013-12-12 삼성토탈 주식회사 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
KR20170037533A (ko) * 2015-09-25 2017-04-04 삼성전자주식회사 복합 전해질막, 이를 포함하는 전기 화학 전지 및 복합 전해질막 제조방법
KR20170097210A (ko) * 2014-12-29 2017-08-25 셀가드 엘엘씨 리튬 이온 이차 전지용 폴리락탐 코팅 분리막 및 이와 관련된 코팅제
KR20190054534A (ko) 2017-11-14 2019-05-22 위경생 디지털 컨텐츠용 터치식 입력장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035858A (ko) * 2010-10-05 2012-04-16 주식회사 엘지화학 사이클 특성이 개선된 전기화학소자
KR101254693B1 (ko) * 2011-02-15 2013-04-15 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR101535199B1 (ko) * 2012-11-30 2015-07-09 주식회사 엘지화학 개선된 분산성을 갖는 슬러리 및 그의 용도
JP6779052B2 (ja) * 2016-06-30 2020-11-04 株式会社日立ハイテクファインシステムズ セパレータ用粉体及びセパレータ用スラリ並びにリチウムイオン電池及びその製造方法
KR102586597B1 (ko) * 2016-07-22 2023-10-11 셀가드 엘엘씨 개선된 코팅, 코팅된 분리기, 전지 및 관련 방법
JP2018037351A (ja) 2016-09-01 2018-03-08 株式会社豊田自動織機 電極保護層形成用スラリー、電極、セパレータ積層体、並びに、電極及びセパレータ積層体の製造方法
US11103835B2 (en) 2017-03-30 2021-08-31 Toray Industries, Inc. Separation film and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155770A (ja) * 1999-10-26 2001-06-08 Merck Patent Gmbh リチウム電池における使用のためのポリマー電解質膜
KR20050008490A (ko) * 2003-07-15 2005-01-21 셀가드 인코포레이티드 리튬이온 전지용 고온 용융 무결성 전지 격리판
KR101341196B1 (ko) * 2012-12-10 2013-12-12 삼성토탈 주식회사 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
KR20170097210A (ko) * 2014-12-29 2017-08-25 셀가드 엘엘씨 리튬 이온 이차 전지용 폴리락탐 코팅 분리막 및 이와 관련된 코팅제
KR20170037533A (ko) * 2015-09-25 2017-04-04 삼성전자주식회사 복합 전해질막, 이를 포함하는 전기 화학 전지 및 복합 전해질막 제조방법
KR20190054534A (ko) 2017-11-14 2019-05-22 위경생 디지털 컨텐츠용 터치식 입력장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105323A1 (zh) * 2020-11-23 2022-05-27 重庆大学 一种毛细管或异型管内表面导电电极防短路方法

Also Published As

Publication number Publication date
EP3958344A1 (en) 2022-02-23
ES2961292T3 (es) 2024-03-11
KR20200129718A (ko) 2020-11-18
EP3958344B1 (en) 2023-09-27
PL3958344T3 (pl) 2024-01-22
JP7278410B2 (ja) 2023-05-19
CN113661221A (zh) 2021-11-16
KR102524662B1 (ko) 2023-04-20
EP3958344A4 (en) 2022-06-08
JP2022528708A (ja) 2022-06-15
CN113661221B (zh) 2022-12-27
HUE063520T2 (hu) 2024-01-28
US20220220294A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2020067778A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2017034353A1 (ko) 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2020013675A1 (ko) 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
KR20200078416A (ko) 다층 구조의 다공성 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021210922A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2019112353A1 (ko) 리튬 이온 이차 전지용 분리막 및 이를 포함하는 리튬 금속 전지
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2021206431A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021034060A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2021101221A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019240501A1 (ko) 무기 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2020190101A1 (ko) 전기화학소자용 분리막 및 이의 제조 방법
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2022045858A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2022060110A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021101222A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2020091396A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2023243804A1 (ko) 전기화학소자용 폴리올레핀 분리막 및 이를 구비한 전기화학소자
WO2021034061A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2023243833A1 (ko) Si계 음극 활물질을 구비하는 리튬 이차전지
WO2023063728A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020802675

Country of ref document: EP

Effective date: 20211117