WO2021206431A1 - 전기화학소자용 분리막 및 이를 제조하는 방법 - Google Patents

전기화학소자용 분리막 및 이를 제조하는 방법 Download PDF

Info

Publication number
WO2021206431A1
WO2021206431A1 PCT/KR2021/004306 KR2021004306W WO2021206431A1 WO 2021206431 A1 WO2021206431 A1 WO 2021206431A1 KR 2021004306 W KR2021004306 W KR 2021004306W WO 2021206431 A1 WO2021206431 A1 WO 2021206431A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
binder resin
present
coating layer
electrochemical device
Prior art date
Application number
PCT/KR2021/004306
Other languages
English (en)
French (fr)
Inventor
김지은
이상영
정소미
서지영
이용혁
이제안
Original Assignee
주식회사 엘지에너지솔루션
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션, 울산과학기술원 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022557180A priority Critical patent/JP7476339B2/ja
Priority to US17/917,156 priority patent/US20230163413A1/en
Priority to EP21783718.6A priority patent/EP4131623A4/en
Priority to CN202180024703.6A priority patent/CN115336097B/zh
Publication of WO2021206431A1 publication Critical patent/WO2021206431A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator used in an electrochemical device such as a secondary battery and a method for manufacturing the same.
  • a separator in which a porous coating layer made of a mixture containing inorganic particles and a binder polymer is formed on at least one surface of a separator substrate having a plurality of pores, such as a polyolefin-based microporous membrane, is recently applied.
  • a binder polymer used in the porous coating layer a PVdF-based binder resin containing vinylidene as a polymerization unit is used.
  • PVdF-based binder resin there is a limit in realizing high adhesion properties. Accordingly, there is a demand for the development of a binder resin composition suitable as a binder resin for the porous coating layer of the separator.
  • An object of the present invention is to provide a separator for an electrochemical device having improved adhesion with an electrode and low shrinkage, and a method for manufacturing the same.
  • a first aspect of the present invention relates to a separator for an electrochemical device, wherein the separator includes a porous separator substrate and a porous coating layer formed on the surface of the substrate,
  • the porous coating layer contains the inorganic particles and the binder resin in a ratio of about 50:50 to 99:1 based on the weight ratio,
  • the binder resin includes first and second binder resins,
  • the first binder resin is an ethylene-based polymer resin having a glass transition temperature (Tg) of 30°C to 60°C and a polar group,
  • the second binder resin is an acrylic binder resin having a glass transition temperature (Tg) of 80°C to 120°C.
  • the binder resin further comprises a third binder resin, and the third binder resin has a molecular weight (Mw) of 500,000 or less, and a cyano group is bonded to the main chain. It is a vinyl polymer.
  • the first binder resin is included in an amount of 50 wt% to 90 wt% compared to 100 wt% of the binder resin, and the second binder resin is 100 wt% of the binder resin % to be included in a content of 10wt% to 50wt%.
  • a fourth aspect of the present invention is that in at least one of the second to third aspects, the third binder resin is included in an amount of 6 wt% or less of 100 wt% of the binder resin.
  • the first polymer resin has a molecular weight (Mw) of 100,000 to 500,000
  • PVAc polyvinyl acetate
  • n is an integer of 1 or more.
  • a sixth aspect of the present invention according to at least one of the first to fifth aspects, wherein the second polymer resin comprises polymethylmethacrylate (PMMA) represented by the following Chemical Formula 2,
  • x is an integer greater than or equal to 1.
  • a seventh aspect of the present invention according to at least one of the second to sixth aspects, wherein the third binder resin comprises polyacrylonitrile (PAN).
  • PAN polyacrylonitrile
  • the eighth aspect of the present invention proposes a separator for an electrochemical device comprising a porous separator substrate and a porous coating layer formed on the surface of the substrate as a specific embodiment of the separator of the present invention.
  • the porous coating layer contains inorganic particles and a binder resin in a ratio of about 50:50 to 99:1 based on the weight ratio,
  • the binder resin includes first, second and third binder resins,
  • the first binder resin has a glass transition temperature (Tg) of 30° C. to 60° C., and includes polyvinyl acetate (PVAc),
  • the second binder resin has a glass transition temperature (Tg) of 80 ° C to 120 ° C, and includes polymethyl methacrylate (PMMA),
  • the third binder resin is to include polyacrylonitrile (PAN).
  • a ninth aspect of the present invention relates to an electrochemical device, wherein the electrochemical device includes an anode, a cathode, and a separator interposed between the anode and the cathode, wherein the separator includes any one of the first to eighth aspects according to one aspect.
  • a tenth aspect of the present invention relates to a lithium ion secondary battery, and includes the electrochemical device according to the ninth aspect.
  • the separator manufactured using the binder resin composition according to the present invention has high adhesion between the electrode and the separator even if a separate adhesive layer is not disposed on the surface of the separator.
  • the adhesion between the electrode and the separator is higher than that of a separator to which a fluorine-based binder resin such as polyvinylidene fluoride, which is conventionally used, is applied. Therefore, when the separator is introduced into the battery, the electrode assembly can be manufactured under conditions in which temperature and pressure are relieved, and assembling productivity is improved and the defect rate is reduced, thereby increasing the yield.
  • the separator according to the present invention does not form a separate adhesive layer, the interfacial resistance between the separator and the electrode may be low, and the affinity for the electrolyte is high compared to semi-crystalline polymers such as fluorine-based binder resin, so the output characteristics of the battery are improved.
  • Figure 2 shows the measured peel strength of the separator prepared in Comparative Example 2 of the present invention.
  • Figure 3 shows the evaluation of the shrinkage ratio of the separators of Examples 1 and 2 of the present invention.
  • 4a, 4b, 4c and 4d show SEM images of the surfaces of the separators of Examples 2 to 4 and Comparative Example 4, respectively.
  • the temperature unit is used in degrees Celsius (°C), and the content or content ratio is based on weight.
  • the present invention relates to a binder resin composition used in manufacturing a separator.
  • the present invention relates to a separator comprising the binder resin composition.
  • the present invention relates to a method for manufacturing the separation membrane.
  • the electrochemical device is a device that converts chemical energy into electrical energy by an electrochemical reaction, and is a concept including a primary battery and a secondary battery, and the secondary battery is capable of charging and discharging.
  • a lithium ion battery a nickel-cadmium battery, a nickel-hydrogen battery, and the like.
  • the separator serves as a porous ion-conducting barrier to pass ions while blocking electrical contact between the cathode and the anode in the electrochemical device. It is preferable that a plurality of pores are formed therein, and the pores are mutually connected to each other, so that gas or liquid can pass through one side of the separation membrane to the other side.
  • the separator includes a porous separator substrate including a polymer material and a porous coating layer formed on at least one surface of the substrate, and the porous coating layer includes inorganic particles and a binder resin.
  • the porous coating layer may have a porous structure in which inorganic particles are bound through a binder resin and including pores due to an interstitial volume formed between the inorganic particles.
  • the porous coating layer includes a binder resin and inorganic particles, has a plurality of micropores therein, has a structure in which these micropores are interconnected, and is a porous material through which gas or liquid can pass from one side to the other. It has the structural characteristics of the layer.
  • the binder resin and the inorganic particles are included in a weight ratio of the binder resin:inorganic particles in a ratio of 50:50 to 1:99.
  • the binder resin may be 50 wt% or less, 40 wt% or less, or 30 wt% or less relative to 100 wt% of the sum of the binder resin and the inorganic particles.
  • the binder resin may be 1 wt% or more, 5 wt% or more, or 10 wt% or more.
  • the porous coating layer has a porous structure from the viewpoint of ion permeability.
  • the content of the binder resin when the content of the binder resin is less than 1% by weight, it is not sufficient for the separator and the electrode to adhere, and when the content is too large, the porosity may decrease, and in the battery The resistance may increase and the electrochemical properties of the cell may be reduced.
  • the porous coating layer may exhibit an integrated state by binding the inorganic particles to each other through a polymer resin, and pores are formed by interstitial volume between the inorganic particles.
  • the interstitial volume refers to a space defined by inorganic particles substantially interfacing in a closed packed or densely packed structure of inorganic particles.
  • the porosity of the porous coating layer will be 40 vol% to 70 vol%, and the porosity within this range may be 40 vol% or more or 45 vol% or more, and at the same time or each independently 70 vol% or less or 65 vol% or less.
  • the porosity may be adjusted to 40 vol% or more in consideration of ion conductivity, that is, in order to secure a sufficient path for ions to pass through.
  • the porosity may be controlled to 65 vol% or less. Accordingly, in consideration of these electrochemical properties, the porosity of the porous coating layer may be appropriately adjusted within the above range.
  • the total thickness of the porous coating layer may be appropriately adjusted in the range of 1 ⁇ m to 10 ⁇ m or less.
  • the total thickness of the porous coating layer is the sum of the thicknesses of the porous coating layers on all sides formed on the surface of the separator substrate. If the porous coating layer is formed on only one side of the separator substrate, the thickness of one porous coating layer may satisfy the above range. If the porous coating layer is formed on both sides of the separator substrate, the sum of the thicknesses of each porous coating layer may satisfy the above range.
  • the thickness of the porous coating layer is less than 1 ⁇ m, the amount of inorganic particles included in the porous coating layer is small, so that the heat resistance improvement effect is insignificant.
  • the porous coating layer is formed to be too thick than the above thickness, the separator becomes thick, making it difficult to manufacture a thin battery and improve the energy density of the battery.
  • the porous coating layer includes inorganic particles and a binder resin.
  • the binder resin includes first and second binder resins.
  • the binder resin may additionally include a third binder resin.
  • the first binder resin may be included in an amount of about 50 wt% to about 90 wt%. Since the first binder resin exhibits a relatively low glass transition temperature (Tg), when its content exceeds 90 wt %, high adhesion may be partially obtained, but it is difficult to secure uniform adhesion over the entire surface of the separator. In addition, it is difficult to secure uniform reproducibility because there is a variation in adhesive strength between the manufactured separation membranes. On the other hand, when the content of the first binder resin is included in less than 50 wt%, the content is lowered, and it is difficult to realize high adhesion properties.
  • the second binder resin may be included in an amount of 10 wt% to 50 wt%.
  • the second binder resin has a relatively higher glass transition temperature than the first binder resin. Accordingly, when the second binder resin is contained within the above range, it is possible to solve the problem of non-uniform adhesion due to the relatively low Tg of the first binder resin.
  • the third binder resin may be included in an amount of about 6 wt% or less, or about 5 wt% or less of 100 wt% of the binder resin. Due to the addition of the third binder resin, the effect of improving the adhesion may be increased, but when excessively added, the viscosity may increase and phase separation may be lowered, and as a result, the adhesion strength of a desired level may not be secured. It is preferable that the third binder resin is appropriately controlled within the above range in order to secure adequate adhesion and prevent viscosity increase.
  • the first binder resin an ethylene-based polymer resin having a polar group may be used.
  • the glass transition temperature (Tg) of the first binder resin is 30 °C to 60 °C.
  • the first binder resin may have a molecular weight (Mw) in the range of 100,000 to 500,000.
  • the ethylene-based polymer resin having a polar group may include polyvinyl acetate (PVAc) represented by Chemical Formula 1 below. In Formula 1, n is an integer of 1 or more.
  • the second binder resin includes an acrylic binder resin, and the acrylic binder resin has a glass transition temperature (Tg) of 80°C to 120°C.
  • Tg glass transition temperature
  • the distribution of the binder resin may be non-uniform, such as the binder resin being locally concentrated and distributed in the porous coating layer.
  • the glass transition temperature exceeds 120° C., it is difficult to secure adhesion to a desired level because it is higher than the temperature applied during the lamination process of the electrode and the separator to be described later.
  • the first binder resin may have a molecular weight (Mw) in the range of 100,000 to 500,000.
  • the acrylic binder resin may include an acrylic acid alkyl ester and/or methacrylic acid alkyl ester having 1 to 8 carbon atoms in the alkyl group as a monomer.
  • the acrylic acid alkyl ester is, for example, at least one selected from methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, and 2-ethylhexyl acrylate. Paper may be included.
  • methacrylic acid alkyl ester for example, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, and 2 - At least one selected from ethylhexyl methacrylate may be included.
  • polymethylmethacrylate (PMMA) may be used as the second binder resin.
  • the PMMA may be represented by Chemical Formula 2 below. In Formula 2, x is an integer of 1 or more.
  • the third binder resin is a vinyl-based polymer in which a cyano group is bonded to the main chain, and has a molecular weight (Mw) of 500,000 or less.
  • the third binder resin uses DMF or NMP as a solvent, and preferably has a low molecular weight range of 500,000 or less in consideration of solubility thereof.
  • PAN polyacrylonitrile
  • PAN may be represented by the following [Formula 3].
  • n is an integer of 1 or more.
  • the molecular weight (Mw) means a weight average molecular weight.
  • the molecular weight (Mw) may be measured using gel permeation chromatography (GPC). For example, a sample of about 1000 ppm is prepared by diluting 200 mg of a polymer resin for molecular weight measurement in 200 ml of tetrahydrofuran (THF), etc. .
  • a fluorine-based binder resin additionally containing vinylidene as a monomer, polyvinylpyrrolidone, polyethylene oxide, polyarylate, cyanoethyl
  • One or more fourth binder resins selected from the group consisting of fullulan (cyanoethylpullulan), cyanoethylpolyvinylalcohol (cyanoethylpolyvinylalcohol), cyanoethylcellulose (cyanoethylcellulose), cyanoethylsucrose, and fullulan (pullulan) are further added may include
  • the fourth binder resin may be included in an amount of 10 wt% or less, or 5 wt% or less, or 1 wt% or less, based on 100 wt% of the total binder resin.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as oxidation and/or reduction reactions do not occur in the operating voltage range of the applied electrochemical device (eg, 0-5V based on Li/Li+).
  • the ionic conductivity of the electrolyte can be improved by contributing to an increase in the degree of dissociation of an electrolyte salt, such as a lithium salt, in a liquid electrolyte.
  • the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more.
  • inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), b 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1) , 0 ⁇ y ⁇ 1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, Mg( OH) 2 , NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, Al(OH) 3 , AlOOH and TiO 2 , and may include one or more of these have.
  • inorganic particles having lithium ion transport ability that is, inorganic particles containing lithium element but not storing lithium and having a function of moving lithium ions may be used.
  • inorganic particles having lithium ion transport ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 (LiAlTiP) x O y series glass such as O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanide titanate (Li x La y TiO 3 ,
  • SiS 2 series glass Li x Si P 2 S 5 series glass, such as y S z , 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 4
  • LiI-Li 2 SP 2 S 5 Li x P y S z , 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 3, 0 ⁇ z ⁇ 7 or mixtures thereof.
  • the average diameter (D 50 ) of the inorganic particles may be in the range of 10 nm to 5 ⁇ m.
  • the average diameter (D 50 ) of the particles is less than 10 nm, the surface area of the inorganic particles is too high, so that when the slurry for forming a porous coating layer is prepared, dispersibility of the inorganic particles in the slurry may be reduced.
  • the particle diameter of the inorganic particles increases, the mechanical properties of the separation membrane may deteriorate, so it is preferable not to exceed 5 ⁇ m.
  • the particle size (D50) of the inorganic particles is a small particle size calculated by measuring the particle size distribution of the particles after classification by a general particle size distribution meter used in the art, and based on the measurement result. It means the particle size of 50% of the integrated value from the side.
  • a particle size distribution can be measured by the intensity pattern of diffraction or scattering generated when light strikes the particles.
  • a particle size distribution meter for example, Microtrac 9220FRA or Microtrac HRA manufactured by Nikkiso Corporation can be used.
  • the separator according to the present invention includes a porous separator substrate including a polymer material.
  • the separator substrate is a porous membrane including a polymer resin, and may be, for example, a porous polymer film made of a polyolefin material such as polyethylene or polypropylene.
  • the separator substrate may be at least partially melted when the battery temperature rises to close the pores to induce shutdown.
  • the porosity of the separator substrate may have a range of 40 vol% to 70 vol%.
  • the pores of the separator substrate may have a diameter in the range of about 10 nm to 70 nm based on the longest diameter of the pores.
  • the separator substrate may have a thickness in the range of 5 ⁇ m to 14 ⁇ m in terms of thin film and high energy density of the electrochemical device.
  • porosity means the ratio of the volume occupied by the pores to the total volume in a structure, using % as its unit, and interchangeably with terms such as porosity and porosity Can be used.
  • the measurement of the porosity is not particularly limited, and according to an embodiment of the present invention, for example, BET (Brunauer-Emmett- Teller) measurement method or mercury penetration method (Hg porosimeter) and ASTM using nitrogen gas It can be measured according to D-2873.
  • the true density of the separator is calculated from the density (apparent density) of the separator, the composition ratio of the materials included in the separator, and the density of each component, and the porosity of the separator is calculated from the difference between the apparent density and the net density.
  • a capillary flow porometer include CFP-1500-AE from Porous Materials.
  • the separator substrate if necessary, such as durability improvement, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, poly At least one of a polymer resin such as ether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene may be further included.
  • a polymer resin such as ether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene may be further included.
  • the separator substrate may be a porous polymer film prepared in the manner described below, and may be a single layer film or a multilayer film formed by laminating two or more sheets. When two or more sheets are laminated, each layer preferably has the characteristics described above in terms of material.
  • the separation membrane is not limited to a special manufacturing method as long as it is a manufacturing method having the above structure.
  • it can be obtained by adding the binder resin composition and inorganic particles to an appropriate solvent to prepare a slurry for forming a porous coating layer, coating it on at least one surface of a polymer substrate, and drying.
  • the drying may be performed by a method of solidifying the binder resin by allowing it to stand for a predetermined time under a condition of about 40% to about 80% of relative humidity. At this time, phase separation of the binder resin is induced.
  • the solvent moves to the surface of the inorganic coating layer, and as the binder resin moves to the surface of the inorganic coating layer along with the movement of the solvent, the content of the binder resin in the surface of the porous coating layer increases.
  • the porous coating layer has porous properties as pores are formed due to the interstitial volume between inorganic particles in the lower portion of the surface of the porous coating layer.
  • the solvent may include polar amide solvents such as acetone, methylethylketone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide, among which It may include any one selected or a mixture of two or more.
  • the third polymer resin has relatively low solubility in the aforementioned solvent such as acetone.
  • a polymer solution including a first slurry and a third binder resin including inorganic particles and the first and second binder resins are separately prepared, and then the two are mixed to form a porous coating layer.
  • a slurry can be prepared.
  • DMF dimethylformamide
  • NMP N-Methyl-2-pyrrolidone
  • DMAC dimethylacetamide
  • THF Tetrahydrofuran
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • the solvent may include at least one selected from among them.
  • the application of the slurry for forming the porous coating layer may be applied by a conventional coating method such as a Meyer bar, a die coater, a reverse roll coater, or a gravure coater.
  • a conventional coating method such as a Meyer bar, a die coater, a reverse roll coater, or a gravure coater.
  • the secondary battery includes an electrode assembly including a negative electrode, a positive electrode, and a separator interposed between the negative electrode and the positive electrode; and an electrolyte solution.
  • the electrode assembly may be accommodated in an appropriate battery casing, and an electrolyte may be injected thereto to manufacture a battery.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and an electrode binder resin on at least one surface of the current collector.
  • the positive active material is a layered compound such as lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2 , etc.), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Formula Li 1+x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni site-type lithium nickel oxide represented by the formula LiNi 1-x M x O 2
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material, a conductive material and a binder resin on at least one surface of the current collector.
  • the negative electrode may include, as an anode active material, carbon such as lithium metal oxide, non-graphitized carbon, and graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of Groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3
  • the conductive material is, for example, graphite, carbon black, carbon fibers or metal fibers, metal powder, conductive whiskers, conductive metal oxides, activated carbon (activated carbon) and polyphenylene derivatives. It may be any one selected from the group consisting of or a mixture of two or more of these conductive materials. More specifically, natural graphite, artificial graphite, super-p, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, denka black, aluminum powder, nickel powder, oxide It may be one selected from the group consisting of zinc, potassium titanate and titanium oxide, or a mixture of two or more of these conductive materials.
  • the current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, stainless steel, copper, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel.
  • the surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • the electrode binder resin a polymer commonly used for electrodes in the art may be used.
  • the binder resin include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-cotrichlorethylene, polymethylmethacrylate ( polymethylmethacrylate, polyethylhexyl acrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan and carboxyl methyl cellulose cellulose) and the like, but is not limited thereto
  • the electrolyte is a salt having the same structure as A + B - ,
  • a + is Li + , Na + , K + contains alkali metal cations such as cations or a combination thereof
  • B - is PF 6 - , BF 4 - , Cl - , Br - , I - , ClO 4 - , AsF 6 - , CH 3 CO 2 - , CF 3 SO 3 - , N(CF 3 SO 2 ) 2 - , C(CF 2 SO 2 ) 3 -
  • the present invention provides a battery module including a battery including the electrode assembly as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include: a power tool that moves by being powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, but is not limited thereto.
  • the concentration of the second slurry was 18wt%, and the content of Al 2 O 3 , PVAc, PMMA, PAN and dispersant (tannic acid) in the second slurry was 80:16:2:1:1 ratio (wt%). did.
  • the slurry was coated on a separator (polyethylene, porosity 45%, thickness 16 ⁇ m, air permeability 100sec/100cc) at a loading amount of 13.5 g/m 2 compared to the area of the separator, and then dried. The drying was performed under humidification conditions of a temperature of 23° C. and a relative humidity of 45%. Next, it was cut into 60 mm (length) x 25 mm (width) to obtain a separator. The thickness of the obtained separation membrane was 25 ⁇ m.
  • a slurry for forming a porous coating layer was obtained by adding it to acetone at a ratio of .
  • the slurry was coated on a separator (polyethylene, porosity 45%, thickness 16 ⁇ m) at a loading amount of 13.5 g/m 2 relative to the area of the separator, and then dried. The drying was performed under humidification conditions of a temperature of 23° C. and a relative humidity of 45%. Next, it was cut into 60 mm (length) x 25 mm (width) to obtain a separator. The thickness of the obtained separation membrane was 25 ⁇ m.
  • the concentration of the second slurry was 18wt%, and the content of Al 2 O 3 , PVAc, PMMA, PAN and dispersant (tannic acid) in the second slurry was 80:16:2:1:1 ratio (wt%). did.
  • the slurry was coated on a separator (polyethylene, porosity 45%, thickness 16 ⁇ m, air permeability 100sec/100cc) at a loading amount of 13.5 g/m 2 compared to the area of the separator, and then dried. The drying was performed under humidification conditions of a temperature of 23° C. and a relative humidity of 45%. Next, it was cut into 60 mm (length) x 25 mm (width) to obtain a separator. The thickness of the obtained separation membrane was 25 ⁇ m.
  • Natural graphite, SBR and CMC (90:9:1 by weight) were added to water to obtain a negative electrode slurry.
  • the negative electrode slurry was coated on a copper thin film (thickness of 10 ⁇ m) at a loading amount of 125 mg/cm 2 and dried. Next, it was rolled to a thickness of 90 ⁇ m and cut into 50 mm (length) x 25 mm (width) to obtain a negative electrode.
  • the separator obtained in each Example or Comparative Example was cut into 60 mm (length) x 25 mm (width), and the prepared negative electrode and the separator were laminated using a press at 60° C. under 6.5 MPa conditions to prepare a specimen.
  • the prepared specimen was attached to a glass plate using double-sided tape and fixed, and at this time, the negative electrode was placed to face the glass plate.
  • the separation membrane portion of the specimen was peeled off at an angle of 180° at a speed of 300 m/min at 25° C., and the strength at this time was measured.
  • the results are summarized in [Table 1] and [Fig. 1] below.
  • the membranes obtained in Examples and Comparative Examples were maintained for 0.5 hr under a temperature condition of 130° C., and then the shrinkage of the membranes was measured.
  • the shrinkage rate is calculated by marking two arbitrary points on the separator and the increase/decrease rate of the distance between them (the gage point distance) according to Equation 1 below.
  • 2 is a photograph showing the shape of the separators of Examples 1 and 2 before and after measurement of shrinkage. According to this, it was confirmed that the separation membranes of Examples 1 and 2 had very high shrinkage characteristics with a shrinkage rate of less than 1%.
  • Equation 1 A is the gage length of the initial state before leaving at high temperature, and B is the gage distance of the final state after leaving at high temperature.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Binder resin composition components and composition PVAc/PMMA/PAN PVAc/PMMA (9:1 weight ratio) PVdF-HFP, PVDF-CTFE PVAc PMMA PVAc/PMMA (2:8, weight ratio) PVAc/PMMA/PAN Separator thickness ( ⁇ m) 25 25 25 25 25 25 25 25 25 25 25 25 25 Permeability of separator (sec/100cc) 356 240 300 264 220 189 460 Adhesion between separator and cathode (N) 1.907 1.270 0.857 0.048 to 1.192 0.053 0.292 0.350 Thermal shrinkage of the separator (%) 0 One 2 One 4 2 0
  • the separator specimens #1 to #5 derived from the same separator obtained in Comparative Example 2 had low uniformity in the adhesion force by distance of each specimen.
  • FIGS. 4A, 4B, 4C and 4D SEM images of the surfaces of the separators of Examples 2 to 4 and Comparative Example 4 below are shown in FIGS. 4A, 4B, 4C and 4D, respectively.
  • the content of PMMA increased, phase separation of the binder resin composition toward the surface of the separator did not occur easily, so that the content of the binder resin composition in the surface portion was low. From this, it was confirmed that an excessively high content of the second binder resin such as PMMA may cause a decrease in adhesive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 복수종의 바인더 수지를 포함하는 다공성 코팅층이 구비된 전기화학소자용 분리막 및 이를 제조하는 방법에 대한 것이다. 본원 발명에 따른 분리막은 분리막의 표면에 별도의 접착층이 배치되지 않더라도 전극과 분리막 사이의 접착력이 높다. 또한, 종래 통상적으로 사용되는 폴리불화비닐리덴 등 불소계 바인더 수지가 적용된 분리막보다 전극과 분리막 사이의 접착력이 높다. 따라서 상기 분리막을 전지에 도입하는 경우 온도와 압력이 완화된 조건으로 전극 조립체의 제조가 가능하며 조립 생산성이 향상되고 불량률이 감소되어 수율이 증대되는 효과가 있다. 또한, 본 발명에 따른 분리막은 별도로 접착층이 형성되지 않으므로 분리막과 전극 사이의 계면 저항을 낮을 수 있으며, 불소계 바인더 수지 등 semi-crystalline 고분자 대비 전해액에 대한 친화성이 높아 전지의 출력 특성이 향상되는 효과가 있다.

Description

전기화학소자용 분리막 및 이를 제조하는 방법
본 출원은 2020년 4월 6일자로 출원된 한국 특허출원 제10-2020-0041791호에 기초한 우선권을 주장한다. 본 발명은 이차 전지 등 전기화학소자에 사용되는 분리막 및 이를 제조하는 방법에 대한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 최근에는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로서 이차전지의 사용이 실현화되고 있다. 그에 따라 다양한 요구에 부응할 수 있는 이차전지에 대해 많은 연구가 행해지고 있고, 특히, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지에 대한 수요가 높다. 특히, 전기자동차 및 하이브리드 전기자동차의 동력원으로 사용되는 리튬 이차전지는 단시간에 큰 출력을 발휘할 수 있는 고출력 특성이 요구된다. 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 미세 다공막은 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다. 이러한 점을 보완하기 위해 최근에는 폴리올레핀계 미세 다공성 막과 같이 다수의 기공을 갖는 분리막 기재의 적어도 일면에, 무기물 입자와 바인더 고분자를 포함하는 혼합물로 된 다공성 코팅층을 형성한 분리막이 적용되고 있다. 통상적으로 상기 다공성 코팅층에 사용되는 바인더 고분자는 중합단위로 비닐리덴을 포함하는 PVdF계 바인더 수지가 사용된다. 그러나, PVdF계 바인더 수지를 사용하는 경우 고접착 특성을 구현하는데 한계가 있다. 이에 분리막의 다공성 코팅층의 바인더 수지로 적절한 바인더 수지 조성물의 개발이 요청되고 있다.
본 발명은 전극과의 접착력이 향상되며 수축율이 낮은 전기화학소자용 분리막 및 이를 제조하는 방법을 제공하는 것을 목적으로 한다. 또한, 상기 분리막에 사용되는 바인더 수지 조성물을 제공하는 것을 또 다른 목적으로 한다. 본 발명의 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 제1 측면은 전기화학소자용 분리막에 대한 것으로서, 상기 분리막은 다공성 분리막 기재 및 상기 기재의 표면에 형성된 다공성 코팅층을 포함하며,
상기 다공성 코팅층은 무기물 입자 및 바인더 수지를 중량비를 기준으로 약 50:50 내지 99:1의 비율로 포함하며,
상기 바인더 수지는 제1 및 제2 바인더 수지를 포함하며,
상기 제1 바인더 수지는 유리 전이 온도(Tg) 30℃ 내지 60℃이며 극성기를 갖는 에틸렌계 고분자 수지인 것이며,
제2 바인더 수지는 유리 전이 온도(Tg)가 80℃ 내지 120℃인 아크릴계 바인더 수지인 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 바인더 수지는 제3 바인더 수지를 더 포함하며, 상기 제3 바인더 수지는 분자량(Mw)가 50만 이하이며, 주쇄에 시아노기가 결합된 비닐계 고분자인 것이다.
본 발명의 제3 측면은 상기 제1 또는 제2 측면에 있어서, 상기 제1 바인더 수지는 상기 바인더 수지 100wt% 대비 50wt% 내지 90wt%의 함량으로 포함되고, 상기 제2 바인더 수지는 상기 바인더 수지 100wt% 대비 10wt% 내지 50wt%의 함량으로 포함되는 것이다.
본 발명의 제4 측면은 제2 내지 제3 측면 중 적어도 어느 하나에 있어서, 상기 제 3 바인더 수지는 상기 바인더 수지 100wt% 중 6wt% 이하의 함량으로 포함되는 것이다.
본 발명의 제5 측면은 제1 내지 제4 측면 중 적어도 어느 하나에 있어서, 상기 제1 고분자 수지는 분자량(Mw)가 10만 내지 50만이며, 하기 화학식 1로 표시되는 폴리비닐아세테이트(PVAc)를 포함하며,
[화학식 1]
Figure PCTKR2021004306-appb-img-000001
여기에서 상기 n은 1 이상의 정수인 것이다.
본 발명의 제6 측면은 제1 내지 제5 측면 중 적어도 어느 하나에 있어서, 상기 제2 고분자 수지는 하기 화학식 2로 표시되는 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA)를 포함하며
[화학식 2]
Figure PCTKR2021004306-appb-img-000002
여기에서 상기 x는 1 이상의 정수인 것이다.
본 발명의 제7 측면은 제2 내지 제6 측면 중 적어도 어느 하나에 있어서, 상기 제3 바인더 수지는 폴리아크릴로니트릴(polyacrylonitrile, PAN)을 포함하는 것이다.
또한, 본 발명의 제8 측면은 본 발명의 분리막의 구체적인 일 실시양태로서 다공성 분리막 기재 및 상기 기재의 표면에 형성된 다공성 코팅층을 포함하는 전기화학소자용 분리막을 제안한다. 상기 분리막에서 상기 다공성 코팅층은 무기물 입자 및 바인더 수지를 중량비를 기준으로 약 50:50 내지 99:1의 비율로 포함하며,
상기 바인더 수지는 제1, 제2 및 제3 바인더 수지를 포함하며,
상기 제1 바인더 수지는 유리 전이 온도(Tg) 30℃ 내지 60℃이며, 폴리비닐아세테이트(PVAc)를 포함하고,
상기 제2 바인더 수지는 유리 전이 온도(Tg)가 80℃ 내지 120℃이고, 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA)를 포함하며,
상기 제3 바인더 수지는 폴리아크릴로니트릴(polyacrylonitrile, PAN)를 포함하는 것이다.
또한, 본 발명의 제9 측면은 전기화학소자에 대한 것으로서, 상기 전기화학소자는 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하며, 상기 분리막은 상기 제1 내지 제8 측면 중 어느 한 측면에 따른 것이다.
또한, 본 발명의 제10 측면은, 리튬 이온 이차 전지에 대한 것으로서, 상기 제9 측면에 따른 전기화학소자를 포함한다.
본원 발명에 따른 바인더 수지 조성물을 이용하여 제조된 분리막은 분리막의 표면에 별도의 접착층이 배치되지 않더라도 전극과 분리막 사이의 접착력이 높다. 또한, 종래 통상적으로 사용되는 폴리불화비닐리덴 등 불소계 바인더 수지가 적용된 분리막보다 전극과 분리막 사이의 접착력이 높다. 따라서 상기 분리막을 전지에 도입하는 경우 온도와 압력이 완화된 조건으로 전극 조립체의 제조가 가능하며 조립 생산성이 향상되고 불량률이 감소되어 수율이 증대되는 효과가 있다. 또한, 본 발명에 따른 분리막은 별도로 접착층이 형성되지 않으므로 분리막과 전극 사이의 계면 저항을 낮을 수 있으며, 불소계 바인더 수지 등 semi-crystalline 고분자 대비 전해액에 대한 친화성이 높아 전지의 출력 특성이 향상되는 효과가 있다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 분리막의 접착력을 평가하여 나타낸 것이다.
도 2는 본 발명의 비교예 2에서 제조된 분리막 시편에 대한 박리강도를 측정하여 나타낸 것이다.
도 3은 본 발명의 실시에 1 및 실시예 2의 분리막의 수축율을 평가하여 나타낸 것이다.
도 4a, 도 4b, 도 4c 및 도 4d는 각각 실시예 2 내지 실시예 4 및 비교예 4의 분리막 표면의 SEM 이미지를 나타낸 것이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다(include(s), comprise(s)」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
본원 명세서 전체에서 특별히 지시하지 않는 한 온도 단위는 섭씨온도(℃)사용하며, 함량 또는 함량비는 중량을 기준으로 한다.
'상', '하', '좌' 및 '우'의 용어들은 참조가 이루어진 도면들에서의 위치나 방향을 나타내는 것으로서 제한적이어서는 아니된다.
이어지는 발명의 상세한 설명에서 사용된 특정한 용어는 설명 및 이해의 편의를 위한 것이지 발명의 범위를 제한하는 것은 아니다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 분리막 제조시 사용되는 바인더 수지 조성물에 대한 것이다. 또한, 본 발명은 상기 바인더 수지 조성물을 포함하는 분리막에 대한 것이다. 또한, 본 발명은 상기 분리막을 제조하는 방법에 대한 것이다.
본 발명에 있어서 상기 전기화학소자는 전기화학적 반응에 의해 화학적 에너지를 전기적 에너지로 변환시키는 장치로서, 일차 전지와 이차 전지(Secondary Battery)를 포함하는 개념이며, 상기 이차 전지는 충전과 방전이 가능한 것으로, 리튬 이온 전지, 니켈-카드뮴 전지, 니켈-수소 전지 등을 포괄하는 개념이다.
본 발명에 있어서, 분리막은 상기 전기화학소자에서 음극과 양극 사이의 전기적 접촉을 차단하면서 이온을 통과시키는 이온 전도성 배리어(porous ion-conducting barrier)의 역할을 하는 것이다. 이의 내부에는 복수의 기공이 형성되어 있고 상기 기공들은 상호간에 서로 연결된 구조로 되어 있어서 분리막의 일측면으로 타측면으로 기체 또는 액체가 통과 가능한 것이 바람직하다.
본 발명의 일 실시양태에 있어서 상기 분리막은 고분자 재료를 포함하는 다공성의 분리막 기재 및 상기 기재의 적어도 일측 표면에 형성된 다공성 코팅층을 포함하며 상기 다공성 코팅층은 무기물 입자와 바인더 수지를 포함한다. 상기 다공성 코팅층은 무기물 입자들이 바인더 수지를 매개로 하여 결착되어 있으며 상기 무기물 입자 사이에 형성된 인터스티셜 볼륨(interstitial volume)에 기인한 기공을 포함하는 다공성 구조를 가질 수 있다.
상기 다공성 코팅층은 바인더 수지 및 무기물 입자를 포함하며, 내부에 다수의 미세 기공을 갖고, 이들 미세 기공이 상호간에 연결된 구조로 되어 있으며, 한쪽의 면으로부터 다른쪽의 면으로 기체 혹은 액체가 통과 가능한 다공질층의 구조적 특징을 갖는다. 본 발명의 일 실시양태에 있어서, 상기 다공성 코팅층 중 바인더 수지와 상기 무기물 입자는 중량비로 바인더 수지:무기물 입자가 50:50 내지 1:99의 비율로 포함된다. 상기 비율은 상기 범위 내에서 적절하게 조절될 수 있으며, 예를 들어 바인더 수지와 무기물 입자의 합 100wt% 대비 바인더 수지가 50wt% 이하, 40wt%이하, 또는 30wt% 이하일 수 있다. 또한, 상기 범위 내에서 바인더 수지가 1wt% 이상, 5wt% 이상 또는 10wt% 이상일 수 있다. 본 발명에 있어서, 상기 다공성 코팅층은 이온 투과성이라는 관점에서 다공화된 구조인 것이 바람직하다. 본 발명의 일 실시양태에 있어서, 상기 바인더 수지의 함량이 1 중량% 에 미치지 못하는 경우 분리막과 전극이 접착되기에 충분하지 않으며, 상기 함량이 지나치게 많은 경우에는 기공도가 저하될 수 있으며, 전지 내 저항이 상승하여 전지의 전기화학적 특성이 감소될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 다공성 코팅층은 무기물 입자가 고분자 수지를 매개로 하여 상호간 결착하여 집적된 상태를 나타낼 수 있으며, 무기물 입자 사이의 인터스티셜볼륨(interstitial volume)에 의해 기공이 형성될 수 있다. 본원 명세서에서 상기 인터스티셜볼륨은 무기물 입자들의 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간을 의미하는 것이다.
본 발명의 일 실시양태에 있어서, 상기 다공성 코팅층의 기공도는 40vol% 내지 70vol%인 것이며, 상기 범위 내에서 기공도는 40vol% 이상 또는 45vol% 이상일 수 있고, 이와 동시에 또는 각각 독립적으로 70vol% 이하 또는 65vol% 이하 일 수 있다. 상기 기공도는 이온 전도도를 고려했을 때, 즉, 이온이 통과할 수 있는 충분한 경로의 확보 차원에서 기공도가 40vol% 이상으로 조절될 수 있다. 또한, 내열성 및 접착성의 확보 차원에서 기공도가 65vol% 이하로 조절될 수 있다. 이에 이러한 전기화학적인 특성을 고려하여 상기 범위 내에서 다공성 코팅층의 기공도를 적절하게 조절할 수 있다.
한편, 본 발명에 있어서, 상기 다공성 코팅층은 총 두께가 1㎛ 내지 10㎛ 이하의 범위에서 적절하게 조절할 수 있다. 상기 다공성 코팅층의 총 두께는 분리막 기재의 표면에 형성된 모든 측면의 다공성 코팅층의 두께를 합산한 것이다. 만일 분리막 기재의 일측면에만 다공성 코팅층이 형성된 경우 하나의 다공성 코팅층의 두께는 상기 범위를 만족할 수 있다. 만일 분리막 기재의 양측면에 모두 다공성 코팅층이 형성된 경우 각 다공성 코팅층의 두께를 합산한 것이 상기 범위를 만족할 수 있다. 상기 다공성 코팅층의 두께가 1㎛에 미치지 못하는 경우 다공성 코팅층에 포함되는 무기물 입자의 양이 적어 내열성 개선 효과가 미미하다. 한편, 다공성 코팅층이 상기 두께보다 지나치게 두껍게 형성되는 경우에는 분리막이 두꺼워져 박형 전지의 제조 및 전지의 에너지 밀도를 향상시키기 어렵다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 코팅층은 무기물 입자 및 바인더 수지를 포함한다. 본 발명에 있어서, 상기 바인더 수지는 제1 및 제2 바인더 수지를 포함한다. 본 발명에 있어서, 상기 바인더 수지는 추가적으로 제3 바인더 수지를 포함할 수 있다. 상기 바인더 수지 중 제1 바인더 수지는 약 50wt% 내지 90wt%의 양으로 포함될 수 있다. 상기 제1 바인더 수지는 비교적 낮은 유리전이온도(Tg)를 나타내기 때문에 이의 함량이 90wt%를 초과하는 경우에는 부분적으로 높은 접착력을 얻을 수는 있지만 분리막 전면에 걸쳐 고른 접착력을 확보하기 어렵다. 또한, 제조된 분리막 간에도 접착력 편차가 있어 균일한 재현성을 확보하기 어렵다. 반면 제1 바인더 수지의 함량이 50wt% 미만으로 포함되는 경우에는 함량이 저하되어 고접착력 특성 구현이 어렵다.
한편, 상기 제2 바인더 수지는 10wt% 내지 50wt%의 양으로 포함될 수 있다. 상기 제2 바인더 수지는 상대적으로 제1 바인더 수지에 비해서 유리전이 온도가 높다. 이에 상기 제2 바인더 수지가 상기 범위내로 함유되는 경우 제1 바인더 수지의 비교적 낮은 Tg 로 인한 불균일한 접착성 문제를 해소할 수 있다.
한편, 상기 제3 바인더 수지는 바인더 수지 100wt% 중 약 6wt% 이하, 또는 약 5wt% 이하의 함량으로 포함될 수 있다. 상기 제3 바인더 수지의 첨가로 인해 접착력 개선의 효과를 높일 수 있으나, 과도하게 투입되는 경우 점도가 높아져 오히려 상분리가 저하되고 그 결과 소망하는 수준의 접착력이 확보되지 않을 수 있다. 이에 적절한 접착력 확보 및 점도 상승 방지를 위해서 상기 제3 바인더 수지는 상기 범위 내로 적절하게 제어되는 것이 바람직하다.
상기 제1 바인더 수지로는 극성기를 갖는 에틸렌계 고분자 수지가 사용될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 제1 바인더 수지의 유리 전이 온도(Tg)는 30℃ 내지 60℃인 것이다. 한편, 상기 제1 바인더 수지는 분자량(Mw)가 10만 내지 50만의 범위를 가질 수 있다. 본 발명의 일 실시양태에 있어서, 상기 극성기를 갖는 에틸렌계 고분자 수지는 아래 화학식 1로 표시되는 폴리비닐아세테이트(PVAc)를 포함할 수 있다. 하기 화학식 1 중 n은 1 이상의 정수이다.
[화학식 1]
Figure PCTKR2021004306-appb-img-000003
상기 제2 바인더 수지는 아크릴계 바인더 수지를 포함하며, 상기 아크릴계 바인더 수지는 유리 전이 온도(Tg)가 80℃ 내지 120℃인 것이다. 제2 바인더 수지의 유리전이온도가 후술하는 건조 온도보다 낮으면 다공성 코팅층 내 바인더 수지가 국소적으로 집중되어 분포하는 등 바인더 수지의 분포가 불균일하게 될 수 있다. 반면, 유리전이온도가 120℃를 초과는 경우에는 후술하는 전극과 분리막의 라미네이션 공정시 인가되는 온도보다 높기 때문에 소망하는 수준으로의 접착력 확보가 어렵다. 한편, 상기 제1 바인더 수지는 분자량(Mw)가 10만 내지 50만의 범위를 가질 수 있다. 본 발명의 일 실시양태에 있어서, 상기 아크릴계 바인더 수지는 알킬기의 탄소수가 1 내지 8인 아크릴산 알킬 에스테르 및/또는 메타크릴산 알킬 에스테르를 단량체로 포함할 수 있다. 상기 아크릴산 알킬 에스테르로서는, 예를 들면, 메틸아크릴레이트, 에틸아크릴레이트, 이소프로필아크릴레이트, n-부틸아크릴레이트, 이소부틸아크릴레이트, 시클로헥실아크릴레이트, 및 2-에틸헥실아크릴레이트로부터 선택된 적어도 1종이 포함될 수 있다. 또한, 메타크릴산 알킬 에스테르로서는, 예를 들면, 메틸메타크릴레이트, 에틸메타크릴레이트, 이소프로필메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, 시클로헥실메타크릴레이트, 및 2-에틸헥실메타크릴레이트로부터 선택된 적어도 1종이 포함될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 제2 바인더 수지로 폴리메틸메타크릴레이트 (Polymethylmethacrylate, PMMA)가 사용될 수 있다. 상기 PMMA는 아래 화학식 2로 표현될 수 있다. 하기 화학식 2 중 x는 1 이상의 정수이다.
[화학식 2]
Figure PCTKR2021004306-appb-img-000004
상기 제3 바인더 수지는 주쇄에 시아노기가 결합된 비닐계 고분자이며 분자량(Mw)이 50만 이하인 것이다. 상기 제3 바인더 수지는 DMF 나 NMP 등을 용매로 이용하는데 이에 대한 용해성을 고려하여 50만 이하의 낮은 분자량 범위를 갖는 것이 바람직하다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 제3 바인더 수지로는 폴리아크릴로니트릴(polyacrylonitrile, PAN)이 사용될 수 있으며 PAN은 아래 [화학식 3]으로 표현될 수 있다. 하기 화학식 3중 n은 1 이상의 정수이다.
[화학식 3]
Figure PCTKR2021004306-appb-img-000005
본 발명에 있어서, 상기 분자량(Mw)은 중량평균 분자량을 의미한다. 본 발명의 일 실시양태에 있어서, 상기 분자량(Mw)은 겔투과 크로마토그래피 (GPC) 를 이용하여 측정될 수 있다. 예를 들어, 분자량 측정 대상 고분자 수지 200mg를 200ml Tetrahydrofuran(THF) 등의 용매에 희석하여 약 1000ppm의 샘플을 제조하여 Agilent 1200 series GPC 기기를 사용하여 1ml/min Flow로 RI detector를 통하여 측정할 수 있다.
또한, 상기 제1 내지 제3 바인더 수지 이외에, 필요한 경우, 추가적으로 단량체로 비닐리덴을 포함하는 불소계 바인더 수지, 폴리비닐피롤리돈, 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 로 이루어진 군으로부터 선택된 하나 이상의 제4 바인더 수지를 더 포함할 수 있다. 상기 제4 바인더 수지는 바인더 수지 총 합 100wt% 대비 10wt% 이하, 또는 5wt% 이하, 또는 1wt% 이하로 포함될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 무기물 입자는 전기 화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO 3, Pb(Zr,Ti)O 3 (PZT), b 1-xLa xZr 1-yTi yO 3(PLZT, 0<x<1, 0<y<1), Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3(PMN-PT), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, Mg(OH) 2, NiO, CaO, ZnO, ZrO 2, SiO 2, Y 2O 3, Al 2O 3, SiC, Al(OH) 3, AlOOH 및 TiO 2 등이 있으며 이 중 1종 이상을 포함할 수 있다.
또한, 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li 3PO 4), 리튬티타늄포스페이트(Li xTi y(PO 4) 3, 0 < x <2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(Li xAl yTi z(PO 4) 3, 0 < x < 2, 0 < y <1, 0 < z< 3), 14Li 2O-9Al 2O 3-38TiO 2-39P 2O 5 등과 같은 (LiAlTiP) xO y 계열 glass (0 <x < 4, 0 < y < 13), 리튬란탄티타네이트(Li xLa yTiO 3, 0 < x < 2, 0 < y < 3), Li 3.25Ge 0.25P 0.75S 4 등과 같은 리튬게르마니움티오포스페이트(Li xGe yP zS w, 0 < x < 4, 0< y < 1, 0 < z < 1, 0 < w < 5), Li 3N 등과 같은 리튬나이트라이드(Li xN y, 0 < x <4, 0 < y < 2), Li 3PO 4-Li 2S-SiS 2 등과 같은 SiS 2 계열 glass(Li xSi yS z, 0 < x < 3, 0 <y < 2, 0 < z < 4), LiI-Li 2S-P 2S 5 등과 같은 P 2S 5 계열 glass(Li xP yS z, 0 < x < 3, 0< y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
또한, 무기물 입자의 평균 직경(D 50)은 10nm 내지 5㎛의 범위를 가질 수 있다. 상기 입자의 평균 직경(D 50)이 10nm 미만인 경우에는 무기물 입자의 표면적이 지나치게 높아 다공성 코팅층 형성용 슬러리 제조시 상기 슬러리 중 무기물 입자의 분산성이 저하될 수 있다. 한편, 무기물 입자의 입경이 커질수록 분리막의 기계적 특성이 저하될 수 있으므로 5㎛를 초과하지 않는 것이 바람직하다.
본 발명의 일 실시양태에 있어서, 상기 무기물 입자의 입경(D50)은 본 기술분야에서 사용되는 일반적인 입도 분포계에 의해 분급 후의 입자의 입도 분포를 측정하고, 그 측정 결과에 근거하여 산출되는 작은 입경 측으로부터의 적산값 50%의 입도를 의미한다. 이러한 입도 분포는 입자에 광이 닿음으로써 발생하는 회절이나 산란의 강도 패턴에 의해 측정할 수 있고, 이러한 입도 분포계로는 예컨대 닛키소사제의 마이크로 트랙 9220FRA나 마이크로 트랙 HRA 등을 사용할 수 있다.
전술한 바와 같이 본 발명은 본 발명에 따른 분리막은 고분자 재료를 포함하는 다공성 분리막 기재를 포함한다. 상기 분리막 기재는 고분자 수지를 포함하는 다공막으로 예를 들어 폴리에틸렌이나 폴리프로필렌 등 폴리올레핀 소재의 다공성의 고분자 필름일 수 있다. 상기 분리막 기재는 전지 온도가 상승하는 경우 적어도 부분적으로 용융되어 기공을 폐쇄하여 셧다운을 유도할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 분리막 기재의 기공도는 40vol% 내지 70vol%의 범위를 가질 수 있다. 한편, 상기 분리막 기재의 기공은 기공의 최장경을 기준으로 직경이 약 10nm 내지 70nm의 범위를 가질 수 있다. 본 발명에 있어서 상기 분리막 기재는 전기화학소자의 박막화 및 고에너지 밀도화의 측면에서, 이의 두께가 5㎛ 내지 14㎛의 범위를 가질 수 있다.
본 명세서에 있어서, 상기 용어 "기공도(porosity)"는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극율, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 본 발명에 있어서, 상기 기공도의 측정은 특별히 한정되지 않으며, 본 발명의 일 실시예에 따라 예를 들어 질소 기체를 사용한 BET(Brunauer-Emmett- Teller) 측정법 또는 수은 침투법 (Hg porosimeter) 및 ASTM D-2873에 따라 측정될 수 있다. 또는 분리막의 밀도(겉보기 밀도)와 분리막에 포함된 재료들의 조성비와 각 성분들의 밀도로부터 분리막의 진밀도를 계산하고 겉보기 밀도(apparent density)와 진밀도(net density)의 차이로부터 분리막의 기공도를 계산할 수 있다.
한편 본 발명의 일 실시양태에 있어서, 기공의 크기, 기공의 분포 및 기공의 평균 직경(nm)은 캐필러리 플로우 포로미터(Capillary Flow Porometer)를 이용하여 측정할 수 있다. 이것은 표면장력을 알고 있는 액체를 이용하여 분리막의 기공을 적신 후 (wetting), 여기에 공기압을 가하여 최초 유량이 발생하는 압력(bubble point=max pore)을 측정하는 방식에 의한 것이다. 이러한 캐필러리 플로우 포로미터의 구체적인 예로는 Porous Materials사의 CFP-1500-AE 등이 있다.
한편, 발명의 구체적인 일 실시양태에 있어서, 상기 분리막 기재는, 내구성 향상 등 필요한 경우, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌과 같은 고분자 수지 중 적어도 어느 하나를 더 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 분리막 기재는 후술하는 방식으로 제조된 다공성 고분자 필름일 수 있으며, 한 장의 단층 필름이거나 두 장 이상이 적층되어 형성된 다층 필름일 수 있다. 두 장 이상 적층되는 경우에는 각 층이 재료의 측면에서 전술한 특징을 갖는 것이 바람직하다.
상기 분리막은 상기 구조를 갖는 제조 방법이면 특별한 제조 방법으로 한정되는 것은 아니다. 예를 들어 적절한 용매에 상기 바인더 수지 조성물과 무기물 입자를 투입하여 다공성 코팅층 형성용 슬러리를 준비하고, 이를 고분자 기재의 적어도 일측 표면에 도포하고 건조하는 방식으로 수득될 수 있다. 본 발명의 일 실시양태에 있어서 상기 건조는 상대습도 약 40% 내지 약 80%의조건 하에 소정 시간 정치시켜 바인더 수지를 고화시키는 방법으로 수행될 수 있다. 이때 바인더 수지의 상분리가 유도된다. 이와 같이 상분리의 과정에서 용매가 무기 코팅층의 표면부로 이동하며 용매의 이동을 따라 바인더 수지가 무기 코팅층의 표면부로 이동되면서 다공성 코팅층의 표면부에 바인더 수지의 함유량이 높아진다. 한편, 다공성 코팅층의 표면부 아래 부분은 무기물 입자간 인터스티셜 볼륨에 기인한 기공이 형성되면서 다공성 코팅층이 다공성 특성을 갖게 된다. 본 발명의 일 실시양태에 있어서, 상기 용매는 아세톤, 메틸에틸케톤, N-메틸피롤리돈, 디메틸아세트아미드, 디메틸포름아미드, 디메틸포름아미드 등의 극성 아미드 용매 등을 예로 들 수 있으며, 이 중 선택된 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
한편, 제3 고분자 수지는 아세톤 등 전술한 용매에 대한 용해도가 상대적으로 낮다. 이에 본 발명의 일 실시 양태에 있어서, 무기물 입자와 상기 제1 및 제2 바인더 수지를 포함하는 제1 슬러리 및 제3 바인더 수지를 포함하는 고분자 용액을 각각 별도로 준비한 후 이 둘을 혼합하여 다공성 코팅층 형성용 슬러리를 준비할 수 있다. 이때 상기 고분자 용액에 있어서, 용매로 DMF(dimethylformamide) NMP(N-Methyl-2-pyrrolidone), DMAC(dimethylacetamide), THF(Tetrahydrofuran), MIBK(methyl isobutyl ketone), MEK(methyl ethyl ketone) 등이 사용될 수 있으며, 상기 용매는 이 중 선택된 1종 이상을 포함할 수 있다.
상기 다공성 코팅층 형성용 슬러리의 도포는 마이어 바, 다이 코터, 리버스 롤 코터, 그라비아 코터 등의 종래의 도공 방식을 적용할 수 있다. 상기 다공성 코팅층을 분리막 기재의 양면에 형성할 경우, 도공액을 편면씩 도공하고 나서 가습 상분리 및 건조하는 것도 가능하지만, 도공액을 양면 동시에 분리막 기재 위에 도공하고 나서 가습 상분리 및 건조하는 쪽이, 생산성의 관점에서 바람직하다.
본 발명의 일 실시양태에 있어서, 상기 이차 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재되는 분리막을 포함하는 전극 조립체; 및 전해액를 포함한다. 상기 전극 조립체가 적절한 전지 외장재에 수납되고 여기에 전해액이 주액되어 전지가 제조될 수 있다.
본 발명에 있어서, 양극은 양극 집전체 및 상기 집전체의 적어도 일측 표면에 양극 활물질, 도전재 및 전극 바인더 수지를 포함하는 양극 활물질층을 구비한다. 상기 양극 활물질은 리튬 망간복합 산화물(LiMn 2O 4, LiMnO 2 등), 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4 (여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2 등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiV 3O 4, V 2O 5, Cu 2V 2O 7 등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3 중 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 음극은 음극 집전체 및 상기 집전체의 적어도 일측 표면에 음극 활물질, 도전재 및 바인더 수지를 포함하는 음극 활물질층을 구비한다. 상기 음극은 음극 활물질로 리튬 금속산화물, 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, 및 Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 중 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는, 예를 들어, 흑연, 카본블랙, 탄소 섬유 또는 금속 섬유, 금속 분말, 도전성 위스커, 도전성 금속 산화물, 활성 카본(activated carbon) 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다. 더욱 구체적으로는 천연 흑연, 인조 흑연, 슈퍼 피(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 덴카(denka) 블랙, 알루미늄 분말, 니켈 분말, 산화 아연, 티탄산 칼륨 및 산화 티탄으로 이루어진 군으로부터 선택된 1종 또는 이들 중 2종 이상의 도전성 재료의 혼합물일 수 있다.
상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 구리, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 전극 바인더 수지로는 당업계에서 전극에 통상적으로 사용되는 고분자를 사용할 수 있다. 이러한 바인더 수지의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-cotrichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetatepropionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀 룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 전해액은 A +B -와 같은 구조의 염으로서, A +는 Li +, Na +, K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -, C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
또한, 본 발명은, 상기 전극 조립체를 포함하는 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
[실시예]
(1) 분리막의 제조
실시예 1
Al 2O 3(D50: 500nm), PVAc(Mw: 15만, Tg: 40℃), PMMA(Mw: 13만, Tg: 116℃) 및 분산제(탄닌산)를 아세톤에 투입하여 제1 슬러리를 준비하였다. 한편, PAN(Mw: 15만, Tg: 85℃, Tm: 320℃)을 DMF에 용해하여 고분자 용액을 준비하였다. 다음으로 상기 제1 슬러리와 상기 고분자 용액을 혼합하여 다공성 코팅층 형성용 슬러리(제2 슬러리)를 준비하였다. 상기 제2 슬러리의 농도는 18wt% 였으며, 상기 제2 슬러리 중 Al 2O 3, PVAc, PMMA, PAN 및 분산제(탄닌산)의 함량은 80:16:2:1:1의 비율(wt%)로 하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 16㎛, 통기도 100sec/100cc) 위에 분리막 면적 대비 13.5g/m 2의 로딩량으로 도포한 후 건조하였다. 상기 건조는 온도 23℃, 상대습도 45%의 가습조건하에서 수행되었다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다. 수득된 분리막의 두께는 25㎛ 였다.
실시예 2
PAN은 사용하지 않고 Al 2O 3, PVAc, PMMA 및 분산제(탄닌산)를 wt%로 80:17:2:1의 비율로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 수득하였다. 또한, 수득된 분리막 표면의 SEM 이미지를 도 4a에 나타내었다.
실시예 3
PAN은 사용하지 않고 Al 2O 3, PVAc, PMMA 및 분산제(탄닌산)를 wt%로 80:15:4:1의 비율로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 수득하였다. 또한, 수득된 분리막 표면의 SEM 이미지를 도 4b에 나타내었다.
실시예 4
PAN은 사용하지 않고 Al 2O 3, PVAc, PMMA 및 분산제(탄닌산)를 wt%로 80:9.5:9.5:1의 비율로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 수득하였다. 또한, 수득된 분리막 표면의 SEM 이미지를 도 4c에 나타내었다.
비교예 1
Al 2O 3, PVdF-HFP(Mw: 40만, Tm: 145℃), PVDF-CTFE(Mw: 40만, Tm: 160℃) 및 분산제(탄닌산)를 wt%를 기준으로 80:10:1의 비율로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 16㎛) 위에 분리막 면적 대비 13.5g/m 2의 로딩량으로 도포한 후 건조하였다. 상기 건조는 온도 23℃, 상대습도 45%의 가습조건하에서 수행되었다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다. 수득된 분리막의 두께는 25㎛ 였다.
비교예 2
Al 2O 3, PVAc 및 분산제를 80:19:1 비율(wt%)로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 16㎛) 위에 분리막 면적 대비 13.5g/m 2의 로딩량으로 도포한 후 건조하였다. 상기 건조는 온도 23℃, 상대습도 45%의 가습조건하에서 수행되었다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다.
비교예 3
Al 2O 3, PMMA 및 분산제를 80:19:1 비율(wt%)로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 16㎛) 위에 분리막 면적 대비 13.5g/m2의 로딩량으로 도포한 후 건조하였다. 상기 건조는 온도 23℃, 상대습도 45%의 가습조건하에서 수행되었다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다.
비교예 4
Al 2O 3, PVAc, PMMA 및 분산제를 80:6:13:1 비율(wt%)로 아세톤에 투입하여 다공성 코팅층 형성용 슬러리를 수득하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 16㎛) 위에 분리막 면적 대비 13.5g/m2의 로딩량으로 도포한 후 건조하였다. 상기 건조는 온도 23℃, 상대습도 45%의 가습조건하에서 수행되었다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다. 또한, 수득된 분리막 표면의 SEM 이미지를 도 4d에 나타내었다.
비교예 5 (PVAc 분자량 범위 벗어난 경우)
Al 2O 3(D50: 500nm), PVAc(Mw: 80만, Tg: 40℃), PMMA(Mw: 13만, Tg: 116℃) 및 분산제(탄닌산)를 아세톤에 투입하여 제1 슬러리를 준비하였다. 한편, PAN(Mw: 15만, Tg: 85℃, Tm: 320℃)을 DMF에 용해하여 고분자 용액을 준비하였다. 다음으로 상기 제1 슬러리와 상기 고분자 용액을 혼합하여 다공성 코팅층 형성용 슬러리(제2 슬러리)를 준비하였다. 상기 제2 슬러리의 농도는 18wt% 였으며, 상기 제2 슬러리 중 Al 2O 3, PVAc, PMMA, PAN 및 분산제(탄닌산)의 함량은 80:16:2:1:1의 비율(wt%)로 하였다. 상기 슬러리를 분리막(폴리에틸렌, 기공도 45%, 두께 16㎛, 통기도 100sec/100cc) 위에 분리막 면적 대비 13.5g/m 2의 로딩량으로 도포한 후 건조하였다. 상기 건조는 온도 23℃, 상대습도 45%의 가습조건하에서 수행되었다. 다음으로 이를 60mm(길이)x25mm(폭)으로 절단하여 분리막을 수득하였다. 수득된 분리막의 두께는 25㎛ 였다.
(2) 전극의 제조
천연흑연, SBR 및 CMC (중량비로 90:9:1)를 물에 투입하여 음극 슬러리를 수득하였다. 상기 음극 슬러리를 구리 박막(두께 10㎛) 위에 125mg/cm 2의 로딩량으로 도포한 후 건조하였다. 다음으로 이를 90㎛의 두께가 되도록 압연하고 50mm(길이)x 25mm(폭)으로 절단하여 음극을 수득하였다.
(3) 전극 접착력 측정
상기 각 실시예 또는 비교예를 통하여 수득한 분리막을 60mm(길이)x 25mm(폭)으로 절단하여 준비된 음극과 분리막을 프레스를 이용하여 60℃ 6.5MPa조건으로 라미네이션하여 시편을 제작하였다. 준비된 시편을 양면 테이프를 이용하여 유리판에 부착하여 고정하였으며 이때 음극이 유리판에 대면하도록 배치하였다. 시편의 분리막 부분을 25℃에서 300m/min 속도로 180°의 각도로 박리하고 이 때의 강도를 측정하였다. 상기 분리막과 음극 사이의 접착력에 대해서는 아래 [표 1] 및 [도 1]에 결과를 정리하여 나타내었다. 한편, 비교예 2에서 동일한 제조 방법에 의해 수득된 분리막 시편 5개를 준비하고 25℃에서 300m/min 속도로 180°의 각도로 박리하고 거리에 따른 박리 강도를 측정하였다. 그 결과를 아래 [표 2] 및 [도 2]에 나타내었다.
(4) 분리막의 수축율 측정
각 실시예 및 비교예에서 수득된 분리막을 130℃의 온도 조건하에서 0.5hr 유지한 후 분리막의 수축율을 측정하였다. 수축율은 분리막에 임의의 두 점을 표시하고 이들간의 거리(표점 거리)의 증감율을 아래 식 1에 따라 계산한 것이다. 도 2는 실시예 1 및 2의 분리막의 수축율 측정 전후 모양을 나타낸 사진이다. 이에 따르면 실시예 1 및 2의 분리막은 수축율이 1% 이내로 수축율 특성이 매우 높은 것으로 확인되었다.
(식 1) 수축율(%) = {(B-A)/A}X100
상기 식 1에서 A는 고온 방치 전 초기 상태의 표점 거리이며 B는 고온 방치 후 최종 상태의 표점 거리이다.
아래 [표 1]은 상기 실험에서 수득된 결과를 정리하여 나타낸 것이다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
바인더 수지 조성물 성분 및 조성 PVAc/PMMA/PAN PVAc/PMMA (9:1 중량비) PVdF-HFP, PVDF-CTFE PVAc PMMA PVAc/PMMA(2:8, 중량비) PVAc/PMMA/PAN
분리막의 두께(㎛) 25 25 25 25 25 25 25
분리막의 통기도(sec/100cc) 356 240 300 264 220 189 460
분리막과 음극의 접착력 (N) 1.907 1.270 0.857 0.048~1.192 0.053 0.292 0.350
분리막의 열수축율(%) 0 1 2 1 4 2 0
상기 [표 1]에서 확인할 수 있는 바와 같이, 본 발명의 실시예 1 및 실시예 2의 분리막은 전기화학소자용 분리막으로 사용 가능한 수준의 통기도를 확보하였다. 또한, 실시예 1 및 실시예 2의 분리막은 비교예 1 내지 비교예 5의 분리막에 비해서 음극과의 접착력 및 열수축율이 모두 향상된 것으로 확인되었다. 한편, 도 3은 본 발명의 실시예 1에 따른 분리막의 열수축율 평가 전후 상태를 나타낸 사진 이미지를 나타낸 것으로서, 두 번의 실험 모두 수축율 0%를 나타내었다.
비교예 2의 각 시편 Mean Force (N)
#1 1.192
#2 0.285
#3 0.048
#4 0.815
#5 1.084
한편, 도 2에서 확인된 바와 같이 비교예 2에서 수득된 동일한 분리막에서 유래한 분리막 시편 #1 내지 #5는 각 시편의 distance 별 접착력에서도 균일성이 낮았다. 또한, 상기 [표 2]에서 정리한 바와 같이 각 시편의 Mean Force를 계산한 결과에서도 일정한 접착력의 재현이 어려운 것을 확인하였다.
한편, 아래 실시예 2 내지 실시예 4 및 비교예 4의 분리막 표면의 SEM 이미지를 각각 도 4a, 도 4b, 도 4c 및 도 4d에 나타내었다. 이를 확인해 보면 PMMA의 함량이 증가할수록 바인더 수지 조성물의 분리막 표면쪽으로의 상분리가 잘 일어나지 않아 표면부의 바인더 수지 조성물의 함량이 낮았다. 이로부터 PMMA 등 제2 바인더 수지의 함량이 과도하게 높은 것은 접착력 저하의 원인이 될 수 있다는 점을 확인하였다.

Claims (11)

  1. 다공성 분리막 기재 및 상기 기재의 표면에 형성된 다공성 코팅층을 포함하는 전기화학소자용 분리막이며,
    상기 다공성 코팅층은 무기물 입자 및 바인더 수지를 중량비를 기준으로 약 50:50 내지 99:1의 비율로 포함하며
    상기 바인더 수지는 제1 및 제2 바인더 수지를 포함하며,
    상기 제1 바인더 수지는 유리 전이 온도(Tg) 30℃ 내지 60℃이며 극성기를 갖는 에틸렌계 고분자 수지인 것이며,
    제2 바인더 수지는 유리 전이 온도(Tg)가 80℃ 내지 120℃인 아크릴계 바인더 수지인 것인 전기화학소자용 분리막.
  2. 제1항에 있어서,
    상기 바인더 수지는 제3 바인더 수지를 더 포함하며, 상기 제3 바인더 수지는 분자량(Mw)가 50만 이하이며, 주쇄에 시아노기가 결합된 비닐계 고분자인 것인 전기화학소자용 분리막.
  3. 제1항에 있어서,
    상기 제1 바인더 수지는 상기 바인더 수지 100wt% 대비 50wt% 내지 90wt%의 함량으로 포함되고, 상기 제2 바인더 수지는 상기 바인더 수지 100wt% 대비 10wt% 내지 50wt%의 함량으로 포함되는 것인 전기화학소자용 분리막.
  4. 제2항에 있어서,
    상기 제 3 바인더 수지는 상기 바인더 수지 100wt% 중 6wt% 이하의 함량으로 포함되는 것인 전기화학소자용 분리막.
  5. 제1항에 있어서,
    상기 제1 고분자 수지는 분자량(Mw)가 10만 내지 50만이며, 하기 화학식 1로 표시되는 폴리비닐아세테이트(PVAc)를 포함하며, 하기 n은 1 이상의 정수인 것인 전기화학소자용 분리막:
    [화학식 1]
    Figure PCTKR2021004306-appb-img-000006
    .
  6. 제1항에 있어서,
    상기 제2 고분자 수지는 하기 화학식 2로 표시되는 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA)를 포함하며 하기 x는 1 이상의 정수인 것인 전기화학소자용 분리막:
    [화학식 2]
    Figure PCTKR2021004306-appb-img-000007
    .
  7. 제2항에 있어서,
    상기 제3 바인더 수지는 폴리아크릴로니트릴(polyacrylonitrile, PAN)을 포함하는 것인 전기화학소자용 분리막.
  8. 제2항에 있어서,
    상기 제1 고분자 수지는 분자량(Mw)가 10만 내지 50만이며, 하기 화학식 1로 표시되는 폴리비닐아세테이트(PVAc)를 포함하며, 하기 n은 1 이상의 정수인 것인 전기화학소자용 분리막:
    [화학식 1]
    Figure PCTKR2021004306-appb-img-000008
    .
  9. 다공성 분리막 기재 및 상기 기재의 표면에 형성된 다공성 코팅층을 포함하는 전기화학소자용 분리막이며,
    상기 다공성 코팅층은 무기물 입자 및 바인더 수지를 중량비를 기준으로 약 50:50 내지 99:1의 비율로 포함하며
    상기 바인더 수지는 제1, 제2 및 제3 바인더 수지를 포함하며,
    상기 제1 바인더 수지는 유리 전이 온도(Tg) 30℃ 내지 60℃이며, 폴리비닐아세테이트(PVAc)를 포함하고,
    상기 제2 바인더 수지는 유리 전이 온도(Tg)가 80℃ 내지 120℃이고, 폴리메틸메타크릴레이트(Polymethylmethacrylate, PMMA)를 포함하며,
    상기 제3 바인더 수지는 폴리비닐아세테이트(PVAc)를 포함하는 것인 전기화학소자용 분리막.
  10. 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하며, 상기 분리막은 제1 항 내지 제8항 중 어느 한 항에 따른 것인 전기화학소자.
  11. 제10항에 따른 전기화학소자를 포함하는 리튬이온 이차 전지.
PCT/KR2021/004306 2020-04-06 2021-04-06 전기화학소자용 분리막 및 이를 제조하는 방법 WO2021206431A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022557180A JP7476339B2 (ja) 2020-04-06 2021-04-06 電気化学素子用の分離膜及びその製造方法
US17/917,156 US20230163413A1 (en) 2020-04-06 2021-04-06 Separator for electrochemical device and method for manufacturing same
EP21783718.6A EP4131623A4 (en) 2020-04-06 2021-04-06 ELECTROCHEMICAL ELEMENT SEPARATOR AND METHOD FOR PRODUCING THE SAME
CN202180024703.6A CN115336097B (zh) 2020-04-06 2021-04-06 用于电化学装置的隔板和制造该隔板的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0041791 2020-04-06
KR20200041791 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021206431A1 true WO2021206431A1 (ko) 2021-10-14

Family

ID=78023792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004306 WO2021206431A1 (ko) 2020-04-06 2021-04-06 전기화학소자용 분리막 및 이를 제조하는 방법

Country Status (6)

Country Link
US (1) US20230163413A1 (ko)
EP (1) EP4131623A4 (ko)
JP (1) JP7476339B2 (ko)
KR (1) KR20210124087A (ko)
CN (1) CN115336097B (ko)
WO (1) WO2021206431A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115398735B (zh) * 2020-04-14 2024-09-06 株式会社Lg新能源 用于电化学装置的复合隔板和制造其的方法
KR20240047634A (ko) * 2022-10-05 2024-04-12 주식회사 엘지에너지솔루션 전기화학소자용 분리막, 이의 제조방법 및 이를 포함하는 전기화학소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060072065A (ko) * 2004-12-22 2006-06-27 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR20150059621A (ko) * 2013-11-21 2015-06-01 삼성에스디아이 주식회사 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지
KR20200034470A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067778A1 (ko) * 2018-09-28 2020-04-02 주식회사 엘지화학 전기화학소자용 분리막 및 이를 제조하는 방법
KR20200041791A (ko) 2018-10-12 2020-04-22 가부시키가이샤 에바라 세이사꾸쇼 기판 세정 부재 및 기판 세정 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
WO2012050152A1 (ja) * 2010-10-13 2012-04-19 日立マクセル株式会社 非水電解液電池用セパレータおよび非水電解液電池
KR20130083211A (ko) * 2012-01-12 2013-07-22 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
KR20140139292A (ko) * 2013-05-27 2014-12-05 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
KR101938385B1 (ko) * 2014-12-08 2019-04-11 주식회사 엘지화학 바인더 고분자 층을 갖는 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
KR101751443B1 (ko) * 2015-10-13 2017-06-27 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
KR102496375B1 (ko) * 2015-11-20 2023-02-06 삼성전자주식회사 리튬전지용 전극 복합분리막 어셈블리 및 이를 포함한 리튬전지
PL3352248T3 (pl) * 2016-04-01 2020-06-29 Lg Chem, Ltd. Separator zawierający warstwę adhezyjną dla urządzenia elektrochemicznego i zespół elektrod go zawierający
WO2018055882A1 (ja) * 2016-09-21 2018-03-29 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN115398735B (zh) * 2020-04-14 2024-09-06 株式会社Lg新能源 用于电化学装置的复合隔板和制造其的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060072065A (ko) * 2004-12-22 2006-06-27 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR20150059621A (ko) * 2013-11-21 2015-06-01 삼성에스디아이 주식회사 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지
KR20200034470A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067778A1 (ko) * 2018-09-28 2020-04-02 주식회사 엘지화학 전기화학소자용 분리막 및 이를 제조하는 방법
KR20200041791A (ko) 2018-10-12 2020-04-22 가부시키가이샤 에바라 세이사꾸쇼 기판 세정 부재 및 기판 세정 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131623A4
SOHN JOON-YONG, IM JONG-SU, SHIN JUNHWA, NHO YOUNG-CHANG: "PVDF-HFP/PMMA-coated PE separator for lithium ion battery", JOURNAL OF SOLID STATE ELECTROCHEMISTRY, SPRINGER, BERLIN,, DE, vol. 16, no. 2, 1 February 2012 (2012-02-01), DE , pages 551 - 556, XP055845866, ISSN: 1432-8488, DOI: 10.1007/s10008-011-1379-7 *
YONG MIN LEE, NAM-SOON CHOI, JE AN LEE, WAN-HO SEOL, KI-YUN CHO, HO-YOUNG JUNG, JUN-WOO KIM, JUNG-KI PARK: "Electrochemical effect of coating layer on the separator based on PVdF and PE non-woven matrix", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 146, no. 1-2, 1 August 2005 (2005-08-01), AMSTERDAM, NL, pages 431 - 435, XP055536432, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2005.03.047 *

Also Published As

Publication number Publication date
US20230163413A1 (en) 2023-05-25
CN115336097B (zh) 2024-05-03
JP2023518499A (ja) 2023-05-01
EP4131623A4 (en) 2023-11-22
KR20210124087A (ko) 2021-10-14
EP4131623A1 (en) 2023-02-08
JP7476339B2 (ja) 2024-04-30
CN115336097A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2020067778A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2020013675A1 (ko) 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021210922A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2020013671A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021101221A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2021029629A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2019112353A1 (ko) 리튬 이온 이차 전지용 분리막 및 이를 포함하는 리튬 금속 전지
WO2021206431A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2019078650A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022045858A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2022060110A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2021034060A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2019240501A1 (ko) 무기 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2023167477A1 (ko) 리튬이차전지용 분리막 및 그의 제조방법
WO2023027558A1 (ko) 전기화학소자용 분리막, 이를 포함하는 전극 조립체 및 전기화학소자
WO2022235126A1 (ko) 분리막용 다공성 기재 및 이를 포함하는 전기화학소자용 분리막
WO2020091396A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021167411A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2024210347A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2024181687A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557180

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021783718

Country of ref document: EP

Effective date: 20221025

NENP Non-entry into the national phase

Ref country code: DE