WO2019078650A1 - 세퍼레이터 및 이를 포함하는 전기화학소자 - Google Patents

세퍼레이터 및 이를 포함하는 전기화학소자 Download PDF

Info

Publication number
WO2019078650A1
WO2019078650A1 PCT/KR2018/012363 KR2018012363W WO2019078650A1 WO 2019078650 A1 WO2019078650 A1 WO 2019078650A1 KR 2018012363 W KR2018012363 W KR 2018012363W WO 2019078650 A1 WO2019078650 A1 WO 2019078650A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
separator
adhesive resin
resin particles
diameter
Prior art date
Application number
PCT/KR2018/012363
Other languages
English (en)
French (fr)
Inventor
권혜진
성인혁
김명수
윤수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202310407484.0A priority Critical patent/CN116526071A/zh
Priority to CN201880045007.1A priority patent/CN110832672B/zh
Priority to EP18867385.9A priority patent/EP3675227A4/en
Priority to US16/629,218 priority patent/US11469476B2/en
Publication of WO2019078650A1 publication Critical patent/WO2019078650A1/ko
Priority to US17/893,362 priority patent/US11699831B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator that can be used in an electrochemical device such as a lithium secondary battery and an electrochemical device including the separator.
  • Electrochemical devices have attracted the greatest attention in this respect, among which the development of rechargeable secondary batteries has become a focus of attention. In recent years, in order to improve the capacity density and specific energy in developing such batteries, And research and development on the design of the battery.
  • the lithium secondary battery developed in the early 1990s has advantages such as higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd and sulfuric acid-lead batteries using an aqueous electrolyte solution .
  • Such electrochemical devices are produced in many companies, but their safety characteristics are different. It is very important to evaluate the safety and safety of such an electrochemical device. The most important consideration is that the electrochemical device should not injure the user in case of malfunction.
  • the safety standard strictly regulates the ignition and fuming in the electrochemical device.
  • the polyolefin-based porous polymer base usually used as a separator of an electrochemical device exhibits extreme heat shrinkage behavior at a temperature of 100 ° C or higher owing to the normal characteristics of the manufacturing process including material properties and elongation, I caused a short circuit.
  • a separator in which a porous coating layer is formed by coating a mixture of an excess of inorganic particles and a binder polymer on at least one surface of a porous polymer substrate having a plurality of pores has been proposed .
  • Such a porous coating layer can be formed using an aqueous slurry in which a particulate binder polymer is dispersed in an aqueous solvent or an organic slurry in which a non-particulate binder polymer is dissolved in an organic solvent.
  • the resistance of the separator is very low as compared with the case where an organic slurry is used.
  • Another object of the present invention is to provide an electrochemical device comprising the separator.
  • One aspect of the invention provides a separator according to the embodiments below.
  • a porous polymer substrate having a plurality of pores having a plurality of pores
  • an adhesive layer formed on at least one surface of the separator base and including a plurality of second inorganic particles and adhesive resin particles,
  • the weight ratio of the second inorganic particles to the adhesive resin particles is from 5:95 to 60:40,
  • the diameter of the adhesive resin particle with respect to the diameter of the second inorganic particle is 1.1 to 3.5 times the diameter of the separator.
  • the diameter of the adhesive resin particle with respect to the diameter of the second inorganic particle is 1.2 to 3 times the diameter of the separator.
  • the third embodiment is, in the first or second embodiment,
  • the diameter of the adhesive resin particle with respect to the diameter of the second inorganic particle is 1.2 to 1.3 times the diameter of the separator.
  • the fourth embodiment is, in any of the first to third embodiments,
  • the second inorganic particles have an average diameter of 100 to 700 nm.
  • the fifth embodiment is, in any of the first to fourth embodiments,
  • weight ratio of the first inorganic particles to the binder polymer is from 90:10 to 99: 1.
  • the sixth embodiment is, in either of the first to fifth embodiments,
  • weight ratio of the second inorganic particles to the adhesive resin particles is from 10:90 to 50:50.
  • the seventh embodiment is, in any one of the first through sixth embodiments,
  • the binder polymer is selected from the group consisting of polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichlorethylene, polymethylmethacrylate, A copolymer of methyl methacrylate and ethylhexyl acrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, but are not limited to, polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, Cellulose acetate propionate But are not limited to, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoe
  • the eighth embodiment is, in any of the first to seventh embodiments,
  • the adhesive resin particles may be at least one selected from the group consisting of styrene butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylonitrile-butadiene-styrene rubber, And a copolymer of methyl methacrylate, polyacrylonitrile, polyvinylchloride, polyvinylidene fluoride, polyvinylalcohol, styrene, and polystyrene. A polycyanoacrylate, or a mixture of two or more thereof.
  • SBR styrene butadiene rubber
  • acrylonitrile-butadiene rubber acrylonitrile-butadiene-styrene rubber
  • a copolymer of methyl methacrylate polyacrylonitrile
  • polyvinylchloride polyvinylidene fluoride
  • polyvinylalcohol polyvinylalcohol
  • styrene and polystyrene
  • the ninth embodiment is, in any one of the first through eighth embodiments,
  • the thickness of the porous coating layer is 1 to 10 mu m, and the thickness of the adhesive layer is 0.5 to 4 mu m.
  • the tenth embodiment is, in any of the first through ninth embodiments,
  • porous polymer base is a polyolefin-based porous polymer base.
  • Another aspect of the present invention provides an electrochemical device according to the following embodiments.
  • An electrochemical device comprising a cathode, an anode, and a separator interposed between the cathode and the anode, wherein the separator is a separator according to any one of the first to tenth embodiments.
  • the twelfth embodiment is, in the eleventh embodiment,
  • the electrochemical device is a lithium secondary battery.
  • the pores of the adhesive layer are maintained even after the high temperature / pressure lamination process.
  • the content and size of the inorganic particles and the adhesive resin particles in the adhesive layer it is possible to improve the adhesive force between the separator and the electrode, and at the same time to decrease the resistance increase.
  • 1A to 1C are SEM images showing the surface of an adhesive layer according to a comparative example after the adhesive layer coating, the lamination process, and the electrolyte solution pouring, respectively.
  • connection when a part is referred to as being “connected” to another part, it includes not only “directly connected” but also “indirectly connected” with another part in between .
  • connection includes an electrochemical connection as well as a physical connection.
  • &quot comprise " and / or " comprising " when used in this specification are taken to specify the presence of stated forms, numbers, steps, operations, elements, elements and / And does not preclude the presence or addition of one or more other features, integers, operations, elements, elements, and / or groups.
  • " combination (s) thereof " included in the surface of the form of a marker means one or more mixtures or combinations selected from the group consisting of the constituents described in the expression of the marker form, Quot; means at least one selected from the group consisting of the above elements.
  • an adhesive layer containing an adhesive resin was applied and dried on the separator base.
  • the resistance of the battery after the process becomes higher than the resistance of the separator itself.
  • the increase in resistance is higher in the case of the adhesive layer formed by using the slurry in which the particulate binder polymer is dispersed in water, compared with the case of the adhesive layer formed by applying and drying the organic slurry in which the binder polymer is dissolved in the organic solvent.
  • Figs. 1A to 1C are diagrams illustrating the above-described problem.
  • a slurry in which adhesive resin particles (or particulate binder polymer) is dispersed in water is applied on a separator base and dried.
  • the adhesive resin in the adhesive layer formed as described above is in the form of particles. Since such adhesive resin particles are subjected to point bonding, the resistance is lower than that of the adhesive layer formed by the organic slurry before electrode lamination.
  • the resistivity of the organic slurry was about 1.66 ?. This seems to be attributed to the difference between the adhesive resin particles that make point-bonding and the non-particle-type binder polymer that is face-bonded.
  • the separator provided with the adhesive layer by the aqueous slurry containing the adhesive resin particles exhibits a higher rate of resistance increase of the battery than in the case of using the organic slurry. This is because some of the adhesive resin particles are melted and the pores between the adhesive resin particles that existed before disappear. As a result, there is a problem that the separator provided with the adhesive layer including the adhesive resin particles has a higher resistance than the separator having the adhesive layer formed using the organic slurry after the liquid electrolyte injection (Fig.
  • a separator comprising: a porous polymer substrate having a plurality of pores; and a plurality of first inorganic particles and a plurality of inorganic particles formed on at least one surface of the porous polymer substrate, A separator base including a porous coating layer disposed on at least a part of a surface of the first inorganic particle and including a binder polymer for connecting and fixing the inorganic particles; And an adhesive layer formed on at least one surface of the separator base and including a plurality of second inorganic particles and adhesive resin particles, wherein the weight ratio of the second inorganic particles to the adhesive resin particles is from 5:95 to 60: 40, and the diameter ratio of the adhesive resin particles to the second inorganic particles is from 1.1 times to 3.5 times.
  • the separator according to one aspect of the present invention includes the second inorganic particles and the adhesive resin particles in the adhesive layer.
  • the pores in the adhesive layer can be retained even after the lamination process, and the resistance increase of the battery can be further reduced. This seems to be due to the heat resistant properties of the second inorganic particles and the high melt temperature properties that do not melt at the lamination process temperature.
  • the weight ratio of the second inorganic particles to the adhesive resin particles is 5:95 to 60:40, and preferably 10:90 to 50:50.
  • the weight ratio of the second inorganic particles to the adhesive resin particles is in the above range, the adhesive strength between the electrode and the separator is excellent, and the resistance between the resistance of the separator itself and the resistance of the battery after the lamination process is lowered. That is, when the second inorganic particles are not present, the pores are not maintained after the lamination process as described above, and the resistance of the battery rapidly increases. On the other hand, if the content of the second inorganic particles is significantly larger than the content of the adhesive resin particles, the adhesive force between the electrode and the separator is deteriorated and the assemblability is deteriorated.
  • the diameter of the adhesive resin particle with respect to the diameter of the second inorganic particle is 1.1 to 3.5 times, more specifically 1.2 to 3 times, more specifically 1.2 to 1.3 It can be a ship. At this time, 1.2 times to 1.3 times is preferable for use as a separator since the adhesive strength is excellent and the resistance value is relatively low.
  • the diameter ratio of the adhesive resin particles to the second inorganic particles is controlled in the above-described range to complete the separator having a low battery resistance and an excellent adhesive force.
  • the adhesive resin particles used for forming the adhesive layer are dispersed in the form of particles when dispersed in water and exist in an emulsion or suspension state, and have a particle shape upon drying.
  • the adhesive resin particle is at least one selected from the group consisting of rubber, water-dispersible (meth) acrylic polymer, acrylic copolymer, polyacrylonitrile, polyvinylchloride, poly At least one of polyvinylidene fluoride, polyvinylalcohol, styrene and polycyanoacrylate, or a mixture of two or more of them may be used. So that the inorganic particles can be effectively bonded even in a small amount.
  • Non-limiting examples of rubbers that can be used in the present invention include styrene butadiene rubber (SBR), acrylonitrile-butadiene rubber, and acrylonitrile-butadiene rubber -styrene rubber) or a mixture of two or more thereof.
  • SBR styrene butadiene rubber
  • acrylonitrile-butadiene rubber acrylonitrile-butadiene rubber
  • acrylonitrile-butadiene rubber -styrene rubber acrylonitrile-butadiene rubber
  • the water-dispersible (meth) acrylic polymer may be a copolymer of butyl acrylate and methyl methacrylate, a copolymer of poly (ethyl acrylate), poly (ethyl methacrylate), poly (propyl acrylate), poly (propyl methacrylate) Polybutyl methacrylate, polybutyl methacrylate, polyhexyl acrylate, polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, and polyla Methacrylate, and methacrylate, or a mixture of two or more thereof.
  • the acrylic copolymer may be a copolymer of butyl methacrylate and butyl acrylate in a molar ratio of 25:75 to 50:50.
  • the adhesive resin particle may be a core-shell structure.
  • the adhesive resin particles include an acrylic copolymer in which butyl acrylate and methyl methacrylate are polymerized in the core portion, and the shell portion may include styrene.
  • the average diameter of the adhesive resin particles may be 50 nm to 1200 nm, or 200 nm to 1100 nm.
  • the average diameter of the adhesive resin particles is less than 50 nm, there is a problem that the dispersibility problem and the adhesive force between the electrode and the separator are inferior.
  • the average diameter exceeds 1200 nm, the dispersibility is poor and the adhesive resin particle synthesis itself is difficult .
  • the adhesive layer when a porous coating layer is formed on both surfaces of the porous polymer substrate, the adhesive layer may be formed on each upper surface of the porous coating layer.
  • the adhesive layer when the porous coating layer is formed only on one surface of the porous polymer substrate, the adhesive layer may be formed directly on the upper surface of the porous coating layer and on the other surface of the porous polymer substrate on which the porous coating layer is not formed.
  • the adhesive layer may be formed on both sides of the separator base.
  • the porous polymer substrate may be specifically a porous polymer film substrate or a porous polymer nonwoven substrate.
  • the porous polymeric film substrate may be a porous polymeric film made of a polyolefin such as polyethylene or polypropylene.
  • the polyolefin porous polymeric film substrate exhibits a shutdown function at a temperature of, for example, 80 to 130 ° C.
  • the polyolefin porous polymer film may be formed by mixing polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene and ultra high molecular weight polyethylene, .
  • polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, and polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene and ultra high molecular weight polyethylene, .
  • porous polymeric film substrate may be produced by molding various polymeric materials such as polyester in addition to polyolefin.
  • the porous polymeric film substrate may have a structure in which two or more film layers are laminated, and each film layer may be formed of a polymer such as polyolefin or polyester described above, or a polymer in which two or more polymers are mixed have.
  • porous polymer film base and the porous nonwoven base material may be formed of a material selected from the group consisting of polyethyleneterephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, Polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylenesulfide, polyethylenenaphthalene, polyetherketone, polyetherketone, polyetherketone, And the like may be used alone or in the form of a mixture thereof.
  • the thickness of the porous polymer base material is not particularly limited, but it is specifically 1 to 100 ⁇ ⁇ , more specifically 5 to 50 ⁇ ⁇ .
  • the pore size and porosity present in the porous polymer base material are also not particularly limited, Mu m and 10 to 95%.
  • a separator according to an aspect of the present invention is formed on at least one surface of the porous polymer base material and includes a plurality of first inorganic particles and a part or all of the surface of the first inorganic particles, And a separator base including a porous coating layer containing a binder polymer that fixes the binder polymer.
  • the first inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the first inorganic particles usable in the present invention are not particularly limited as long as oxidation and / or reduction reaction does not occur in the operating voltage range of the applied electrochemical device (for example, 0 to 5 V based on Li / Li +). Particularly, when inorganic particles having a high dielectric constant are used as the first inorganic particles, the dissociation of the electrolyte salt, for example, the lithium salt in the liquid electrolyte, can be increased and the ion conductivity of the electrolyte can be improved.
  • the first inorganic particles may be inorganic particles having a dielectric constant of 5 or more, inorganic particles having lithium ion transporting ability, and mixtures thereof.
  • the inorganic particles having a dielectric constant of 5 or more include Al 2 O 3 , SiO 2 , ZrO 2 , AlOOH, TiO 2 , BaTiO 3 , Pb (Zr x Ti 1 -x ) O 3 (PZT, Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 - x PbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZO 3 and SiC And may be a selected one or a mixture of two or more.
  • the inorganic particles having lithium ion transferring ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , (Li x N y , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 2), SiS 2 series glass (Li x Si, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ y S z
  • the average particle diameter of the first inorganic particles is not particularly limited, but is preferably in the range of 0.001 to 10 mu m for the formation of the coating layer of uniform thickness and the adequate porosity. If it is less than 0.001 mu m, the dispersibility may be deteriorated, and if it exceeds 10 mu m, the thickness of the formed coating layer may increase.
  • the binder polymer used for forming the porous coating layer may be a polymer commonly used in the art for forming a porous coating layer.
  • a polymer having a glass transition temperature (T g ) of -200 to 200 can be used because it can improve the mechanical properties such as flexibility and elasticity of the finally formed porous coating layer.
  • T g glass transition temperature
  • Such a binder polymer faithfully performs a binder function to connect and stably fix inorganic particles, thereby contributing to prevention of deterioration of mechanical properties of the separator into which the porous coating layer is introduced.
  • the binder polymer does not necessarily have ion conductivity
  • the performance of the electrochemical device can be further improved by using a polymer having ion conductivity. Therefore, the binder polymer having a high permittivity constant can be used.
  • the dissociation degree of the salt in the electrolytic solution depends on the permittivity constant of the solvent of the electrolyte. Therefore, the higher the permittivity constant of the binder polymer, the better the salt dissociation degree in the electrolyte.
  • the binder polymer may have a characteristic of exhibiting a high degree of swelling of the electrolyte due to gelation upon impregnation with a liquid electrolyte.
  • the solubility parameter i.e. hildeo brand solubility parameter (Hildebrand solubility parameter) of 15 to 45 MPa 1/2 or 15 to 25 MPa 1/2, and 30 to 45 MPa 1/2 range of the binder polymer. Therefore, hydrophilic polymers having many polar groups can be used more than hydrophobic polymers such as polyolefins. If the solubility is more than 15 MPa 1/2 and less than 45 MPa 1/2, because it can be difficult to swell (swelling) by conventional liquid electrolyte batteries.
  • Non-limiting examples of such a binder polymer include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichlorethylene, polymethylmethacrylate, But are not limited to, polymethylmethacrylate, polyethyllexyl acrylate, polybutylacrylate, copolymers of methyl methacrylate and ethylhexyl acrylate, polyacrylonitrile, polyvinylpyrrolidone polyvinylpyrrolidone, polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate cellulose acetate butyrate), cellulose Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan
  • the weight ratio of the first inorganic particles to the binder polymer may be from 90:10 to 99: 1.
  • the content of the binder polymer is increased, and the problem that the pore size and porosity of the formed coating layer are reduced can be prevented.
  • the problem of weakening the fillability of the coating layer formed due to the small amount can be solved.
  • the thickness of the porous coating layer is not particularly limited, but is specifically 1 to 10 ⁇ , more specifically, 1.5 to 6 ⁇ , and the porosity of the porous coating layer is also preferably 35 to 65% though not particularly limited.
  • the separator according to an aspect of the present invention may further include other additives in addition to the first inorganic particles and the binder polymer as the porous coating layer component.
  • a separator according to an aspect of the present invention includes an adhesive layer formed on at least one surface of the separator base and including a plurality of second inorganic particles and adhesive resin particles.
  • the second inorganic particles used in the adhesive layer of the present invention the same requirements as those of the first inorganic particles used in the porous coating layer can be applied.
  • the second inorganic particles used in the adhesive layer include Al 2 O 3 , SiO 2 , ZrO 2 , AlOOH, TiO 2 , BaTiO 3 , Pb (Zr x Ti 1 -x ) O 3 (PZT, x ⁇ 1), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3) O 3 - x PbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1), hafnia (HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZO 3 and SiC, or the like,
  • the second inorganic particle diameter may be 100 to 700 nm, specifically 200 to 600 nm, more particularly 250 to 500 nm.
  • the thickness of the adhesive layer may be 0.5 to 4 ⁇ .
  • the separator according to an aspect of the present invention may further include other additives in addition to the second inorganic particles and the adhesive resin particles described above as the adhesive layer component.
  • a method of manufacturing a separator according to an aspect of the present invention includes:
  • a porous coating layer including a plurality of first inorganic particles and a binder polymer on at least one surface of a porous polymer substrate having a plurality of pores to prepare a separator base;
  • the weight ratio of the second inorganic particles to the adhesive resin particles is from 5:95 to 60:40,
  • the diameter ratio of the adhesive resin particles to the second inorganic particles is 1.1 to 3.5 times.
  • a binder polymer is dissolved in a solvent, and then the first inorganic particles are added and dispersed to prepare a composition for forming a porous coating layer.
  • the first inorganic particles may be added in a state of being crushed so as to have a predetermined diameter in advance, or the first inorganic particles may be added to the solution of the binder polymer, and then the first inorganic particles may be formed into a predetermined diameter It may be dispersed by crushing while being controlled.
  • the method for coating the porous polymer substrate with the composition for forming a porous coating layer is not particularly limited, but it is preferable to use a slip coating method or a dip coating method.
  • the slurry coating is capable of adjusting the thickness of the coating layer according to the flow rate supplied from the metering pump in such a manner that the composition supplied through the slat die is applied to the entire surface of the substrate.
  • dip coating is a method of coating the base material in a tank containing the composition to control the thickness of the coating layer according to the concentration of the composition and the speed at which the base material is taken out from the composition tank. In order to control the coating thickness more accurately, Can be metered later.
  • porous polymer substrate coated with the composition for forming a porous coating layer is dried using a drier such as an oven to form a porous coating layer formed on at least one surface of the porous polymer substrate.
  • the first inorganic particles are charged and bound to each other by the binder polymer in a state where they are in contact with each other, whereby an interstitial volume can be formed between the first inorganic particles, 1
  • the interstitial volume between the inorganic particles can be empty to form pores.
  • the binder polymer may adhere them to each other such that the inorganic particles can remain bonded to each other, for example, the binder polymer can connect and fix between the first inorganic particles.
  • the solvent used herein is preferably similar to the binder polymer to be used and has a low solubility index and a low boiling point. This is to facilitate uniform mixing and subsequent solvent removal.
  • usable solvents include water, alcohols having 2 to 5 carbon atoms, acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, methyl ethyl ketone and cyclohexane , Or a mixture of two or more thereof.
  • a dispersion in which a large number of second inorganic particles and adhesive resin particles are dispersed in water is applied and dried on at least one surface of the separator base to form an adhesive layer.
  • a composition for forming an adhesive layer can be prepared by dispersing the adhesive resin particles in water and then adding and dispersing the second inorganic particles.
  • the adhesive layer forming method may be applied to the same requirements as the porous coating layer forming method.
  • Non-limiting examples of the adhesive layer forming method include a slot coating method and a dip coating method, and may be the same as or different from the method for forming the porous coating layer.
  • the separator base coated with the composition for forming an adhesive layer is dried using a drier such as an oven to form an adhesive layer formed on at least one surface of the separator base.
  • An electrochemical device includes a cathode, an anode, a separator interposed between the cathode and the anode, and the separator is a separator according to the above-described embodiment of the present invention.
  • Such an electrochemical device includes all devices that perform an electrochemical reaction, and specific examples thereof include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or super capacitor devices.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery is preferable.
  • the cathode and the anode both to be used together with the separator of the present invention are not particularly limited, and the electrode active material may be bound to the current collector according to a conventional method known in the art.
  • the cathode active material include, but are not limited to, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, or a combination thereof It is preferable to use a lithium composite oxide.
  • the anode active material a conventional anode active material that can be used for an anode of an electrochemical device can be used.
  • lithium metal or a lithium alloy, carbon, petroleum coke, activated carbon, Lithium-adsorbing materials such as graphite or other carbon-based materials and the like are preferable.
  • Non-limiting examples of the cathode current collector include aluminum, nickel, or a combination thereof, and examples of the anode current collector include copper, gold, nickel, or a copper alloy or a combination thereof Foil and so on.
  • the electrolytic solution which can be used in the electrochemical device of the present invention is a salt having a structure such as A + B - , wherein A + includes an alkali metal cation such as Li + , Na + , K + - it is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - anion, or a salt containing an ion composed of a combination of propylene carbonate (PC) such as, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl (DMP), dimethylsulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl
  • the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and required properties of the final product. That is, it can be applied before assembling the cell or at the final stage of assembling the cell.
  • An anode slurry was prepared by adding artificial graphite, carbon black, CMC and a binder (polyvinylidene fluoride, PVDF) in water at a weight ratio of 95.8: 1: 1.2: 2, respectively, and mixing.
  • the prepared anode slurry was coated on a copper foil (Cu foil) with a thickness of 50 mu m as an anode current collector at a capacity of 3.1 mAh / cm < 2 > to form a thin electrode plate, dried at 135 for 3 hours or more, To prepare an anode.
  • LiCoO 2 , a conductive material (carbon black) and a binder (PVDF) were added to N-methyl-2-pyrrolidone (NMP) at a weight ratio of 96: 2: 2 respectively and mixed to prepare a cathode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the cathode slurry thus prepared was coated on a 20 mu m-thick aluminum foil as a cathode current collector at a dose of 3.1 mAh / cm < 2 > to prepare a cathode.
  • the binder polymer was an acrylic copolymer, and the acrylic copolymer was a copolymer of methyl methacrylate and ethylhexyl acrylate in a molar ratio of 25:75.
  • the content of the first inorganic particles and the binder polymer in the slurry was 95: 5 by weight.
  • the slurry was coated on one side of a polyethylene porous substrate using a doctor blade and dried to prepare a separator base having a porous coating layer formed thereon. The thickness of the porous coating layer was 4 ⁇ .
  • a slurry for forming an adhesive layer was applied to the surface of the separator base prepared in 3) and dried to form an adhesive layer.
  • the adhesive layer was prepared as follows.
  • the Al 2 O 3 at room temperature for 2 inorganic particles, the adhesive resin particles (LP11, Zeon, the adhesive resin particles are butyl acrylate and methylmethacrylate of a copolymer of methacrylate core particles having an a styrene shell ) was uniformly dispersed in water to prepare a slurry for forming an adhesive layer.
  • the content of the second inorganic particles and the adhesive resin particles in the slurry for forming an adhesive layer was 50: 50 by weight.
  • the slurry for forming an adhesive layer was applied to the porous coating layer of the separator base prepared in 2) at a dose of 1.0 g / m 2 and dried to form an adhesive layer on the surface of the separator base.
  • the particle diameter of the second inorganic particles was 500 nm and the particle size of the adhesive resin particles was 650 nm.
  • the particle diameter of the binder polymer particle and the particle diameter ratio of the inorganic particle were 1.3.
  • the thickness of the adhesive layer was 2 ⁇ ⁇ .
  • the separator and the electrode were laminated so that the anode active material layer of the adhesive layer and the electrode of the 1) face each other, and then rolled at 90 DEG C and 8.5 MPa for 1 second to prepare an electrode assembly in which the separator and the anode were laminated.
  • An electrode assembly was prepared in the same manner as in Example 1 except that the weight ratio of the second inorganic particles and the adhesive resin particles in the slurry for forming an adhesive layer and the particle diameters of the second inorganic particles and the adhesive layer resin particles were changed as shown in Table 1 .
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 The content of the second inorganic particles (wt%) 50 10 50 50 50 50 Content of adhesive resin particles (wt%) 50 90 50 50 50 50 Particle size (nm) of the second inorganic particle 500 500 250 500 250 Particle diameter (nm) of the adhesive resin particles 650 650 300 1000 750 500 Particle diameter of the adhesive resin particle / particle diameter of the second inorganic particle 1.3 1.3 1.2 2 3 2 Separator - Anode adhesion (gf / 15mm) 31 38 36 39 38 40 Separator resistance (a) ( ⁇ ) (one separator) 1.00 1.17 1.11 1.23 1.13 1.11 Resistor (a) ( ⁇ ) after separator lamination (1 separator + 1 anode) 4.30 5.50 4.46 5.15 5.42 5.22 (%) ((B-a) / a * 100) 330% 370% 302% 360% 380% 370% Porous Coating Layer + Thickness of Adhesive Layer ( ⁇ ⁇ ) 6 5.9 6 6.5 6.3
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Comparative Example 11
  • the content of the second inorganic particles (wt%) 0 70 50 50 50 50 50 50 50 50 Content of adhesive resin particles (wt%) 100 30 50 50 50 50 50 50 50 Particle size (nm) of the second inorganic particles - 500 500 500 500 250 500 500 250 1500 250 Particle diameter (nm) of the adhesive resin particles 650 650 300 200 130 130 500 400 200 1000 1000 Particle diameter of the adhesive resin particle / particle diameter of the second inorganic particle - 1.3 0.6 0.4 0.26 0.52 1.0 0.8 0.8 0.67 4 Separator - Anode adhesion (gf / 15mm) 40 8 7 4 4 7 23 11 12 5 42 Separator resistance (a) ( ⁇ ) (one separator) 1.20 0.85 1.07 0.80 1.04 1.10 0.97 0.92 1.05 1.54 1.14 Resistor (a) ( ⁇ ) after
  • Examples 1 to 6 and Comparative Examples 1 to 611 were evaluated for thickness, particle diameter, separator-anode adhesion force (gf / 15 mm), and resistance, respectively, and shown in Tables 1 and 2, respectively.
  • the anode was prepared in the same manner as in Example 1-1) and cut to a size of 15 mm x 100 mm.
  • the separators prepared in Examples 1 to 6 and Comparative Examples 1 to 11 were cut into a size of 15 mm x 100 mm and prepared.
  • the prepared separator and anode were superimposed on each other, sandwiched between PET films of 100 mu m, and adhered using a flat plate press. At this time, conditions of the flat plate press were heated at 90 ⁇ ⁇ under a pressure of 8.5 MPa for 1 second.
  • the ends of the bonded separator and the anode were mounted on a UTM instrument (LLOYD Instrument LF Plus), and the force required to separate the bonded separator was measured by applying a force in both directions at a measuring speed of 300 mm / min.
  • the laminate strength was 30 gf / 15 mm or more, indicating a high adhesion strength to the electrodes.
  • the resistance increase rate before and after lamination with the electrode is about 300%, which is relatively low compared to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

다수의 기공을 갖는 다공성 고분자 기재, 및 상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있는 다공성 코팅층을 포함하는 세퍼레이터 베이스; 및 상기 세퍼레이터 베이스의 적어도 일면 상에 형성되어 있으며, 다수의 제2 무기물 입자 및 접착성 수지 입자를 포함하는 접착층;을 구비하고, 상기 제2 무기물 입자와 접착성 수지의 중량비는 5 : 95 내지 60 : 40이며, 상기 제2 무기물 입자에 대한 접착성 수지 입자의 직경은 1.1배 내지 3.5배인, 세퍼레이터 및 이를 포함하는 전기화학소자를 개시한다. 본 발명은 상기와 같은 특징으로 인하여 세퍼레이터와 전극 간의 접착력이 개선되고, 전극 라미네이션 과정 후에도 접착층의 기공이 유지되며, 전기화학소자의 저항이 개선되는 효과가 있다.

Description

세퍼레이터 및 이를 포함하는 전기화학소자
본 발명은 리튬이차전지 등의 전기화학소자에 이용될 수 있는 세퍼레이터 및 이를 포함하는 전기화학소자에 관한 것이다.
본 출원은 2017년 10월 20일자로 출원된 한국 특허출원 번호 제10-2017-0136464에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안 된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 고분자 기재는 재료적 특성과 연신을 포함하는 제조공정상의 특성으로 인하여 100 ℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 캐소드와 애노드 사이의 단락을 일으켰다.
리튬이차전지 등의 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 코팅층을 형성한 세퍼레이터가 제안되었다.
이러한 다공성 코팅층은 수계 용매에 입자형 바인더 고분자가 분산된 수계 슬러리를 이용하거나, 또는 유기 용매에 비입자형 바인더 고분자가 용해된 유기계 슬러리를 이용하여 형성할 수 있다.
특히 수계 슬러리를 이용하는 경우에는 유기계 슬러리를 이용한 경우에 비해 세퍼레이터의 저항이 매우 낮은 장점이 있다.
그러나, 수계 슬러리를 이용하는 경우에는, 유기계 슬러리를 이용하는 경우와 달리, 용매와 비용매 사이에 상분리 효과가 미비하여 전극과 세퍼레이터 사이의 접착력이 약한 문제가 있다. 이에 따라, 수계 슬러리를 이용하여 형성된 다공성 코팅층 상에는, 세퍼레이터와 전극 간의 접착력을 높이기 위하여 접착층을 별도로 도입하기도 하였다.
그러나, 수계 슬러리를 이용하여 형성된 다공성 코팅층 상에 접착층을 형성하는 경우, 후술하는 문제가 발생하였다. 즉, 세퍼레이터 자체의 저항은 유기계 슬러리를 사용한 경우에 비해 매우 낮으나, 이러한 세퍼레이터를 애노드와 캐소드 사이에 개재시켜 고온/ 가압의 라미네이션 공정을 거치는 경우, 전지의 저항이 유기계 슬러리를 사용한 경우보다 매우 높아지는 문제가 있었다. 이로 인해 출력 면에서도 열위로 나타났다.
따라서 본 발명이 해결하고자 하는 과제는, 다공성 코팅층을 포함하는 세퍼레이터에 있어서, 전극과의 접착력이 개선되고, 동시에 전극 라미네이션 후에도 접착층의 기공이 유지되며, 저항의 증가폭이 크지 않은 세퍼레이터를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 상기 세퍼레이터를 구비하는 전기화학소자를 제공하는 것이다.
본 발명의 일 측면은 하기 구현예들에 따른 세퍼레이터를 제공한다.
제1 구현예는,
다수의 기공을 갖는 다공성 고분자 기재, 및
상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 다수의 제1 무기물 입자 및 상기 제1 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 포함하는 세퍼레이터 베이스; 및
상기 세퍼레이터 베이스의 적어도 일면 상에 형성되어 있으며, 다수의 제2 무기물 입자 및 접착성 수지 입자를 포함하는 접착층;을 구비하고,
상기 제2 무기물 입자와 접착성 수지 입자의 중량비는 5 : 95 내지 60 : 40이며,
상기 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.1배 내지 3.5배인, 세퍼레이터에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.2배 내지 3배인, 세퍼레이터에 관한 것이다.
제3 구현예는, 제1 또는 제2 구현예에 있어서,
상기 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.2 배 내지 1.3배인, 세퍼레이터에 관한 것이다.
제4 구현예는, 제1 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 제2 무기물 입자의 평균 직경은 100 내지 700 nm인, 세퍼레이터에 관한 것이다.
제5 구현예는, 제1 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 제1 무기물 입자와 바인더 고분자의 중량비는 90 : 10 내지 99 : 1인, 세퍼레이터에 관한 것이다.
제6 구현예는, 제1 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 제2 무기물 입자와 접착성 수지 입자의 중량비는 10 : 90 내지 50 : 50인, 세퍼레이터에 관한 것이다.
제7 구현예는, 제1 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 바인더 고분자가 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 메틸메타크릴레이트와 에틸헥실아크릴레이트의 공중합체, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인, 세퍼레이터에 관한 것이다.
제8 구현예는, 제1 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 접착성 수지 입자는 스티렌 부타디엔 고무(Styrene Butadiene Rubber, SBR), 아크릴로니트릴-부타디엔 고무(acrylonitrile-butadiene rubber), 아크릴로니트릴-부타디엔-스티렌 고무(acrylonitrile-butadiene-styrene rubber), 부틸아크릴레이트와 메틸메타크릴레이트의 공중합체, 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리비닐리덴 풀루오라이드(polyvinylidene fluoride), 폴리비닐알콜(polyvinylalcohol), 스타이렌(Styrene), 및 폴리시아노아크릴레이트(polycyanoacrylate)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인, 세퍼레이터에 관한 것이다.
제9 구현예는, 제1 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 다공성 코팅층의 두께가 1 내지 10 ㎛ 이고, 상기 접착층의 두께가 0.5 내지 4 ㎛인, 세퍼레이터에 관한 것이다.
제10 구현예는, 제1 내지 제9 구현예 중 어느 한 구현예에 있어서,
상기 다공성 고분자 기재가 폴리올레핀계 다공성 고분자 기재인, 세퍼레이터에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예들에 따른 전기화학소자를 제공한다.
제11 구현예는,
캐소드, 애노드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터를 포함하는 전기화학소자에 있어서, 상기 세퍼레이터가 제1 구현예 내지 제10 구현예 중 어느 한 구현예의 세퍼레이터인, 전기화학소자에 관한 것이다.
제12 구현예는, 제11 구현예에 있어서,
상기 전기화학소자가 리튬 이차전지인, 전기화학소자에 관한 것이다.
본 발명의 일 실시예에 따르면, 다공성 코팅층 상에 형성된 접착층에 무기물 입자를 함유함으로써 고온/가압의 라미네이션 공정을 거친 후에도 접착층의 기공을 유지하며, 저항 증가폭이 감소되는 효과가 있다.
또한, 접착층 내 무기물 입자와 접착성 수지 입자의 함량 및 크기를 제어함으로써 세퍼레이터와 전극 간의 접착력을 개선하고, 동시에 저항 증가폭을 낮출 수 있다.
도 1a 내지 도 1c는 각각 접착층 코팅 후, 라미네이션 공정 후, 전해액 주액 후의 비교예에 따른 접착층 표면을 나타낸 SEM 이미지이다.
이하, 본 발명을 상세히 설명하도록 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 「연결」되어 있다고 할 때, 이는 「직접적으로 연결되어 있는 경우」뿐만 아니라 그 중간에 다른 부재를 사이에 두고 「간접적으로 연결」되어 있는 경우도 포함한다. 또한, 상기 연결은 물리적 연결뿐만 아니라 전기화학적 연결을 내포한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에서 사용되는 경우 「포함한다(comprise)」 및/또는 「포함하는(comprising) 」은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 마쿠시 형식의 표면에 포함된 「이들의 조합(들)」의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
종래 다공성 고분자 기재 및 상기 다공성 고분자 기재 위에 다공성 코팅층을 구비한 세퍼레이터 베이스에 있어서, 세퍼레이터 베이스와 전극 간의 접착력을 높이기 위해 세퍼레이터 베이스 상에 접착성 수지를 포함하는 접착층을 도포 및 건조하였다.
이러한 접착층을 갖는 세퍼레이터는 고온/가압의 라미네이션 공정을 거치는 경우, 세퍼레이터 자체의 저항에 비해 공정 후 전지의 저항이 높아진다. 이러한 저항 증가폭은 입자형 바인더 고분자가 물에 분산된 슬러리를 이용하여 형성된 접착층의 경우가, 바인더 고분자가 유기 용매에 용해된 유기계 슬러리를 도포 및 건조하여 형성된 접착층의 경우에 비해 높게 나타난다.
도 1a 내지 도 1c는 전술한 문제점을 도식화하여 설명한 것이다. 이하 도 1a을 참조하여 설명한다. 먼저, 물에 접착성 수지 입자(또는 입자형 바인더 고분자)가 분산되어 있는 슬러리를 세퍼레이터 베이스 위에 도포 및 건조한다. 도 1a를 참조하면 전술한 바와 같이 형성된 접착층 내 접착성 수지는 입자 형태임을 알 수 있다. 이러한 접착성 수지 입자는 점 접착을 하기 때문에, 전극 라미네이션 전에는 유기계 슬러리에 의해 형성된 접착층에 비해 저항이 보다 작게 나타난다. 일 예로 아크릴계 고분자 입자가 물에 분산된 수계 슬러리를 세퍼레이터 베이스 위에 도포 및 건조한 경우에는, 세퍼레이터의 저항은 약 0.92Ω이다. 반면, 유기계 슬러리의 경우에는 약 1.66Ω의 저항값을 나타내었다. 이는 점 접착을 하는 접착성 수지 입자와 면 접착을 하는 비입자형 바인더 고분자의 차이에 기인한 것으로 보인다.
한편 접착성 수지 입자를 포함하는 수계 슬러리에 의해 접착층을 구비한 세퍼레이터는 라미네이션 조립 공정을 거친 후에는, 전지의 저항 증가율이 유기계 슬러리를 사용한 경우보다 높게 나타난다. 이는 접착성 수지 입자 중 일부가 용융되면서 기존에 존재하던 접착성 수지 입자 사이의 기공이 사라지기 때문이다. 결과적으로 전해액 주액 후에는 접착성 수지 입자를 포함하는 접착층을 구비한 세퍼레이터가 유기계 슬러리를 이용하여 형성된 접착층을 갖는 세퍼레이터에 비해 높은 저항을 갖는 문제가 있다(도 1c).
상기와 같은 문제점을 해결하기 위하여, 본 발명의 일 측면에 따른 세퍼레이터는, 다수의 기공을 갖는 다공성 고분자 기재, 및 상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 다수의 제1 무기물 입자 및 상기 제1 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 포함하는 세퍼레이터 베이스; 및 상기 세퍼레이터 베이스의 적어도 일면 상에 형성되어 있으며, 다수의 제2 무기물 입자 및 접착성 수지 입자를 포함하는 접착층;을 구비하고, 상기 제2 무기물 입자와 접착성 수지 입자의 중량비는 5 : 95 내지 60 : 40이며, 상기 제2 무기물 입자에 대한 접착성 수지 입자의 직경 비율은 1.1배 내지 3.5배 , 세퍼레이터이다.
본 발명의 일 측면에 따른 세퍼레이터는, 접착층에 제2 무기물 입자와 접착성 수지 입자를 포함한다. 본 발명의 세퍼레이터는 접착층 내에 제2 무기물 입자를 함유함으로써, 접착층 내 기공이 라미네이션 공정 후에도 유지될 수 있으며, 나아가 전지의 저항 증가폭 또한 낮출 수 있다. 이는 제2 무기물 입자의 내열 특성 및 라미네이션 공정 온도에서 용융되지 않는 높은 용융 온도 특성에 기인한 것으로 보인다.
본 발명의 일 측면에 따른 세퍼레이터는, 상기 제2 무기물 입자와 접착성 수지 입자의 중량비가 5 : 95 내지 60 : 40이며, 바람직하게는 10 : 90 내지 50 : 50일 수 있다.
제2 무기물 입자와 접착성 수지 입자의 중량비가 상기 범위인 경우, 전극과 세퍼레이터 간의 접착력이 우수하며, 동시에 세퍼레이터 자체의 저항과 라미네이션 공정 후 전지의 저항 간의 저항 폭이 낮아지는 효과가 있다. 즉, 제2 무기물 입자가 존재하지 않는 경우에는, 전술한 바와 같이 라미네이션 등의 공정을 거친 후에 기공이 유지되지 않아 전지의 저항이 급격히 증가하는 문제점이 있다. 한편, 제2 무기물 입자의 함량이 접착성 수지 입자의 함량보다 현저히 많으면 전극과 세퍼레이터 간의 접착력이 떨어지며 조립성이 떨어진다.
본 발명의 일 측면에 따른 세퍼레이터는, 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.1배 내지 3.5배 이며, 상세하게는 1.2 배 내지 3 배 이며, 더욱 상세하게는 1.2 배 내지 1.3 배 일 수 있다. 이 때, 1.2 배 내지 1.3배가 접착력이 우수하고 저항값이 상대적으로 낮아 세퍼레이터로 사용하기에 바람직하다.
제2 무기물 입자와 접착성 수지 입자가 일정 함량을 유지하는 경우라도, 접착성 수지 입자의 직경이 제2 무기물 입자의 직경보다 작거나, 같은 경우에는, 전극과 세퍼레이터 간의 접착력이 낮아지는 문제점을 있다. 이에 본 발명의 일 측면에 따른 세퍼레이터는, 제2 무기물 입자에 대한 접착성 수지 입자의 직경 비율을 상기 범위와 같이 제어함으로써, 전지의 저항이 낮고 동시에 접착력이 우수한 세퍼레이터를 완성하였다. 상기 수치범위 내에서 접착성 수지 입자가 접착에 필요한 면적을 충분히 확보할 수 있어, 접착층 표면과 다공성 코팅층 또는 접착층 표면와 세퍼레이터 간의 접착력이 우수하며, 제2 무기물 입자와 접착성 수지 입자 사이의 빈 공간이 기공을 형성하고 이를 유지할 수 있어, 저항 측면에서도 유리하다.
본 발명의 일 측면에 따른 세퍼레이터에 있어서, 접착층 형성에 사용되는 접착성 수지 입자는, 물에 분산시 입자 형태로 분산되어 에멀젼 또는 현탁액 상태로 존재하는 것으로, 건조시에는 입자 형태를 갖는 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 접착성 수지 입자는 고무, 수분산성 (메타)아크릴계 고분자, 아크릴계 공중합체(acrylic copolymer), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리비닐리덴 풀루오라이드(polyvinylidene fluoride), 폴리비닐알콜(polyvinylalcohol), 스타이렌(Styrene) 및 폴리시아노아크릴레이트(polycyanoacrylate) 중 적어도 어느 하나 또는 이들 중 2종 이상의 혼합물이 사용될 수 있으며, 이는 접착력이 우수하기 때문에 적은 양의 함량으로도 무기물 입자를 효과적으로 결합할 수 있다.
본 발명에 사용될 수 있는 고무의 비제한적인 예로는 스티렌 부타디엔 고무(Styrene Butadiene Rubber, SBR), 아크릴로니트릴-부타디엔 고무(acrylonitrile-butadiene rubber), 및 아크릴로니트릴-부타디엔-스티렌 고무(acrylonitrile-butadiene-styrene rubber)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 수분산성 (메타)아크릴계 고분자는 부틸아크릴레이트와 메틸메타크릴레이트의 공중합체, 폴리에틸아크릴레이트, 폴리에틸메타크릴레이트, 폴리프로필아크릴레이트, 폴리프로필메타크릴레이트, 폴리이소프로필아크릴레이트, 폴리이소프로필메타크릴레이트, 폴리 부틸아크릴레이트, 폴리부틸메타크릴레이트, 폴리헥실아크릴레이트, 폴리헥실메타크릴레이트, 폴리에틸헥실아크릴레이트, 폴리에틸헥실메타크릴레이트, 폴리라우릴아크릴레이트 및 폴리라우릴메타아크릴레이트로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 아크릴계 공중합체는 부틸메타크릴레이트와 부틸아크릴레이트의 25 : 75 내지 50 : 50의 몰비로 중합된 공중합체일 수 있다.
상기 접착성 수지 입자는 코어-쉘 구조일 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 접착성 수지 입자는 코어 부분에 부틸아크릴레이트와 메틸메타크릴레이트가 중합된 아크릴계 공중합체를 포함하고, 쉘 부분에 스타이렌을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 접착성 수지 입자의 평균 직경은 50 nm 내지 1200nm, 또는 200nm 내지 1100nm 일 수 있다. 접착성 수지 입자의 평균 직경이 50 nm 미만인 경우에는 분산성 문제 및 전극과 세퍼레이터 간의 접착력이 떨어지는 문제가 있으며, 1200 nm를 초과하는 경우에는 분산성이 떨어지며 접착성 수지 입자 합성 자체가 어려운 문제가 있다.
본 발명의 일 실시예에 따르면, 다공성 고분자 기재의 양면에 다공성 코팅층이 형성된 경우에는, 상기 접착층은 상기 다공성 코팅층의 각 상면에 형성될 수 있다. 또한, 상기 다공성 고분자 기재의 일면에만 다공성 코팅층이 형성된 경우에는, 상기 접착층은 상기 다공성 코팅층의 상면과 다공성 코팅층이 형성되지 않은 다공성 고분자 기재의 타면에 직접 형성될 수 있다.
본 발명의 일 실시예에 따르면, 상기 접착층은 세퍼레이터 베이스의 양면 상에 형성될 수 있다.
상기 다공성 고분자 기재는, 구체적으로 다공성 고분자 필름 기재 또는 다공성 고분자 부직포 기재일 수 있다.
상기 다공성 고분자 필름 기재로는 폴리에틸렌, 폴리프로필렌과 같은 폴리올레핀으로 이루어진 다공성 고분자 필름일 수 있으며, 이러한 폴리올레핀 다공성 고분자 필름 기재는 예를 들어 80 내지 130 ℃의 온도에서 셧다운 기능을 발현한다.
이때, 폴리올레핀 다공성 고분자 필름은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독 또는 이들의 2종 이상 혼합하여 고분자로 형성할 수 있다.
또한, 상기 다공성 고분자 필름 기재는 폴리올레핀 외에 폴리에스테르 등의 다양한 고분자들을 이용하여 필름 형상으로 성형하여 제조될 수도 있다. 또한, 상기 다공성 고분자 필름 기재는 2층 이상의 필름층이 적층된 구조로 형성될 수 있으며, 각 필름층은 전술한 폴리올레핀, 폴리에스테르 등의 고분자 단독으로 또는 이들을 2종 이상 혼합한 고분자로 형성될 수도 있다.
또한, 상기 다공성 고분자 필름 기재 및 다공성 부직포 기재는 상기와 같은 폴리올레핀계 외에 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성될 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 상세하게는 1 내지 100 ㎛, 더욱 상세하게는 5 내지 50 ㎛이고, 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다.
본 발명의 일 측면에 따른 세퍼레이터는 상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 다수의 제1 무기물 입자 및 상기 제1 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 포함하는 세퍼레이터 베이스를 포함한다.
본 발명에서 제1 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 제1 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+기준으로 0~5V)에서 산화 및/ 또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 제1 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 제1 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물일 수 있다.
상기 유전율 상수가 5 이상인 무기물 입자는 Al2O3, SiO2, ZrO2, AlOOH, TiO2, BaTiO3, Pb(ZrxTi1-x)O3 (PZT, 여기서 0 < x < 1), Pb1 - xLaxZr1 - yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT, 여기서 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZO3 및 SiC로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x <4, 0 < y < 2), SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 및 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
또한, 제1 무기물 입자의 평균입경은 특별한 제한이 없으나 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 0.001 내지 10 ㎛ 범위인 것이 바람직하다. 0.001 ㎛ 미만인 경우 분산성이 저하될 수 있고, 10 ㎛를 초과하는 경우 형성되는 코팅층의 두께가 증가할 수 있다.
본 발명의 일 측면에 따른 세퍼레이터에 있어서, 다공성 코팅층 형성에 사용되는 바인더 고분자로는 당 업계에서 다공성 코팅층 형성에 통상적으로 사용되는 고분자를 사용할 수 있다. 특히, 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200인 고분자를 사용할 수 있는데, 이는 최종적으로 형성되는 다공성 코팅층의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다. 이러한 바인더 고분자는 무기물 입자들 사이를 연결 및 안정하게 고정시켜주는 바인더 역할을 충실히 수행함으로써, 다공성 코팅층이 도입된 세퍼레이터의 기계적 물성 저하 방지에 기여한다.
또한, 상기 바인더 고분자는 이온 전도 능력을 반드시 가질 필요는 없으나, 이온 전도 능력을 갖는 고분자를 사용할 경우 전기화학소자의 성능을 더욱 향상시킬 수 있다. 따라서, 상기 바인더 고분자는 가능한 유전율 상수가 높은 것을 사용할 수 있다. 실제로 전해액에서 염의 해리도는 전해액 용매의 유전율 상수에 의존하기 때문에, 상기 바인더 고분자의 유전율 상수가 높을수록 전해질에서의 염 해리도를 향상시킬 수 있다. 이러한 바인더 고분자의 유전율 상수는 1.0 내지 100 (측정 주파수 = 1 kHz) 범위가 사용 가능하며, 특히 10 이상일 수 있다.
전술한 기능 이외에, 상기 바인더 고분자는 액체 전해액 함침시 겔화됨으로써 높은 전해액 팽윤도(degree of swelling)를 나타낼 수 있는 특징을 가질 수 있다. 이에 따라, 상기 바인더 고분자의 용해도 지수, 즉 힐더브랜드 용해도 지수(Hildebrand solubility parameter)는 15 내지 45 MPa1 /2 또는 15 내지 25 MPa1 /2 및 30 내지 45 MPa1 /2 범위이다. 따라서, 폴리올레핀류와 같은 소수성 고분자들보다는 극성기를 많이 갖는 친수성 고분자들이 더 사용될 수 있다. 상기 용해도 지수가 15 MPa1 /2 미만 및 45 MPa1 /2를 초과할 경우, 통상적인 전지용 액체 전해액에 의해 팽윤(swelling)되기 어려울 수 있기 때문이다.
이러한 바인더 고분자의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 메틸메타크릴레이트와 에틸헥실아크릴레이트의 공중합체, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.
상기 제1 무기물 입자와 바인더 고분자의 중량비는 90 : 10 내지 99 : 1 일 수 있다. 바인더 고분자에 대한 제1 무기물 입자의 중량비가 상기 범위를 만족하는 경우, 바인더 고분자의 함량이 많아지게 되어, 형성되는 코팅층의 기공 크기 및 기공도가 감소되는 문제가 방지될 수 있고, 바인더 고분자 함량이 적기 때문에 형성되는 코팅층의 내필링성이 약화되는 문제도 해소될 수 있다.
상기 다공성 코팅층의 두께는 특별히 제한되지 않으나, 상세하게는 1 내지 10 ㎛, 더욱 상세하게는 1.5 내지 6 ㎛이고, 상기 다공성 코팅층의 기공도 역시 특별히 제한되지 않으나 35 내지 65%인 것이 바람직하다.
본 발명의 일 측면에 따른 세퍼레이터는 다공성 코팅층 성분으로 전술한 제1 무기물 입자 및 바인더 고분자 이외에, 기타 첨가제를 더 포함할 수 있다.
본 발명의 일 측면에 따른 세퍼레이터는 상기 세퍼레이터 베이스의 적어도 일면 상에 형성되어 있으며, 다수의 제2 무기물 입자 및 접착성 수지 입자를 포함하는 접착층을 포함한다.
본 발명에 접착층에 사용되는 제2 무기물 입자에 대해서는 다공성 코팅층에 사용되는 제1 무기물 입자와 마찬가지의 요건이 적용될 수 있다. 접착층에 사용되는 제2 무기물 입자의 비제한적인 예로는 Al2O3, SiO2, ZrO2, AlOOH, TiO2, BaTiO3, Pb(ZrxTi1-x)O3 (PZT, 여기서 0 < x < 1), Pb1 - xLaxZr1 - yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT, 여기서 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZO3 및 SiC로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물 등이 있으며, 다공성 코팅층 형성을 위한 제1 무기물 입자와 동일하거나 상이할 수 있다.
상기 제2 무기물 입자 직경은 100 내지 700 nm, 상세하게는 200 내지 600 nm, 더욱 상세하게는 250 내지 500 nm일 수 있다. 균일한 두께의 접착층 형성 및 적절한 공극률, 적절한 접착층 두께를 위하여, 상기 수치범위인 것이 바람직하다. 상기 접착층의 두께는 0.5 내지 4 ㎛ 일 수 있다.
본 발명의 일 측면에 따른 세퍼레이터는 접착층 성분으로 전술한 제2 무기물 입자 및 접착성 수지 입자 이외에, 기타 첨가제를 더 포함할 수 있다.
본 발명의 일 측면에 따른 세퍼레이터의 제조방법은,
다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면 상에 다수의 제1 무기물 입자 및 바인더 고분자를 포함하는 다공성 코팅층을 형성하여 세퍼레이터 베이스를 준비하는 단계; 및
상기 세퍼레이터 베이스의 적어도 일면 상에 다수의 제2 무기물 입자 및 접착성 수지 입자가 물에 분산되어 있는 분산액을 도포 및 건조하여 접착층을 형성하는 단계를 포함하고,
상기 제2 무기물 입자와 접착성 수지 입자의 중량비는 5 : 95 내지 60 : 40이며,
상기 제2 무기물 입자에 대한 접착성 수지 입자의 직경 비율은 1.1배 내지 3.5배 이다.
먼저, 다공성 코팅층을 형성하기 위하여, 바인더 고분자를 용매에 용해시킨 다음, 제1 무기물 입자를 첨가하고 이를 분산시켜 다공성 코팅층 형성용 조성물을 제조한다. 제1 무기물 입자들은 미리 소정의 직경을 갖도록 파쇄된 상태에서 첨가할 수 있으며, 또는 바인더 고분자의 용액에 제1 무기물 입자를 첨가한 후 제1 무기물 입자를 볼밀법 등을 이용하여 소정의 직경을 갖도록 제어하면서 파쇄하여 분산시킬 수도 있다.
상기 다공성 코팅층 형성용 조성물을 상기 다공성 고분자 기재에 코팅하는 방법은 특별히 한정하지는 않지만, 슬랏 코팅이나 딥 코팅 방법을 사용하는 것이 바람직하다. 슬랏 코팅은 슬랏 다이를 통해 공급된 조성물이 기재의 전면에 도포되는 방식으로 정량 펌프에서 공급되는 유량에 따라 코팅층 두께의 조절이 가능하다. 또한 딥 코팅은 조성물이 들어있는 탱크에 기재를 담그어 코팅하는 방법으로, 조성물의 농도 및 조성물 탱크에서 기재를 꺼내는 속도에 따라 코팅층 두께의 조절이 가능하며 보다 정확한 코팅 두께 제어를 위해 침지 후 메이어바 등을 통해 후계량할 수 있다.
이렇게 다공성 코팅층 형성용 조성물이 코팅된 다공성 고분자 기재를 오븐과 같은 건조기를 이용하여 건조함으로써 다공성 고분자 기재의 적어도 일면 상에 형성된 다공성 코팅층을 형성하게 된다.
상기 다공성 코팅층에서는 제1 무기물 입자들은 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 제1 무기물 입자들 사이에 인터스티셜 볼륨(interstitial volume)이 형성될 수 있고, 상기 제1 무기물 입자 사이의 인터스티셜 볼륨(Interstitial Volume)은 빈 공간이 되어 기공을 형성할 수 있다.
즉, 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착, 예를 들어, 바인더 고분자가 제1 무기물 입자 사이를 연결 및 고정시킬 수 있다. 또한, 상기 다공성 코팅층의 기공은 제1 무기물 입자들 간의 인터스티셜 볼륨(interstitial volume)이 빈 공간이 되어 형성된 기공이고, 이는 제1 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간일 수 있다.
이때 사용되는 용매는 사용하고자 하는 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 물, 탄소수 2 내지 5를 가지는 알코올, 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아미드, N-메틸-2-피롤리돈, 메틸에틸케톤 및 시클로헥산 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물이 있을 수 있다.
다음으로, 상기 세퍼레이터 베이스의 적어도 일면 상에 다수의 제2 무기물 입자 및 접착성 수지 입자가 물에 분산되어 있는 분산액을 도포 및 건조하여 접착층을 형성한다.
상세하게는, 접착성 수지 입자를 물에 분산시킨 다음 제2 무기물 입자를 첨가하고 이를 분산시켜 접착층 형성용 조성물을 제조할 수 있다.
상기 접착층 형성 방법은 다공성 코팅층 형성방법과 마찬가지의 요건이 적용될 수 있다. 접착층 형성 방법의 비제한적인 예로는 슬랏 코팅이나 딥 코팅 방법 등이 있으며, 다공성 코팅층 형성을 위한 방법과 동일하거나 상이할 수 있다.
이렇게 접착층 형성용 조성물이 코팅된 세퍼레이터 베이스를 오븐과 같은 건조기를 이용하여 건조함으로써 세퍼레이터 베이스의 적어도 일면 상에 형성된 접착층을 형성하게 된다.
본 발명의 일 측면에 따른 전기화학소자는 캐소드, 애노드, 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하고, 상기 세퍼레이터가 전술한 본 발명의 일 실시예에 따른 세퍼레이터이다.
이러한 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 세퍼레이터와 함께 적용될 캐소드와 애노드의 양 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극 활물질을 전극 집전체에 결착된 형태로 제조할 수 있다. 상기 전극 활물질 중 캐소드 활물질의 비제한적인 예로는 종래 전기화학소자의 캐소드에 사용될 수 있는 통상적인 캐소드 활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 애노드 활물질의 비제한적인 예로는 종래 전기화학소자의 애노드에 사용될 수 있는 통상적인 애노드 활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 캐소드 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 전기화학소자에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
1) 애노드 제조
인조 흑연, 카본 블랙, CMC, 바인더(폴리비닐리덴플루오라이드, PVDF)를 각각 95.8:1:1.2:2의 중량비로 물에 투입하고 믹싱하여 애노드 슬러리를 제조하였다. 제조된 애노드 슬러리를 애노드 집전체로서 50 ㎛의 두께로 구리 호일(Cu-foil) 위에 3.1 mAh/㎠의 용량으로 코팅하여 얇은 극판의 형태로 만든 후 135 에서 3시간 이상 건조시킨 후 압연(pressing)하여 애노드를 제조하였다.
2) 캐소드 제조
LiCoO2, 도전재(카본 블랙), 바인더(PVDF)를 각각 (96 : 2 : 2) 의 중량비로 N-메틸-2-피롤리돈(NMP)에 투입하고 믹싱하여 캐소드 슬러리를 제조하였다. 제조된 캐소드 슬러리를 캐소드 집전체로서 20 ㎛ 두께의 알루미늄 호일에 3.1 mAh/㎠의 용량으로 코팅하여 캐소드를 제조하였다.
3) 세퍼레이터 베이스의 제조
상온에서 Al2O3 제1 무기물 입자(일본경금속사社, LS235, 입자크기 500nm), 분산제로서 카르복시메틸셀룰로오스(CMC), 후술하는 바인더 고분자를 물에 투입하고 교반하여 균일한 분산 슬러리를 준비하였다. 바인더 고분자는 아크릴계 공중합체를 사용하였으며, 상기 아크릴계 공중합체는 메틸메타크릴레이트와 에틸헥실아크릴레이트가 25 :75의 몰비로 중합된 공중합체이었다. 상기 슬러리 중 제1 무기물 입자 및 바인더 고분자의 함량은 중량비로 95 : 5 로 하였다. 닥터 블레이드를 이용하여 상기 슬러리를 폴리에틸렌 다공성 기재의 일면에 도포하고 건조하여 다공성 코팅층이 형성된 세퍼레이터 베이스를 준비하였다. 다공성 코팅층의 두께는 4 ㎛이었다.
4) 접착층 코팅
상기 3)에서 제조된 세퍼레이터 베이스의 표면에 접착층 형성용 슬러리를 도포 및 건조하여 접착층을 형성하였다. 상기 접착층은 다음과 같이 준비하였다. 상온에서 Al2O3 제2 무기물 입자, 접착성 수지 입자(LP11, Zeon, 상기 접착성 수지 입자는 부틸아크릴레이트와 메틸메타크릴레이트의 공중합체로 된 코어, 스타이렌으로 된 쉘을 구비한 입자)를 물에 균일하게 분산시켜 접착층 형성용 슬러리를 준비하였다. 상기 접착층 형성용 슬러리 중 제2 무기물 입자 및 접착성 수지 입자의 함량은 중량비로 50 : 50 으로 하였다. 상기 접착층 형성용 슬러리를 2) 에서 제조된 세퍼레이터 베이스의 다공성 코팅층에 1.0 g/m2의 용량으로 도포하고 건조하여 세퍼레이터 베이스의 표면에 접착층을 형성하였다. 이 때, 제2 무기물 입자의 입경은 500nm, 접착성 수지 입자의 입경은 650 nm이었으며, 바인더 고분자 입자의 입경과 무기물 입자의 입경 비율은 1.3이었다. 접착층의 두께는 2 ㎛이었다.
5) 세퍼레이터와 전극의 접착
다음으로 상기 접착층과 1)의 전극의 애노드 활물질층이 대면하도록 세퍼레이터와 전극을 적층한 후 90 ℃ 온도, 8.5MPa 에서 1초(sec)간 압연하여 세퍼레이터와 애노드가 적층된 전극 조립체를 제조하였다.
실시예 2 내지 4
접착층 형성용 슬러리에서, 제2 무기물 입자와 접착성 수지 입자의 중량비, 제2 무기물 입자와 접착층 수지 입자의 입경을 표 1과 같이 한 것을 제외하고는, 실시예 1과 동일하게 전극 조립체를 제조하였다.
실시예1 실시예2 실시예3 실시예 4 실시예 5 실시예 6
제2 무기물 입자의 함량(wt%) 50 10 50 50 50 50
접착성 수지 입자의 함량(wt%) 50 90 50 50 50 50
제2 무기물 입자의 입경 (nm) 500 500 250 500 250 250
접착성 수지 입자의 입경 (nm) 650 650 300 1000 750 500
접착성 수지 입자의 입경/ 제2 무기물 입자의 입경 1.3 1.3 1.2 2 3 2
세퍼레이터-애노드 접착력 (gf/15mm) 31 38 36 39 38 40
세퍼레이터 저항(a) (Ω)(세퍼레이터 1장) 1.00 1.17 1.11 1.23 1.13 1.11
세퍼레이터 라미후 저항(a) (Ω)(세퍼레이터 1장 + 애노드 1장) 4.30 5.50 4.46 5.15 5.42 5.22
저항 증가율(%)((b-a)/a*100) 330% 370% 302% 360% 380% 370%
다공성 코팅층 + 접착층의 두께 (㎛) 6 5.9 6 6.5 6.3 5.9
다공성 고분자 기재 두께 (㎛) 9 9 9 9 9 9
세퍼레이터 전체 두께 (㎛) 15 14.9 15 15.5 15.3 14.9
비교예 1 내지 6
접착층 형성용 슬러리에서, 제2 무기물 입자와 접착성 수지 입자의 중량비, 제2 무기물 입자와 접착성 수지 입자의 입경을 표 2와 같이 한 것을 제외하고는, 실시예 1과 동일하게 전극 조립체를 제조하였다.
비교예1 비교예2 비교예3 비교예4 비교예5 비교예6 비교예7 비교예8 비교예9 비교예 10 비교예 11
제2 무기물 입자의 함량(wt%) 0 70 50 50 50 50 50 50 50 50 50
접착성 수지 입자의 함량(wt%) 100 30 50 50 50 50 50 50 50 50 50
제2 무기물 입자의 입경 (nm) - 500 500 500 500 250 500 500 250 1500 250
접착성 수지 입자의 입경 (nm) 650 650 300 200 130 130 500 400 200 1000 1000
접착성 수지 입자의 입경/ 제2 무기물 입자의 입경 - 1.3 0.6 0.4 0.26 0.52 1.0 0.8 0.8 0.67 4
세퍼레이터-애노드 접착력 (gf/15mm) 40 8 7 4 4 7 23 11 12 5 42
세퍼레이터 저항(a) (Ω)(세퍼레이터 1장) 1.20 0.85 1.07 0.80 1.04 1.10 0.97 0.92 1.05 1.54 1.14
세퍼레이터 라미후 저항(a) (Ω)(세퍼레이터 1장 + 애노드 1장) 20.70 3.20 4.30 3.01 4.04 4.39 4.20 3.73 4.18 6.25 7.98
저항 증가율(%)((b-a)/a*100) 1625% 276% 302% 276% 288% 299% 333% 305% 298% 306% 600%
다공성 코팅층 + 접착층의 두께 (㎛) 5.8 6 6 5.9 6.2 6 6 6.1 6.2 8.5 7.0
다공성 고분자 기재 두께 (㎛) 9 9 9 9 9 9 9 9 9 9 9
세퍼레이터 전체 두께 (㎛) 14.8 15 15 14.9 15.2 15 15 15.1 15.2 17.5 16.0
결과 요약 라미후 저항 열위 접착력 열위로 조립 불가 접착력 열위로 조립 불가 접착력 열위로 조립 불가 접착력 열위로 조립 불가 접착력 열위로 조립 불가 접착력 낮음 접착력 낮음 접착력 낮음 제2 무기물 입자의 크기가 커 박막 코팅이 불가하고, 저항이 높음. 전극 접착력 열위로 조립 불가 입자 사이의 공간 확보가 어려워 저항 열위
* 세퍼레이터-애노드 라미네이션 조건 : 90℃, 8.5MPa, 1sec
평가 결과
전술한 실시예 1 내지 6 및 비교예 1 내지 611의 전극 조립체에 대해서, 두께, 입경, 세퍼레이터-애노드 접착력(gf/15mm), 및 저항을 각각 평가하여 표 1 및 표 2에 나타내었다.
이들의 구체적인 평가방법은 하기와 같다.
1) 세퍼레이터-애노드 접착력(gf/15mm) 측정
실시예 1-1)과 동일한 방법으로 애노드를 제조하고, 15mm X 100mm 크기로 재단하여 준비하였다. 실시예 1 내지 6 및 비교예 1 내지 11에서 제조된 세퍼레이터를 15mm X 100mm 크기로 재단하여 준비하였다. 준비된 세퍼레이터와 애노드를 서로 겹친 뒤 100㎛의 PET 필름 사이에 끼운 후 평판 프레스를 사용하여 접착시켰다. 이때, 평판 프레스기의 조건은 90℃의 8.5MPa의 압력으로 1초 동안 가열하였다. 접착된 세퍼레이터와 애노드의 말단부를 UTM 장비(LLOYD Instrument LF Plus)에 장착 후 측정 속도 300mm/min으로, 양 방향으로 힘을 가해 접착된 세퍼레이터가 분리되는 데 필요한 힘을 측정하였다.
2) 저항 측정
실시예 1 내지 6 및 비교예 1 내지 11에서 제조된 세퍼레이터를 전해액에 함침시켰을 때의 저항값으로, 1M LiPF6-에틸렌 카보네이트/에틸메틸 카보네이트(중량비 3:7) 전해액을 이용하여 25에서 교류법으로 측정하였다.
표 1에 나타낸 바와 같이, 실시예 1 내지 6의 경우, Lami Strength가 30 gf/15 mm 이상으로 전극과의 높은 접착력을 나타내었다. 이와 동시에 전극과의 라미네이션 전/후의 저항 증가율이 약 300% 내외로 비교예에 비해 상대적으로 낮은 저항증가율을 나타내었다.
한편, 표 2에 나타낸 바와 같이, 비교예 1의 경우, 접착층에 제2 무기물 입자를 포함하지 않아 라미네이션 전/후의 저항 증가율이 1625%에 이르는 등 저항 값에서 특히 열위를 나타내었다.
비교예 2의 경우, 제2 무기물 입자와 접착성 수지 입자의 함량비가 70 : 30인 경우로, 제2 무기물 입자의 함량이 상대적으로 높아 세퍼레이터와 전극의 접착이 불가하였다.
비교예 3, 내지 6의 경우, 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경이 1 미만인 경우로 세퍼레이터와 전극의 접착이 불가하였다.
비교예 7의 경우, 제2 무기물 입자와 접착성 수지 입자의 직경이 동일한 경우지만, 실시예 만큼의 접착력 효과가 발휘되지 못하는 반면, 라미네이션 전/후의 저항은 상대적으로 높아 실시예에 비해 열위에 해당하였다.
비교예 10의 경우, 제2 무기물 입자의 직경이 상대적으로 큰 1500 nm인 경우로 제2 무기물 입자의 직경이 너무 커 박막 코팅이 불가하였다. 또한 저항값이 높으며, 접착력 측면에서도 상대적으로 열위에 놓였다.
비교예 11의 경우, 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경이 4인 경우로, 무기 입자 및/또는 접착성 수지 입자 사이의 공간 확보가 어려워 저항이 열위에 놓였다.

Claims (12)

  1. 다수의 기공을 갖는 다공성 고분자 기재, 및
    상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 다수의 제1 무기물 입자 및 상기 제1 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 포함하는 세퍼레이터 베이스; 및
    상기 세퍼레이터 베이스의 적어도 일면 상에 형성되어 있으며, 다수의 제2 무기물 입자 및 접착성 수지 입자를 포함하는 접착층;을 구비하고,
    상기 제2 무기물 입자와 접착성 수지 입자의 중량비는 5 : 95 내지 60 : 40이며,
    상기 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.1배 내지 3.5배인, 세퍼레이터.
  2. 제1항에 있어서,
    상기 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.2배 내지 3배인, 세퍼레이터.
  3. 제1항에 있어서,
    상기 제2 무기물 입자의 직경에 대한 접착성 수지 입자의 직경은 1.2 배 내지 1.3배인, 세퍼레이터.
  4. 제1항에 있어서,
    상기 제2 무기물 입자의 평균 직경은 100 내지 700 nm인, 세퍼레이터.
  5. 제1항에 있어서,
    상기 제1 무기물 입자와 바인더 고분자의 중량비는 90 : 10 내지 99 : 1인, 세퍼레이터.
  6. 제1항에 있어서,
    상기 제2 무기물 입자와 접착성 수지 입자의 중량비는 10 : 90 내지 50 : 50인, 세퍼레이터.
  7. 제1항에 있어서,
    상기 바인더 고분자가 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 메틸메타크릴레이트와 에틸헥실아크릴레이트의 공중합체, 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인, 세퍼레이터.
  8. 제1항에 있어서,
    상기 접착성 수지 입자는 스티렌 부타디엔 고무(Styrene Butadiene Rubber, SBR), 아크릴로니트릴-부타디엔 고무(acrylonitrile-butadiene rubber), 아크릴로니트릴-부타디엔-스티렌 고무(acrylonitrile-butadiene-styrene rubber), 부틸아크릴레이트와 메틸메타크릴레이트의 공중합체, 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리비닐리덴 풀루오라이드(polyvinylidene fluoride), 폴리비닐알콜(polyvinylalcohol), 스타이렌(Styrene), 및 폴리시아노아크릴레이트(polycyanoacrylate)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인, 세퍼레이터.
  9. 제1항에 있어서,
    상기 다공성 코팅층의 두께가 1 내지 10 ㎛ 이고, 상기 접착층의 두께가 0.5 내지 4 ㎛인, 세퍼레이터.
  10. 제1항에 있어서,
    상기 다공성 고분자 기재가 폴리올레핀계 다공성 고분자 기재인, 세퍼레이터.
  11. 캐소드, 애노드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터를 포함하는 전기화학소자에 있어서, 상기 세퍼레이터가 제1항 내지 제10항 중 어느 한 항의 세퍼레이터인, 전기화학소자.
  12. 제11항에 있어서,
    상기 전기화학소자가 리튬 이차전지인, 전기화학소자.
PCT/KR2018/012363 2017-10-20 2018-10-18 세퍼레이터 및 이를 포함하는 전기화학소자 WO2019078650A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202310407484.0A CN116526071A (zh) 2017-10-20 2018-10-18 隔板以及包括该隔板的电化学装置
CN201880045007.1A CN110832672B (zh) 2017-10-20 2018-10-18 隔板以及包括该隔板的电化学装置
EP18867385.9A EP3675227A4 (en) 2017-10-20 2018-10-18 SEPARATOR AND ELECTROCHEMICAL DEVICE WITH IT
US16/629,218 US11469476B2 (en) 2017-10-20 2018-10-18 Separator and electrochemical device comprising same
US17/893,362 US11699831B2 (en) 2017-10-20 2022-08-23 Separator and electrochemical device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0136464 2017-10-20
KR20170136464 2017-10-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/629,218 A-371-Of-International US11469476B2 (en) 2017-10-20 2018-10-18 Separator and electrochemical device comprising same
US17/893,362 Continuation US11699831B2 (en) 2017-10-20 2022-08-23 Separator and electrochemical device comprising same

Publications (1)

Publication Number Publication Date
WO2019078650A1 true WO2019078650A1 (ko) 2019-04-25

Family

ID=66174087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012363 WO2019078650A1 (ko) 2017-10-20 2018-10-18 세퍼레이터 및 이를 포함하는 전기화학소자

Country Status (5)

Country Link
US (2) US11469476B2 (ko)
EP (1) EP3675227A4 (ko)
KR (1) KR102295078B1 (ko)
CN (2) CN110832672B (ko)
WO (1) WO2019078650A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916624A (zh) * 2019-05-08 2020-11-10 宁德新能源科技有限公司 隔离膜和电化学装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675227A4 (en) * 2017-10-20 2020-12-02 LG Chem, Ltd. SEPARATOR AND ELECTROCHEMICAL DEVICE WITH IT
CN115191061B (zh) * 2020-02-21 2024-06-07 株式会社Lg新能源 用于电化学装置的隔板及制造该隔板的方法
EP4102637A4 (en) 2020-02-27 2024-09-04 Lg Energy Solution Ltd SEPARATOR FOR A LITHIUM SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
EP4138200A1 (en) * 2020-05-29 2023-02-22 LG Energy Solution, Ltd. Separator for electrochemical device and electrochemical device comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758482B1 (ko) * 2004-12-07 2007-09-12 주식회사 엘지화학 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자
KR101369326B1 (ko) * 2011-12-27 2014-03-04 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
KR20140112384A (ko) * 2013-03-13 2014-09-23 삼성에스디아이 주식회사 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR20170055440A (ko) * 2015-11-11 2017-05-19 주식회사 엘지화학 전극접착층을 구비한 세퍼레이터 및 이를 포함하는 전기화학소자
KR20170112250A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전극 조립체
KR20170136464A (ko) 2014-11-07 2017-12-11 구스모토 가세이 가부시키가이샤 용이하게 열 분해가능한 유기 수지 결합제

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0954042B1 (en) 1997-11-19 2007-09-05 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and manufacture thereof
RU2403653C2 (ru) 2005-12-06 2010-11-10 Эл Джи Кем, Лтд. Органическо/неорганический композитный разделитель, имеющий градиент морфологии, способ его изготовления и содержащее его электрохимическое устройство
CA2764680A1 (en) 2009-06-15 2010-12-23 Elc Management Llc Microcurrent-generating topical or cosmetic systems, and methods of making and using the same
KR101408844B1 (ko) * 2010-06-10 2014-06-20 에스케이이노베이션 주식회사 고내열성 유/무기 피복층을 갖는 복합 미세다공막
WO2012075423A2 (en) * 2010-12-03 2012-06-07 Enerdel, Inc. Heat-resistant layer for non-aqueous and solid state battery and method of manufacturing the same
JP5355821B2 (ja) * 2011-10-21 2013-11-27 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP6045121B2 (ja) 2012-11-30 2016-12-14 エルジー・ケム・リミテッド 表面特徴の異なる無機物粒子の二重多孔性コーティング層を含む二次電池用分離膜、それを含む二次電池、及び分離膜の製造方法
KR101341196B1 (ko) 2012-12-10 2013-12-12 삼성토탈 주식회사 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
KR101298340B1 (ko) * 2013-02-12 2013-08-20 삼성토탈 주식회사 유/무기 복합 코팅 다공성 분리막 및 이를 이용한 이차전지소자
CN104051689B (zh) * 2013-03-13 2020-06-02 三星Sdi株式会社 隔板和包括该隔板的可再充电锂电池
KR102301045B1 (ko) * 2013-10-31 2021-09-09 제온 코포레이션 리튬 이온 2 차 전지의 바인더용의 입자상 중합체, 접착층 및 다공막 조성물
JP6462994B2 (ja) * 2014-04-10 2019-01-30 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
CN110867549B (zh) * 2014-10-24 2022-03-04 株式会社Lg化学 包括有机/无机复合多孔层的二次电池隔板及其制造方法
KR101915339B1 (ko) 2014-11-07 2018-11-05 주식회사 엘지화학 분리막, 분리막-전극 복합체 및 이를 포함하는 전기화학소자
CN106058126B (zh) * 2016-01-14 2018-09-28 万向一二三股份公司 一种功能性涂层隔膜及含有该隔膜的电池
CN108780866A (zh) * 2016-03-29 2018-11-09 东丽株式会社 二次电池用隔膜和二次电池
CN108058126B (zh) 2016-11-07 2024-08-02 众普森科技(株洲)有限公司 一种led模组治具
KR102426253B1 (ko) * 2017-07-03 2022-07-28 삼성에스디아이 주식회사 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
EP3675227A4 (en) * 2017-10-20 2020-12-02 LG Chem, Ltd. SEPARATOR AND ELECTROCHEMICAL DEVICE WITH IT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758482B1 (ko) * 2004-12-07 2007-09-12 주식회사 엘지화학 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자
KR101369326B1 (ko) * 2011-12-27 2014-03-04 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
KR20140112384A (ko) * 2013-03-13 2014-09-23 삼성에스디아이 주식회사 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR20170136464A (ko) 2014-11-07 2017-12-11 구스모토 가세이 가부시키가이샤 용이하게 열 분해가능한 유기 수지 결합제
KR20170055440A (ko) * 2015-11-11 2017-05-19 주식회사 엘지화학 전극접착층을 구비한 세퍼레이터 및 이를 포함하는 전기화학소자
KR20170112250A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 접착층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 전극 조립체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675227A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916624A (zh) * 2019-05-08 2020-11-10 宁德新能源科技有限公司 隔离膜和电化学装置
EP3758097A4 (en) * 2019-05-08 2021-06-16 Ningde Amperex Technology Ltd. SEPARATOR AND ELECTROCHEMICAL DEVICE

Also Published As

Publication number Publication date
US20200203690A1 (en) 2020-06-25
CN110832672A (zh) 2020-02-21
EP3675227A1 (en) 2020-07-01
KR20190044529A (ko) 2019-04-30
US11469476B2 (en) 2022-10-11
CN116526071A (zh) 2023-08-01
EP3675227A4 (en) 2020-12-02
KR102295078B1 (ko) 2021-08-27
CN110832672B (zh) 2023-05-05
US20220407184A1 (en) 2022-12-22
US11699831B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2018030797A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2017082671A1 (ko) 전극접착층을 구비한 세퍼레이터 및 이를 포함하는 전기화학소자
WO2013028046A2 (ko) 미소 캡슐을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2017171524A1 (ko) 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체
WO2019164130A1 (ko) 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2017034353A1 (ko) 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2019078650A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2013012292A9 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2013089313A1 (ko) 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2020096310A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2020013675A1 (ko) 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020022851A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020130723A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019117605A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019132456A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2017213444A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2020251230A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020171661A1 (ko) 리튬이차전지용 세퍼레이터 및 이의 제조방법
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018867385

Country of ref document: EP

Effective date: 20200323

NENP Non-entry into the national phase

Ref country code: DE