WO2020022851A1 - 세퍼레이터 및 이를 포함하는 전기화학소자 - Google Patents

세퍼레이터 및 이를 포함하는 전기화학소자 Download PDF

Info

Publication number
WO2020022851A1
WO2020022851A1 PCT/KR2019/009365 KR2019009365W WO2020022851A1 WO 2020022851 A1 WO2020022851 A1 WO 2020022851A1 KR 2019009365 W KR2019009365 W KR 2019009365W WO 2020022851 A1 WO2020022851 A1 WO 2020022851A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
solvent
porous
hexafluoropropylene
derived repeating
Prior art date
Application number
PCT/KR2019/009365
Other languages
English (en)
French (fr)
Inventor
김찬종
윤수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/763,400 priority Critical patent/US11495866B2/en
Priority to CN201980005787.1A priority patent/CN111373571A/zh
Priority to EP19841939.2A priority patent/EP3734700A4/en
Publication of WO2020022851A1 publication Critical patent/WO2020022851A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator and an electrochemical device including the same, and to a separator and an electrochemical device including the same, having improved adhesion and air permeability with an electrode, and excellent resistance to resistance.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively lower than that of the lithium ion battery, and the discharge capacity at the low temperature is insufficient, particularly, the improvement of this problem. This is urgently needed.
  • electrochemical devices are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that the electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous polymer substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 ° C. or higher due to material properties and manufacturing process characteristics including elongation. Caused a short circuit.
  • a separator having a porous organic-inorganic coating layer formed by coating a mixture of excess inorganic particles and a binder polymer on at least one surface of a porous polymer substrate having a plurality of pores has been proposed.
  • an object of the present invention is to provide a separator having a porous adhesive layer having an improved adhesion and air permeability with an electrode, an excellent effect of reducing resistance, and a uniform pore structure.
  • Another problem to be solved by the present invention is to provide an electrochemical device having the separator.
  • the separator of the following embodiment is provided.
  • the first embodiment a porous polymer substrate having a plurality of pores
  • a separator substrate having a porous coating layer disposed on at least one surface of the porous polymer substrate and comprising a plurality of inorganic particles and a binder polymer positioned on part or all of the surface of the inorganic particles to connect and fix the inorganic particles.
  • a porous adhesive layer disposed on at least one surface of the separator substrate and including a polyvinylidene-hexafluoropropylene copolymer including a vinylidene-derived repeating unit and a hexafluoropropylene-derived repeating unit.
  • the separator having a difference between the maximum pore diameter and the average pore diameter of the porous adhesive layer is 0.2 to 0.6 ⁇ m.
  • the fourth embodiment is a separator according to any one of the first to third embodiments, wherein the porous polymer substrate is a polyolefin-based porous polymer substrate.
  • the fifth embodiment is any one of the first to fourth embodiments.
  • the porosity of the porous adhesive layer is a separator of 30 to 70%.
  • the sixth embodiment is any one of the first to fifth embodiments.
  • the binder polymer is polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, Polybutylacrylate, polybutylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co -vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl Pullulan (cyanoethylpu llulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan and carboxyl methyl cellulose
  • the separator is one or a mixture of two or more thereof.
  • the seventh embodiment is any one of the first to sixth embodiment
  • the inorganic particles are separators of inorganic particles having a dielectric constant of 5 or more, inorganic particles having a lithium ion transfer ability, or mixtures thereof.
  • the eighth embodiment is any one of the first to seventh embodiments.
  • a method of manufacturing a separator of the following embodiment is provided.
  • a separator substrate having a porous coating layer including a plurality of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate having a plurality of pores;
  • a coating composition comprising a polyvinylidene-hexafluoropropylene copolymer comprising a vinylidene-derived repeating unit and a hexafluoropropylene-derived repeating unit, a solvent, and a non-solvent is prepared by the separator. Applying to at least one side of the substrate; And
  • the solvent is one compound selected from acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, methyl ethyl ketone and cyclohexane or a mixture of two or more thereof, It is a manufacturing method of the separator which is 1 type of compounds chosen from methanol, ethanol, isopropanol, propanol, and water, or a mixture of 2 or more types.
  • the twelfth embodiment is any one of the ninth to eleventh embodiments.
  • a weight ratio of the non-solvent to the total weight of the solvent and the non-solvent is 1 to 50%.
  • the thirteenth embodiment is any one of the ninth to twelfth embodiment
  • the content of the polyvinylidene-hexafluoropropylene copolymer based on 100 parts by weight of the total weight of the solvent and the non-solvent is 2 to 10 parts by weight.
  • the fourteenth embodiment is any one of the ninth to thirteenth embodiment
  • a boiling point difference between a solvent and a non-solvent is a method of manufacturing a separator having a temperature of 10 ° C or more.
  • a fifteenth embodiment is an electrochemical device comprising a cathode, an anode, a separator interposed between the cathode and the anode, wherein the separator is the separator of any one of the first to eighth embodiments. .
  • the electrochemical device is an electrochemical device that is a lithium secondary battery.
  • the porous coating layer and the porous adhesive layer containing the inorganic particles and the binder polymer sequentially, thin film coating is possible while maintaining excellent adhesion to the electrode, and also formed through a dry phase separation method Since the adhesive layer has an improved pore structure, the air permeability is improved, the problem of the membrane resistance is reduced, and the uniformity of the coating can be ensured.
  • the coating of the porous adhesive layer has uniformity, and thus the pore structure formed throughout the porous adhesive layer is uniform, so that the standard deviation of the air permeability and resistance of the separator and the pore size of the porous adhesive layer are The standard deviation of can also be controlled significantly smaller. As a result, it is possible to prevent a problem in that dendrites are generated by being interrupted in a specific portion during the movement of lithium ions through the separator, and a secondary battery employing such a separator has excellent life characteristics. It becomes possible to exercise.
  • Example 1 is a photograph of the morphology of the surface of the separator of Example 1 using a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • FIG. 2 is a photograph of morphology of the surface of the separator of Example 2 using an field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • FIG. 3 is a photograph observing the morphology of the surface of the separator of 1 using a field emission scanning electron microscope (FE-SEM) in comparison.
  • FE-SEM field emission scanning electron microscope
  • the separator according to an aspect of the present invention is formed on a porous polymer substrate having a plurality of pores, and at least one surface of the porous polymer substrate, and is located on a part or all of a plurality of inorganic particles and surfaces of the inorganic particles.
  • a separator substrate comprising a porous coating layer comprising a binder polymer for connecting and fixing the inorganic particles; And a porous adhesive layer formed on at least one surface of the separator substrate and comprising an adhesive resin that exhibits adhesiveness by heating to a temperature lower than the melting point of the porous polymer substrate.
  • the porous adhesive layer has a pore structure formed by phase separation according to the evaporation rate of the solvent and the non-solvent when the coating composition including the adhesive resin, the solvent, and the non-solvent is applied to at least one side of the separator substrate and dried. do.
  • the humidified phase separation is prepared by using only a solvent of a binder polymer in the slurry for forming the porous organic-inorganic coating layer, and drying is performed while exposing the porous polymer substrate coated with the slurry to a non-solvent environment rich in moisture.
  • the binder polymer is gelled on the surface of the coating layer directly contacting the non-solvent moisture atmosphere, thereby forming a layer structure in which the binder polymer is relatively rich.
  • the humidifying phase separation process proceeds on the surface of the slurry coating layer for forming the porous organic-inorganic coating layer, the surface uniformity of the coating layer is remarkably decreased, and the binder distribution is polymer-rich from the surface layer to the fabric interface layer. It has a structure to increase the resistance of the coating separator.
  • the drying step in the step of applying the coating composition comprising the adhesive resin, the solvent, and the non-solvent on at least one surface of the separator substrate, the drying step, the solvent And a pore structure formed by phase separation according to the evaporation rate of the nonsolvent.
  • the solvent is defined as a solvent capable of dissolving the adhesive resin 5% by weight or more even at a low temperature of less than 60 °C, and the non-solvent dissolves the adhesive resin to the melting point of the adhesive resin or the boiling point of the liquid.
  • N is defined as a solvent that does not swell.
  • the non-solvent is higher than the solvent, the evaporation rate is low, and corresponds to a solvent that does not dissolve or swell the adhesive resin constituting the porous adhesive layer.
  • the porous adhesive layer when the porous coating layer is formed on both sides of the porous polymer substrate, the porous adhesive layer may be formed on each upper surface of the porous coating layer. In addition, when the porous coating layer is formed only on one surface of the porous polymer substrate, the porous adhesive layer may be directly formed on the upper surface of the porous coating layer and the other surface of the porous polymer substrate on which the porous coating layer is not formed.
  • the porous polymer substrate may specifically be a porous polymer film substrate or a porous polymer nonwoven substrate.
  • the porous polymer film substrate may be a porous polymer film made of polyolefin, such as polyethylene, polypropylene, such a polyolefin porous polymer film substrate, for example, exhibits a shutdown function at a temperature of 80 to 130 °C.
  • the polyolefin porous polymer film is a high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ultra-high molecular weight polyethylene, such as polyethylene, polypropylene, polybutylene, polypentene, such as polyolefin-based polymer, respectively, or a mixture of two or more thereof It can be formed as.
  • porous polymer film substrate may be manufactured by molding into a film shape using various polymers such as polyester in addition to polyolefin.
  • porous polymer film base material may be formed in a structure in which two or more film layers are stacked, and each film layer may be formed of a polymer such as the above-described polyolefin, polyester alone or a mixture of two or more thereof. have.
  • porous polymer film substrate and the porous non-woven fabric substrate may be polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, in addition to the above polyolefin. ), Polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalene And the like, each of which may be formed alone or in a mixture of these polymers.
  • the thickness of the porous polymer substrate is not particularly limited, but is in particular 1 to 100 ⁇ m, more specifically 5 to 50 ⁇ m, and the pore size and pore present in the porous polymer substrate are also not particularly limited, but 0.01 to 50, respectively. Preference is given to m and 10 to 95%.
  • the binder polymer used to form the porous coating layer a polymer commonly used in the porous coating layer may be used in the art.
  • a polymer having a glass transition temperature (T g ) of ⁇ 200 to 200 ° C. may be used because it may improve mechanical properties such as flexibility and elasticity of the finally formed porous coating layer.
  • T g glass transition temperature
  • Such a binder polymer faithfully plays a role of a binder for stably connecting and stabilizing inorganic particles, thereby contributing to preventing mechanical property degradation of the separator into which the porous coating layer is introduced.
  • the binder polymer does not necessarily have an ion conducting ability, but when a polymer having an ion conducting ability is used, the performance of the electrochemical device may be further improved. Therefore, the binder polymer may be used as high a dielectric constant as possible.
  • the dissociation degree of the salt in the electrolyte depends on the dielectric constant of the solvent of the electrolyte, the higher the dielectric constant of the binder polymer, the higher the dissociation of the salt in the electrolyte.
  • the binder polymer may have a feature that can exhibit a high degree of swelling of the electrolyte by gelling when the liquid electrolyte is impregnated.
  • the solubility parameter i.e. hildeo brand solubility parameter (Hildebrand solubility parameter) of 15 to 45 MPa 1/2 or 15 to 25 MPa 1/2, and 30 to 45 MPa 1/2 range of the binder polymer. Therefore, hydrophilic polymers having more polar groups may be used than hydrophobic polymers such as polyolefins. If the solubility is more than 15 MPa 1/2 and less than 45 MPa 1/2, because it can be difficult to swell (swelling) by conventional liquid electrolyte batteries.
  • binder polymers include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacryl Polymethylmethacrylate, polybutylacrylate, polybutylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate Polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate ), Sia Cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, and carboxyl methyl cellulose It is mentioned, but it is not limited to this.
  • the weight ratio of the inorganic particles and the binder polymer is, for example, 50:50 to 99: 1, specifically 70:30 to 95: 5.
  • the content ratio of the inorganic particles to the binder polymer satisfies the above range, the problem of reducing the pore size and porosity of the coating layer formed by increasing the content of the binder polymer can be prevented and formed because the binder polymer content is small.
  • the problem that the peeling resistance of the coating layer is weakened can also be solved.
  • the separator according to an aspect of the present invention may further include other additives in addition to the above-described inorganic particles and polymers as the porous coating layer component.
  • non-limiting examples of inorganic particles include high dielectric constant inorganic particles having a dielectric constant of 5 or more, specifically 10 or more, inorganic particles having a lithium ion transfer ability, or mixtures thereof.
  • Non-limiting examples of the inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT), PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC, AlO (OH), Al 2 O 3 H 2 O, Or mixtures thereof.
  • the term 'inorganic particles having lithium ion transporting ability' refers to inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium, and are not limited to inorganic particles having lithium ion transporting ability.
  • Typical examples include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), and lithium aluminum titanium phosphate (Li x Al y Ti z (LiAlTiP) x O y series such as (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5, etc.
  • Li x Ge y P z S w Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), Li 3 N, etc.
  • the thickness of the porous coating layer is not particularly limited, but in detail, 1 to 10 ⁇ m, more specifically 1.5 to 6 ⁇ m, pores of the porous coating layer is also not particularly limited, but is preferably 35 to 65%.
  • the porous coating layer may be an oil-based coating layer using an organic slurry or an aqueous coating layer using an aqueous slurry, and in the case of a double aqueous coating layer, it is advantageous for thin film coating and the resistance of the separator is further reduced. May be advantageous.
  • the adhesive resin is a polyvinylidene-hexafluoropropylene copolymer comprising a vinylidene derived repeat unit and a hexafluoropropylene derived repeat unit.
  • the ratio of the number of hexafluoropropylene-derived repeat units to the total number of the vinylidene-derived repeat units and hexafluoropropylene (HFP) -derived repeat units, that is, the HFP substitution rate is 4.5 to 9%, and specifically 5 to 8 %, Or 5 to 7%, or 5 to 6%, or 6 to 7%, or 7 to 8%.
  • the HFP substitution rate satisfies this range, it is possible to maintain proper solubility of the solvent (acetone) and the copolymer, increase the affinity with the non-solvent, and when the affinity between the non-solvent and the copolymer is low. In order to lower the interfacial energy, it is possible to prevent non-solvent bonding and evaporation to form relatively large and uneven pores.
  • the difference between the maximum pore diameter and the average pore diameter of the porous adhesive layer may be 0.2 to 0.6 ⁇ m, specifically 0.2 to 0.5 ⁇ m, or more specifically 0.2 to 0.4 ⁇ m.
  • the difference between the maximum pore diameter and the average pore diameter of the porous adhesive layer satisfies this range, it is possible to improve the uniformity of the pores in the porous coating layer to enable efficient delivery of lithium ions.
  • the porosity of the porous adhesive layer may be 30 to 70%, specifically 35 to 65%, or more specifically 40 to 60%.
  • the porosity of the porous adhesive layer satisfies this range, it is possible to secure the adhesion with other substrates (electrodes, etc.) through an appropriate coating layer density, it is possible to implement the ion transport path of the porous coating layer.
  • a separator substrate having a porous coating layer including a plurality of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate having a plurality of pores;
  • a coating composition comprising a polyvinylidene-hexafluoropropylene copolymer comprising a vinylidene-derived repeating unit and a hexafluoropropylene-derived repeating unit, a solvent, and a non-solvent is prepared by the separator. Applying to at least one side of the substrate; And
  • the ratio of the number of the hexafluoropropylene derived repeating units to the total number of the vinylidene derived repeating units and the hexafluoropropylene derived repeating units is 4.5 to 9%.
  • the binder polymer may be dissolved in a solvent, and then inorganic particles may be added and dispersed to prepare a composition for forming a porous coating layer.
  • the inorganic particles may be added in a state where they are crushed to have a predetermined average particle diameter in advance, or after the inorganic particles are added to a solution of the binder polymer, the inorganic particles are crushed while being controlled to have a predetermined average particle size by using a ball mill method. It can also be dispersed.
  • the method of coating the porous coating layer-forming composition on the porous polymer substrate is not particularly limited, but it is preferable to use a slot coating or a dip coating method.
  • Slot coating is capable of adjusting the coating layer thickness in accordance with the flow rate supplied from the metering pump in such a way that the composition supplied through the slot die is applied to the front of the substrate.
  • dip coating is a method of dipping and coating the substrate in the tank containing the composition, it is possible to adjust the thickness of the coating layer according to the concentration of the composition and the rate of removing the substrate from the composition tank, and after immersion for more precise coating thickness control Meyer bar, etc. Post-measurement is possible through
  • porous polymer substrate coated with the composition for forming a porous coating layer is dried using a dryer such as an oven to form a porous coating layer formed on at least one surface of the porous polymer substrate.
  • the binder polymer of the porous coating layer may be attached to each other (that is, the binder polymer is connected and fixed between the inorganic particles) to keep the inorganic particles bound to each other, and the binder polymer By doing so, the inorganic particles and the porous polymer substrate may be bound.
  • the inorganic particles of the porous coating layer may form an interstitial volume in substantially contact with each other, wherein the interstitial volume is substantially in a closed packed or densely packed structure with the inorganic particles. It means a space defined by the inorganic particles in contact with.
  • the interstitial volume between the inorganic particles may be an empty space to form pores of the porous coating layer.
  • a porous adhesive layer including an adhesive resin expressing adhesiveness is formed on at least one surface of the separator substrate by heating to a temperature lower than the melting point of the porous polymer substrate.
  • the forming of the porous adhesive layer may include applying a coating composition including the adhesive resin, a solvent, and a non-solvent to at least one surface of the separator substrate; Drying the applied coating composition to form a porous adhesive layer having a pore structure by phase separation according to the evaporation rate of the solvent and the non-solvent.
  • the adhesive resin is a polyvinylidene-hexafluoropropylene copolymer comprising a vinylidene-derived repeating unit and a hexafluoropropylene-derived repeating unit, as described above, and the vinylidene-derived repeating unit and hexafluoropropylene (
  • the ratio (HFP substitution rate) of the number of the hexafluoropropylene derived repeating units with respect to the total number of repeating units derived from HFP) is 4.5 to 9%.
  • the coating method of the coating composition on at least one surface of the separator substrate is not particularly limited, it is preferable to use a slot coating or a dip coating method.
  • the solvent used is similar to the solubility index and the adhesive resin to be used, it is preferable that the boiling point (boiling point) is low. This is to facilitate uniform mixing and subsequent solvent removal.
  • solvents that can be used include one or more compounds selected from acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, methylethylketone and cyclohexane There may be a mixture.
  • non-limiting examples of the non-solvent may be one compound selected from methanol, ethanol, isopropanol, propanol, and water, or a mixture of two or more thereof, and suitable nonsolvents depending on the type of adhesive resin used. Can be selected.
  • the weight ratio of the nonsolvent to the total weight of the solvent and the nonsolvent may be 1 to 50%, specifically 2 to 30%, and more specifically 3 to 15%.
  • the weight ratio of the non-solvent satisfies this range, a problem due to gelation may not occur in preparing the coating composition while obtaining the effect using the non-solvent, and an adhesive layer having a porous pore structure may be formed. .
  • the content of the polyvinylidene-hexafluoropropylene copolymer with respect to 100 parts by weight of the total weight of the solvent and the nonsolvent is 2 to 10 parts by weight, specifically 3 to 10 parts by weight, more specifically 4 to It may be 10 parts by weight.
  • the weight ratio of the polyvinylidene-hexafluoropropylene copolymer satisfies this range, the coating layer density is prevented from being lowered due to the decrease in solid content, and the copolymerization between the copolymer and the non-solvent copolymer gelation (gelation). Can be prevented.
  • the porous adhesive layer may have a thickness of 0.1 to 8 ⁇ m, specifically 0.5 to 4 ⁇ m.
  • the difference in boiling point of the solvent and the non-solvent in the coating composition may be 10 °C or more, specifically 10 to 100 °C, more specifically 10 to 50 °C.
  • pore formation may be controlled by the evaporation rate difference between the solvent and the non-solvent, and the miscibility of the solvent and the non-solvent may be secured.
  • the coating composition including the adhesive resin, the solvent, and the non-solvent form a uniform single phase, but the coating composition is initially thermodynamically applied to at least one surface of the separator substrate and dried. It becomes unstable and transforms into a two phase solution.
  • the solvent having a low boiling point during drying preferentially evaporates, so that the concentration of the nonsolvent in the applied composition becomes relatively high.
  • phase separation between the nonsolvent and the adhesive resin which are not compatible with each other is promoted, and the adhesive resin It is separated into a rich phase and an adhesive resin poor phase.
  • the concentration of the adhesive resin increases, so that the solvation properties of the adhesive resin are reduced, and the adhesive resin rich phase is solidified to form a solid matrix surrounding the adhesive resin lack phase.
  • the nonsolvent enclosed and filled in the solid matrix phase is finally evaporated and removed, the filled space is formed into pores to obtain a porous adhesive layer having a morphology of the pore structure.
  • the distribution of the binder has a polymer-poor structure from the surface layer to the fabric interface layer to help reduce the resistance of the coating separator.
  • the drying temperature may be 100 ° C or less, specifically 25 to 50 ° C, more specifically 25 to 40 ° C.
  • An electrochemical device includes a cathode, an anode, a separator interposed between the cathode and the anode, and the separator is a separator according to an embodiment of the present invention described above.
  • Such electrochemical devices include all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor devices.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • Both electrodes of the cathode and the anode to be applied together with the separator of the present invention are not particularly limited, and the electrode active material may be prepared in a form bound to the electrode current collector according to conventional methods known in the art.
  • Non-limiting examples of the cathode active material of the electrode active material may be a conventional cathode active material that can be used in the cathode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or combinations thereof It is preferable to use one lithium composite oxide.
  • Non-limiting examples of anode active materials include conventional anode active materials that can be used for the anodes of conventional electrochemical devices, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred.
  • Non-limiting examples of the cathode current collector is a foil produced by aluminum, nickel or a combination thereof, and non-limiting examples of the anode current collector by copper, gold, nickel or a copper alloy or a combination thereof. Foils produced.
  • Electrolyte that may be used in the electrochemical device of the present invention is A + B - A salt of the structure, such as, A + comprises a Li +, Na +, an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C Salts containing ions consisting of anions such as (CF 2 SO 2 ) 3 - or a combination thereof are propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone
  • the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • the slurry thus prepared is coated on one surface of a polyethylene porous membrane (air permeability 160 sec / 100 ml, resistance 0.66 ohm, air permeability 142 sec / 100 cc) having a thickness of 14 ⁇ m by the slot coating method, and the coating thickness is about 2 ⁇ m.
  • a separator substrate having a porous coating layer on one surface was prepared.
  • the weight of the binder polymer based on the total weight of the porous coating layer in the porous coating layer was 5% by weight.
  • acetone (boiling point: 56.05 ° C.) and non-solvent isopropanol (boiling point: 82.6 ° C.) are mixed at a weight ratio of 95: 5, and then the polyvinylidene fluoride-hexafluoropropylene copolymer (adhesive resin) is used.
  • PVdF-HFP, HFP substitution rate: 5% was added to 4 parts by weight based on 100 parts by weight of the total weight of acetone and isopropanol to dissolve at 50 °C for about 12 hours to prepare a composition for coating a porous adhesive layer.
  • the HFP substitution rate of the vinylidene-derived repeating unit and the hexafluoropropylene (HFP) -derived repeating unit in the polyvinylidene-hexafluoropropylene copolymer including the vinylidene-derived repeating unit and the hexafluoropropylene-derived repeating unit It means the ratio of the number of the hexafluoropropylene-derived repeat unit to the total number.
  • the separator thus prepared is a double-sided asymmetric structure laminated in the order of the porous adhesive layer / porous polymer substrate / porous coating layer / porous adhesive layer.
  • the thicknesses of the porous coating layer and the porous adhesive layer were 2 ⁇ m and 1 ⁇ m, respectively.
  • a composition for coating the porous adhesive layer After mixing acetone, which is a solvent, and isopropanol, which is a non-solvent, in a weight ratio of 95: 5, a polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP, HFP substitution rate) is used as an adhesive resin. : 8%) was prepared in the same manner as in Example 1 except that 4 parts by weight based on 100 parts by weight of acetone and isopropanol were added.
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the separator thus prepared is a double-sided asymmetric structure laminated in the order of the porous adhesive layer / porous polymer substrate / porous coating layer / porous adhesive layer.
  • the thicknesses of the porous coating layer and the porous adhesive layer were 2 ⁇ m and 1 ⁇ m, respectively.
  • a composition for coating the porous adhesive layer After mixing acetone, which is a solvent, and isopropanol, which is a non-solvent, in a weight ratio of 95: 5, a polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP, HFP substitution rate) is used as an adhesive resin. : 10%) was prepared in the same manner as in Example 1, except that 4 parts by weight of 100 parts by weight of acetone and isopropanol were added.
  • the separator thus prepared is a double-sided asymmetric structure laminated in the order of the porous adhesive layer / porous polymer substrate / porous coating layer / porous adhesive layer.
  • the thicknesses of the porous coating layer and the porous adhesive layer were 2 ⁇ m and 1 ⁇ m, respectively.
  • PVdF-HFP, HFP substitution ratio polyvinylidene fluoride-hexafluoropropylene copolymer
  • the separator thus prepared is a double-sided asymmetric structure laminated in the order of the porous adhesive layer / porous polymer substrate / porous coating layer / porous adhesive layer.
  • the thicknesses of the porous coating layer and the porous adhesive layer were 2 ⁇ m and 1 ⁇ m, respectively.
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the separator thus prepared is a double-sided asymmetric structure laminated in the order of the porous adhesive layer / porous polymer substrate / porous coating layer / porous adhesive layer.
  • the thicknesses of the porous coating layer and the porous adhesive layer were 2 ⁇ m and 1 ⁇ m, respectively.
  • the thickness, separator-separator adhesion force (gf / 25mm), separator-anode adhesion force (gf / 25mm), air permeability (sec / 100 second) and its standard Deviation, resistance and its standard deviation, the maximum pore / average pore of the porous adhesive layer and its standard deviation are evaluated and calculated, respectively, and are shown in Table 1 below.
  • the separators prepared in Examples 1 to 2 and Comparative Examples 1 to 3 were cut into 25 mm * 100 mm sizes, respectively, to prepare two sheets.
  • the end portions of the two bonded separators were mounted on a UTM instrument (LLOYD Instrument LF Plus), and then the force required to separate the bonded separators was measured by applying a force in both directions at a measurement speed of 300 mm / min.
  • the active material naturally graphite and artificial graphite (weight ratio 5: 5)
  • the binder [polyvinylidene fluoride (PVdF)] were mixed in a weight ratio of 92: 2: 6, dispersed in water, and then copper An anode was prepared by coating on foil, and cut to 25 mm ⁇ 70 mm in size to prepare.
  • the separators prepared in Examples 1 and 2 and Comparative Examples 1 to 3 were prepared by cutting them into a size of 25 mm ⁇ 70 mm.
  • the prepared separator and anode were overlapped with each other, sandwiched between 100 ⁇ m PET film, and bonded using a flat plate press. At this time, the condition of the flat press machine was heated for 5 seconds at a pressure of 20MPa of 70 °C.
  • the end portions of the bonded separator and the anode were mounted on a UTM instrument (LLOYD Instrument LF Plus), and then the force required to separate the bonded separator was measured by applying a force in both directions at a measurement speed of 300 mm / min.
  • Air permeability was measured by the ASTM D726-94 method. Gurley, as used herein, is a resistance to the flow of air, measured by Gurley densometer. The air permeability values described herein refer to the time (in seconds) for 100 cc of air to pass through the cross section of separator 1 in 2 prepared in Examples 1 to 2 and Comparative Examples 1 to 3 under a pressure of 12.2 inH 2 O, ie Expressed as aeration time.
  • the sample surface was magnified by 2,500 times using a scanning electron microscope (FE-SEM) (Hitachi S-4800 Scanning Electron Microscope), and confirmed in the randomly sampled range (10 ⁇ m or more and 15 ⁇ m or more) in the measured picture.
  • the major axis length among the surface pores was measured as pore size.
  • the number of measurements was made at least 10, and the average and the maximum value of the pore sizes obtained after the measurement were obtained.
  • the separators of Examples 1 to 2 have significantly smaller standard deviation values of air permeability, resistance, and pore size of the porous adhesive layer than those of Comparative Examples 1 to 3.
  • the separator of the embodiment 1 to 2 it is possible to prevent the problem that the dendrites are generated by being disturbed, such as being delayed in a certain part in the process of moving lithium ions through it, and employing such a separator.
  • One secondary battery can exhibit excellent life characteristics.
  • the air permeability, the resistance, the pore size of the porous adhesive layer is non-uniform, and when used in the secondary battery is expected to decrease the life characteristics.
  • the pore structure of the porous adhesive layer is uniformly distributed on the surface of the separator of Examples 1 to 2, but the variation of the pore size is very large on the surface of the separator of Comparative Examples 1 to 3 As a result, the distribution is also nonuniform.
  • the uniformity of the pore structure of Examples 1 to 2 results in a uniform result of the air permeability and resistance of the separator as described in Table 1 above, and consequently greatly improves the life characteristics of the secondary battery employing such a separator. You can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)

Abstract

다수의 기공을 갖는 다공성 고분자 기재, 및 상기 다공성 고분자 기재의 적어도 일면 상에 위치하며, 다수의 무기물 입자 및 상기 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 구비하는 세퍼레이터 기재; 및 상기 세퍼레이터 기재의 적어도 일면 상에 위치하며, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체를 포함하는 다공성 접착층;을 구비하고, 상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율이 4.5 내지 9%인 세퍼레이터 및 이를 포함하는 전기화학 소자가 제시된다.

Description

세퍼레이터 및 이를 포함하는 전기화학소자
본 발명은 세퍼레이터 및 이를 포함하는 전기화학소자에 관한 것으로서, 전극과의 접착력 및 통기도가 개선되고, 저항의 감소 효과가 우수한 세퍼레이터 및 이를 포함하는 전기화학소자에 관한 것이다.
본 출원은 2018년 7월 26일에 출원된 한국출원 제10-2018-0087423호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다.
최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안 된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 분리막으로서 통상적으로 사용되는 폴리올레핀계 다공성 고분자 기재는 재료적 특성과 연신을 포함하는 제조공정상의 특성으로 인하여 100℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 캐소드와 애노드 사이의 단락을 일으켰다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 유기-무기 코팅층을 형성한 세퍼레이터가 제안되었다.
다만, 다공성 유기-무기 코팅층의 도입에 따라 세퍼레이터의 통기도 저하, 저항의 증가, 전극간의 접착성의 저하 등의 문제가 생기는 바, 이에 대한 해결이 요구되고 있다.
따라서 본 발명이 해결하고자 하는 과제는, 전극과의 접착력 및 통기도가 개선되고, 저항의 감소 효과가 우수하며, 기공 구조가 균일한 다공성 접착층을 구비한 세퍼레이터를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 상기 세퍼레이터를 구비하는 전기화학소자를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 세퍼레이터가 제공된다.
제1 구현예는, 다수의 기공을 갖는 다공성 고분자 기재, 및
상기 다공성 고분자 기재의 적어도 일면 상에 위치하며, 다수의 무기물 입자 및 상기 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 구비하는 세퍼레이터 기재; 및
상기 세퍼레이터 기재의 적어도 일면 상에 위치하며, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체를 포함하는 다공성 접착층;을 구비하고,
상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율이 4.5 내지 9%인 세퍼레이터이다.
제2 구현예는, 제1 구현예에 있어서,
상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율(HFP 치환율)이 5 내지 8%인 세퍼레이터이다.
제3 구현예는, 제1 구현예 또는 제2 구현예에에 있어서,
상기 다공성 접착층의 최대 기공 직경과 평균 기공 직경의 차이가 0.2 내지 0.6 ㎛인 세퍼레이터이다.
제4 구현예는, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,상기 다공성 고분자 기재가 폴리올레핀계 다공성 고분자 기재인 세퍼레이터이다.
제5 구현예는, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 다공성 접착층의 기공도가 30 내지 70%인 세퍼레이터이다.
제6 구현예는, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 바인더 고분자가 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리부닐메타아크릴레이트 (polybutylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 세퍼레이터이다.
제7 구현예는, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 무기물 입자가 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물인 세퍼레이터이다.
제8 구현예는, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 다공성 접착층이 상기 폴리비닐리덴-헥사플루오로프로필렌 공중합체, 용매, 및 비용매를 포함하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포 및 건조시 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 형성된 기공 구조를 구비하는 세퍼레이터이다.
본 발명의 다른 측면에 따르면 하기 구현예의 세퍼레이터의 제조방법이 제공된다.
제9 구현예는,
다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면 상에 다수의 무기물 입자 및 바인더 고분자를 포함하는 다공성 코팅층을 구비하는 세퍼레이터 기재를 준비하는 단계;
상기 세퍼레이터 기재의 적어도 일면 상에, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체, 용매, 및 비용매를 구비하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포하는 단계; 및
상기 도포된 코팅용 조성물을 건조하여 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 기공 구조를 갖는 다공성 접착층을 형성하는 단계를 포함하고,
상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율이 4.5 내지 9%인 세퍼레이터의 제조방법이다.
제10 구현예는, 제9 구현예에 있어서,
상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율(HFP 치환율)이 5 내지 8%인 세퍼레이터의 제조방법이다.
제11 구현예는, 제9 구현예 또는 제10 구현예에 있어서,
상기 용매가 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아미드, N-메틸-2-피롤리돈, 메틸에틸케톤 및 시클로헥산 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물이고, 상기 비용매가 메탄올, 에탄올, 이소프로판올, 프로판올 및 물 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 세퍼레이터의 제조방법이다.
제12 구현예는, 제9 구현예 내지 제11 구현예 중 어느 한 구현예에 있어서,
상기 코팅용 조성물에서 용매 및 비용매의 총 중량 대비 비용매의 중량비가 1 내지 50 %인 세퍼레이터의 제조방법이다.
제13 구현예는, 제9 구현예 내지 제12 구현예 중 어느 한 구현예에 있어서,
상기 코팅용 조성물에서 용매 및 비용매의 총 중량 100 중량부 대비 폴리비닐리덴-헥사플루오로프로필렌 공중합체의 함량이 2 내지 10 중량부인 세퍼레이터의 제조방법이다.
제14 구현예는, 제9 구현예 내지 제13 구현예 중 어느 한 구현예에 있어서,
상기 코팅용 조성물에서 용매 및 비용매의 비점 차이가 10℃ 이상인 세퍼레이터의 제조방법이다.
본 발명의 다른 측면에 따르면 하기 구현예의 전기화학소자가 제공된다.
제15 구현예는, 캐소드, 애노드, 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하는 전기화학소자에 있어서, 상기 세퍼레이터가 제1 구현예 내지 제8 구현예 중 어느 한 항의 세퍼레이터인 전기화학소자이다.
제16 구현에는, 제15 구현예에 있어서,
상기 전기화학소자가 리튬 이차전지인 전기화학소자이다.
본 발명의 일 실시예에 따르면, 무기물 입자와 바인더 고분자를 포함하는 다공성 코팅층과 다공성 접착층을 순차적으로 코팅함으로써 우수한 전극과의 접착력을 보유하면서도 박막 코팅이 가능하고, 또한, 건조 상분리 방법을 통해 형성된 다공성 접착층이 개선된 기공 구조를 가짐으로써, 통기도가 향상되고, 분리막 저항의 문제가 감소되며, 코팅의 균일성도 확보할 수 있게 된다.
특히, 본 발명의 일 실시예에 따른 세퍼레이터에서 상기 다공성 접착층의 코팅이 균일성을 가지게 되어, 다공성 접착층 전체에 형성된 기공 구조가 균일하므로, 세퍼레이터의 통기도 및 저항의 표준 편차와, 다공성 접착층의 기공 크기의 표준 편차도 현저하게 작게 제어될 수 있다. 그 결과, 상기 세퍼레이터를 관통하여 리튬 이온이 이동하는 과정에서 특정 부분에서 속도가 지체되는 등 방해를 받아서 덴드라이트가 생성되는 문제를 방지할 수 있고, 이러한 세퍼레이터를 채용한 이차전지는 우수한 수명 특성을 발휘할 수 있게 된다.
도 1은 실시예 1의 세퍼레이터의 표면의 모폴러지를 전계방사형 주사전자현미경(FE-SEM)을 이용하여 관찰한 사진이다.
도 2는 실시예 2의 세퍼레이터의 표면의 모폴러지를 전계방사형 주사전자현미경(FE-SEM)을 이용하여 관찰한 사진이다.
도 3은 비교에 1의 세퍼레이터의 표면의 모폴러지를 전계방사형 주사전자현미경(FE-SEM)을 이용하여 관찰한 사진이다.
도 4는 비교예 2의 세퍼레이터의 표면의 모폴러지를 전계방사형 주사전자현미경(FE-SEM)을 이용하여 관찰한 사진이다.
도 5는 비교예 3의 세퍼레이터의 표면의 모폴러지를 전계방사형 주사전자현미경(FE-SEM)을 이용하여 관찰한 사진이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 측면에 따른 세퍼레이터는, 다수의 기공을 갖는 다공성 고분자 기재, 및 상기 다공성 고분자 기재의 적어도 일면 상에 형성되어 있으며, 다수의 무기물 입자 및 상기 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 포함하는 세퍼레이터 기재; 및 상기 세퍼레이터 기재의 적어도 일면 상에 형성되어 있으며, 상기 다공성 고분자 기재의 융점보다 낮은 온도로 가열함으로써 접착성이 발현하는 접착성 수지를 포함하는 다공성 접착층;을 구비하고,
상기 다공성 접착층이 상기 접착성 수지, 용매, 및 비용매를 포함하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포 및 건조시 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 형성된 기공 구조를 구비한다.
종래에는, 다공성 고분자 기재 상에 무기물 입자와 바인더 고분자가 혼합된 다공성 유기-무기 코팅층 형성용 슬러리를 도포한 후에 가습상분리(Vapor induced phase separation) 방식을 통해 표면에 바인더 고분자가 풍부한 구조를 형성시켜서, 이를 통해 전극 접착성을 부여하고자 하였다.
즉, 가습상분리라 함은, 다공성 유기-무기 코팅층 형성용 슬러리에는 바인더 고분자의 용매만을 이용하여 제조하고, 슬러리를 도포한 다공성 고분자 기재를 바인더 고분자에 대해서 비용매인 수분이 풍부한 환경에 노출시키면서 건조를 함에 따라, 비용매인 수분의 분위기에 직접 접하는 코팅층의 표면에서 바인더 고분자가 겔화되면서 바인더 고분자가 상대적으로 풍부해지는 층 구조를 형성하는 방식이다.
하지만, 이러한 가습상분리 방식을 통하여, 바인더 고분자의 함량이 많은 표면층을 형성하여 이를 전극 접착층으로서 적용하는 경우에, 전극 접착층의 두께가 지나치게 두꺼운 경우 저항 역할을 하고, 또한 그 두께를 작게 하는 경우에는 접착성이 충분히 발휘되지 않는 문제점이 있었다. 특히, 가습상분리 방식의 경우에는 그 전극 접착층으로 형성되는 층 구조의 두께를 조절하는 것이 용이하지 않은 단점도 있었다.
또한, 가습상분리 방식은 다공성 유기-무기 코팅층 형성용 슬러리 코팅층의 표면에서 진행됨에 따라, 코팅층의 표면 균일성이 현저히 떨어지며, 바인더의 분포가 표면층에서 원단 계면층으로 갈수록 폴리머가 풍부한(polymer-rich) 구조를 가지게 되어 코팅분리막의 저항을 상승시킨다.
이와 달리 본 발명의 일 측면에 따른 세퍼레이터에서는, 상기 다공성 접착층이 상기 접착성 수지, 용매, 및 비용매를 포함하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포하고, 건조하는 단계에서, 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 형성된 기공 구조를 구비한다.
본 명세서에서, 용매라 함은 60 ℃ 미만의 저온에서도 접착성 수지를 5 중량% 이상 용해시킬 수 있는 용제로 정의하고, 비용매라 함은 접착성 수지의 융점 또는 액체의 비점까지 접착성 수지를 용해나 팽윤도 시키지 않은 용제로 정의한다.
이때 상기 비용매는 용매 보다 비점이 높고, 증발 속도가 낮으며, 다공성 접착층을 구성하는 접착성 수지에 대해서 용해나 팽윤등을 시키지 못하는 용제에 해당된다.
본 발명의 일 실시예에 따르면, 다공성 고분자 기재의 양면에 다공성 코팅층이 형성된 경우에는, 상기 다공성 접착층은 상기 다공성 코팅층의 각 상면에 형성될 수 있다. 또한, 상기 다공성 고분자 기재의 일면에만 다공성 코팅층이 형성된 경우에는, 상기 다공성 접착층은 상기 다공성 코팅층의 상면과 다공성 코팅층이 형성되지 않은 다공성 고분자 기재의 타면에 직접 형성될 수 있다.
상기 다공성 고분자 기재는, 구체적으로 다공성 고분자 필름 기재 또는 다공성 고분자 부직포 기재일 수 있다.
상기 다공성 고분자 필름 기재로는 폴리에틸렌, 폴리프로필렌과 같은 폴리올레핀으로 이루어진 다공성 고분자 필름일 수 있으며, 이러한 폴리올레핀 다공성 고분자 필름 기재는 예를 들어 80 내지 130 ℃의 온도에서 셧다운 기능을 발현한다.
이때, 폴리올레핀 다공성 고분자 필름은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독 또는 이들의 2종 이상 혼합하여 고분자로 형성할 수 있다.
또한, 상기 다공성 고분자 필름 기재는 폴리올레핀 외에 폴리에스테르 등의 다양한 고분자들을 이용하여 필름 형상으로 성형하여 제조될 수도 있다. 또한, 상기 다공성 고분자 필름 기재는 2층 이상의 필름층이 적층된 구조로 형성될 수 있으며, 각 필름층은 전술한 폴리올레핀, 폴리에스테르 등의 고분자 단독으로 또는 이들을 2종 이상 혼합한 고분자로 형성될 수도 있다.
또한, 상기 다공성 고분자 필름 기재 및 다공성 부직포 기재는 상기와 같은 폴리올레핀계 외에 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성될 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 상세하게는 1 내지 100 ㎛, 더욱 상세하게는 5 내지 50 ㎛이고, 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다.
본 발명의 일 측면에 따른 세퍼레이터에 있어서, 다공성 코팅층 형성에 사용되는 바인더 고분자로는 당 업계에서 다공성 코팅층 형성에 통상적으로 사용되는 고분자를 사용할 수 있다. 특히, 유리 전이 온도(glass transition temperature, T g)가 -200 내지 200℃인 고분자를 사용할 수 있는데, 이는 최종적으로 형성되는 다공성 코팅층의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다. 이러한 바인더 고분자는 무기물 입자들 사이를 연결 및 안정하게 고정시켜주는 바인더 역할을 충실히 수행함으로써, 다공성 코팅층이 도입된 세퍼레이터의 기계적 물성 저하 방지에 기여한다.
또한, 상기 바인더 고분자는 이온 전도 능력을 반드시 가질 필요는 없으나, 이온 전도 능력을 갖는 고분자를 사용할 경우 전기화학소자의 성능을 더욱 향상시킬 수 있다. 따라서, 상기 바인더 고분자는 가능한 유전율 상수가 높은 것을 사용할 수 있다. 실제로 전해액에서 염의 해리도는 전해액 용매의 유전율 상수에 의존하기 때문에, 상기 바인더 고분자의 유전율 상수가 높을수록 전해질에서의 염 해리도를 향상시킬 수 있다. 이러한 바인더 고분자의 유전율 상수는 1.0 내지 100 (측정 주파수 = 1 kHz) 범위가 사용 가능하며, 특히 10 이상일 수 있다.
전술한 기능 이외에, 상기 바인더 고분자는 액체 전해액 함침시 겔화됨으로써 높은 전해액 팽윤도(degree of swelling)를 나타낼 수 있는 특징을 가질 수 있다. 이에 따라, 상기 바인더 고분자의 용해도 지수, 즉 힐더브랜드 용해도 지수(Hildebrand solubility parameter)는 15 내지 45 MPa 1 /2 또는 15 내지 25 MPa 1 /2 및 30 내지 45 MPa 1 /2 범위이다. 따라서, 폴리올레핀류와 같은 소수성 고분자들보다는 극성기를 많이 갖는 친수성 고분자들이 더 사용될 수 있다. 상기 용해도 지수가 15 MPa 1 /2 미만 및 45 MPa 1 /2를 초과할 경우, 통상적인 전지용 액체 전해액에 의해 팽윤(swelling)되기 어려울 수 있기 때문이다.
이러한 바인더 고분자의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리부닐메타아크릴레이트 (polybutylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)등을 들 수 있으며, 이에 한정되는 것은 아니다.
상기 무기물 입자와 바인더 고분자의 중량비는 예를 들어 50:50 내지 99:1, 상세하게는 70:30 내지 95:5이다. 바인더 고분자에 대한 무기물 입자의 함량비가 상기 범위를 만족하는 경우, 바인더 고분자의 함량이 많아지게 되어 형성되는 코팅층의 기공 크기 및 기공도가 감소되는 문제가 방지될 수 있고, 바인더 고분자 함량이 적기 때문에 형성되는 코팅층의 내필링성이 약화되는 문제도 해소될 수 있다.
본 발명의 일 측면에 따른 세퍼레이터는 다공성 코팅층 성분으로 전술한 무기물 입자 및 고분자 이외에, 기타 첨가제를 더 포함할 수 있다.
본 발명에서는 무기물 입자의 비제한적인 예로는 유전율 상수가 5 이상 상세하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물을 들 수 있다.
상기 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO 3, Pb(Zr,Ti)O 3(PZT), Pb 1 - xLa xZr 1 - yTi yO 3(PLZT), PB(Mg 3Nb 2/3)O 3-PbTiO 3(PMN-PT), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, Y 2O 3, Al 2O 3, TiO 2 , SiC, AlO(OH), Al 2O 3·H 2O, 또는 이들의 혼합물 등이 있다.
본원 명세서에서 '리튬 이온 전달 능력을 갖는 무기물 입자'는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li 3PO 4), 리튬티타늄포스페이트(Li xTi y(PO 4) 3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(Li xAl yTi z(PO 4) 3, 0 <x<2, 0<y<1, 0<z<3), 14Li 2O-9Al 2O 3-38TiO 2-39P 2O 5 등과 같은 (LiAlTiP) xO y 계열 글래스(glass) (0<x<4, 0<y<13), 리튬란탄티타네이트(Li xLa yTiO 3, 0<x<2, 0<y<3), Li 3 . 25Ge 0 .25P 0. 75S 4 등과 같은 리튬게르마니움티오포스페이트(Li xGe yP zS w, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li 3N 등과 같은 리튬나이트라이드(Li xN y, 0<x<4, 0<y<2), Li 3PO 4-Li 2S-SiS 2 등과 같은 SiS 2 계열 glass(Li xSi yS z, 0<x<3, 0<y<2, 0<z<4), LiI-Li 2S-P 2S 5 등과 같은 P 2S 5 계열 glass(Li xP yS z, 0<x<3, 0<y<3, 0<z<7) 또는 이들의 혼합물 등이 있다.
상기 다공성 코팅층의 두께는 특별히 제한되지 않으나, 상세하게는 1 내지 10 ㎛, 더욱 상세하게는 1.5 내지 6 ㎛이고, 상기 다공성 코팅층의 기공도 역시 특별히 제한되지 않으나 35 내지 65%인 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 다공성 코팅층은 유기계 슬러리를 이용한 유계 코팅층 또는 수계 슬리러를 이용한 수계 코팅층일 수 있고, 이중 수계 코팅층의 경우 박막 코팅에 유리하고 분리막의 저항이 감소된다는 면에서 더 유리할 수 있다.
상기 접착성 수지는 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체이다.
상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율, 즉 HFP 치환율은 4.5 내지 9%이고, 상세하게는 5 내지 8%, 또는 5 내지 7%, 또는 5 내지 6%, 또는 6 내지 7%, 또는 7 내지 8%일 수 있다. 상기 HFP 치환율이 이러한 범위를 만족하는 경우, 용매(아세톤)와 상기 공중합체와의 적절한 용해성을 유지하며, 비용매와의 친화도를 높일 수 있고, 비용매와 공중합체와의 친화도가 낮을 때 계면에너지를 낮추기 위해 비용매 간 결합하며 증발하여 상대적으로 크고 균일하지 않은 기공이 형성되는 문제를 방지할 수 있다.
상기 다공성 접착층의 최대 기공 직경과 평균 기공 직경의 차이는 0.2 내지 0.6 ㎛, 상세하게는 0.2 내지 0.5 ㎛, 또는 더 상세하게는 0.2 내지 0.4 ㎛일 수 있다. 상기 다공성 접착층의 최대 기공 직경과 평균 기공 직경의 차이가 이러한 범위를 만족하는 경우, 다공성 코팅층 내 기공의 균일성을 향상시켜 효율적인 리튬 이온의 전달을 가능케 할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 다공성 접착층의 기공도는 30 내지 70%, 상세하게는 35 내지 65%, 또는 더 상세하게는 40 내지 60%일 수 있다. 상기 다공성 접착층의 기공도가 이러한 범위를 만족하는 경우, 적절한 코팅층 밀도를 통하여 다른 기재(전극 등)와의 접착성을 확보할 수 있고, 다공성 코팅층의 이온 전달 경로를 구현할 수 있다.
본 발명의 일 측면에 따른 세퍼레이터의 제조방법은,
다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면 상에 다수의 무기물 입자 및 바인더 고분자를 포함하는 다공성 코팅층을 구비하는 세퍼레이터 기재를 준비하는 단계;
상기 세퍼레이터 기재의 적어도 일면 상에, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체, 용매, 및 비용매를 구비하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포하는 단계; 및
상기 도포된 코팅용 조성물을 건조하여 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 기공 구조를 갖는 다공성 접착층을 형성하는 단계;를 포함하고,
상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율이 4.5 내지 9%이다.
먼저, 다공성 코팅층을 형성하기 위하여, 바인더 고분자를 용매에 용해시킨 다음 무기물 입자를 첨가하고 이를 분산시켜 다공성 코팅층 형성용 조성물을 제조할 수 있다. 무기물 입자들은 미리 소정의 평균입경을 갖도록 파쇄된 상태에서 첨가할 수 있으며, 또는 바인더 고분자의 용액에 무기물 입자를 첨가한 후 무기물 입자를 볼밀법 등을 이용하여 소정의 평균입경을 갖도록 제어하면서 파쇄하여 분산시킬 수도 있다.
상기 다공성 코팅층 형성용 조성물을 상기 다공성 고분자 기재에 코팅하는 방법은 특별히 한정하지는 않지만, 슬랏 코팅이나 딥 코팅 방법을 사용하는 것이 바람직하다. 슬랏 코팅은 슬랏 다이를 통해 공급된 조성물이 기재의 전면에 도포되는 방식으로 정량 펌프에서 공급되는 유량에 따라 코팅층 두께의 조절이 가능하다. 또한 딥 코팅은 조성물이 들어있는 탱크에 기재를 담그어 코팅하는 방법으로, 조성물의 농도 및 조성물 탱크에서 기재를 꺼내는 속도에 따라 코팅층 두께의 조절이 가능하며 보다 정확한 코팅 두께 제어를 위해 침지 후 메이어바 등을 통해 후계량할 수 있다.
이렇게 다공성 코팅층 형성용 조성물이 코팅된 다공성 고분자 기재를 오븐과 같은 건조기를 이용하여 건조함으로써 다공성 고분자 기재의 적어도 일면 상에 형성된 다공성 코팅층을 형성하게 된다.
본 발명의 일 실시예에서 상기 다공성 코팅층의 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시킬 수 있으며, 또한 상기 바인더 고분자에 의해 무기물 입자와 다공성 고분자 기재가 결착된 상태를 유지할 수 있다. 상기 다공성 코팅층의 무기물 입자들은 실질적으로 서로 접촉한 상태에서 인터스티셜 볼륨(interstitial volume)을 형성할 수 있고, 이때 인터스티셜 볼륨은 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 접촉하는 무기물 입자들에 의해 한정되는 공간을 의미한다. 상기 무기물 입자 사이의 인터스티셜 볼륨은 빈 공간이 되어 다공성 코팅층의 기공을 형성할 수 있다.
다음으로, 상기 세퍼레이터 기재의 적어도 일면 상에 상기 다공성 고분자 기재의 융점보다 낮은 온도로 가열함으로써 접착성이 발현하는 접착성 수지를 포함하는 다공성 접착층을 형성한다.
상세하게는, 상기 다공성 접착층을 형성하는 단계는, 상기 접착성 수지, 용매, 및 비용매를 포함하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포하는 단계; 상기 도포된 코팅용 조성물을 건조하여 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 기공 구조를 갖는 다공성 접착층을 형성하는 단계를 포함한다. 상기 접착성 수지는 전술한 바와 같이, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체이고, 상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율(HFP 치환율)이 4.5 내지 9%이다.
상기 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포 방법은 특별히 한정하지는 않지만, 슬랏 코팅이나 딥 코팅 방법을 사용하는 것이 바람직하다.
이때 사용되는 용매는 사용하고자 하는 접착성 수지와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아미드, N-메틸-2-피롤리돈, 메틸에틸케톤 및 시클로헥산 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물이 있을 수 있다.
또한, 상기 비용매의 비제한적인 예로는, 메탄올, 에탄올, 이소프로판올, 프로판올 및 물 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물 등을 사용할 수 있으며, 사용되는 접착성 수지의 종류에 따라 적합한 비용매를 선택할 수 있다.
상기 코팅용 조성물에서 용매 및 비용매의 총 중량 대비 비용매의 중량비는 1 내지 50%, 상세하게는 2 내지 30%, 더 상세하게는 3 내지 15%일 수 있다. 상기 비용매의 중량비가 이러한 범위를 만족하는 경우, 비용매를 사용한 효과를 얻으면서 코팅용 조성물을 제조함에 있어서 겔화에 의한 문제가 생기지 않을 수 있고, 다공성의 기공 구조를 갖는 접착층을 형성할 수 있다.
상기 코팅용 조성물에서 용매 및 비용매의 총 중량 100 중량부 대비 폴리비닐리덴-헥사플루오로프로필렌 공중합체의 함량이 2 내지 10 중량부, 상세하게는 3 내지 10 중량부, 더 상세하게는 4 내지 10 중량부일 수 있다. 상기 폴리비닐리덴-헥사플루오로프로필렌 공중합체의 중량비가 이러한 범위를 만족하는 경우, 고형분 저하로 인한 코팅층 밀도의 저하를 방지하며, 공중합체와 비용매 간 반응으로 인한 공중합체 간 겔화 현상(gelation)를 방지할 수 있다.
이러한 다공성 접착층의 두께는 0.1 내지 8 ㎛, 상세하게는 0.5 내지 4 ㎛일 수 있다.
본 발명의 일 실시예에 따르면, 상기 코팅용 조성물에서 용매 및 비용매의 비점 차이가 10℃ 이상, 상세하게는 10 내지 100 ℃, 더 상세하게는 10 내지 50 ℃일 수 있다. 상기 용매 및 비용매의 비점 차이가 이러한 범위를 만족하는 경우에, 용매와 비용매의 증발속도 차이에 의한 기공 형성을 조절할 수 있으며, 용매와 비용매의 혼화성(miscibility)을 확보할 수 있다.
상기 접착성 수지, 용매, 및 비용매를 포함하는 코팅용 조성물은 균일한 단일상을 이루고 있게 되나, 이를 상기 세퍼레이터 기재의 적어도 일면에 도포하고, 건조하는 과정에서 상기 코팅용 조성물은 초기에 열역학적으로 불안정한 상태가 되어, 2개 상의 용액으로 변형된다.
즉, 건조시 비점이 낮은 용매가 우선적으로 증발하여 도포된 조성물에서 비용매의 농도가 상대적으로 높아지게 되고, 그 결과, 서로 상용성이 없는 비용매와 접착성 수지간의 상분리가 촉진되어, 접착성 수지 풍부상(rich phase)과, 접착성 수지 부족상(poor phase)으로 분리된다.
용매가 증발함에 따라, 접착성 수지의 농도가 증가하게 되어 접착성 수지의 용매화 특성이 감소되고, 접착성 수지 풍부상은 고형화되어, 접착성 수지 부족상을 둘러싸는 고체 매트릭스를 형성하게 된다. 이때, 고체 매트릭스 상 내에 둘러싸져 충진되어 있는 비용매가 최종적으로 증발되어 제거되면서, 그 충진되어 있던 공간이 기공으로 형성되어, 기공 구조의 모폴러지를 갖는 다공성 접착층이 얻어지게 된다. 이 때 바인더의 분포가 표면층에서 원단 계면층으로 갈수록 고분자-부족(polymer-poor)한 구조를 가지게 되어 코팅 분리막의 저항을 감소시키는데 도움이 된다.
상기 건조 온도는 100℃ 이하, 상세하게는 25 내지 50 ℃, 더 상세하게는 25 내지 40 ℃일 수 있다.
본 발명의 일 측면에 따른 전기화학소자는 캐소드, 애노드, 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하고, 상기 세퍼레이터가 전술한 본 발명의 일 실시예에 따른 세퍼레이터이다.
이러한 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 세퍼레이터와 함께 적용될 캐소드와 애노드의 양 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 캐소드활물질의 비제한적인 예로는 종래 전기화학소자의 캐소드에 사용될 수 있는 통상적인 캐소드활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 애노드활물질의 비제한적인 예로는 종래 전기화학소자의 애노드에 사용될 수 있는 통상적인 애노드활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 캐소드 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 전기화학소자에서 사용될 수 있는 전해액은 A +B -와 같은 구조의 염으로서, A +는 Li +, Na +, K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -, C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
바인더 고분자로서 폴리부틸아크릴레이트와 폴리부닐메타아크릴레이트의 혼합물(중량비 7:3) 10 중량부, 바인더 고분자이면서 분산제 역할도 하는 카르복실메틸 셀룰로오스(CMC) 10 중량부를 물에 첨가하여 상온에서 약 12시간 이상 교반하여 바인더 고분자 용액을 준비하였다. 제조된 바인더 고분자 용액에 평균입경 500 nm 알루미나(Al 2O 3)입자 380 중량부를 첨가하고, 분산하여 다공성 코팅층용 슬러리를 제조하였다. 이때, 상기 다공성 코팅층용 슬러리에서 무기물 입자(알루미나)와 바인더 고분자(폴리부틸아크릴레이트, 폴리부닐메타아크릴레이트, 카르복실메틸 셀룰로오스)의 중량비는 95:5 였다.
이와 같이 제조된 슬러리를 슬랏(slot) 코팅법으로, 두께 14㎛인 폴리에틸렌 다공성 막(통기도 160sec/100ml, 저항 0.66 ohm, 통기도 142 sec/100cc)의 일면에 코팅하고, 코팅 두께는 약 2㎛ 정도로 조절하여, 일면에 다공성 코팅층을 구비한 세퍼레이터 기재를 제조하였다.
상기 다공성 코팅층에서 다공성 코팅층 전체 중량에 대한 바인더 고분자의 중량은 5 중량%이였다.
다음으로, 용매인 아세톤(비점: 56.05℃)과 비용매인 이소프로판올(비점: 82.6℃)을 95:5의 중량비로 혼합한 후에, 접착성 수지로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVdF-HFP, HFP 치환율: 5%)를 아세톤과 이소프로판올의 총 중량 100 중량부 기준으로 4 중량부를 첨가하여 50 ℃에서 약 12시간 동안 용해시켜 다공성 접착층 코팅용 조성물을 제조하였다. 이때, HFP 치환율은 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체에서 상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율을 의미한다.
상기 제조된 세퍼레이터 기재에 준비한 다공성 접착층 코팅용 조성물을 딥 코팅(dip coating) 방식으로 도포 (도포량: 3.3 g/m 2)하고, 100℃ 이하의 조건에서 습도를 30% 이하로 유지하며 건조하는 단계를 거치는 건조상분리법에 의하여 세퍼레이터 기재의 양면에 다공성 접착층이 형성된 세퍼레이터를 제조하였다.
이렇게 제조된 세퍼레이터는 다공성 접착층/다공성 고분자 기재/다공성 코팅층/다공성 접착층의 순으로 적층된 양면 비대칭 구조이다.
또한, 제조된 세퍼레이터에서 다공성 코팅층 및 다공성 접착층의 두께는 각각 2㎛ 및 1㎛이었다.
실시예 2
다공성 접착층 코팅용 조성물을 제조시, 용매인 아세톤과 비용매인 이소프로판올을 95:5의 중량비로 혼합한 후에, 접착성 수지로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVdF-HFP, HFP 치환율: 8%)를 아세톤과 이소프로판올의 총 중량 100 중량부 기준으로 4 중량부를 첨가한 점을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다.
이렇게 제조된 세퍼레이터는 다공성 접착층/다공성 고분자 기재/다공성 코팅층/다공성 접착층의 순으로 적층된 양면 비대칭 구조이다.
또한, 제조된 세퍼레이터에서 다공성 코팅층 및 다공성 접착층의 두께는 각각 2㎛ 및 1㎛이었다.
비교예 1
다공성 접착층 코팅용 조성물을 제조시, 용매인 아세톤과 비용매인 이소프로판올을 95:5의 중량비로 혼합한 후에, 접착성 수지로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVdF-HFP, HFP 치환율: 10%)를 아세톤과 이소프로판올의 총 중량 100 중량부 기준으로 4 중량부를 첨가한 점을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다.
이렇게 제조된 세퍼레이터는 다공성 접착층/다공성 고분자 기재/다공성 코팅층/다공성 접착층의 순으로 적층된 양면 비대칭 구조이다.
또한, 제조된 세퍼레이터에서 다공성 코팅층 및 다공성 접착층의 두께는 각각 2㎛ 및 1㎛이었다.
비교예 2
다공성 접착층 코팅용 조성물을 제조시, 용매인 아세톤과 비용매인 이소프로판올을 95:5의 중량비로 혼합한 후에, 접착성 수지로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVdF-HFP, HFP 치환율: 15%)를 아세톤과 이소프로판올의 총 중량 100 중량부 기준으로 4 중량부를 첨가한 점을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다.
이렇게 제조된 세퍼레이터는 다공성 접착층/다공성 고분자 기재/다공성 코팅층/다공성 접착층의 순으로 적층된 양면 비대칭 구조이다.
또한, 제조된 세퍼레이터에서 다공성 코팅층 및 다공성 접착층의 두께는 각각 2㎛ 및 1㎛이었다.
비교예 3
다공성 접착층 코팅용 조성물을 제조시, 용매인 아세톤과 비용매인 이소프로판올을 95:5의 중량비로 혼합한 후에, 접착성 수지로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVdF-HFP, HFP 치환율: 4%)를 아세톤과 이소프로판올의 총 중량 100 중량부 기준으로 4 중량부를 첨가한 점을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다.
이렇게 제조된 세퍼레이터는 다공성 접착층/다공성 고분자 기재/다공성 코팅층/다공성 접착층의 순으로 적층된 양면 비대칭 구조이다.
또한, 제조된 세퍼레이터에서 다공성 코팅층 및 다공성 접착층의 두께는 각각 2㎛ 및 1㎛이었다.
평가 결과
전술한 실시예 1 내지 2 및 비교예 1 내지 3의 세퍼레이터에 대해서, 두께, 세퍼레이터-세퍼레이터 접착력 (gf/25mm), 세퍼레이터-애노드 접착력 (gf/25mm), 통기도(sec/100초) 및 그 표준 편차, 저항 및 그 표준편차, 다공성 접착층의 최대 기공/평균 기공 및 그 표준편차를 각각 평가 및 계산하여 하기 표 1에 나타내었다.
이들의 구체적인 평가방법은 하기와 같다.
(1)세퍼레이터-세퍼레이터 접착력 (gf/25mm) 평가
실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 세퍼레이터를 25mm * 100mm 크기로 재단하여 각각 2매 준비하였다.
준비된 세퍼레이터 2매를 서로 겹친 뒤 100㎛의 PET 필름 사이에 끼운 후 100℃의 롤 라미네이터를 통과시켜 접착시켰다. 이때, 롤 라미네이터의 속도는 0.3m/min로 30초 동안 가열하였으며, 이 때의 압력은 2kgf/cm 2 이었다.
접착된 2장의 세퍼레이터의 말단부를 UTM 장비(LLOYD Instrument LF Plus)에 장착 후 측정 속도 300mm/min으로, 양 방향으로 힘을 가해 접착된 세퍼레이터가 분리되는 데 필요한 힘을 측정하였다.
(2)세퍼레이터-애노드 접착력 (gf/25mm) 평가
활물질[천연흑연 및 인조흑연(중량비 5:5)], 도전재[super P], 바인더[폴리비닐리덴플루오라이드(PVdF)]를 92:2:6의 중량비로 혼합하고 물에 분산시킨 후 구리 호일에 코팅하여 애노드를 제조하고, 25mm X 70mm 크기로 재단하여 준비하였다.
실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 세퍼레이터를 25mm X 70mm 크기로 재단하여 준비하였다.
준비된 세퍼레이터와 애노드를 서로 겹친 뒤 100㎛의 PET 필름 사이에 끼운 후 평판 프레스를 사용하여 접착시켰다. 이때, 평판 프레스기의 조건은 70℃의 20MPa의 압력으로 5초 동안 가열하였다.
접착된 세퍼레이터와 애노드의 말단부를 UTM 장비(LLOYD Instrument LF Plus)에 장착 후 측정 속도 300mm/min으로, 양 방향으로 힘을 가해 접착된 세퍼레이터가 분리되는 데 필요한 힘을 측정하였다.
(3) 통기도(sec/100초) 평가
통기도(걸리)는 ASTM D726-94 방법에 의해 측정하였다. 여기서 사용된 걸리는, 공기의 흐름에 대한 저항으로서, 걸리 덴소미터(densometer)에 의해 측정된다. 여기서 설명된 통기도 값은 100 cc의 공기가 12.2 inH 2O의 압력하에서, 실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 세퍼레이터 1 in 2의 단면을 통과하는 데 걸리는 시간(초), 즉 통기시간으로 나타낸다.
(4) 저항
실시예 1 내지 2 및 비교예 1 내지 3에서 제조된 세퍼레이터를 전해액에 함침시켰을 때의 저항값으로, 1M LiPF 6-에틸렌 카보네이트/에틸메틸 카보네이트(중량비 3:7) 전해액을 이용하여 25℃에서 교류법으로 측정하였다.
(5) 다공성 접착층의 최대 기공/평균 기공
주사전자현미경(FE-SEM) (Hitachi S-4800 Scanning Electron Microscope)을 이용하여 시료 표면을 2,500 배 확대하여 측정한 후, 측정된 사진 내 임의로 샘플링한 범위(가로 10um 이상, 세로 15um 이상)에서 확인되는 표면 기공 중 장축 길이를 기공 크기로 측정하였다. 측정 개수는 최소 10개 이상으로 하며, 측정 후 구한 기공 크기의 평균 및 최대 값을 구하였다.
실시예 1 비교예 1 비교예 2 실시예 2 비교예 3
세퍼레이터전체 두께 (㎛) 17.0 17.7 18.2 17.6 17.8
다공성 코팅층 두께 (㎛) 2 2 2 2 2
다공성 기재 두께 (㎛) 11.9 11.9 11.9 11.9 11.9
다공성 접착층 기공도(%) 50.3 55.5 49.7 39.2 41.3
세퍼레이터-세퍼레이터 접착력 (gf/25mm) 10.5 7.2 11.8 12.5 10.3
세퍼레이터-애노드 접착력 (gf/25mm) 14.1 8.5 6.4 17.5 14.2
통기도(sec/100cc) 276 339 350 321 264
통기도 표준편차 3.9 9.5 13.2 4.2 8.3
저항(Ω) 1.04 1.14 1.26 1.13 1.00
저항 표준 편차 0.03 0.07 0.10 0.04 0.08
다공성 접착층의 평균 기공(㎛) 1.51 1.58 1.86 1.60 1.23
다공성 접착층의 최대 기공(㎛) 1.94 2.55 3.19 2.19 2.12
다공성 접착층의 기공 크기의 표준 편차 0.29 0.46 0.58 0.22 0.51
상기 표 1을 참조하면, 실시예 1 내지 2의 세퍼레이터는 통기도, 저항, 및 다공성 접착층의 기공 크기의 표준편차 값이 비교예 1 내지 3의 경우에 비해서 현저하게 작음을 알 수 있다. 그 결과, 실시에 1 내지 2의 세퍼레이터의 경우, 이를 관통하여 리튬 이온이 이동하는 과정에서 특정 부분에서 속도가 지체되는 등 방해를 받아서 덴드라이트가 생성되는 문제를 방지할 수 있고, 이러한 세퍼레이터를 채용한 이차전지는 우수한 수명 특성을 발휘할 수 있게 된다. 반면에, 비교예 1 내지 3의 세퍼레이터의 경우에 통기도, 저항이, 다공성 접착층의 기공 크기가 불균일하여, 이차전지에 채용하는 경우 수명 특성이 저하될 것으로 예상된다.
표면 모폴러지 관찰
전술한 실시예 1 내지 2, 및 비교예 1 내지 3의 세퍼레이터의 표면의 모폴러지를 전계방사형 주사전자현미경(FE-SEM) (Hitachi S-4800 Scanning Electron Microscope)으로 가속전압 5kV 조건에서 관찰하고, 그 결과를 도 1 내지 5에 각각 나타내었다.
도 1 내지 5를 참조하면, 실시예 1 내지 2의 세퍼레이터의 표면에서 다공성 접착층의 기공 구조는 균일한 크기로 분포되어 있으나, 비교예 1 내지 3의 세퍼레이터의 표면에서는 기공의 크기의 편차가 매우 크고, 그 분포도 불균일함을 확인할 수 있다. 실시예 1 내지 2의 이러한 기공 구조의 균일성은 전술한 표 1의 설명에서와 같이 세퍼레이터의 통기도 및 저항값도 균일한 결과를 낳게 하여, 결과적으로 이러한 세퍼레이터를 채용한 이차전지의 수명 특성을 크게 개선시킬 수 있을 것이다.

Claims (16)

  1. 다수의 기공을 갖는 다공성 고분자 기재, 및
    상기 다공성 고분자 기재의 적어도 일면 상에 위치하며, 다수의 무기물 입자 및 상기 무기물 입자의 표면의 일부 또는 전부에 위치하여 상기 무기물 입자 사이를 연결 및 고정시키는 바인더 고분자를 포함하는 다공성 코팅층을 구비하는 세퍼레이터 기재; 및
    상기 세퍼레이터 기재의 적어도 일면 상에 위치하며, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체를 포함하는 다공성 접착층;을 구비하고,
    상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율(HFP 치환율)이 4.5 내지 9%인 세퍼레이터.
  2. 제1항에 있어서,
    상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율(HFP 치환율)이 5 내지 8%인 것을 특징으로 하는 세퍼레이터.
  3. 제1항에 있어서,
    상기 다공성 접착층의 최대 기공 직경과 평균 기공 직경의 차이가 0.2 내지 0.6 ㎛인 것을 특징으로 하는 세퍼레이터.
  4. 제1항에 있어서,
    상기 다공성 고분자 기재가 폴리올레핀계 다공성 고분자 기재인 것을 특징으로 하는 세퍼레이터.
  5. 제1항에 있어서,
    상기 다공성 접착층의 기공도가 30 내지 70%인 것을 특징으로 하는 세퍼레이터.
  6. 제1항에 있어서,
    상기 바인더 고분자가 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리부닐메타아크릴레이트 (polybutylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터.
  7. 제1항에 있어서,
    상기 무기물 입자가 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물인 것을 특징으로 하는 세퍼레이터.
  8. 제1항에 있어서,
    상기 다공성 접착층이 상기 폴리비닐리덴-헥사플루오로프로필렌 공중합체, 용매, 및 비용매를 포함하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포 및 건조시 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 형성된 기공 구조를 구비하는 것을 특징으로 하는 세퍼레이터.
  9. 다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면 상에 다수의 무기물 입자 및 바인더 고분자를 포함하는 다공성 코팅층을 구비하는 세퍼레이터 기재를 준비하는 단계;
    상기 세퍼레이터 기재의 적어도 일면 상에, 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위를 포함하는 폴리비닐리덴-헥사플루오로프로필렌 공중합체, 용매, 및 비용매를 구비하는 코팅용 조성물을 상기 세퍼레이터 기재의 적어도 일면에 도포하는 단계; 및
    상기 도포된 코팅용 조성물을 건조하여 상기 용매 및 비용매의 증발 속도에 따른 상분리에 의해 기공 구조를 갖는 다공성 접착층을 형성하는 단계를 포함하고,
    상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율이 4.5 내지 9%인 세퍼레이터의 제조방법.
  10. 제9항에 있어서,
    상기 비닐리덴 유래 반복 단위 및 헥사플로오로프로필렌(HFP) 유래 반복 단위의 총개수 대비 상기 헥사플로오로프로필렌 유래 반복 단위의 개수의 비율(HFP 치환율)이 5 내지 8%인 것을 특징으로 하는 세퍼레이터의 제조방법.
  11. 제9항에 있어서,
    상기 용매가 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아미드, N-메틸-2-피롤리돈, 메틸에틸케톤 및 시클로헥산 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물이고, 상기 비용매가 메탄올, 에탄올, 이소프로판올, 프로판올 및 물 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
  12. 제9항에 있어서,
    상기 코팅용 조성물에서 용매 및 비용매의 총 중량 대비 비용매의 중량비가 1 내지 50 %인 것을 특징으로 하는 세퍼레이터의 제조방법.
  13. 제9항에 있어서,
    상기 코팅용 조성물에서 용매 및 비용매의 총 중량 100 중량부 대비 폴리비닐리덴-헥사플루오로프로필렌 공중합체의 함량이 2 내지 10 중량부인 것을 특징으로 하는 세퍼레이터의 제조방법.
  14. 제9항에 있어서,
    상기 코팅용 조성물에서 용매 및 비용매의 비점 차이가 10℃ 이상인 것을 특징으로 하는 세퍼레이터의 제조방법.
  15. 캐소드, 애노드, 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하는 전기화학소자에 있어서, 상기 세퍼레이터가 제1항 내지 제8항 중 어느 한 항의 세퍼레이터인 전기화학소자.
  16. 제14항에 있어서,
    상기 전기화학소자가 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
PCT/KR2019/009365 2018-07-26 2019-07-26 세퍼레이터 및 이를 포함하는 전기화학소자 WO2020022851A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/763,400 US11495866B2 (en) 2018-07-26 2019-07-26 Separator and electrochemical device comprising same
CN201980005787.1A CN111373571A (zh) 2018-07-26 2019-07-26 隔板和包括该隔板的电化学装置
EP19841939.2A EP3734700A4 (en) 2018-07-26 2019-07-26 SEPARATOR AND ELECTROCHEMICAL DEVICE INCLUDING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0087423 2018-07-26
KR20180087423 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022851A1 true WO2020022851A1 (ko) 2020-01-30

Family

ID=69180517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009365 WO2020022851A1 (ko) 2018-07-26 2019-07-26 세퍼레이터 및 이를 포함하는 전기화학소자

Country Status (5)

Country Link
US (1) US11495866B2 (ko)
EP (1) EP3734700A4 (ko)
KR (1) KR102308942B1 (ko)
CN (1) CN111373571A (ko)
WO (1) WO2020022851A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174442A1 (zh) * 2020-03-04 2021-09-10 宁德新能源科技有限公司 电化学装置和包含其的电子装置
CN115298893A (zh) * 2020-05-29 2022-11-04 株式会社Lg新能源 用于电化学装置的隔板和包括该隔板的电化学装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015026A1 (ko) * 2020-07-17 2022-01-20 주식회사 엘지에너지솔루션 이차전지용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 구비한 이차전지
CN112436179A (zh) * 2020-12-07 2021-03-02 上汽大众汽车有限公司 一种高安全锂离子电池
CN114939519A (zh) * 2022-03-22 2022-08-26 电子科技大学 一种表面具有超滑涂层的材料及其制备工艺和用途
KR20240062113A (ko) * 2022-11-01 2024-05-08 주식회사 엘지에너지솔루션 이차전지용 분리막, 이를 포함하는 이차전지 및 이차전지의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050877A (ko) * 2012-10-22 2014-04-30 주식회사 엘지화학 바인더층을 갖는 분리막, 상기 분리막을 포함하는 전기화학소자, 및 상기 분리막의 제조방법
JP5643465B2 (ja) * 2012-07-30 2014-12-17 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
KR20150050060A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 그를 포함하는 전기화학소자
KR20160129762A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 전해액 함침성이 향상된 전기화학소자용 세퍼레이터 및 상기 세퍼레이터를 포함하는 전기화학소자
KR20180018408A (ko) * 2016-08-09 2018-02-21 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
KR20180087423A (ko) 2015-12-14 2018-08-01 벨리쿰 파마슈티컬스, 인크. 치료 세포 활성화 또는 제거를 위한 이중 제어

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472503B1 (ko) 2002-06-07 2005-03-10 삼성에스디아이 주식회사 세퍼레이터 및 이를 채용한 리튬전지
WO2006025662A1 (en) * 2004-09-02 2006-03-09 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
WO2006045630A2 (en) * 2004-10-19 2006-05-04 Arkema France Metal surfaces coated with fluoropolymers
KR100775310B1 (ko) * 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP5671208B2 (ja) * 2005-12-06 2015-02-18 エルジー・ケム・リミテッド モルフォロジーグラジエントを有する有機/無機複合分離膜、その製造方法及びこれを備えた電気化学素子
JP5670811B2 (ja) 2011-04-08 2015-02-18 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP5834322B2 (ja) * 2011-07-20 2015-12-16 エルジー・ケム・リミテッド セパレータ、その製造方法及びこれを備えた電気化学素子
KR101369326B1 (ko) * 2011-12-27 2014-03-04 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
CN104508861B (zh) * 2012-07-30 2018-06-15 帝人株式会社 非水电解质电池用隔膜及非水电解质电池
EP2899776B1 (en) * 2012-09-24 2017-03-15 LG Chem, Ltd. Method of manufacturing a separator for a lithium secondary battery
US10002719B2 (en) 2014-04-21 2018-06-19 Lg Chem, Ltd. Separator having binder layer, and electrochemical device comprising the separator and method of preparing the separator
US10811657B2 (en) * 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP6171117B1 (ja) * 2015-11-11 2017-07-26 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR101904296B1 (ko) 2015-12-22 2018-11-13 삼성에스디아이 주식회사 다공성 접착층을 포함하는 분리막 및 이를 포함하는 전기 화학 전지
US10923772B2 (en) 2016-02-05 2021-02-16 Lg Chem, Ltd. Cable-type secondary battery and method for manufacturing the same
KR102162403B1 (ko) 2016-05-17 2020-10-06 삼성에스디아이 주식회사 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
JP7104790B2 (ja) * 2017-12-26 2022-07-21 ファイバーウェイ・マテリアルズ・サイエンス・アンド・テクノロジー・デベロップメント・カンパニー・リミテッド 電池用セパレーター、その製造方法及び応用
CN108172741B (zh) * 2017-12-26 2022-01-25 广州华创化工材料科技开发有限公司 电池隔膜及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643465B2 (ja) * 2012-07-30 2014-12-17 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
KR20140050877A (ko) * 2012-10-22 2014-04-30 주식회사 엘지화학 바인더층을 갖는 분리막, 상기 분리막을 포함하는 전기화학소자, 및 상기 분리막의 제조방법
KR20150050060A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 전기화학소자용 세퍼레이터 및 그를 포함하는 전기화학소자
KR20160129762A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 전해액 함침성이 향상된 전기화학소자용 세퍼레이터 및 상기 세퍼레이터를 포함하는 전기화학소자
KR20180087423A (ko) 2015-12-14 2018-08-01 벨리쿰 파마슈티컬스, 인크. 치료 세포 활성화 또는 제거를 위한 이중 제어
KR20180018408A (ko) * 2016-08-09 2018-02-21 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734700A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174442A1 (zh) * 2020-03-04 2021-09-10 宁德新能源科技有限公司 电化学装置和包含其的电子装置
US11955661B2 (en) 2020-03-04 2024-04-09 Ningde Amperex Technology Limited Electrochemical device and electronic device including the same
CN115298893A (zh) * 2020-05-29 2022-11-04 株式会社Lg新能源 用于电化学装置的隔板和包括该隔板的电化学装置

Also Published As

Publication number Publication date
EP3734700A4 (en) 2021-04-28
US20200321587A1 (en) 2020-10-08
EP3734700A1 (en) 2020-11-04
KR102308942B1 (ko) 2021-10-05
CN111373571A (zh) 2020-07-03
US11495866B2 (en) 2022-11-08
KR20200012802A (ko) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018030797A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020022851A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2015069045A1 (ko) 전기화학소자용 분리막
WO2013028046A2 (ko) 미소 캡슐을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2017034353A1 (ko) 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2013012292A9 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2015069008A1 (ko) 전기화학소자용 분리막
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2015065122A1 (ko) 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막
WO2012046966A2 (ko) 사이클 특성이 개선된 전기화학소자
WO2020013675A1 (ko) 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2017213443A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2017213444A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2018093214A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020171661A1 (ko) 리튬이차전지용 세퍼레이터 및 이의 제조방법
WO2019078650A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022015119A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019132456A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019117605A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019112353A1 (ko) 리튬 이온 이차 전지용 분리막 및 이를 포함하는 리튬 금속 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019841939

Country of ref document: EP

Effective date: 20200729

NENP Non-entry into the national phase

Ref country code: DE