CN108172741B - 电池隔膜及其制备方法和应用 - Google Patents

电池隔膜及其制备方法和应用 Download PDF

Info

Publication number
CN108172741B
CN108172741B CN201711442897.3A CN201711442897A CN108172741B CN 108172741 B CN108172741 B CN 108172741B CN 201711442897 A CN201711442897 A CN 201711442897A CN 108172741 B CN108172741 B CN 108172741B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
battery separator
fibers
nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711442897.3A
Other languages
English (en)
Other versions
CN108172741A (zh
Inventor
胡健
龙金
姚运振
王宜
汪洋
蒙玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Huachuang Chemical Material Technology Development Co ltd
Original Assignee
Guangzhou Huachuang Chemical Material Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Huachuang Chemical Material Technology Development Co ltd filed Critical Guangzhou Huachuang Chemical Material Technology Development Co ltd
Priority to CN201711442897.3A priority Critical patent/CN108172741B/zh
Publication of CN108172741A publication Critical patent/CN108172741A/zh
Application granted granted Critical
Publication of CN108172741B publication Critical patent/CN108172741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

本发明涉及一种电池隔膜及其制备方法和应用,其中,所述隔膜由锂离子电池隔膜基材和无机涂层组成,所述基材由支撑层和致密层组成,所述无机涂层涂布在致密层上;所述隔膜具有优异的耐高温性能,在300℃处理1h仍具有一定强度,热收缩率≤2%,保证了隔膜涂层在高温下刚性结构的稳定性和隔离性,基材具有均匀紧密的双层结构,有效控制针孔和后续涂布过程中的填料颗粒脱落现象,并满足锂离子电池隔膜在耐热、孔隙和强度方面的要求,综合性能优异。

Description

电池隔膜及其制备方法和应用
技术领域
本发明涉及电池技术领域,具体涉及一种电池隔膜及其制备方法和应用。
背景技术
隔膜是防止电池短路的关键技术材料,电池短路将大幅加速电池材料的分解放热,因此提高隔膜热稳定性和熔断温度对于电池安全至关重要。
陶瓷涂覆隔膜较传统聚烯烃隔膜在耐热稳定性方面有较大改善,按使用基材分主要有两类,一类是以传统聚烯烃为基材,在其上涂覆陶瓷颗粒,该类隔膜已经批量进入市场;另一类是聚合物无纺布作为基材,涂覆形成陶瓷隔膜。聚烯烃拉伸膜(如聚乙烯(PE)或聚丙烯(PP)膜)技术成熟度高,具有优异的力学性能、化学稳定性和相对廉价的优点,是目前市场上的主流隔膜。然而聚烯烃材料耐温性能受限,合适的工作温度低于150℃。合肥国轩高科动力能有限公司专利申请(公开号CN 106159163A)提出在商品聚乙烯隔膜上制备陶瓷涂覆隔膜,在120℃下处理1h可以有效改善隔膜的热稳定性,然而随温度增加,聚烯烃隔膜熔化,陶瓷颗粒的骨架还在,但陶瓷隔膜强度完全丧失,仅凭陶瓷涂覆并不能明显提高隔膜的耐高温性能。
无纺布是利用纤维非定向堆积而成的三维孔隙结构材料、具有原材料可灵活选取和结构可灵活设计的特性,无纺布隔膜在耐高温性、快速充放电性能和使用寿命上与聚烯烃隔膜相比更具优势,但无纺布隔膜强度低,存在大孔,有可能造成电池微短路。德国德固赛公司的专利申请(公开号US2006024569)提出使用聚合物纤维制作无纺布隔膜基材,基材单层抄造,双面大量浸渍或涂布填料粒子等制备复合隔膜。隔膜耐温达到200℃,虽然填料粒子可在一定程度上改善针孔,获得还不错的平均孔径,但是由于该专利中基材的构成,难免使得隔膜存在大孔,填料粒子容易脱落,并且经测试,将该隔膜在300℃处理1h,基材熔化,隔膜强度完全丧失。华南理工大学的专利申请(公开号CN104157812A)提出,使用多层斜网成形器制备带有无机涂层的三层结构锂离子电池隔膜,但该隔膜致密层使用部分合成纤维,隔膜的热稳定性仅能做110℃下热收缩率小于1.0%,无法满足对耐高温锂离子电池隔膜的要求;隔膜支撑层完全使用合成纤维,合成纤维亲液性相对较差,容易引入气泡,隔膜存在大孔。
发明内容
本发明的目的在于克服现有技术的不足,提供一种锂离子电池隔膜及其制备方法和应用,该隔膜具有优异的耐高温性能,在300℃处理1h后仍具有很好的强度,热收缩率≤2%,保证了隔膜在高温下刚性结构的稳定性和隔离性,更好地满足了锂离子电池隔膜在耐热、孔隙和强度方面的要求,综合性能优异。
本发明的上述目的是通过以下技术方案来实现的。
首先,本发明提供一种锂离子电池隔膜,所述隔膜由锂离子电池隔膜基材和无机涂层组成,其特征在于,所述锂离子电池隔膜基材由支撑层和致密层组成,所述无机涂层涂布在所述致密层上。
优选地,所述无机涂层的涂布量为3-15g/m2,优选为5-10g/m2,更优选为5-8g/m2,最优选为8g/m2
优选地,所述无机涂层包含或由无机颗粒、分散剂、保水剂和粘结性树脂制成;
优选地,所述无机颗粒选自氧化铝、二氧化硅、勃姆石、氢氧化镁中的一种或多种,优选为氧化铝和/或氢氧化镁;优选地,以重量比计,所述氧化铝和氢氧化镁的用量比为1∶1;
优选地,所述无机颗粒的粒径为3μm以下,优选为1μm以下,最优选为200nm;
优选地,所述分散剂为聚羧酸铵盐;优选地,所述聚羧酸铵盐的粘度小于100mPa·s;
优选地,所述保水剂为羧甲基纤维素钠(CMC);优选地,所述羧甲基纤维素钠的粘度为10-50mPa·s;
优选地,所述粘结性树脂为丙烯酸酯或丁苯胶乳;优选地,所述粘结性树脂的粘度小于1000mPa·s;
优选地,在所述无机涂层中,以重量百分含量计,所述无机颗粒的含量为80-87wt%,优选为80-85wt%,更优选为83-85wt%,再优选为83-84wt%,最优选为84wt%;
优选地,在所述无机涂层中,以重量百分含量计,所述分散剂的含量为0.5-2wt%,优选为1-2wt%,更优选为1-1.5wt%,最优选为1wt%;
优选地,在所述无机涂层中,以重量百分含量计,所述保水剂的含量为0.5-4wt%,优选为2-4wt%,更优选为2-3.5wt%,再优选为2-2.5wt%,最优选为2wt%;
优选地,在所述无机涂层中,以重量百分含量计,所述粘结性树脂的含量为10-17wt%,优选为10-14wt%,更优选为13-14wt%,最优选为13wt%。
优选地,所述支撑层包含或由超细主干纤维、热塑性粘结纤维和第一纳米纤维制成,所述致密层包含或由第二纳米纤维制成;
优选地,所述超细主干纤维选自拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、聚丙烯腈纤维(PAN)、聚酰胺纤维(PA)和聚丙烯纤维(PP)中的一种或多种;
优选地,所述超细主干纤维为拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、聚丙烯腈纤维(PAN)和/或聚酰胺纤维(PA);
优选地,以重量比计,所述拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、所述聚丙烯腈纤维(PAN)和所述聚酰胺纤维(PA)的用量比为1-1.2∶1-1.2∶1,优选为1∶1∶1;
优选地,所述热塑性粘结纤维选自聚乙烯纤维(PE)、聚丙烯纤维(PP)、未拉伸聚对苯二甲酸乙二酯纤维(未拉伸PET)、双组份PP/PE纤维、双组份PET/PE纤维、双组份PET/PP纤维和双组份PET/co-PET纤维中的一种或多种;
优选地,所述热塑性粘结纤维为未拉伸聚对苯二甲酸乙二酯纤维(未拉伸PET)、双组份PET/co-PET纤维或双组份PP/PE纤维;
优选地,所述第一纳米纤维和所述第二纳米纤维分别独立地选自原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维、原纤化天丝纳米纤维、原纤化聚对苯撑苯并二噁唑(PBO)纳米纤维、原纤化聚丙烯腈(PAN)纳米纤维、聚酰亚胺(PI)纳米纤维和纳米纤维素纤维中的一种或多种;
优选地,所述第一纳米纤维和所述第二纳米纤维各自独立地为原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维、原纤化天丝纳米纤维、原纤化聚对苯撑苯并二噁唑(PBO)纳米纤维或原纤化聚丙烯腈(PAN)纳米纤维;
优选地,所述第二纳米纤维为原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维和/或原纤化天丝纳米纤维;优选地,以重量比计,所述原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维和原纤化天丝纳米纤维的用量比1∶1-4,优选为1∶4;
优选地,所述超细主干纤维的直径为0.1-6μm,优选为0.5-4μm,更优选为0.5-3μm,最优选为1-3μm;优选地,所述超细主干纤维的纤维长度为1-6mm,优选为2-4mm,最优选为3mm;
优选地,所述热塑性粘结纤维的直径为0.1-8μm,优选为0.5-6μm,更优选为1-5μm,最优选为3-5μm;优选地,所述热塑性粘结纤维的纤维长度为1-6mm,优选为2-4mm,最优选为3mm;
优选地,所述第一纳米纤维和所述第二纳米纤维的打浆度为60-95°SR,优选为70-95°SR或60-85°SR;
优选地,所述原纤化天丝纳米纤维的打浆度为70-95°SR,优选为95°SR;
优选地,所述原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维的打浆度为60-85°SR,优选为85°SR;
优选地,所述原纤化聚对苯撑苯并二噁唑(PBO)纳米纤维和所述原纤化聚丙烯腈(PAN)纳米纤维的打浆度为85°SR。
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的50-99wt%,所述致密层占总定量的1-50wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的50-95wt%,所述致密层占总定量的5-50wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的60-95wt%,所述致密层占总定量的5-40wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的60-80wt%,所述致密层占总定量的20-40wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的80-95wt%,所述致密层占总定量的5-20wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的80wt%,所述致密层占总定量的20wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的60wt%,所述致密层占总定量的40wt%;
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的95wt%,所述致密层占总定量的5wt%。
优选地,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层包括或由30-65wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和5-30wt%的纳米纤维组成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层包括或由30-45wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和5-30wt%的纳米纤维组成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层包括或由30-40wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和5-30wt%的纳米纤维组成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层包括或由30-65wt%的超细主干纤维、30-40wt%的热塑性粘结纤维和5-30wt%的纳米纤维组成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层包括或由30-65wt%的超细主干纤维、40-65wt%的热塑性粘结纤维和5-30wt%的第一纳米纤维制成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层包括或由30-65wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和5-15wt%的第一纳米纤维制成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层包括或由30-65wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和15-30wt%的第一纳米纤维制成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由30wt%的超细主干纤维、65wt%的热塑性粘结纤维和5wt%的第一纳米纤维制成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由40wt%的超细主干纤维、30wt%的热塑性粘结纤维和30wt%的第一纳米纤维制成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由45wt%的超细主干纤维、40wt%的热塑性粘结纤维和15wt%的第一纳米纤维制成;
优选地,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由65wt%的超细主干纤维、30wt%的热塑性粘结纤维和5wt%的第一纳米纤维制成。
优选地,所述锂离子电池隔膜基材的厚度为10-25μm,优选为16-22μm,更优选为17-21μm;优选地,所述基材的定量为8-17g/m2,优选为10-14g/m2,更优选为11-13g/m2;优选地,所述基材的平均孔径小于3μm;所述基材的最大孔径小于5μm。
优选地,所述隔膜的厚度在30μm以下,优选为20-26μm,最优选为23-26μm;优选地,所述隔膜的定量为15-29g/cm2,优选为16-25g/cm2,更优选为19-21g/cm2;优选地,所述隔膜的平均孔径小于0.6μm,优选为0.1-0.5μm,最优选为0.2-0.4μm;优选地,所述隔膜的最大孔径不大于1.0μm,优选为0.6-1μm;优选地,所述隔膜在300℃下的热收缩率≤2%。
其次,本发明提供一种制备上述锂离子电池隔膜的方法,所述方法包括将无机涂层均匀涂布在锂离子电池隔膜基材的致密层表面,然后进行热风干燥;优选地,热风温度为80-150℃,优选为120℃;
优选地,所述无机涂层的涂布量为3-15g/m2,优选为5-10g/m2,更优选为5-8g/m2,最优选为8g/m2
优选地,所述锂离子电池隔膜基材的制备方法包括以下顺序步骤:
步骤a:分别将支撑层和致密层的纤维原料与水混合,各自独立地疏解、打浆、混合后得到浆料,采用冲浆泵加水稀释至上网浓度;
步骤b:将稀释后的支撑层和致密层浆料送入Hydroformer双层水力式斜网成形器布浆器,其中,致密层浆料进入上层流道,支撑层浆料进入贴近成形网的流道,各流道浆流先后在同一区域叠层同时抄造成形,经脱水处理得到湿纸页,形成基材湿纸页;优选地,在抄造前,还包括浆料的整流,使浆料呈现高强微湍的流动状态;
步骤c:在所述步骤b后,基材湿纸页经扬克缸干燥处理得到基材干纸页;
步骤d:在所述步骤c后,基材干纸页经过金属辊和软辊压光处理得到基材;
在步骤a中,加水稀释浆料前,支撑层和致密层浆料的固体重量百分浓度均为0.2wt%;
优选地,在步骤a中,所述支撑层浆料的上网浓度为0.01-0.05wt%,优选为0.01-0.03wt%,最优选为0.015-0.025wt%;所述致密层浆料的上网浓度为0.002-0.05wt%,优选为0.005-0.04wt%:
优选地,在步骤b中,所述支撑层浆料的流道流量为160-3000m3/h,优选500-1000m3/h,更优选为740m3/h;所述致密层浆料的流道流量为40-750m3/h,优选为100-480m3/h,更优选为185m3/h;
优选地,在步骤c中,所述干燥温度为80-130℃;
优选地,在步骤d中,所述压光处理温度为110-220℃;
优选地,当所述支撑层中的热塑性粘结纤维为未拉伸PET纤维时,其干燥温度为80-130℃,优选为120℃,其压光处理温度为170-220℃,优选为190℃;
优选地,当所述支撑层中的热塑性粘结纤维为双组份PET/co-PET纤维或双组份PP/PE纤维,其干燥温度为80-130℃,优选为90℃,其压光处理温度为110-140℃,优选120℃。
优选地,所述无机涂层的制备方法包括:按照无机涂层的组成,将分散剂和保水剂依次加入到去离子水中搅拌,加入无机颗粒,分散,经滤网过滤得到分散液,在分散液中加入粘结性树脂继续分散,制得无机涂层浆料;
优选地,所述无机涂层的涂布量为3-15g/m2,优选5-10g/m2,更优选5-8g/m2,优选8g/m2
优选地,所述无机涂层包含或由无机颗粒、分散剂、保水剂和粘结性树脂制成;
优选地,所述无机颗粒选自氧化铝、二氧化硅、勃姆石、氢氧化镁中的一种或多种,优选为氧化铝和/或氢氧化镁;优选地,以重量比计,所述氧化铝和氢氧化镁的用量比为1∶1;
优选地,所述无机颗粒的粒径为3μm以下,优选为1μm以下,最优选为200nm;
优选地,所述分散剂为聚羧酸铵盐;优选地,所述聚羧酸铵盐的粘度小于100mPa·s;
优选地,所述保水剂为羧甲基纤维素钠(CMC);优选地,所述羧甲基纤维素钠的粘度为10-50mPa·s;
优选地,所述粘结性树脂为丙烯酸酯或丁苯胶乳;优选地,所述粘结性树脂的粘度小于1000mPa·s;
优选地,以重量百分含量计,所述无机颗粒的含量为80-87wt%,优选为80-85wt%,更优选为83-85wt%,再优选为83-84wt%,最优选为84wt%;
优选地,以重量百分含量计,所述分散剂的含量为0.5-2wt%,优选为1-2wt%,更优选为1-1.5wt%,最优选为1wt%;
优选地,以重量百分含量计,所述保水剂的含量为0.5-4wt%,优选为2-4wt%,更优选为2-3.5wt%,再优选为2-2.5wt%,最优选为2wt%;
优选地,以重量百分含量计,所述粘结性树脂的含量为10-17wt%,优选为10-14wt%,更优选为13-14wt%,最优选为13wt%;
优选地,所述无机颗粒在2500r/min下分散30min;优选地,所述粘结性树脂在分散液中均匀分散15min;优选地,所述滤网为320目滤网;优选地,所述无机涂层浆料的固含量为40-60%,优选为50wt%。
此外,本发明还提供了一种锂离子电池,其包含如上所述的锂离子电池隔膜。
与现有技术相比,本发明至少具有以下优势:本发明提供的锂离子电池隔膜,以特定组成的无机涂层涂布在本发明的锂离子电池隔膜基材的致密层上,这样的隔膜结构可最大限度地发挥纳米纤维的耐高温和亲水性,即使300℃处理1h后基材仍然保持较好的强度及对无机涂层的吸附力,加之涂层的高温稳定性,使隔膜的热收缩率≤2%,保证了高温下复合隔膜涂层刚性结构的稳定性和隔离性,此外,在本发明所述基材的特定组成中,纳米纤维的使用还可避免支撑层产生针孔,填补支撑层可能存在的大孔,提高产品质量的可靠性,并且在较低的涂布量下就能实现对基材的有效遮盖。
附图说明
以下,结合附图详细说明本发明的实施方案,其中:
图1为本发明制备的锂离子电池隔膜的表观形貌示意图。
图2为本发明采用的Hydroformer双层水力式斜网成形器的结构示意图,其中A表示布浆器,B表示整流区,C表示基材成形区,D表示成形后的基材湿纸页。
具体实施方式
下面结合具体实施例对本发明进行进一步阐述。应当理解,本发明给出的实施例仅用于说明本发明,并不用于限制本发明的范围。
下述实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
锂离子电池隔膜基材的制备
以下制备例1-63和对比例1-11仅列出了采用部分纤维材料制备基材的实例,也可采用本发明说明书中列出的其它纤维材料及其组合方式制备本发明的基材;其中,本发明制备例1-63使用的Hydroformer双层水力式斜网成形器的结构示意图如图2所示。
制备例1
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,通过如下方法制备:
步骤a:将支撑层和致密层按照表1所示配方各自独立地在纤维疏解机与水混合、疏解、打浆至固体重量百分浓度为0.2wt%,然后分别将支撑层、致密层的纤维原料采用冲浆泵进行稀释,其中,支撑层纤维原料被稀释至固体重量百分浓度为0.02375wt%,得到浆料1;致密层纤维原料被稀释至固体重量百分浓度为0.005wt%,得到浆料2。
步骤b:将步骤a中得到的浆料1和2分别送入Hydroformer双层水力式斜网成形器,其中浆料1进入紧靠成形网的流道,流道流量为740m3/h,浆料2进入上层流道,流道流量为185m3/h,经整流后,两层同时抄造成形,经过脱水处理得到基材湿纸页。
步骤c:将步骤b中得到的湿纸页在扬克缸中120℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在190℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
制备例2-4、35-40、47、48
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,其制备方法同制备例1。
制备例5
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,通过如下方法制备得到:
步骤a:将支撑层和致密层按照表1所示配方各自独立地在纤维疏解机与水混合、疏解、打浆至固体重量百分浓度为0.2wt%,然后分别将支撑层、致密层的纤维原料采用冲浆泵进行稀释,其中,支撑层纤维原料被稀释至固体重量百分浓度为0.02wt%,得到浆料1;致密层纤维原料被稀释至固体重量百分浓度为0.02wt%,得到浆料2。
步骤b:将步骤a中得到的浆料1和2分别送入Hydroformer双层水力式斜网成形器,其中浆料1进入紧靠成形网的流道,流道流量为740m3/h,浆料2进入上层流道,流道流量为185m3/h,经整流后,两层同时抄造成形,经过脱水处理得到基材湿纸页。
步骤c:将步骤b中得到的湿纸页在扬克缸中120℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在190℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
制备例6-8、13-15、22-28、41-44、61-63
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,其制备方法同制备例5。
制备例9
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,通过如下方法制备得到:
步骤a:将将支撑层和致密层按照表1所示配方各自独立地在纤维疏解机与水混合、疏解、打浆至固体重量百分浓度为0.2wt%,然后分别将支撑层、致密层的纤维原料采用冲浆泵进行稀释,其中,支撑层纤维原料被稀释至固体重量百分浓度为0.015wt%,得到浆料1;致密层纤维原料被稀释至固体重量百分浓度为0.04wt%,得到浆料2。
步骤b:将步骤a中得到的浆料1和2分别送入Hydroformer双层水力式斜网成形器,其中浆料1进入紧靠成形网的流道,流道流量为740m3/h,浆料2进入上层流道,流道流量为185m3/h,经整流后,两层同时抄造成形,经过脱水处理得到基材湿纸页。
步骤c:将步骤b中得到的湿纸页在扬克缸中120℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在190℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
制备例10-12、29-34、45-46
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,其制备方法同制备例9。
制备例16、19、51-52、55-56
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,通过如下方法制备得到:
步骤a、b同制备例5;
步骤c:将步骤b中得到的湿纸页在扬克缸中90℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在120℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
制备例17-18、20-21、59-60
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,通过如下方法制备得到:
步骤a、b同制备例9;
步骤c:将步骤b中得到的湿纸页在扬克缸中90℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在120℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
制备例49-50、53-54、57-58
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表1所示,通过如下方法制备得到:
步骤a、b同制备例1;
步骤c:将步骤b中得到的湿纸页在扬克缸中90℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在120℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
对比例1
一种锂离子电池隔膜基材,由单层结构组成,配方如表2所示,通过如下方法制备:
步骤a:将纤维原料按照表2所示配方在纤维疏解机与水混合、疏解、打浆至固体重量百分浓度为0.2wt%,然后将纤维原料采用冲浆泵进行稀释,至固体重量百分浓度为0.02wt%,得到浆料。
步骤b:将步骤a中得到的浆料送入斜网造纸机,其中浆料流量为925m3/h,整流后,经过脱水处理得到基材湿纸页。
步骤c:将步骤b中得到的湿纸页在扬克缸中120℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在190℃的温度下经金属辊和软辊热压光处理,得到单层的锂离子电池隔膜基材。
对比例2
一种锂离子电池隔膜基材,由单层结构组成,配方如表2所示,制备方法同对比例1。
对比例3-5
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表2所示,制备方法同制备例5。
对比例6-7
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表2所示,制备方法同制备例1。
对比例8
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,通过如下方法制备:
步骤a:将支撑层和致密层按照表2所示配方各自独立地在纤维疏解机与水混合、疏解、打浆至固体重量百分浓度为0.2wt%,然后分别将支撑层、致密层的纤维原料采用冲浆泵进行稀释,其中,支撑层纤维原料被稀释至固体重量百分浓度为0.0125wt%,得到浆料1;致密层纤维原料被稀释至固体重量百分浓度为0.05wt%,得到浆料2。
步骤b、c、d同制备例1。
对比例9-10
一种锂离子电池隔膜基材,由支撑层和致密层二层结构组成,支撑层和致密层的配方如表2所示,通过如下方法制备得到:
步骤a、b同制备例5;
步骤c:将步骤b中得到的湿纸页在扬克缸中90℃的条件下干燥,得到基材干纸页。
步骤d:将步骤c中得到的基材干纸页在120℃的温度下经金属辊和软辊热压光处理,得到本发明的锂离子电池隔膜基材。
对比例11
根据中国专利CN201410496299.4中所述的一种锂二次电池用隔板用基材,其通过如下方式制得:使用盘磨机,将平均纤维直径为10μm、纤维长度为4mm的溶剂纺丝纤维素纤维处理,将游离度为97ml的溶剂纺丝纤维素纤维10质量%、平均纤维直径为2.4μm、纤维长度为3mm的取向结晶化聚对苯二甲酸乙二醇酯(PET)短纤维50质量%、平均纤维直径为4.4μm、纤维长度为3mm的未拉伸粘合剂用聚酯纤维40质量%在一起混合,在浆粕机的水中使其离解,在采用了搅拌器(agitator)的搅拌的基础上,制备均一的抄纸用浆料(0.3质量%浓度)。使用倾斜型短网作为第1层、圆网作为第2层,将倾斜型短网和圆网的单位面积重量比设为50∶50而使该抄纸用浆料层叠,得到湿润薄片,在扬克烘缸的温度为130℃的条件下进行干燥后,实施采用了表面温度为195℃的金属辊和弹性辊的热压光处理,得到单位面积重量为8.2g/m2、厚度为14.2μm的锂二次电池用隔板用基材。
表1基材制备例1-63的纤维配方(wt%)
Figure BDA0001524301180000121
Figure BDA0001524301180000131
Figure BDA0001524301180000141
Figure BDA0001524301180000151
Figure BDA0001524301180000161
Figure BDA0001524301180000171
注:a)拉伸PET纤维的直径为2μm,长度为3mm;
b)PAN纤维的直径为2μm,长度为3mm;
c)PA纤维的直径为2μm,长度为3mm;
d)未拉伸PET纤维的直径为4um,长度为3mm;
e)双组份PET/co-PET纤维的直径为4um,长度为3mm;
f)双组份PP/PE纤维的直径为4um,长度为3mm;
g)原纤化天丝纳米纤维打浆度为70°SR,奥地利Lenzing公司;
h)原纤化PPTA纳米纤维打浆度为60°SR,美国杜邦Kevlar;
i)原纤化天丝纳米纤维打浆度为95°SR,奥地利Lenzing公司;
j)原纤化PPTA纳米纤维打浆度为85°SR,美国杜邦Kevlar;
k)原纤化PBO纳米纤维打浆度为85°SR,日本Toyobo公司;
l)原纤化PAN纳米纤维打浆度为85°SR。
表2对比例1-10的纤维配方(wt%)
Figure BDA0001524301180000172
Figure BDA0001524301180000181
注:a)拉伸PET纤维的直径为2μm,长度为3mm;
b)未拉伸PET纤维的直径为4μm,长度为3mm;
c)双组份PET/co-PET纤维的直径为4μm,长度为3mm;
d)双组份PP/PE纤维的直径为4μm,长度为3mm;
e)原纤化天丝纳米纤维打浆度为95°SR,奥地利Lenzing公司;
f)原纤化PPTA纳米纤维打浆度为85°SR,美国杜邦Kevlar。
锂离子电池隔膜的制备
根据表3中所示的无机涂层配方制备无机涂层浆料。
其中,无机涂层浆料的制备方法为:将分散剂和保水剂依次加入到去离子水中搅拌,加入无机颗粒,在2500r/min下分散30min经320目滤网过滤得到分散液,在分散液中加入粘结性树脂继续均匀分散15min制得无机涂层浆料。其中,制得的无机涂层浆料的固含量为50wt%。
表3无机涂层配方(wt%)
Figure BDA0001524301180000182
Figure BDA0001524301180000191
将按照配方1-9得到的浆料分别涂布在制备例1-63的锂离子电池隔膜基材的致密层表面,控制涂布量在8g/m2,然后经过热风干燥(120℃)制得本发明的锂离子电池隔膜,本发明制备得到的锂离子电池隔膜的表观形貌如图1所示。
锂离子电池隔膜性能测试
以无机涂层配方1制备的无机涂层浆料涂布在制备例1-12、22-25、41-48、61-63及对比例1-11制备的锂离子电池隔膜基材上,制备得到锂离子电池隔膜分别对应实施例1-12、22-25、41-48、61-63及对比例1’-11’,进行性能测试,测试项目及方法如下:
1、定量、厚度和抗张强度:采用TAPPI标准测定。
2、平均孔径和最大孔径:使用PMI孔径分析仪测定。
3、热收缩率
隔膜在一定温度下的尺寸稳定性可以表征基材的热稳定性,通常用热收缩率来表示。按照如下方法测试隔膜的热收缩率:
首先将隔膜裁成边长为Lb的正方形,然后将隔膜分别放在110℃、300℃的环境中1h,测试隔膜的边长La,按以下公式计算收缩率。
收缩率(%)=(Lb-La)/Lb×100
4、隔膜强度保留
将隔膜放在300℃的环境中1h后取出,隔膜强度保留按照以下标准进行评价。
○:折叠隔膜10次,不发生断裂;
Δ:折叠隔膜2-10次,发生断裂;
×:折叠隔膜1次,发生断裂。
表4本发明的锂离子电池隔膜性能测试参数
Figure BDA0001524301180000192
Figure BDA0001524301180000201
注:本发明的锂离子电池隔膜在110℃下的热收缩率为0,接近300℃时才开始发生收缩。
表5锂离子电池隔膜性能测试参数
Figure BDA0001524301180000202
Figure BDA0001524301180000211
从表4看出,本发明实施例1-12、22-25、41-48、61-63所得锂离子电池隔膜隔膜由本发明的锂离子电池隔膜基材和无机涂层组成,相较于现有技术的电池隔膜,本发明的锂离子电池隔膜在110℃下的热收缩率为0,强度保留优异,在300℃下处理1h热收缩率≤2%,最大孔径小于1μm,强度大于700N/m,具有优异的热稳定性。
从表5看出,对比例1’仅采用PET纤维抄造单层基材,制备得到的隔膜存在针孔,孔径偏大,且300℃下基材发生融化;对比例2’采用PET纤维和纳米纤维相结合抄造单层基材,制备得到的隔膜孔径偏大,在300℃下处理1h隔膜热收缩率为5.0%,经折叠后隔膜破损;对比例3’采用Hydroformer水力双层斜网成形器抄造双层基材隔膜,隔膜致密层加入20%的拉伸PET纤维和70%原纤化PPTA纤维,致使隔膜在300℃下处理1h后热收缩率为3.5%;对比例4’支撑层未采用纳米纤维,致使隔膜最大孔径偏大;对比例5’-10’隔膜强度无法满足要求;对比例11’由于基材存在大孔隔膜最大孔径偏大,而且不存在双层结构,在300℃下处理1h后热收缩率为10.0%。
此外,本发明按照如上所述的性能测试方法,分别验证了不同配方构成(表3所示)的无机涂层分别涂布本发明制备例1-63所制备的锂离子电池隔膜基材得到锂离子电池隔膜的性能参数,以下,仅给出以制备例10的基材为例,分别涂布表3所示配方的无机涂层浆料得到的锂离子电池隔膜(实施例10、64-71)的性能参数,结果如表6所示:
表6锂离子电池隔膜性能测试参数
Figure BDA0001524301180000212
Figure BDA0001524301180000221
应当理解的是,本文所述发明不限于特定的方法学、实验方案或试剂,因为这些是可以变化的。本文所提供的论述和实例仅是为了描述特定的实施方案呈现而非意在限制本发明的范围,本发明的范围仅受到权利要求的限定。

Claims (52)

1.一种锂离子电池隔膜,所述隔膜由锂离子电池隔膜基材和无机涂层组成,其中,所述锂离子电池隔膜基材由支撑层和致密层组成,所述无机涂层涂布在所述致密层上,
其中,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的50-95wt%,所述致密层占总定量的5-50wt%;以重量百分含量计,所述支撑层由30-45wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和5-30wt%的第一纳米纤维组成;所述致密层由第二纳米纤维制成;
所述无机涂层由无机颗粒、分散剂、保水剂和粘结性树脂制成;所述无机颗粒选自氧化铝、二氧化硅、勃姆石、氢氧化镁中的一种或多种;所述分散剂为聚羧酸铵盐;所述保水剂为羧甲基纤维素钠(CMC);所述粘结性树脂为丙烯酸酯或丁苯胶乳;
在所述无机涂层中,以重量百分含量计,所述无机颗粒的含量为80-85wt%;所述分散剂的含量为1-2wt%;所述保水剂的含量为2-4wt%;所述粘结性树脂的含量为10-14wt%;
所述第一纳米纤维和所述第二纳米纤维分别独立地选自原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维、原纤化天丝纳米纤维、原纤化聚对苯撑苯并二噁唑纳米纤维、原纤化聚丙烯腈(PAN)纳米纤维、聚酰亚胺(PI)纳米纤维和纳米纤维素纤维中的一种或多种,所述无机涂层的涂布量为3-15g/m2
2.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述无机颗粒为氧化铝和/或氢氧化镁,以重量比计,所述氧化铝和氢氧化镁的用量比为1:1。
3.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述无机颗粒的粒径为3μm以下。
4.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述聚羧酸铵盐的粘度小于100mPa·s。
5.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述羧甲基纤维素钠的粘度为10-50mPa·s。
6.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述粘结性树脂的粘度小于1000mPa·s。
7.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述无机涂层中,以重量百分含量计,所述无机颗粒的含量为83-85wt%。
8.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述无机涂层中,以重量百分含量计,所述分散剂的含量为1-1.5wt%。
9.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述无机涂层中,以重量百分含量计,所述保水剂的含量为2-3.5wt%。
10.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述无机涂层中,以重量百分含量计,所述粘结性树脂的含量为13-14wt%。
11.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述超细主干纤维选自拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、聚丙烯腈纤维(PAN)、聚酰胺纤维(PA)和聚丙烯纤维(PP)中的一种或多种。
12.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述超细主干纤维为拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、聚丙烯腈纤维(PAN)和/或聚酰胺纤维(PA)。
13.根据权利要求12所述的锂离子电池隔膜,其特征在于,以重量比计,所述拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、所述聚丙烯腈纤维(PAN)和所述聚酰胺纤维(PA)的用量比为1-1.2:1-1.2:1。
14.根据权利要求12所述的锂离子电池隔膜,其特征在于,以重量比计,所述拉伸聚对苯二甲酸乙二酯纤维(拉伸PET)、所述聚丙烯腈纤维(PAN)和所述聚酰胺纤维(PA)的用量比为1:1:1。
15.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述热塑性粘结纤维选自聚乙烯纤维(PE)、聚丙烯纤维(PP)、未拉伸聚对苯二甲酸乙二酯纤维(未拉伸PET)、双组份PP/PE纤维、双组份PET/PE纤维、双组份PET/PP纤维和双组份PET/co-PET纤维中的一种或多种。
16.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述热塑性粘结纤维为未拉伸聚对苯二甲酸乙二酯纤维(未拉伸PET)、双组份PET/co-PET纤维或双组份PP/PE纤维。
17.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述第一纳米纤维和所述第二纳米纤维各自独立地为原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维、原纤化天丝纳米纤维、原纤化聚对苯撑苯并二噁唑纳米纤维或原纤化聚丙烯腈(PAN)纳米纤维。
18.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述第二纳米纤维为原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维和/或原纤化天丝纳米纤维;以重量比计,所述原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维和原纤化天丝纳米纤维的用量比为1:1-4。
19.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述第二纳米纤维为原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维和/或原纤化天丝纳米纤维;以重量比计,所述原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维和原纤化天丝纳米纤维的用量比选为1:4。
20.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述超细主干纤维的直径为0.1-6μm,长度为1-6mm。
21.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述热塑性粘结纤维的直径为0.1-8μm,长度为1-6mm。
22.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述第一纳米纤维和所述第二纳米纤维的打浆度为60-95°SR。
23.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述原纤化天丝纳米纤维的打浆度为70-95°SR。
24.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述原纤化聚对苯二甲酰对苯二胺(PPTA)纳米纤维的打浆度为60-85°SR。
25.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述原纤化聚对苯撑苯并二噁唑纳米纤维和所述原纤化聚丙烯腈(PAN)纳米纤维的打浆度为85°SR。
26.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述锂离子电池隔膜基材中,以重量百分含量计,所述支撑层占总定量的60-95wt%,所述致密层占总定量的5-40wt%。
27.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由30-40wt%的超细主干纤维、30-65wt%的热塑性粘结纤维和5-30wt%的纳米纤维组成。
28.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由30wt%的超细主干纤维、65wt%的热塑性粘结纤维和5wt%的第一纳米纤维制成。
29.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由40wt%的超细主干纤维、30wt%的热塑性粘结纤维和30wt%的第一纳米纤维制成。
30.根据权利要求1所述的锂离子电池隔膜,其特征在于,在所述锂离子电池隔膜基材中,以重量百分比计,所述支撑层由45wt%的超细主干纤维、40wt%的热塑性粘结纤维和15wt%的第一纳米纤维制成。
31.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述基材的厚度为10-25μm。
32.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述基材的定量为8-17g/m2
33.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述基材的平均孔径小于3μm;所述基材的最大孔径小于5μm。
34.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的厚度在30μm以下。
35.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的厚度为20-26μm。
36.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的定量为15-29g/cm2
37.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的平均孔径小于0.6μm。
38.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的平均孔径为0.1-0.5μm。
39.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的最大孔径不大于1.0μm。
40.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜的最大孔径为0.6-1μm。
41.根据权利要求1所述的锂离子电池隔膜,其特征在于,所述隔膜在300℃下的热收缩率≤2%。
42.一种制备权利要求1至41中任一项所述的锂离子电池隔膜的方法,所述方法包括将无机涂层均匀涂布在锂离子电池隔膜基材的致密层表面,然后进行热风干燥;热风温度为80-150℃;所述无机涂层的涂布量为3-15g/m2
所述锂离子电池隔膜基材的制备方法包括以下顺序步骤:
步骤a:分别将支撑层和致密层的纤维原料与水混合,各自独立地疏解、打浆、混合后得到浆料,采用冲浆泵加水稀释至上网浓度;
步骤b:将稀释后的支撑层和致密层浆料送入Hydroformer双层水力式斜网成形器布浆器,其中,致密层浆料进入上层流道,支撑层浆料进入贴近成形网的流道,各流道浆流先后在同一区域叠层同时抄造成形,经脱水处理得到湿纸页,形成基材湿纸页;
步骤c:在所述步骤b后,基材湿纸页经扬克缸干燥处理得到基材干纸页;
步骤d:在所述步骤c后,基材干纸页经过金属辊和软辊压光处理得到基材;
在步骤a中,加水稀释浆料前,支撑层和致密层浆料的固体重量百分浓度均为0.2wt%;
在步骤a中,所述支撑层浆料的上网浓度为0.01-0.05wt%;所述致密层浆料的上网浓度为0.002-0.05wt%;
在步骤b中,所述支撑层浆料的流道流量为160-3000m3/h;所述致密层浆料的流道流量为40-750m3/h;
在步骤c中,干燥温度为80-130℃;
在步骤d中,所述压光处理温度为110-220℃;
当所述支撑层中的热塑性粘结纤维为未拉伸PET纤维时,其干燥温度为80-130℃,其压光处理温度为170-220℃;
当所述支撑层中的热塑性粘结纤维为双组份PET/co-PET纤维或双组份PP/PE纤维,其干燥温度为80-130℃,其压光处理温度为110-140℃。
43.根据权利要求42所述的方法,其特征在于,所述热风温度为120℃。
44.根据权利要求42所述的方法,其特征在于,在步骤a中,支撑层浆料的上网浓度为0.01-0.03wt%;致密层浆料的上网浓度为0.005-0.04wt%。
45.根据权利要求42所述的方法,其特征在于,在步骤b中,在抄造前,还包括浆料的整流,使浆料呈现高强微湍的流动状态。
46.根据权利要求42所述的方法,其特征在于,在步骤b中,所述支撑层浆料的流道流量为500-1000m3/h;所述致密层浆料的流道流量为100-480m3/h。
47.根据权利要求42所述的方法,其特征在于,在步骤b中,所述支撑层浆料的流道流量为740m3/h;所述致密层浆料的流道流量为185m3/h。
48.根据权利要求42所述的方法,其特征在于,当所述支撑层中的热塑性粘结纤维为未拉伸PET纤维时,其干燥温度为120℃,其压光处理温度为190℃。
49.根据权利要求42所述的方法,其特征在于,当所述支撑层中的热塑性粘结纤维为双组份PET/co-PET纤维或双组份PP/PE纤维,其干燥温度为90℃,其压光处理温度为120℃。
50.根据权利要求42所述的方法,其特征在于,所述无机涂层的制备方法包括:按照无机涂层的组成,将分散剂和保水剂依次加入到去离子水中搅拌,加入无机颗粒,分散,经滤网过滤得到分散液,在分散液中加入粘结性树脂继续分散,制得无机涂层浆料;
无机涂层的组成如权利要求1中所述;
所述无机颗粒在2500r/min下分散30min;
所述粘结性树脂在分散液中均匀分散15min;
所述滤网为320目滤网;
所述无机涂层浆料的固含量为40-60%。
51.根据权利要求42所述的方法,其特征在于,所述无机涂层的制备方法包括:按照无机涂层的组成,将分散剂和保水剂依次加入到去离子水中搅拌,加入无机颗粒,分散,经滤网过滤得到分散液,在分散液中加入粘结性树脂继续分散,制得无机涂层浆料;
无机涂层的组成如权利要求1中所述;
所述无机颗粒在2500r/min下分散30min;
所述粘结性树脂在分散液中均匀分散15min;
所述滤网为320目滤网;
所述无机涂层浆料的固含量为50wt%。
52.一种锂离子电池,其包含权利要求1至41中任一项所述的锂离子电池隔膜。
CN201711442897.3A 2017-12-26 2017-12-26 电池隔膜及其制备方法和应用 Active CN108172741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711442897.3A CN108172741B (zh) 2017-12-26 2017-12-26 电池隔膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711442897.3A CN108172741B (zh) 2017-12-26 2017-12-26 电池隔膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108172741A CN108172741A (zh) 2018-06-15
CN108172741B true CN108172741B (zh) 2022-01-25

Family

ID=62521933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711442897.3A Active CN108172741B (zh) 2017-12-26 2017-12-26 电池隔膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108172741B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037548A (zh) * 2018-06-28 2018-12-18 合肥国轩高科动力能源有限公司 一种耐高温聚烯烃隔膜及其制备方法
WO2020022851A1 (ko) * 2018-07-26 2020-01-30 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
CN110429227B (zh) * 2019-07-03 2022-03-25 莱州联友金浩新型材料有限公司 一种纤维型锂离子电池隔膜的制备方法
CN110656529B (zh) * 2019-09-12 2021-11-30 中国制浆造纸研究院有限公司 一种微细纤维及其制备方法和应用以及一种电气设备所用隔膜的制备方法
CN110970589A (zh) * 2019-11-28 2020-04-07 中国电力科学研究院有限公司 一种钠离子电池隔膜、制备方法及钠离子电池
CN111816824B (zh) * 2020-06-11 2021-12-21 深圳市星源材质科技股份有限公司 用作锂离子电池隔膜基膜的无纺布、隔膜以及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199034A (ja) * 2011-03-18 2012-10-18 Shinshu Univ セパレーター、セパレーター製造方法及びセパレーター製造装置
CN103000848A (zh) * 2012-11-29 2013-03-27 东莞新能源科技有限公司 复合多孔性隔膜及其制备方法
CN104157812A (zh) * 2014-04-23 2014-11-19 华南理工大学 锂离子电池隔膜及其制备方法及锂离子电池
CN104870156A (zh) * 2012-11-14 2015-08-26 布莱恩·G·莫兰 展现低收缩率的单层锂离子电池隔膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332577B (zh) * 2014-11-24 2017-01-18 中国海诚工程科技股份有限公司 一种锂离子电池用纳米纤丝陶瓷隔膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199034A (ja) * 2011-03-18 2012-10-18 Shinshu Univ セパレーター、セパレーター製造方法及びセパレーター製造装置
CN104870156A (zh) * 2012-11-14 2015-08-26 布莱恩·G·莫兰 展现低收缩率的单层锂离子电池隔膜
CN103000848A (zh) * 2012-11-29 2013-03-27 东莞新能源科技有限公司 复合多孔性隔膜及其制备方法
CN104157812A (zh) * 2014-04-23 2014-11-19 华南理工大学 锂离子电池隔膜及其制备方法及锂离子电池

Also Published As

Publication number Publication date
CN108172741A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
CN108172741B (zh) 电池隔膜及其制备方法和应用
CN108598337B (zh) 一种锂离子电池隔膜基材及其制备方法和应用
CN103137931B (zh) 一种隔膜纸及其制备方法和应用
CN104157812B (zh) 锂离子电池隔膜及其制备方法及锂离子电池
CN101380535B (zh) 一种多层复合微孔过滤分离材料及其制备方法与应用
US11616271B2 (en) Battery separator including inorganic coating disposed on dense layer formed on support layer, and method for preparing the same
US6174826B1 (en) Wet-laid nonwoven polyolefin battery separator substrate
US9570726B2 (en) Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
CN111816824B (zh) 用作锂离子电池隔膜基膜的无纺布、隔膜以及锂离子电池
CN108232086B (zh) 一种一次成形的锂离子电池隔膜及其制备方法和应用
WO2019126979A1 (zh) 一种锂离子电池隔膜基材及其制备方法和应用
KR101547776B1 (ko) 허니컴용 아라미드 습식부직포 및 그 제조방법
CN114709560A (zh) 一种锂离子电池隔膜纸及其制备方法
CN114790665A (zh) 一种免碳化隔膜纸及其制备方法和应用
US11710875B2 (en) One-step molded lithium ion battery separator, preparation method and application thereof
JP2023148946A (ja) 耐熱ガラス繊維不織布
CN113228398A (zh) 碱性电池用隔板及其制造方法
CN117039343A (zh) 一种复合电池隔膜及其制备方法
JP2021057236A (ja) リチウムイオン二次電池用セパレータ
CN115075045A (zh) 一种均匀平整的芳纶蜂窝纸的制备方法
TW201907078A (zh) 含有間位聚芳醯胺與聚苯硫醚之濕式不織布及其積層片材
JP2000006279A (ja) ハニカムコア用基材およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant