WO2017171524A1 - 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체 - Google Patents

접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체 Download PDF

Info

Publication number
WO2017171524A1
WO2017171524A1 PCT/KR2017/003655 KR2017003655W WO2017171524A1 WO 2017171524 A1 WO2017171524 A1 WO 2017171524A1 KR 2017003655 W KR2017003655 W KR 2017003655W WO 2017171524 A1 WO2017171524 A1 WO 2017171524A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
layer
separator
electrochemical device
adhesive layer
Prior art date
Application number
PCT/KR2017/003655
Other languages
English (en)
French (fr)
Inventor
신현경
성동욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17775948T priority Critical patent/PL3352248T3/pl
Priority to US15/766,216 priority patent/US10734627B2/en
Priority to EP17775948.7A priority patent/EP3352248B1/en
Priority to CN201780003711.6A priority patent/CN108352488B/zh
Priority to JP2018551739A priority patent/JP6765439B2/ja
Publication of WO2017171524A1 publication Critical patent/WO2017171524A1/ko
Priority to US16/881,692 priority patent/US11005141B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for an electrochemical device and an electrode assembly including the same. More particularly, the present invention relates to a separator and an electrode assembly including the same, having improved interfacial adhesion with an electrode.
  • Secondary battery is composed of anode / cathode / membrane / electrolyte as the basic composition, and is capable of charging / discharging by reversibly converting chemical energy and electrical energy and is a high energy density energy storage device, widely used in small electronic equipment such as mobile phones and laptops. .
  • combined electric vehicles hybrid electric vehicles (HEV), plug-in EVs, e-bikes and energy storage systems) have been developed to address environmental issues, high oil prices, energy efficiency and storage.
  • Applications to energy storage systems (ESS) are expanding rapidly.
  • the electrode assembly is formed by stacking the electrode and the separator, there is a problem that the electrode and the separator are separated from each other due to insufficient interlayer binding force, and in this case, the inorganic particles detached during the separation process may act as local defects in the device. exist.
  • Korean Laid-Open Publication No. 10-2006-0116043 discloses a method in which a porous adhesive layer is obtained by a phase separation effect when ethanol is added to a solution in which PVDF is dissolved in a good solvent such as acetone, and then coated on a separator. It is starting.
  • the porous adhesive layer obtained in this way has the advantage of excellent infiltration and low resistance in operation of the battery, but due to swelling after pouring during the manufacturing process of the battery, the bonding strength with the separator, that is, mechanical strength is low, and exhibits low cycling characteristics. Interlayer mixing with the porous coating layer occurs to close the pores formed in the porous coating layer, there is a problem that the air permeability of the separator is reduced.
  • the present invention provides a separator for an electrochemical device for solving the above technical problem.
  • the first aspect of the present invention is a separator for an electrochemical device, the separator is formed on at least one surface of the porous substrate, the porous substrate, a porous coating layer comprising a mixture of inorganic particles and binder resin and the surface of the porous substrate An adhesive layer formed on the surface of the separator and a second layer formed on the surface of the first layer and in contact with the electrode, wherein the first layer is a low melting polymer resin.
  • the second layer includes a polymer polymer having a lower dissolution rate for an electrolytic solution for an electrochemical device than the polymer polymer included in the first layer.
  • the low-melting polymer resin is a polymer polymer comprising at least one fluorine-containing monomer selected from the group consisting of vinylidene fluoride, ethylene tetrafluoride, and propylene hexafluoride. .
  • the first layer is a low melting point polymer resin of 25% to 75% by weight relative to 100% by weight of the first layer.
  • the polymer comprising the fluorine-containing monomer is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexa It is at least one selected from the group consisting of fluoropropylene (polyvinylidene fluoride-ohexafluoropropylene), polyvinylidene fluoride-cochlorotriethylene (polyvinylidene fluoride-co-trichloroethylene).
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride-hexa It is at least one selected from the group consisting of fluoropropylene (polyvinylidene fluoride-ohexafluoropropylene), polyvinylidene fluoride-cochlorotriethylene (polyvinylidene fluoride-co-trichloroethylene).
  • the polymer polymer having a lower dissolution rate in a solvent than the polymer polymer included in the first layer may be a repeating unit derived from an unsaturated carboxylic ester. It is a high polymer containing.
  • the polymer polymer including a repeating unit derived from the unsaturated carboxylic acid ester is selected from polyacrylate, polymethacrylate, polybutylacrylate, and poly At least one selected from the group consisting of acrylonitrile (polyacrylonitrile).
  • the content of the polymer having a lower dissolution rate in the solvent than the polymer included in the first layer is 25% by weight of the second adhesive layer. 75% by weight relative to weight percent.
  • the adhesive layer is formed so as to cover at least part of the surface of the porous substrate.
  • the second layer at least partially covers the surface of the first layer.
  • the first layer is formed in a stripe pattern on the surface of the porous coating layer, and the second layer is formed in the first layer of each stripe pattern. It is formed as a dot on the surface.
  • the second layer is a polymer polymer having a lower dissolution rate in the electrolytic solution for an electrochemical device than the polymer polymer included in the first layer.
  • the high polymer is a particulate polymer.
  • a twelfth aspect of the present invention relates to an electrode assembly for an electrochemical device, wherein the electrode assembly includes a cathode, an anode, and a separator, and the separator is interposed between the cathode and the anode. It is one of eleventh aspects.
  • the electrode assembly according to the present invention has excellent binding force between the separator and the electrode, so that the electrode and the separator are effectively adhered to each other, the ion conductivity between them is high, the resistance increase rate is low, and the life characteristics are excellent.
  • the inorganic particles or the active material particles of the electrode are not easily detached from the porous coating layer of the separator due to the increase in the binding force, so that durability of the electrode assembly may be maintained for a long time.
  • the porous coating layer can maintain a circular shape regardless of the change in substrate shape such as shrinkage of the polymer thin film substrate of the separator due to temperature rise, etc., thus forming a short circuit between electrodes instead of the polymer membrane substrate. Can be prevented.
  • FIG. 1 shows a cross section of a separator according to the present invention.
  • FIG. 2A and 2B schematically illustrate a separator according to one specific embodiment of the present invention.
  • FIG. 3 is a process flow diagram for a method of manufacturing a separator according to one specific embodiment of the present invention.
  • the present invention relates to a separator for an electrochemical device, in which the adhesive layer is formed on at least one surface of the outermost side of the separator.
  • the separator may include a porous substrate.
  • the porous substrate may be coated with a porous coating layer including at least one surface of the mixture including inorganic particles and a binder resin.
  • the adhesive layer may be formed on the surface of the separator substrate which is not coated with the porous coating layer, or when the separator substrate is coated with the porous coating layer, it may be formed on the surface of the porous coating layer.
  • the adhesive layer is formed by sequentially stacking the first layer and the second layer from the separator substrate or the porous coating layer, and the second layer faces the electrode.
  • the first layer comprises a polymer containing a fluorine-containing monomer
  • the second layer comprises a polymer polymer having a lower dissolution rate for the electrochemical irradiation electrolyte than the polymer contained in the first layer.
  • the "outermost surface" of the separator is understood to mean the surface to be interviewed with the electrode in the separator.
  • the present invention also provides an electrode assembly for an electrochemical device comprising the separator.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples include capacitors such as primary batteries, secondary batteries, fuel cells, solar cells, or supercapacitor devices. have.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • the separator 100 includes a porous substrate 110, porous coating layers 120a and 120c formed on at least one surface of the porous substrate, and adhesive layers 130a and 130c formed on at least one surface of the porous coating layer.
  • the adhesive layers 130a and 130c are introduced to secure the binding force between the separator and the electrode, and are provided as the outermost surface of at least one side of the separator.
  • the adhesive layer has a layered structure in which a first adhesive layer (or first layer, 131a, 131c) and a second adhesive layer (or second layer, 132a, 132c) are sequentially stacked.
  • first layer is formed on the surface of the separator to be in contact with the surface of the separator
  • second layer is formed on the surface of the first layer and faces the electrode when forming the electrode assembly.
  • the electrode may be an anode or a cathode.
  • the first layer comprises a low melting point polymer resin whose melting point is in the range of 120 ° C to 150 ° C.
  • the low-melting polymer resin may be a polymer containing a fluorine-containing monomer.
  • the polymer comprising a fluorine-containing monomer may include one or more selected from the group consisting of vinylidene fluoride, ethylene tetrafluoride and propylene hexafluoride as monomers.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride-ohexafluoropropylene
  • PVT polyvinylidene fluoride-trichloroethylene
  • the first adhesive layer may further include a binder resin selected from an acrylic binder resin, a binder resin containing a cyano group, a polyvinyl alcohol binder resin, a polyacrylonitrile binder resin, and the like, in addition to the low melting polymer resin.
  • a binder resin selected from an acrylic binder resin, a binder resin containing a cyano group, a polyvinyl alcohol binder resin, a polyacrylonitrile binder resin, and the like, in addition to the low melting polymer resin.
  • the low melting point polymer resin is 25% to 75% by weight relative to 100% by weight of the first adhesive layer.
  • the first adhesive layer has an effect that the dry adhesive force is improved by including a low melting point resin. That is, the adhesion between the electrode and the separator is excellent in the dry state before the electrolyte injection, so that the adhesion between the electrode and the separator is well maintained.
  • the second electrode adhesive layer includes a polymer polymer (hereinafter, low dissolution rate polymer polymer) having a lower dissolution rate for the electrolytic solution for an electrochemical device than the polymer polymer included in the first layer.
  • the low dissolution rate polymer is an electrolyte dissolution rate of 0 to 5% or less at room temperature (25 ° C).
  • the dissolution rate of the polymer means that the mass eluted with the electrolyte after being impregnated for 48 hours at 25 ° C. in the electrolyte solution for an electrochemical device is expressed as a percentage.
  • the high temperature dissolution rate is a temperature condition of 60 °C, in order to clearly distinguish from the high temperature dissolution rate, the dissolution rate may be referred to as a room temperature dissolution rate.
  • the low dissolution rate polymer is a room temperature dissolution rate of 0 to 5% or less, and a high temperature dissolution rate of 0 to 10% or less.
  • Such low dissolution rate polymers generally tend to have high hardness at room temperature, and have low dissolution rate even when contacted with an electrolyte, thereby maintaining stable adhesion for a long time.
  • the low dissolution rate polymer is a polymer comprising a monomer derived from an unsaturated carboxylic ester.
  • monomers include (meth) acrylic acid ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth I-butyl acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n- (meth) acrylate Octyl, nonyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate,
  • polymer examples include polyacrylate, polymethacrylate, polybutylacrylate, polyacrylonitrile, and the like.
  • the low dissolution rate polymer is 25% by weight to 75% by weight relative to 100% by weight of the second adhesive layer.
  • the first layer comprises a high molecular polymer comprising a fluorine-containing monomer such as PVdF.
  • a fluorine-containing monomer such as PVdF.
  • PVdF fluorine-containing monomer
  • the second layer is provided with a polymer polymer that has a low elution rate for the electrolyte and excellent adhesion even after wetting in the electrolyte solution to prevent the adhesive force of the adhesive layer is lowered.
  • the second layer is polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide ( polyethylene oxide, polyarylate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan ) And carboxyl methyl cellulose (carboxyl methyl cellulose) may further include at least one binder resin selected from the group consisting of.
  • the adhesive layer may be formed to cover at least a portion of the surface of the separator.
  • the adhesive layer covers 20% to 80% of the surface of the separator, for example, the entire surface of the porous coating layer.
  • the second layer is formed to cover at least some or all of the surface of the first layer.
  • the first layer may be formed in a stripe pattern and the second layer may be formed in a dot or dot shape on the surface of each stripe pattern.
  • the adhesive layer may be formed in the form of a dot and the dots are spaced at a predetermined interval so that a plurality are disposed on the surface of the separator.
  • the dots may include a first layer formed on the surface of the porous coating layer and a second layer formed on the surface of the first layer.
  • the second layer is formed to cover all or at least part of the first layer.
  • FIG. 1 illustrates a cross section of FIG. 2A, in which an electrode adhesive layer is formed on both surfaces of a separator.
  • an adhesive layer may be formed on one side of the separator as illustrated in FIG. 2A, and may be formed on the other side thereof as illustrated in FIG. 2B.
  • the shape of the adhesive layer, the first layer and the second layer and the respective coating areas can be appropriately adjusted by those skilled in the art in consideration of the binding force between the electrode and the separator.
  • the thickness of the second adhesive layer is less than 50% of the thickness of the first adhesive layer.
  • the first adhesive layer has a thickness of 0.1 ⁇ m to 2 ⁇ m, and the second adhesive layer may appropriately determine the thickness range according to the thickness of the first adhesive layer.
  • the second layer comprises a particulate polymer.
  • the particulate polymer polymer may be formed by applying to the first layer a dispersion of the particulate polymer polymer in a dispersion medium such as dispersion of the polymer particles in a solvent such as water as a result of emulsion polymerization or solution polymerization of the polymer particles. have.
  • the particulate polymer polymer when the particulate polymer is included in the second layer, the particulate polymer polymer has a particle diameter of 100 nm to 1,000 nm.
  • the separator according to the present invention may or may not be formed with a porous coating layer on the surface of the porous substrate. If the porous coating layer is not formed on the surface of the porous substrate, the adhesive layer may be formed on the surface of the porous substrate.
  • the adhesive layer may be formed by the following method.
  • a polymer solution for forming a first adhesive layer is prepared.
  • the polymer solution may be prepared by preparing acetone or NMP suitable solvent and then adding a binder resin containing a low melting polymer resin to the solvent.
  • a coating method may use a known coating method such as dip coating, slot die coating, doctor knife coating, inkjet printing, coating through a mesh filter, but is not limited to a specific method.
  • the first adhesive layer may be applied only to a portion of the porous substrate or the porous coating layer, as described above, and may be coated to have a predetermined pattern such as a dot or a stripe pattern.
  • the second adhesive layer is formed on the surface of the first adhesive layer.
  • the second adhesive layer may be formed by preparing a slurry for forming the second adhesive layer and then coating only the surface portion of the first adhesive layer.
  • the binder resin containing the low dissolution rate polymer in a water-based solvent such as water is dispersed and then applied on top of the first adhesive layer.
  • the slurry for forming the second adhesive layer may be applied to only a part of the surface of the first adhesive layer using a mesh filter. The slurry is then dried to remove the solvent to form a second adhesive layer.
  • the manufacturing method is described as a specific embodiment of the various electrode adhesive layer manufacturing method is not limited to the method described above in the manufacturing method.
  • the porous substrate may be used without particular limitation as long as it can be used as a separator material of an electrochemical device.
  • porous substrates include polyolefins, polyethylene terephthalates, polybutylene terephthalates, polyacetals, polyamides, polycarbonates, polyimides, polyetheretherketones, polyethersulfones, polyphenylene oxides, and polyphenyls.
  • the thickness of the porous substrate may be 5 to 50 ⁇ m.
  • the range of the porous substrate is not particularly limited to the above-mentioned range, when the thickness is too thin than the above-described lower limit, the mechanical properties may be degraded and the separator may be easily damaged during battery use.
  • the pore size and pore present in the porous substrate is also not particularly limited, but may be 0.01 to 50 ⁇ m and 10 to 95%, respectively.
  • the porous coating layer is formed by mixing a plurality of inorganic particles and a binder resin, the surface of the porous substrate is coated with the inorganic particles further improve the heat resistance and mechanical properties of the separator substrate.
  • the porous coating layer not only has a microporous structure by interstitial volume between inorganic particles, but also serves as a kind of spacer capable of maintaining the physical form of the coating layer.
  • the interstitial volume means a space in which adjacent inorganic particles are substantially interviewed and defined.
  • the porous coating layer has a thickness of 1 ⁇ m to 50 ⁇ m, or 2 ⁇ m to 30 ⁇ m, or 2 ⁇ m to 20 ⁇ m.
  • the porous coating layer may be prepared by adding inorganic particles to a mixture obtained by dissolving or dispersing a binder resin in a suitable solvent such as water to prepare a uniform slurry, and then coating the slurry on at least one side of the aforementioned porous substrate.
  • the coating method may be a dip coating, a die coating, a roll coating, a comma coating, or a mixture thereof.
  • the content ratio of the inorganic particles and the binder resin is determined in consideration of the thickness, pore size and porosity of the porous coating layer of the present invention to be finally produced, based on the weight ratio of inorganic particles 50 to 99.9% by weight or 70 to 99.5% by weight, polymer resin is 0.1 to 50% by weight or 0.5 to 30% by weight.
  • polymer resin is 0.1 to 50% by weight or 0.5 to 30% by weight.
  • the inorganic particle size of the porous coating layer is not limited, but may be in the range of 0.001 to 10 ⁇ m as much as possible in order to form a coating layer having a uniform thickness and an appropriate porosity.
  • the inorganic particle size satisfies this range, the dispersibility is maintained so that it is easy to control the properties of the separator, the phenomenon of increasing the thickness of the porous coating layer can be avoided, and the mechanical properties can be improved, too large Due to the pore size, internal short circuits are less likely to occur during battery charging and discharging.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles are not particularly limited as long as the inorganic particles are not oxidized and / or reduced in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li +).
  • the inorganic particles are, for example BaTiO 3, Pb (Zr, Ti ) O 3 (PZT), Pb 1 - x La x Zr 1 - y TiyO 3 (PLZT, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO One , or a mixture of two or more selected from the group consisting of 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 , TiO 2 can be used.
  • Pb (Zr, Ti ) O 3 PZT
  • Pb 1 - x La x Zr 1 - y TiyO 3 Pb 1 - x La x Zr 1 -
  • the binder polymer resin (second binder resin) included in the porous coating layer has a glass transition temperature (Tg) of -100 ° C to 200 ° C. This is because mechanical properties such as flexibility and elasticity of the separator can be improved.
  • the second binder resin stably fixes the adhesion between the inorganic particles, thereby contributing to preventing mechanical property deterioration of the final porous coating layer.
  • Non-limiting examples of binder resins usable in the present invention include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-ohexafluoropropylene, polyvinylidene fluoride-trichloro Polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate ), Ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, polyarylate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cya Cyanoethylcellulose, cyanoethyl sucrose It may be any one selected from the group consisting of cyanoethylsucrose, pullulan and carboxyl methyl cellulose, or a mixture of two or more thereof.
  • the pore size and porosity (porosity) of the porous coating layer is 0.001 to 10 ⁇ m, respectively, preferably 5 to 95% range.
  • the electrode assembly includes two or more electrodes and one or more separators, and the separators are interposed between electrodes having polarities opposite to each other.
  • the separator has the characteristics of the present invention described above.
  • the electrode includes a current collector and an electrode active material layer formed on at least one surface of the current collector.
  • the electrode active material layer includes an electrode active material, a binder polymer resin, and a conductive material.
  • Examples of the current collector include a foil made of aluminum, nickel, or a combination thereof in the case of a positive electrode, and a foil made of copper, gold, nickel, or a copper alloy, or a combination thereof in the case of a negative electrode.
  • the present invention is not limited thereto and may be appropriately selected.
  • a cathode active material may be used a conventional cathode active material that can be used for a cathode of a conventional electrochemical device.
  • Non-limiting examples thereof include lithium intercalation materials such as lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or a composite oxide formed by a combination thereof.
  • the negative electrode active material may use a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device.
  • Non-limiting examples thereof are lithium adsorbents such as lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, graphite (graphite) or other carbons.
  • non-limiting examples of the binder polymer resin contained in the electrode active material layer is polyvinylidene fluoride-hexa-fluoropropylene (polyvinylidene fluoride-co-hexafluoropropylene), polyvinylidene paste Polyvinylidene fluoride-cotrichloroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate Polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan cyanoethylpullulan, cyanoethylpoly Cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, acrylonit
  • the description of the electrode and / or the electrode assembly in the description that is not described herein can be applied to the conventional materials or methods used in the technical field to which the present invention belongs.
  • Artificial graphite, carbon black, CMC, and SBR were mixed with water in a weight ratio of 95.8: 1: 1.2: 2 to prepare a negative electrode slurry.
  • the negative electrode slurry was coated on a copper foil (Cu-foil) to a thickness of 14 ⁇ m to form a thin electrode plate, dried at 135 ° C. for at least 3 hours, and then pressed to prepare a negative electrode.
  • Cu-foil copper foil
  • a positive electrode slurry was prepared by mixing 2 0 2 , PVdF and carbon black with N-methylpyrrolidone in a weight ratio of 96: 2: 2.
  • the cathode slurry was coated on an aluminum thin film to a thickness of 60 ⁇ m to form a thin electrode plate, dried at 135 ° C. for at least 3 hours, and then rolled to prepare a cathode.
  • the loading amount of the positive electrode was 3.3mAh / cm 2
  • the NP ratio was 108.
  • Al 2 O 3 inorganic particles (LS235, Nippon Metal Co., Ltd., particle size 510nm), PVdF was added to acetone and stirred at room temperature to prepare a uniform dispersion slurry.
  • the content of the inorganic particles and the binder in the slurry was 98: 2 by weight.
  • the doctor blade the slurry was applied to both sides of a polyethylene porous substrate (W scope, WL11B, aeration time 150 seconds / 100cc) and dried to form a porous coating layer.
  • PVDF melting point 135 ° C
  • polyacrylonitrile were added to acetone to prepare a slurry for forming the first adhesive layer.
  • the content of PVDF and polyacrylonitrile in the slurry was 8: 2 by weight.
  • the slurry was applied to the surface of the porous coating layer using a mesh filter (20 ⁇ m) to form a first adhesive layer.
  • the spacing of the arranged dots was about 120 ⁇ m. Then hot air dried to remove the solvent.
  • polyacrylate at room temperature dissolution rate 3%) and SBR were dispersed in water to prepare a slurry for the second electrode adhesive layer.
  • the weight ratio of polyacrylate and SBR was 8: 2.
  • the slurry was applied to the upper surface of the first electrode adhesive layer using a mesh filter (100 ⁇ m), and the mesh position was adjusted to form a second adhesive layer on the upper surface of the first adhesive layer. Then hot air dried to remove the solvent.
  • An electrode assembly was manufactured by laminating the cathode, the anode, and the separator obtained in Preparation Examples 1) to 3) and lamination using a hot press. At this time, pressurization conditions were 90 degreeC and 8 MPa.
  • An electrode assembly was prepared by stacking the cathode, anode and separator obtained in Preparation Examples 1) to 3). The obtained electrode assembly was charged to a case after winding, and the electrolyte solution was injected to prepare a battery. A mixed solution of ethylene carbonate and ethyl methyl carbonate (7: 3, volume ratio) was used as the electrolyte solution, and adjusted to 1 mol of LiPF 6 .
  • An electrode assembly and a battery were manufactured in the same manner as in Example, except that the second adhesive layer was not formed on the separator.
  • Experiment 1 is to test the adhesion of the electrode assembly of each Example and Comparative Example in the dry state before the electrolyte impregnation.
  • Electrolyte impregnation was performed for 12 hours at 45 ° C electrolyte solution. Adhesion was measured using a 90 ° peel test using a tensile tester.
  • the resistance increase rate after 300 charge and discharge cycles was measured at 45 ° C., and the results are summarized in Table 2 below. Charging and discharging conditions of the battery were performed at 3.0 C and 3.0 V at 1.0 C, and charging was performed in CC / CV mode and discharging in CC mode. In the case of the embodiment it was confirmed that the resistance increase rate is lower than that of the comparative example, and this may be due to the higher adhesion of the electrode and the separator than the battery of the comparative example by the second adhesive layer in the battery according to the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전기화학소자용 분리막 및 이를 포함하는 전극 조립체에 대한 것이다. 더욱 상세하게는 전극과의 계면 접착력이 향상된 분리막 및 이를 포함하는 전극 조립체에 대한 것이다. 본 발명에 따른 접착층은 상기 분리막의 표면과 면접하는 제1 층과 상기 제1 층의 표면에 형성되며 전극과 면접하는 제2 층을 포함하고, 상기 제1 층은 함불소 단량체를 포함하는 고분자 중합체를 포함하고, 상기 제2 층은 제1층에 포함된 고분자 중합체보다 전기화학소자용 전해액에 대한 용출율이 낮은 고분자 중합체를 포함하는 것이다.

Description

접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체
본 출원은 2016년 4월 1일에 출원된 한국특허출원 제10-2016-0040274호에 기초한 우선권을 주장한다. 본 발명은 전기화학소자용 분리막 및 이를 포함하는 전극 조립체에 대한 것이다. 더욱 상세하게는 전극과의 계면 접착력이 향상된 분리막 및 이를 포함하는 전극 조립체에 대한 것이다.
이차 전지는 양극/음극/분리막/전해액을 기본 구성으로 하며 화학 에너지와 전기 에너지가 가역적으로 변환되면서 충방전이 가능하고 에너지 밀도가 높은 에너지 저장체로, 휴대폰, 노트북 등의 소형 전자 장비에 폭넓게 사용된다. 최근에는 환경문제, 고유가, 에너지 효율 및 저장을 위한 대응으로 복합 전기 자동차(전기 자동차(hybrid electric vehicles, HEV), 플러그 전기 자동차(Plug-in EV), 전기자전거(e-bike) 및 에너지 저장 시스템(Energy storage system, ESS)으로의 응용이 급속히 확대되고 있다.
이러한 이차 전지의 제조 및 사용에 있어서 이의 안전성 확보은 중요한 해결 과제이다. 특히 전기 화학 소자에서 통상적으로 사용되는 분리막(separator)은 그 의 재료적 특성 및 제조 공정상의 특성으로 인하여 고온 등의 상황에서 극심한 열수축 거동을 보임으로써 내부 단락 등의 안정성 문제를 갖고 있다. 최근 이차 전지의 안전성을 확보하기 위해 무기물 입자와 바인더 수지의 혼합물을 이차 전지 분리막용 다공성 기재에 코팅하여 다공성 코팅층을 형성한 유기-무기 복합 다공성 분리막이 제안되었다(대한민국 특허출원 10-2004-0070096 참조). 그러나 전극과 분리막을 적층하여 전극 조립체를 형성한 경우 층간 결착력이 충분하지 않아 전극과 분리막이 서로 분리될 위험이 크고 이 경우 분리 과정에서 탈리되는 무기물 입자가 소자 내에서 국부적 결함으로 작용할 수 있는 문제점이 존재한다.
이러한 문제점을 해소하기 위해 한국공개공보 10-2006-0116043는 PVDF를 아세톤과 같은 양용매에 용해시킨 용액에 에탄올을 첨가한 후 분리막 위에 도포한 뒤 건조시키면 상분리 효과에 의해 다공성의 접착층이 얻어지는 방법을 개시하고 있다. 이러한 방법으로 얻어진 다공성 접착층은 우수한 침윤성과 전지 작동시 낮은 저항이라는 장점을 가지지만, 전지의 제조과정에서 주액 후 팽윤(swelling)됨으로 인해 분리막과의 결합력, 즉, 기계적 강도가 떨어지고 낮은 싸이클링 특성을 나타내며 다공성 코팅층과의 층간 혼합(interlayer mixing)이 발생하여 다공성 코팅층에 형성된 기공을 폐쇄하여 분리막의 통기도가 저하되는 문제가 있었다.
따라서, 분리막과 전극의 접착성을 개선하기 위한 새로운 기술의 개발이 시급히 요구된다.
본원 발명은 전극과 분리막의 결착력이 향상된 향상된 전기화학소자용 전극 조립체를 제공하는 것을 목적으로 한다. 본 발명의 다른 목적 및 장점들은 하기 설명에 의해 이해될 수 있을 것이다. 한편, 본 발명의 목적 및 장점들은 특허청구범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명은 상기 기술적 과제를 해결하기 위한 전기화학소자용 분리막을 제공한다. 본 발명의 제1 측면은, 전기화학소자용 분리막이며, 상기 분리막은 다공성 기재, 상기 다공성 기재의 적어도 일측 표면에 형성되며, 무기물 입자와 바인더 수지의 혼합물을 포함하는 다공성 코팅층 및 상기 다공성 기재의 표면에 형성된 접착층을 포함하며, 상기 접착층은 상기 분리막의 표면과 면접하는 제1 층과 상기 제1 층의 표면에 형성되며 전극과 면접하는 제2 층을 포함하고, 상기 제1 층은 저융점 고분자 수지를 포함하고, 상기 제2 층은 제1층에 포함된 고분자 중합체보다 전기화학소자용 전해액에 대한 용출율이 낮은 고분자 중합체를 포함하는 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 저융점 고분자 수지가 불화 비닐리덴, 4불화 에틸렌 및 6불화 프로필렌으로 이루어지는 군에서 선택되는 1종 이상의 함불소 단량체를 포함하는 고분자 중합체인 것이다.
본 발명의 제3 측면은 상기 제1 또는 제2 측면에 있어서, 상기 제1층은 저융점 고분자 수지가 제1층 100중량% 대비 25중량% 내지 75중량%인 것이다.
본 발명의 제4 측면은, 상기 제2 내지 제3 측면 중 어느 하나에 있어서, 상기 함불소 단량체를 포함하는 고분자 중합체는 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-ohexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene)로 이루어진 군에서 선택된 1종 이상인 것이다.
본 발명의 제5 측면은 상기 제1 내지 제4 측면 중 어느 하나에 있어서, 상기 제1층에 포함된 고분자 중합체보다 용매에 대한 용출율이 낮은 고분자 중합체는 불포화 카르복실산 에스테르에서 유래하는 반복 단위를 포함하는 고분자 중합체인 것이다.
본 발명의 제6 측면은, 상기 제5 측면에 있어서, 상기 불포화 카르복실산 에스테르에서 유래하는 반복 단위를 포함하는 고분자 중합체는 폴리아크릴레이트, 폴리메타크릴레이트, 폴리부틸아크릴레이트 (polybutylacrylate) 및 폴리아크릴로니트릴 (polyacrylonitrile)로 이루어진 군에서 선택된 1종 이상인 것이다.
본 발명의 제7 측면은, 상기 제1 내지 제6 측면 중 어느 하나에 있어서, 상기 제1층에 포함된 고분자 중합체보다 용매에 대한 용출율이 낮은 고분자 중합체의 함량은 제2 접착층 100 중량% 대비 25 중량% 대비 75 중량%인 것이다.
본 발명의 제8 측면은, 상기 제1 내지 제7 측면 중 어느 하나에 있어서, 상기 접착층은 상기 다공성 기재의 적어도 일부 표면을 피복하도록 형성되는 것이다.
본 발명의 제9 측면은, 상기 제1 내지 제8 측면 중 어느 하나에 있어서, 상기 제2 층은 제1 층의 표면을 적어도 일부 피복하는 것이다.
본 발명의 제10 측면은, 상기 제1 내지 제9 측면 중 어느 하나에 있어서, 상기 제1 층은 다공성 코팅층의 표면에 스트라이프 패턴으로 형성되며, 상기 제2 층은 각 스트라이프 패턴의 제1층의 표면에 점상으로 형성되는 것이다.
본 발명의 제11 측면은, 상기 제1 내지 제10 측면 중 어느 하나에 있어서, 상기 제2층은 제1 층에 포함되는 고분자 중합체보다 전기화학소자용 전해액에 대한 용출율이 낮은 고분자 중합체이며, 상기 고분자 중합체는 입자상 고분자 중합체인 것이다.
또한, 본 발명의 제12 측면은 전기화학소자용 전극 조립체에 대한 것이며, 상기 전극 조립체는 음극, 양극 및 분리막을 포함하고, 상기 분리막은 음극과 양극의 사이에 개재되는 것으로서, 상기 제1 측면 내지 제11 측면 중 어느 하나인 것이다.
본원 발명에 따른 전극 조립체는 분리막과 전극의 결착력이 우수하여 전극과 분리막이 효과적으로 밀착되므로 이들간의 이온 전도도가 높으며, 저항증가율이 낮고 수명 특성이 우수하게 나타난다. 또한, 결착력의 상승에 의해 분리막의 다공성 코팅층 중 무기물 입자나 전극의 활물질 입자가 쉽게 탈리되지 않으므로 전극 조립체의 내구성이 장기간 유지될 수 있다. 마지막으로 전극과 다공성 코팅층의 결착력이 우수하므로 분리막의 고분자 박막 기재가 온도 상승 등의 이유로 수축하는 등의 기재 형태 변화에 상관 없이 다공성 코팅층은 원형을 유지할 수 있으므로 고분자 막막 기재를 대신하여 전극간 단락 형성을 방지할 수 있다.
첨부된 도면은 발명의 바람직한 실시예를 예시하는 것이며, 상세한 설명과 함께 본 발명의 원리를 설명하는 것으로, 발명의 범위가 이에 국한되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 본원 발명에 따른 분리막의 단면을 도시한 것이다.
도 2a 및 도 2b는 본원 발명의 본원 발명의 구체적인 일 실시양태에 따른 분리막을 개략적으로 도시한 것이다.
도 3은 본 발명의 구체적인 일 실시양태에 따른 분리막을 제조하는 방법에 대한 공정 흐름도이다.
본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 전기화학소자용 분리막에 대한 것으로서, 상기 분리막은 분리막의 최외측의 적어도 일측 표면에 접착층이 형성되어 있는 것이다. 상기 분리막은 다공성 기재를 포함할 수 있다. 또한, 상기 다공성 기재는 적어도 일측 표면이 무기물 입자와 바인더 수지를 포함하는 혼합물을 포함하는 다공성 코팅층으로 피복될 수 있다. 본 발명에 있어서, 상기 접착층은 다공성 코팅층으로 피복되지 않은 분리막 기재의 표면에 형성되거나 또는 상기 분리막 기재가 다공성 코팅층으로 코팅되어 있는 경우 상기 다공성 코팅층의 표면에 형성될 수 있다. 또한, 본 발명에 있어서, 상기 접착층은 분리막 기재 또는 다공성 코팅층으로부터 제1 층 및 제2 층이 순차적으로 적층되어 있는 것으로서 상기 제2 층은 전극과 대면한다. 또한, 상기 제1층 함불소 단량체를 포함하는 고분자 중합체를 포함하고, 상기 제2층은 제1 층에 포함된 고분자 중합체보다 전기화학조사용 전해액에 대한 용출율이 낮은 고분자 중합체를 포함한다. 본원 명세서에서 분리막의‘최외측 표면’은 분리막에서 전극과 면접하게 되는 표면을 의미하는 것으로 이해한다.
또한, 본 발명은 상기 분리막을 포함하는 전기화학소자용 전극 조립체를 제공한다. 본 발명에 있어서, 상기 전기화학소자는 전기화학 반응을 하는 모든 소자를 포함하며, 구체적인 예로서 모든 종류의 일차전지, 이차전지, 연료전지, 태양전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 이차전지 중 리튬금속 이차전지, 리튬이온 이차전지, 리튬 폴리머 이차전지 또는 리튬이온 폴리머 이차전지 등을 포함하는 리튬 이차전지가 바람직하다.
이하 도면을 참조하여 본 발명에 따른 분리막 및 전극 조립체를 상세하게 설명한다.
도 1은 본 발명의 구체적인 일 실시양태에 따른 분리막(100)의 단면을 개략적으로 도시한 것이다. 이를 참조하면 상기 분리막(100)은 다공성 기재(110), 상기 다공성 기재의 적어도 일측 표면에 형성된 다공성 코팅층(120a, 120c) 및 상기 다공성 코팅층의 적어도 일측 표면에 형성된 접착층(130a, 130c)을 포함한다. 본 발명에 있어서, 상기 접착층(130a, 130c)은 분리막과 전극의 결착력을 확보하기 위해 도입되는 것으로서, 분리막의 적어도 일측의 최외측 표면으로 구비된다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 접착층은 제1 접착층(또는 제1 층, 131a, 131c) 및 제2 접착층(또는 제2 층, 132a, 132c)이 순차적으로 적층된 층상 구조를 갖는 것이다. 이 중 제1 층은 분리막의 표면상에 분리막의 표면과 면접하도록 형성되며, 제2 층은 제1 층의 표면에 형성되며 전극 조립체를 구성하는 경우 전극과 대면하는 것이다. 상기 전극은 양극 또는 음극일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 제1 층은 녹는 점이 120℃ 내지 150℃ 범위에 속하는 저융점 고분자 수지를 포함한다. 상기 저융점 고분자 수지의 비제한적인 예로, 함불소 단량체를 포함하는 고분자 중합체를 들 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 함불소 단량체를 포함하는 고분자 중합체는 단량체로서 불화비닐리덴, 4불화 에틸렌 및 6불화 프로필렌으로 이루어진 그룹에서 선택되는 1종 이상을 포함할 수 있다. 이러한 고분자 중합체의 구체적인 예로는 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-ohexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene) 등이 있다.
또한, 상기 제1 접착층은 상기 저융점 고분자 수지 이외에 아크릴계 바인더 수지, 시아노기를 포함하는 바인더 수지, 폴리비닐알코올계 바인더 수지, 폴리아크릴로니트릴계 바인더 수지 등에서 선택된 바인더 수지를 더 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 저융점 고분자 수지는 제1 접착층 100중량% 대비 25중량% 내지 75중량%인 것이다.
본 발명에 있어서, 상기 제1 접착층은 저융점 수지를 포함함으로써 건식 접착력이 향상되는 효과가 있다. 즉, 전해액 주액 전 건조 상태에서 전극과 분리막의 계면간 결합력이 우수하여 전극과 분리막의 밀착이 잘 유지되도록 한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 제2 전극접착층은 제1 층에 포함된 고분자 중합체보다 전기화학소자용 전해액에 대한 용출율이 낮은 고분자 중합체(이하 저용출율 고분자 중합체)를 포함한다. 상기 저용출율 고분자 중합체는 상온(25℃)에서 전해액 용출율이 0 내지 5% 이하인 것이다.
본원 명세서에서 고분자 중합체의 용출율이라 함은 전기화학소자용 전해액에 대해 25℃ 조건에서 48시간동안 함침된 후 전해액으로 용출된 질량을 백분율로 표시한 것을 의미한다. 또한, 고온 용충율은 온도 조건이 60℃인 것으로서, 고온 용출율과의 명확한 구별을 위해 상기 용출율은 상온 용출율로 표기하기도 한다.
본 발명의 구체직인 일 실시양태에 있어서 상기 저용출율 고분자 중합체는 상온 용출율이 0 내지 5% 이하이며, 고온 용출율이 0 내지 10% 이하인 것이다. 이러한 저용출율 고분자는 일반적으로 상온에서 경도가 높은 경향이 있으며 전해액과 접촉하더라도 용출율이 낮아 접착력이 장시간 안정적으로 유지된다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 저용출율 고분자 중합체는 불포화 카르복실산 에스테르에서 유래하는 단량체를 포함하는 고분자 중합체인 것이다. 이러한 단량체의 구체적인 예로는 (메타)아크릴산에스테르, (메트)아크릴산메틸, (메트)아크릴산에틸, (메트)아크릴산 n-프로필, (메트)아크릴산 i-프로필, (메트)아크릴산 n-부틸, (메트)아크릴산 i-부틸, (메트)아크릴산 n-아밀, (메트)아크릴산 i-아밀, (메트)아크릴산헥실, (메트)아크릴산시클로헥실, (메트)아크릴산2-에틸헥실, (메트)아크릴산 n-옥틸, (메트)아크릴산노닐, (메트)아크릴산데실, (메트)아크릴산히드록시메틸,(메트)아크릴산히드록시에틸, (메트)아크릴산에틸렌글리콜, 디(메트)아크릴산에틸렌글리콜, 디(메트)아크릴산프로필렌글리콜, 트리(메트)아크릴산트리메틸올프로판, 테트라(메트)아크릴산펜타에리트리톨, 헥사(메트)아크릴산디펜타에리트리톨, (메트)아크릴산알릴, 디(메트)아크릴산에틸렌, 아크릴로니트릴 등을 들 수 있다.
또한, 이러한 고분자 중합체의 구체적인 예로는 폴리아크릴레이트, 폴리메타크릴레이트, 폴리부틸아크릴레이트 (polybutylacrylate) 및 폴리아크릴로니트릴 (polyacrylonitrile) 등이 있다.
이러한 저용출율 고분자 중합체는 제2 접착층 100중량% 대비 25중량% 내지 75중량%인 것이다.
전술한 바와 같이, 제1 층은 PVdF와 같은 함불소 단량체를 포함하는 고분자 중합체가 포함된다. 이러한 고분자 중합체는 전해액 주액 전 건조 상태에서는 전극과 분리막의 계면간 결합력이 우수하여 전극과 분리막의 밀착이 잘 유지된다. 그러나, 이러한 PVdF계 고분자 중합체는 전해액에 wetting 된 이후에는 접착력이 저하되는 문제가 있다. 따라서, 본 발명은, 제2 층에 전해액에 대한 용출율이 낮고 전해액에 wetting 된 이후에도 접착력이 우수하게 유지되는 고분자 중합체를 구비하여 접착층의 접착력 저하를 방지하도록 하였다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 제2 층은 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란(pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군에서 선택된 1 종 이상의 바인더 수지를 더 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 접착층은 분리막 표면의 적어도 일부를 피복하도록 형성될 수 있다. 바람직하게는 상기 접착층은 분리막 표면, 예를 들어 다공성 코팅층의 표면을 전면적 기준으로 20% 내지 80% 피복하는 것이다. 상기 피복 비율이 전술한 범위를 만족하는 경우 분리막의 통기도 및/또는 이온 전도도가 과도하게 저하되지 않으면서도 적절한 전극/분리막 결착력을 확보할 수 있다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 제2 층은 상기 제1 층의 표면을 적어도 일부 또는 전부 피복하도록 형성된다.
도 2a 및 도 2b는 본원 발명의 구체적인 일 실시양태에 따른 접착층의 양태를 도식화하여 나타낸 것이다. 이를 참조하면, 제1 층은 스트라이프 패턴으로 형성되며 제2 층은 상기 각 스트라이프 패턴의 표면에 점상 또는 도트형으로 형성될 수 있다. 또한, 본 발명의 구체적인 일 실시양태에 있어서, 접착층은 도트 형태로 형성될 수 있으며 상기 도트들은 소정의 간격으로 이격하여 다수가 분리막의 표면에 배치되어 있는 것이다. 상기 도트들은 다공성 코팅층의 표면에 형성된 제1 층 및 상기 제1 층의 표면에 형성된 제2 층을 포함할 수 있다. 또한, 제2 층은 제1 층의 전부 또는 적어도 일부를 피복하도록 형성된다.
도 1은 도 2a의 단면을 도시한 것으로서, 분리막의 양면에 전극 접착층이 형성되어 있는 모양을 도시한 것이다. 도면에 도시된 실시양태들은 예시적인 것으로서, 실제 구현예들은 이에 한정되지 않는다. 예를 들어 분리막의 일측면에는 접착층이 도 2a에 도시된 것과 같이 형성될 수 있으며, 이의 타측면에는 도 2b에 도시된 것과 같이 형성될 수 있다.
즉, 본 발명에 있어서, 상기 접착층, 제1 층 및 제2 층의 형상 및 각각의 피복 면적은 전극과 분리막의 결착력을 고려하여 당업자가 적절하게 조절할 수 있다.
본 발명에 있어서, 상기 제2 접착층의 두께는 제1 접착층 두께의 50% 미만인 것이다. 구체적인 일 실시양태에 있어서, 제1 접착층은 두께가 0.1㎛ 내지 2㎛인 것이며, 제2 접착층은 제1 접착층의 두께에 따라 적절하게 두께 범위를 결정할 수 있다.
또한 본 발명의 구체적인 일 실시양태에 있어서, 상기 제2 층은 입자상 고분자 중합체를 포함하는 것이다. 상기 입자상 고분자 중합체는 고분자 입자의 유화 중합이나 용액 중합의 결과, 고분자 입자를 물 등의 용매에 분산시킨 것 등 분산매 중 입자상 고분자 중합체가 분산되어 있는 것을 상기 제1 층에 도포하는 방식으로 형성될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 제2 층에 입자상 고분자가 포함되는 경우 상기 입자상 고분자 중합체는 입경이 100nm 내지 1,000 nm 인 것이다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 본 발명에 따른 분리막은 다공성 기재의 표면에 다공성 코팅층이 형성되거나 또는 형성되지 않을 수 있다. 만일 다공성 기재의 표면에 다공성 코팅층이 형성되지 않은 경우에는 상기 접착층은 다공성 기재의 표면에 형성될 수 있다.
다음으로 본 발명의 분리막을 제조하는 방법을 설명한다.
도 3은 본 발명의 구체적인 일 실시양태에 따른 분리막 제조의 공정 흐름도이다. 이를 참조하면 상기 접착층은 다음과 같은 방법으로 형성될 수 있다.
우선, 제1 접착층 형성용 고분자 용액을 제조한다. 상기 고분자 용액은 아세톤이나 NMP 적절한 용매를 준비한 후 상기 용매에 저융점 고분자 수지 포함하는 바인더 수지를 투입하여 제조할 수 있다. 다음으로 이를 다공성 기재 또는 다공성 코팅층의 표면에 도포하고 건조시켜 용매를 제거한다. 상기 도포 방법은 딥코팅, 슬롯다이 코팅, 닥터 나이프 코팅, 잉크젯 프린팅, 메쉬 필터를 통한 도포 등 공지의 코팅 방법을 이용할 수 있으며, 특정한 방법에 한정되는 것은 아니다. 또한, 상기 제1 접착층은 전술한 바와 같이 다공성 기재 또는 다공성 코팅층의 일부분에만 도포될 수 있으며, 이때 도트나 스트라이프 무늬 등 소정의 패턴을 가지도록 코팅될 수 있다.
다음으로 제1 접착층의 표면에 제2 접착층을 형성한다. 전술한 바와 같이 상기 제2 접착층은 제2 접착층 형성용 슬러리를 준비한 후 이를 제1 접착층의 표면 일부분에만 코팅함으로써 형성될 수 있다. 구체적인 일 실시양태에 따르면, 물 등 수계 용매에 저용출율 고분자 중합체를 포함하는 바인더 수지를 분산시킨 후 이를 제1 접착층의 상부에 도포한다. 이때 메쉬 필터(mesh filter)를 이용하여 제1 접착층 표면의 일부분에만 제2 접착층 형성용 슬러리가 도포되도록 할 수 있다. 이후 상기 슬러리를 건조하여 용매를 제거하여 제2 접착층을 형성한다.
다만, 상기 제조 방법은 다양한 전극 접착층 제조 방법 중 구체적인 일 실시양태를 기술한 것으로서 제조 방법에 전술한 방법에 한정되는 것은 아니다. 이 외에 다양한 방법으로 전극 접착층을 제조하는 것이 가능하다.
다음으로 본원 발명의 전극 조립체의 구성 요소인 음극, 양극 및 분리막의 구성에 대해 상술한다.
본 발명에 있어서, 다공성 기재는 통상적으로 전기화학소자의 분리막 소재로 사용 가능한 것이 라면 특별한 제한 없이 사용이 가능하다. 이러한 다공성 기재로는, 예를 들어, 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌과 같은 고분자 수지 중 적어도 어느 하나로 형성된 부직포 또는 다공성 고분자 필름 또는 이 중 둘 이상의 적층물 등이 있으나 특별히 여기에 한정되는 것이 아니다.
본원 발명에 있어서, 상기 다공성 기재의 두께는 5 내지 50 ㎛일 수 있다. 다공성 기재의 범위가 특별히 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇은 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다. 한편, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95%일 수 있다.
본 발명에 있어서, 상기 다공성 코팅층은 복수의 무기물 입자와 바인더 수지가 혼합되어 형성된 것으로서, 다공성 기재의 표면이 무기물 입자로 피복됨으로써 분리막 기재의 내열성 및 기계적 물성이 더욱 향상된다. 상기 다공성 코팅층은 무기물 입자간 인터스티셜 볼륨(interstitial volume)에 의한 미세 다공성 구조를 가질 뿐만 아니라 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 된다. 상기 인터스티셜 볼륨은 인접한 무기물 입자들이 실질적으로 면접하여 한정되는 공간을 의미한다. 또한, 상기 무기물 입자는 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 갖기 때문에, 형성된 다공성 코팅층에 의해 분리막에 우수한 내열성이 부여된다. 본 발명에 있어서, 상기 다공성 코팅층은 두께가 1㎛ 내지 50㎛, 또는 2㎛ 내지 30㎛인 또는 2㎛ 내지 20㎛이다.
상기 다공성 코팅층은 바인더 수지를 물과 같인 적절한 용매에 용해 또는 분산시킨 혼합물에 무기물 입자를 투입하여 균일한 슬러리를 제조한 후 상기 슬러리를 전술한 다공성 기재의 적어도 일측면에 코팅하는 방법에 의해 제조될 수 있다. 상기 코팅 방법으로는 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등을 이용할 수 있다.
상기 다공성 코팅층에서, 상기 무기물 입자와 바인더 수지의 함량비는 최종 제조되는 본 발명의 다공성 코팅층의 두께, 기공 크기 및 기공도를 고려 하여 결정하되, 중량비를 기준으로 무기물 입자가 50 내지 99.9 중량% 또는 70 내지 99.5 중량%, 고분자 수지가 0.1 내지 50중량% 또는 0.5 내지 30중량% 인 것이다. 상기 무기물 입자의 함량이 50 중량% 미만일 경우 고분자의 함량이 지나치게 많게 되어 무기물 입자들 사이에 형성되는 빈 공간의 감소로 인한 기공 크기 및 기공도가 감소되어 최종 전지 성능 저하가 야기될 수 있다. 반면, 99.9 중량%를 초과할 경우 고분자 함량이 너무 적기 때문에 무기물 사이의 접착력 약화로 인해 최종 다공성 코팅층의 기계적 물성이 저하된다.
본 발명의 구체적인 일 실시양태에 따르면 상기 다공성 코팅층의 무기물 입자 크기는 제한이 없으나, 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 가능한 한 0.001 내지 10㎛ 범위일 수 있다. 상기 무기물 입자 크기가 이러한 범위를 만족하는 경우, 분산성이 유지되어 분리막의 물성을 조절하기가 용이하고, 다공성 코팅층의 두께가 증가하는 현상을 피할 수 있어 기계적 물성이 개선될 수 있으며, 또한 지나치게 큰 기공 크기로 인해 전지 충·방전시 내부 단락이 일어날 확률이 적다.
본 발명에 있어서, 상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 상기 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 무기물 입자로는 예를 들어 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1 - xLaxZr1 - yTiyO3 (PLZT, 여기서, 0 < x < 1, 0< y < 1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2, TiO2 로 이루어진 그룹에서 선택된 1종 또는 둘 이상의 혼합물을 사용할 수 있다.
또한, 본 발명에 있어서, 다공성 코팅층에 포함되는 바인더 고분자 수지(제2 바인더 수지)는 유리 전이 온도(glass transition temperature, Tg)가 -100℃ 내지 200℃ 범위이다. 이는 분리막의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다. 또한, 상기 제2 바인더 수지는 무기물 입자간 점착을 안정하게 고정함으로써 최종 제조되는 다공성 코팅층의 기계적 물성 저하 방지에 기여한다.
본원 발명에 있어서 사용 가능한 바인더 수지의 비제한적인 예로는 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-ohexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란(pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물일 수 있다.
한편, 다공성 코팅층의 기공 크기 및 기공도(porosity)는 각각 0.001 내지 10㎛이고, 5 내지 95% 범위인 것이 바람직하다.
본 발명에 있어서, 전극 조립체는 둘 이상의 전극과 하나 이상의 분리막을 포함하며, 분리막이 서로 반대되는 극성을 갖는 전극 사이에 개재되어 있는 형태로 이루어진다. 여기에서 상기 분리막은 전술한 본 발명의 특성을 갖는 것이다.
상기 전극은 집전체 및 상기 집전체의 적어도 일측 표면에 형성된 전극 활물질층을 포함한다. 상기 전극 활물질층은 전극 활물질, 바인더 고분자 수지 및 도전재를 포함한다.
상기 집전체로는, 양극의 경우 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극의 경우 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 그러나 특별히 이에 한정되는 것은 아니며 적절하게 선택할 수 있다.
상기 전극 활물질에 있어서, 양극 활물질은 종래 전기 화학 소자의 양극에 사용될 수 있는 통상적인 양극 활물질을 사용할 수 있다. 이의 비제한적인 예로 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들의 조합에 의하여 형성되는 복합산화물 등과 같은 리튬흡착물질(lithium intercalation material) 등이 바람직하다. 또한, 음극 활물질은 종래 전기 화학 소자의 음극에 사용될 수 있는 통상적인 음극 활물질을 사용할 수 있다. 이의 비제한적인 예로 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 전극 활물질층에 포함되는 바인더 고분자 수지의 비제한적인 예로는 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(polyvinylidenefluoride-co-hexafluoropropylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-cotrichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer), 폴리이미드(polyimide), 스티렌 부타디엔 러버 또는 이들의 혼합물 등이 있다. 이외에도 본 발명이 속하는 기술분야에서 통상적으로 사용되는 물질이라면 어느 재료라도 단독 또는 혼합하여 사용할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 바인더 수지는 음극 및 양극에 모두 적용될 수 있으며, 전극 특성에 따라 적절하게 선택될 수 있다.
한편, 본 발명에 있어서 상기 전극 및/또는 전극 조립체에 대한 설명 중 본 명세서에 기술되지 않은 내용에 대해서는 본 발명이 속하는 기술분야에서 사용하는 통상의 소재나 방식이 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
1) 음극의 제조
인조 흑연, 카본 블랙, CMC, SBR을 95.8:1:1.2:2의 중량비로 물과 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 14㎛의 두께로 구리 호일(Cu-foil) 위에 코팅하여 얇은 극판의 형태로 만든 후 135 ℃에서 3시간 이상 건조시킨 후 압연(pressing)하여 음극을 제조하였다.
2) 양극의 제조
LiNi0 . 5Mn0 . 3Co0 . 2O2, PVdF 및 카본 블랙을 96:2:2의 중량비로 N-메틸피롤리돈과 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 60㎛의 두께로 알루미늄 박막에 코팅하여 얇은 극판 형태로 만든 후 135 ℃에서 3시간 이상 건조시킨 후 압연하여 양극을 제조하였다. 이때 양극의 로딩량은 3.3mAh/cm2이고, NP ratio는 108로 하였다.
3) 분리막의 제조
상온에서 Al2O3 무기물 입자(일본경금속사社, LS235, 입자크기 510nm), PVdF를 아세톤에 투입하고 교반하여 균일한 분산 슬러리를 준비하였다. 상기 슬러리 중 무기물 입자 및 바인더의 함량은 중량비로 98:2로 하였다. 닥터 블레이드를 이용하여 상기 슬러리를 폴리에틸렌 다공성 기재(W scope社, WL11B, 통기시간 150초/100cc)의 양면에 도포하고 건조하여 다공성 코팅층을 형성하였다.
다음으로 PVDF(융점 135℃) 와 폴리아크릴로니트릴을 아세톤에 투입하여 제1 접착층 형성용 슬러리를 준비하였다. 상기 슬러리에서 PVDF와 폴리아크릴로니트릴의 함량은 중량비로 8:2 였다. 상기 슬러리를 메쉬 필터(mesh filter)(20㎛)를 이용하여 상기 다공성 코팅층의 표면에 도포하여 제1 접착층을 형성하였다. 배치된 도트들의 간격은 약 120㎛ 였다. 이후 열풍 건조하여 용매를 제거하였다.
다음으로, 폴리아크릴레이트(상온 용출율 3%)와 SBR을 물에 분산시켜 제2 전극 접착층용 슬러리를 제조하였다. 상기 슬러리에서 폴리아크릴레이트와 SBR의 중량비로 8:2였다. 상기 슬러리를 제1 전극 접착층의 상면에 메쉬 필터(100 ㎛)를 이용하여 도포하였으며, 메쉬(mesh) 위치를 조정하여 제2 접착층이 제1 접착층의 상부 표면에 형성되도록 하였다. 이후 열풍 건조하여 용매를 제거하였다.
4) 전극 조립체의 제조
상기 제조예 1) 내지 3) 에서 얻은 음극, 양극 및 분리막을 적층하고 핫 프레스를 이용하여 라미네이션 하여 전극 조립체를 제조하였다. 이때 가압 조건은 90℃, 8MPa 였다.
5) 전지의 제조
상기 제조예 1) 내지 3) 에서 얻은 음극, 양극 및 분리막을 적층하여 전극 조립체를 제조하였다. 수득된 전극 조립체는 권취 후 케이스에 장입하고 전해액을 주액하여 전지를 제조하였다. 전해액으로는 에틸렌카보네이트와 에틸메틸카보네이트(7:3, 부피비)의 혼합액을 사용하였으며, LiPF6 1몰 농도로 조절하였다.
비교예
분리막에서 제2 접착층을 형성하지 않는 것을 제외하고는 실시예와 동일한 방법으로 전극 조립체 및 전지를 제조하였다.
5) 물성 평가
A. 접착력 평가
실시예 및 비교예를 통해 제조된 전극 조립체를 이용하여 음극과 분리막의 접착력을 평가하였으며 이 결과를 하기 표 1에 정리하여 나타내었다. 실험 1은 각 실시예와 비교예의 전극 조립체를 전해액 함침 전 건조 상태에서 접착력을 테스트 한 것이다. 실험 2는 각 전극 조립체를 전해액 (에틸렌카보네이트: 에틸메틸카보네이트=7:3, 부피비)에 함침시킨 후 취출하고 미건조 상태에서 접착력을 테스트 한 것이다. 전해액 함침은 전해액 45℃ 조건에서 12시간 동안 수행되었다. 접착력은 인장 시험기를 이용한 90°필 테스트(peel test)를 이용하여 측정하였다.
결착력 단위(N/m) 실험 1전해액 함침 전 실험 2전해액 함침 후
실시예 1-1 26.5 2.01
실시예 1-2 27.3 2.12
실시예 1-3 27.5 2.08
비교예 1-1 26.6 1.31
비교예 1-2 25.9 1.25
비교예 1-3 27.4 1.35
상기 표 1에서 확인할 수 있는 바와 같이 실험 1의 경우 실시예와 비교예에 따른 전극 조립체에서 음극과 분리막의 접착력이 유사한 것으로 측정되었으나, 실험 2의 경우에는 실시예에 따른 전극 조립체에서 음극과 분리막의 접착력이 우수한 것으로 확인되었다.
B. 저항 증가율 평가
실시예와 비교예에서 제조된 전지에 대해 45℃ 의 조건에서 300회 충방전 후 저항 증가율을 측정하고 하기 표 2에 그 결과를 정리하여 나타내었다. 전지의 충방전 조건은 1.0C로 3.0V에서 4.2V 사이에서 진행하였으며, 충전은 CC/CV 모드, 방전은 CC 모드로 수행하였다. 실시예의 경우 비교예에 비해 저항 증가율이 낮은 것으로 확인되었으며 이는 실시예에 따른 전지의 경우 제2 접착층에 의해 비교예의 전지에 비해 전극과 분리막의 접착력이 높은 것으로부터 기인한 것으로 보인다.
단위(%) 저항증가율
실시예 2%
비교예 5%
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
100...분리막
110 ... 다공성 기재
120a, 120c... 다공성 코팅층
130a, 130c... 전극 접착층
131a, 131c... 제1 접착층
132a, 132c... 제2 접착층

Claims (12)

  1. 다공성 기재;
    상기 다공성 기재의 적어도 일측 표면에 형성되며, 무기물 입자와 바인더 수지의 혼합물을 포함하는 다공성 코팅층; 및
    상기 다공성 기재의 표면에 형성된 접착층;을 포함하며,
    여기에서, 상기 접착층은 상기 분리막의 표면과 면접하는 제1 층과 상기 제1 층의 표면에 형성되며 전극과 면접하는 제2 층을 포함하고, 상기 제1 층은 저융점 고분자 수지를 포함하고,
    상기 제2 층은 제1층에 포함된 고분자 중합체보다 전기화학소자용 전해액에 대한 용출율이 낮은 고분자 중합체를 포함하는 것인, 전기화학소자용 분리막.
  2. 제1항에 있어서,
    상기 저융점 고분자 수지는 불화 비닐리덴, 4불화 에틸렌 및 6불화 프로필렌으로 이루어지는 군에서 선택되는 1종 이상의 함불소 단량체를 포함하는 고분자 중합체인 것인, 전기화학소자용 분리막.
  3. 제1항에 있어서,
    상기 제1층은 저융점 고분자 수지가 제1층 100중량% 대비 25중량% 내지 75중량%인 것인, 전기화학소자용 분리막.
  4. 제2항에 있어서,
    상기 함불소 단량체를 포함하는 고분자 중합체는 폴리비닐리덴플루오라이드(polyvinylidene fluoride, PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-ohexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene)로 이루어진 군에서 선택된 1종 이상인 것인, 전기화학소자용 분리막.
  5. 제1항에 있어서,
    상기 제1층에 포함된 고분자 중합체보다 용매에 대한 용출율이 낮은 고분자 중합체는 불포화 카르복실산 에스테르에서 유래하는 반복 단위를 포함하는 고분자 중합체인 것인, 전기화학 소자용 분리막.
  6. 제5항에 있어서,
    상기 불포화 카르복실산 에스테르에서 유래하는 반복 단위를 포함하는 고분자 중합체는 폴리아크릴레이트, 폴리메타크릴레이트, 폴리부틸아크릴레이트 (polybutylacrylate) 및 폴리아크릴로니트릴 (polyacrylonitrile)로 이루어진 군에서 선택된 1종 이상인 것인, 전기화학소자용 분리막.
  7. 제1항에 있어서,
    상기 제1층에 포함된 고분자 중합체보다 용매에 대한 용출율이 낮은 고분자 중합체의 함량은 제2 접착층 100 중량% 대비 25 중량% 대비 75 중량%인 것인, 전기화학소자용 분리막.
  8. 제1항에 있어서,
    상기 접착층은 상기 다공성 기재의 적어도 일부 표면을 피복하도록 형성되는 것인, 전기화학 소자용 분리막.
  9. 제1항에 있어서,
    상기 제2 층은 제1 층의 표면을 적어도 일부 피복하는 것인, 전기화학소자용 분리막.
  10. 제1항에 있어서,
    상기 제1 층은 다공성 코팅층의 표면에 스트라이프 패턴으로 형성되며, 상기 제2 층은 각 스트라이프 패턴의 제1층의 표면에 점상으로 형성되는 것인, 전기화학소자용 분리막.
  11. 제1항에 있어서,
    제2층은 제1 층에 포함되는 고분자 중합체보다 전기화학소자용 전해액에 대한 용출율이 낮은 고분자 중합체이며, 상기 고분자 중합체는 입자상 고분자 중합체인 것인, 전기화학소자용 분리막.
  12. 음극, 양극 및 분리막을 포함하며, 분리막은 음극과 양극의 사이에 개재되며, 상기 분리막은 제1항 내지 제11항 중 어느 한 항에 따른 것인, 전극 조립체.
PCT/KR2017/003655 2016-04-01 2017-04-03 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체 WO2017171524A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL17775948T PL3352248T3 (pl) 2016-04-01 2017-04-03 Separator zawierający warstwę adhezyjną dla urządzenia elektrochemicznego i zespół elektrod go zawierający
US15/766,216 US10734627B2 (en) 2016-04-01 2017-04-03 Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
EP17775948.7A EP3352248B1 (en) 2016-04-01 2017-04-03 A separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
CN201780003711.6A CN108352488B (zh) 2016-04-01 2017-04-03 含粘合层的用于电化学装置的隔板和包含其的电极组件
JP2018551739A JP6765439B2 (ja) 2016-04-01 2017-04-03 接着層を含む電気化学素子用分離膜及び該分離膜を含む電極組立体
US16/881,692 US11005141B2 (en) 2016-04-01 2020-05-22 Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160040274 2016-04-01
KR10-2016-0040274 2016-04-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/766,216 A-371-Of-International US10734627B2 (en) 2016-04-01 2017-04-03 Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
US16/881,692 Continuation US11005141B2 (en) 2016-04-01 2020-05-22 Separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same

Publications (1)

Publication Number Publication Date
WO2017171524A1 true WO2017171524A1 (ko) 2017-10-05

Family

ID=59964933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003655 WO2017171524A1 (ko) 2016-04-01 2017-04-03 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체

Country Status (7)

Country Link
US (2) US10734627B2 (ko)
EP (1) EP3352248B1 (ko)
JP (1) JP6765439B2 (ko)
KR (1) KR102155635B1 (ko)
CN (1) CN108352488B (ko)
PL (1) PL3352248T3 (ko)
WO (1) WO2017171524A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190031040A (ko) * 2017-09-15 2019-03-25 주식회사 엘지화학 복합재의 제조 방법
CN109802071A (zh) * 2017-11-16 2019-05-24 苹果公司 直接涂覆的隔离体和形成过程
CN111868989A (zh) * 2018-03-15 2020-10-30 三星Sdi株式会社 电极组件和包括其的可再充电电池
US20210218113A1 (en) * 2018-02-06 2021-07-15 Byd Company Limited Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
US11870037B2 (en) 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546804B (zh) * 2017-05-12 2024-02-27 松下控股株式会社 非水电解质二次电池
JP7190651B2 (ja) * 2017-09-29 2022-12-16 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019089492A1 (en) * 2017-10-30 2019-05-09 Arkema Inc. Lithium ion battery separator
KR102354261B1 (ko) * 2018-06-12 2022-01-20 주식회사 엘지화학 패턴화 전극접착층이 구비된 전기화학소자용 분리막 및 상기 분리막의 제조방법
CN111313074B (zh) * 2018-12-11 2022-06-28 东莞新能源科技有限公司 电池
US11462804B2 (en) * 2019-01-08 2022-10-04 TeraWatt Technology Inc. Systems and methods to control lithium plating
US20200280039A1 (en) * 2019-03-01 2020-09-03 SES Holdings Pte, Ltd. Separators Including Thermally Activated Ionic-Flow-Control Layers, and Electrochemical Devices Incorporating Same
KR102383074B1 (ko) * 2019-05-09 2022-04-04 삼성에스디아이 주식회사 이차 전지용 세퍼레이터, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20220311098A1 (en) * 2019-06-25 2022-09-29 Arkema Inc. Hybrid functional fluoropolymers for lithium ion battery
EP3996183A4 (en) * 2019-07-30 2023-01-04 LG Chem, Ltd. COMPOSITE SEPARATOR FOR ELECTROCHEMICAL DEVICE AND ELECTROCHEMICAL DEVICE THEREOF
KR20210060238A (ko) * 2019-11-18 2021-05-26 주식회사 엘지에너지솔루션 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
CN114846671A (zh) * 2019-12-26 2022-08-02 三洋电机株式会社 二次电池及其制造方法
CN113363672A (zh) * 2020-03-06 2021-09-07 中材锂膜有限公司 一种锂离子电池用喷涂隔膜及其制备方法
JP7209660B2 (ja) * 2020-03-13 2023-01-20 パナソニックホールディングス株式会社 電池の製造方法および電池
EP4131623A4 (en) * 2020-04-06 2023-11-22 LG Energy Solution, Ltd. ELECTROCHEMICAL ELEMENT SEPARATOR AND METHOD FOR PRODUCING THE SAME
JP7189978B2 (ja) * 2021-01-27 2022-12-14 プライムプラネットエナジー&ソリューションズ株式会社 電池およびその製造方法
CN116848718A (zh) * 2021-02-19 2023-10-03 松下新能源株式会社 非水电解质二次电池
CN113745751B (zh) * 2021-08-31 2023-07-25 远景动力技术(江苏)有限公司 锂离子电池隔膜及其制备方法与应用
KR20230157182A (ko) * 2022-05-09 2023-11-16 삼성에스디아이 주식회사 이차전지용 분리막 및 이를 포함하는 이차전지
CN116417758B (zh) * 2023-06-09 2023-09-08 宁德新能源科技有限公司 隔膜及电化学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136149A (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 그의 제조방법
KR20130136148A (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
US20140356688A1 (en) * 2013-05-30 2014-12-04 Benq Materials Corporation Separator of lithium battery and manufacturing method thereof
KR20150025825A (ko) * 2013-08-30 2015-03-11 제일모직주식회사 코팅층을 포함하는 분리막, 이의 제조방법 및 이를 이용한 전지
KR20150057481A (ko) * 2013-11-19 2015-05-28 삼성에스디아이 주식회사 리튬 전지용 세퍼레이터, 이를 포함하는 리튬 전지, 및 상기 리튬 전지의 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895196B1 (ko) 2004-09-02 2009-04-24 주식회사 엘지화학 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
EP1784876B1 (en) 2004-09-02 2018-01-24 LG Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100877826B1 (ko) 2005-05-09 2009-01-12 주식회사 엘지화학 리튬이온 폴리머 전지용 복합 분리막 및 그것의 제조방법
PL2927993T3 (pl) 2008-01-30 2019-01-31 Lg Chem, Ltd. Separator dla urządzeń elektrochemicznych
EP4184641B1 (en) 2009-09-29 2024-03-27 LG Energy Solution, Ltd. Separator and electrochemical device having the same
KR101281037B1 (ko) * 2011-04-06 2013-07-09 주식회사 엘지화학 세퍼레이터 및 이를 구비하는 전기화학소자
US9276247B2 (en) 2011-04-06 2016-03-01 Lg Chem, Ltd. Separator and electrochemical device comprising the same
CN103814460B (zh) 2011-11-11 2017-05-17 株式会社Lg化学 隔膜及具有该隔膜的电化学器件
KR101904160B1 (ko) * 2012-02-08 2018-10-05 에스케이이노베이션 주식회사 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이의 제조방법
KR101968640B1 (ko) * 2012-04-03 2019-04-12 삼성전자주식회사 가요성 2차전지
KR101488829B1 (ko) 2012-04-20 2015-02-04 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
JP6045121B2 (ja) * 2012-11-30 2016-12-14 エルジー・ケム・リミテッド 表面特徴の異なる無機物粒子の二重多孔性コーティング層を含む二次電池用分離膜、それを含む二次電池、及び分離膜の製造方法
CN104051689B (zh) * 2013-03-13 2020-06-02 三星Sdi株式会社 隔板和包括该隔板的可再充电锂电池
CN104377328B (zh) * 2013-08-14 2019-09-13 三星Sdi株式会社 可再充电锂电池
KR101724009B1 (ko) * 2013-08-14 2017-04-06 삼성에스디아이 주식회사 리튬 이차 전지
KR102117608B1 (ko) 2013-08-14 2020-06-02 삼성디스플레이 주식회사 밀봉 장치, 밀봉 장치를 포함하는 기판 밀봉 장치 및 기판 밀봉 방법
KR101815711B1 (ko) 2013-08-26 2018-01-05 삼성에스디아이 주식회사 리튬 이차 전지
US10343527B2 (en) * 2014-01-20 2019-07-09 Murata Manufacturing Co., Ltd. Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
KR102246767B1 (ko) * 2014-08-13 2021-04-30 삼성에스디아이 주식회사 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법
WO2016140508A1 (ko) * 2015-03-02 2016-09-09 주식회사 엘지화학 전기화학 소자용 분리막의 제조방법 및 제조장치
US10243188B2 (en) * 2015-06-09 2019-03-26 GM Global Technology Operations LLC Separator for lithium-based batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136149A (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 그의 제조방법
KR20130136148A (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
US20140356688A1 (en) * 2013-05-30 2014-12-04 Benq Materials Corporation Separator of lithium battery and manufacturing method thereof
KR20150025825A (ko) * 2013-08-30 2015-03-11 제일모직주식회사 코팅층을 포함하는 분리막, 이의 제조방법 및 이를 이용한 전지
KR20150057481A (ko) * 2013-11-19 2015-05-28 삼성에스디아이 주식회사 리튬 전지용 세퍼레이터, 이를 포함하는 리튬 전지, 및 상기 리튬 전지의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352248A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190031040A (ko) * 2017-09-15 2019-03-25 주식회사 엘지화학 복합재의 제조 방법
KR102184386B1 (ko) * 2017-09-15 2020-11-30 주식회사 엘지화학 복합재의 제조 방법
CN109802071A (zh) * 2017-11-16 2019-05-24 苹果公司 直接涂覆的隔离体和形成过程
US20210218113A1 (en) * 2018-02-06 2021-07-15 Byd Company Limited Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
US11824225B2 (en) * 2018-02-06 2023-11-21 Byd Company Limited Separator including substrate, hydrophilic blocking layer, and polar polymer bonding with nodal structure, and method of preparing the same
CN111868989A (zh) * 2018-03-15 2020-10-30 三星Sdi株式会社 电极组件和包括其的可再充电电池
EP3767725A4 (en) * 2018-03-15 2021-12-29 Samsung SDI Co., Ltd. Electrode assembly and rechargeable battery including same
US11870037B2 (en) 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes

Also Published As

Publication number Publication date
JP2019503577A (ja) 2019-02-07
US10734627B2 (en) 2020-08-04
JP6765439B2 (ja) 2020-10-07
US11005141B2 (en) 2021-05-11
KR102155635B1 (ko) 2020-09-14
PL3352248T3 (pl) 2020-06-29
KR20170113474A (ko) 2017-10-12
CN108352488A (zh) 2018-07-31
EP3352248A1 (en) 2018-07-25
EP3352248A4 (en) 2018-12-05
EP3352248B1 (en) 2020-02-12
US20180309108A1 (en) 2018-10-25
US20200287192A1 (en) 2020-09-10
CN108352488B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2017171524A1 (ko) 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체
WO2017034353A1 (ko) 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2017082671A1 (ko) 전극접착층을 구비한 세퍼레이터 및 이를 포함하는 전기화학소자
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
KR101040482B1 (ko) 다공성 코팅층이 코팅된 세퍼레이터 및 이를 구비한 전기화학소자
WO2013012292A9 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2013100519A1 (ko) 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
WO2018038584A1 (ko) 전기화학소자용 분리막 및 상기 분리막을 포함하는 전기화학소자
WO2016148408A1 (ko) 일체형 전극조립체 및 이를 포함하는 전기화학소자
WO2016159724A1 (ko) 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
WO2012111956A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
US11189885B2 (en) Separator including binders having different glass transition temperatures and method of manufacturing the same
KR102018299B1 (ko) 리튬 이차전지용 분리막 및 그의 제조방법
WO2015076573A1 (ko) 이차 전지
WO2017213444A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021029629A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2019078650A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2016175605A1 (ko) 전해액 함침성이 향상된 전기화학소자용 세퍼레이터 및 상기 세퍼레이터를 포함하는 전기화학소자
WO2019117605A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
KR102019473B1 (ko) 전극 접착층을 포함하는 분리막 및 이를 포함하는 전기화학소자용 전극 조립체
KR20120097238A (ko) 세퍼레이터 및 그 세퍼레이터의 제조방법
WO2021101222A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2018030810A1 (ko) 전극과 분리막이 부분 결착된 전극조립체
WO2020091396A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15766216

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018551739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE