WO2016159724A1 - 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법 - Google Patents

리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법 Download PDF

Info

Publication number
WO2016159724A1
WO2016159724A1 PCT/KR2016/003428 KR2016003428W WO2016159724A1 WO 2016159724 A1 WO2016159724 A1 WO 2016159724A1 KR 2016003428 W KR2016003428 W KR 2016003428W WO 2016159724 A1 WO2016159724 A1 WO 2016159724A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion
layer
heat
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2016/003428
Other languages
English (en)
French (fr)
Inventor
주동진
이수지
조규영
김윤봉
김재웅
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN201680020181.1A priority Critical patent/CN107534117B/zh
Priority to US15/562,534 priority patent/US10333126B2/en
Priority to DE112016001490.2T priority patent/DE112016001490T5/de
Priority to JP2017549521A priority patent/JP7073105B2/ja
Publication of WO2016159724A1 publication Critical patent/WO2016159724A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fusion type separator for a lithium secondary battery and a method for manufacturing the same, which improve the battery life and safety.
  • the polyolefin-based microporous membrane is poor in thermal stability, due to the temperature rise resulting from the abnormal behavior of the battery may be a short circuit between the electrodes accompanied with damage or deformation of the microporous membrane. Furthermore, there is a risk of overheating, ignition or explosion of the battery.
  • Japanese Patent No. 4127989 describes a separator in which a porous fusion layer made of an organic polymer for swelling and supporting an electrolyte solution is disposed on both sides of a substrate of a polyolefin microporous membrane.
  • the above technique has advantages in terms of ion conductivity and fusion, but has a problem in that heat resistance is insufficient and the thickness of the fusion layer is so great that it is disposed with the thinning requirement of the separator.
  • Korean Patent No. 1156961 describes that by partially coating the silane-based compound on the upper and lower outer circumferential surfaces of the electrode and the separator, it is possible to prevent a decrease in the ion conductivity by the fusion layer while increasing the adhesion strength.
  • the center portion of the electrode cannot be lifted, so there is a limit.
  • the present invention has been made to solve the above problems, good adhesion with the electrode, can improve the high strength, chemical resistance, electrochemical resistance, heat resistance, in particular, the adhesion with the electrode is significantly improved, It is an object of the present invention to provide a fusion type composite separator for a lithium secondary battery, and a method of manufacturing the same, which improves room temperature life.
  • the present invention is a porous substrate layer
  • Inorganic particles are connected and fixed by a binder polymer, the heat-resistant layer formed on the porous base layer;
  • It includes an amorphous polymer particles having a glass transition temperature of 30 ° C or more and 90 ° C or less, and a fusion layer formed on the heat-resistant layer; relates to a composite separator for a lithium secondary battery.
  • the difference between the glass transition temperature of the amorphous polymer particles and the fusion temperature required for fusion of the electrode and the composite separator may be 60 ° C. or less.
  • the composite separator of the present invention may further include an interface layer formed between the heat resistant layer and the fusion layer, wherein the inorganic particles and the amorphous polymer particles are mixed.
  • the heat-resistant layer comprises 60 to 99% by weight of the inorganic particles and 40 to 1% by weight of the binder polymer with respect to 100% by weight of the total composition
  • the size of the inorganic particles is preferably 0.1 to 2.0 ⁇ m, alumina, be It may include one or more inorganic particles selected from aluminum oxide such as mite, barium titanium oxide, titanium oxide, magnesium oxide, clay glass powder, but are not limited thereto. It is not.
  • examples of the binder of the heat-resistant layer in the present invention are polyvinylidene fluoride-hexafuluropropylene (PVdF-HFP), polymethyl methacrylate (PMMA), polyacrylonitrile (PAN), polyvinyl It may include one or two or more selected from polyvinylpyrrolidone, polyimide, polyethylene oxide (PEO), cellulose acetate, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and the like. However, it is not necessarily limited thereto.
  • the fusion layer is a layer containing amorphous polymer particles, wherein the polymer particles have a Tg (glass transition temperature) of 30 to 90 ° C. and a glass transition temperature of 60 ° C. or less. It is a composite separator for secondary batteries containing amorphous polymer particles.
  • the heat fusion temperature is generally based on the range of 70 ⁇ 100 °C and the difference between the glass transition temperature and the heat fusion temperature is based on the case of performing the heat fusion at 70 ⁇ 100 °C.
  • the size of the amorphous polymer particles in the present invention is 0.05 to 0.8 ⁇ m is good for achieving the desired effect in the present invention. Moreover, it is preferable that the thickness of the said fusion layer of this invention is 1.0 micrometer or less.
  • amorphous polymer used in the fusion layer in the present invention it is preferable to use a polymer material which is an acrylate (acrylate) or methacrylate-based polymer or copolymer having a glass transition temperature of 30 to 90 ° C.
  • a polymer material which is an acrylate (acrylate) or methacrylate-based polymer or copolymer having a glass transition temperature of 30 to 90 ° C.
  • the glass transition temperature is preferably in the range of 30 ⁇ 90 °C, even if the heat-sealing conditions for fusion bonding the separator with the electrode is made at a temperature of 70 ⁇ 100 °C mostly adhesion Good characteristics may be exhibited in the characteristics of the battery such as strength and normal temperature life, and physical properties in the laminate.
  • the adhesive strength is remarkably excellent and surprisingly, the room temperature life of the battery is remarkably improved.
  • the fusion layer additionally adds the inorganic particles used in the heat-resistant layer, it gives more excellent adhesiveness and shows excellent results in battery safety and performance.
  • the content of the inorganic particles is preferably 30% by volume or less based on the total content of the particles of the fusion layer.
  • the composite separator when the composite separator is fused with an electrode, fusion in a state containing an electrolyte solution is possible, but fusion in a state without an electrolyte solution is possible, and when fusion is performed with an electrode without an electrolyte solution. It is effective to realize more adhesion.
  • the electrodes and separators which are constituents, enter the hard cylinder or can, but in this case, the electrode cannot be fused by applying temperature and pressure after battery assembly. It is effective when fusion is applied by injecting electrolyte into a cylinder or a can after the separator is fused.
  • the composite separator according to the present invention may be mainly applied to improve the life and safety of a pouch-type or cylindrical lithium secondary battery, and may be thermally fused regardless of whether thermal fusion is performed after the electrolyte is injected or after the electrolyte is injected. However, they show very good fusion performance but are not limited to this.
  • the composite separator according to the present invention has the characteristics of improving the lifespan and safety of the battery, and is uniformly and strongly fused in the entire area of the positive electrode and the negative electrode of a wide area secondary battery, and the movement of ions through uniformly distributed pores of each layer. Since this becomes smooth, it is particularly advantageous for improving the performance of a large secondary battery for an electric vehicle, and is very good in the life characteristics of the battery.
  • the present invention is a porous substrate layer
  • Inorganic particles are connected and fixed by a binder polymer, the heat-resistant layer formed on the porous base layer;
  • It includes an amorphous polymer particles having a glass transition temperature of 30 ° C or more and 90 ° C or less, and a fusion layer formed on the heat-resistant layer; relates to a composite separator for a lithium secondary battery.
  • a difference between the glass transition temperature of the amorphous polymer particles and the fusion temperature of the fusion layer may be 60 ° C. or less.
  • the present invention may further include an interface layer formed between the heat resistant layer and the fusion layer, wherein the inorganic particles and the amorphous polymer particles are mixed, and the thickness of the interface layer is 40% or less of the thickness of the fusion layer. Can be.
  • the fusion layer may be in the scope of the present invention, either one-sided lamination or two-sided lamination, provided that the fusion layer is laminated on the heat resistant layer.
  • the surface roughness of the composite separator may be maintained at 0.3 ⁇ m or less, thereby manufacturing a composite separator capable of further improving battery life and providing a high energy battery having excellent electrical characteristics. This is because adhesion with the electrode can be made more uniform, thereby improving the electrical characteristics of the battery.
  • the porous substrate layer may be used as long as it is a polyolefin-based microporous membrane, and may be applied to a battery having pores such as non-woven fabric, paper, and pores in the interior or pores of the microporous membrane thereof.
  • the porous membrane is not particularly limited.
  • the said polyolefin resin is 1 type or more types of polyolefin resins individually or in mixture, and it is especially 1 type or 2 or more types chosen from polyethylene, a polypropylene, and these copolymers.
  • the base layer may be prepared by the polyolefin resin alone or a polyolefin resin as a main component and further comprises an inorganic particle or an organic particle.
  • the base layer may be composed of a polyolefin-based multilayer, and the base layer composed of the multilayer also does not exclude that any one layer or all of the layers include inorganic particles and organic particles in the polyolefin resin.
  • the thickness of the porous substrate layer is not particularly limited, but may be preferably 5 to 30 ⁇ m.
  • the porous base layer is a porous polymer film mainly made through stretching.
  • Method for producing a polyolefin-based porous substrate layer according to an embodiment of the present invention is not limited as long as it is prepared by a person skilled in the art, in one embodiment, can be prepared by a dry method or a wet method.
  • the dry method is a method in which a polyolefin film is formed and then stretched at a low temperature to cause micro cracks between lamellas, which are crystal parts of the polyolefin, to form micro voids.
  • a polyphase resin and diluent are kneaded at a high temperature at which the polyolefin resin is melted to form a single phase, and in the cooling process, the polyolefin and diluent are phase separated, and then the dilution portion is extracted to form voids therein.
  • the wet method is a method of imparting mechanical strength and permeability through the stretching / extraction process after the phase separation process, and may be more preferable than the dry method because the thickness of the film is thin, the pore size is uniform, and the physical properties are excellent.
  • the diluent is not limited as long as it is an organic material forming a single phase with a polyolefin resin, and examples thereof include nonane, decane, decalin, paraffin oil, and paraffin wax.
  • phthalic acid esters such as aliphatic or dibutyl phthalate and dioctyl phthalate, such as wax, and carbon atoms such as palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid 20 fatty acids, fatty acid alcohols having 10 to 20 carbon atoms such as palmitic alcohol, stearic acid alcohol, oleic alcohol, and mixtures thereof can be used.
  • the heat-resistant layer is bonded to the base layer by mixing a small amount of binder in the inorganic particles, thereby improving the thermal stability, electrical safety, and electrical properties of the battery, and also serves to suppress the shrinkage of the base layer generated at high temperatures. do.
  • the heat-resistant layer is not largely limited in size of the inorganic particles, but the coating of 1 to 10 ⁇ m thickness on one or both sides of the base layer by mixing the binder polymer in inorganic particles of 0.1 to 2.0 ⁇ m size The effect can be easily achieved.
  • the heat-resistant layer may include 60 to 99% by weight of the inorganic particles and 40 to 1% by weight of the binder polymer with respect to 100% by weight of the total composition. In the above content, the performance of the battery can be effectively achieved.
  • the inorganic particles included in the heat-resistant layer are rigid, so that deformation does not occur due to external impact and force, and thermal deformation and side reactions do not occur even at high temperatures.
  • Alumina, Boehmite, and Aluminum hydroxide (Aluminum Hydroxide), Titanium Oxide, Barium Titanium Oxide, Magnesium Oxide, Magnesium Hydroxide, Silica, Clay, and Glass Powder Glass powder) is preferably one or two or more inorganic particles selected from the group consisting of, but is not limited thereto.
  • the binder polymer included in the heat-resistant layer serves as a binder for stably connecting and stably separating inorganic particles, and may be polyvinylidene fluoride (PVdF) or polyvinylidene fluoride-hexafluoro Propylene (PVdF-HFP), Polymethylmethacrylate (PMMA), Polyacrylonitrile (PAN), Polyvinylpyrrolidone, Polyimide, Polyethylene oxide (PEO), Cellulose acetate acetate), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and one or more binder polymers selected from the group consisting of polybutylacrylate (Polybutylacrylate), but is not limited thereto.
  • the heat resistant layer may further include an acryl-based or butadiene-based polymer in order to improve the adhesive force as necessary.
  • the solvent may be used as long as it can dissolve the binder and disperse the inorganic particles.
  • the solvent is not limited thereto.
  • water, methanol, ethanol, 2-propanol, acetone, tetrahydrofuran It may be one kind or two or more kinds selected from methyl ethyl ketone, ethyl acetate, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide and the like.
  • the thickness of the heat resistant layer may be 1 to 20 ⁇ m, preferably 1 to 10 ⁇ m, on one or both sides of the base layer by mixing the binder polymer with the inorganic particles, thereby ensuring heat resistance and relatively excellent ion permeability. Can be improved.
  • the fusion layer according to an embodiment of the present invention is formed on the outermost layer of the composite separator, and the electrode plate and the separator are bonded to each other to uniformly contact the electrode plate at regular intervals, and the fusion layer is laminated on the heat resistant layer. If so, either single-sided or double-sided stacking may fall within the scope of the present invention.
  • the lamination form of the fusion layer / heat-resistant layer / porous substrate layer / heat-resistant layer / fusion layer and the lamination form of the fusion layer / porous substrate layer / heat-resistant layer / fusion layer and the lamination form of the porous substrate layer / heat-resistant layer / fusion layer It may have, but is not limited thereto.
  • the fusion layer of the present invention by fusion welding the electrode plate and the separator, to increase the adhesive force in the entire area of the positive electrode and the negative electrode plate has the effect of strong and uniform adhesion between the positive electrode and the negative electrode uniformly and uniformly, The effect of significantly increasing the lifetime can be obtained.
  • the fusion layer may be provided in the form of polymer particles to impart very excellent battery characteristics.
  • the mobility of the ions can be secured through the space between the polymer particles.
  • the characteristics of the battery may be increased by having excellent fusion characteristics and a long service life of the battery, which does not cause local adhesion failure.
  • the size of the polymer particle which comprises the fusion layer of this invention 0.05-0.8 micrometer is preferable.
  • the lithium ion is smoothly transferred, the resistance is low, and there is no deterioration in performance even at the fusion temperature.
  • Inorganic particles or polymer materials used as raw materials for the separator must be chemically and electrochemically stable materials in the secondary battery.
  • the amorphous polymer material of the fusion layer is not particularly limited as long as it can secure the fusion force between the electrode and the separator, but it is preferable to use a material in which the fusion force is expressed only when the temperature and the pressure are increased during battery manufacturing.
  • the overlapped heat-sealing layers may be fused and cannot be used as a separator. Therefore, when the membranes are stacked in two layers, at a temperature of 60 ° C. or lower and a pressure of 1 MPa or lower, It is preferable that the welding force between the overlapped porous welding layers is 0.3 gf / cm or less. This may provide the effect of long-term storage without bonding the fusion layer and the fusion layer even when the temperature increases during storage and transportation.
  • the polymer material is selected so that the adhesion force between the separator and the electrode is 1.0 gf / cm or more at a temperature of 70 to 100 ° C. and a pressure of 1 MPa or more, and constitutes a welding layer.
  • Tg glass transition temperature
  • the thermal fusion temperature based on 70 to 100 °C
  • it exhibits low adhesion at low pressure and low temperature as described above, and very high at high temperature and high pressure, preferably at least 5 gf / cm, more preferably at least 8 gf / cm. Very good effect of adhesion of 10 gf / cm or more.
  • the glass transition temperature of the organic polymer particles of the fusion layer is not an amorphous polymer of 30 ⁇ 90 °C it is difficult to show a large deviation in the adhesion measurement conditions. In other words, it is difficult to maximize the difference between the adhesive strength when fused at a low temperature of 60 °C or less and the welding strength when fused at a temperature of 70 ⁇ 100 °C.
  • an acrylate (acrylate) or methacrylate-based polymer having a glass transition temperature of 30 to 90 ° C or a polymer material thereof. This is because it is convenient to control the glass transition temperature as an amorphous polymer by controlling the monomer ratio of copolymerization, and this is because the effect desired in the present invention can be exerted well, but is not necessarily limited thereto.
  • the fusion layer in order to maintain the pores stably when the pressure is applied, may be configured by mixing the adhesive polymer material and the inorganic particles under the conditions that can sufficiently exert the effects of the present invention.
  • Silver may comprise up to 30% by volume of inorganic particles relative to the volume of the entire particle, but it can be used as long as the effects of the present invention can be sufficiently achieved.
  • the inorganic particles of the fusion layer are not particularly limited, but for example, aluminum oxide such as boehmite, barium titanium oxide, titanium oxide, magnesium oxide, clay, glass powder, and boron nitride It may include, but is not limited to, one or two or more inorganic particles selected from aluminum nitride.
  • the method of forming the heat-resistant layer and the fusion layer in the separator may be prepared by a conventional method adopted in the art, and is not particularly limited thereto.
  • the bar coating method and the rod may be used.
  • Coating method, die coating method, wire coating method, comma coating method, micro gravure / gravure method, dip coating method, spray method, ink-jet coating method A method or a mixture thereof, a modified manner, or the like can be used.
  • the present invention adopts a simultaneous coating method of coating the heat-resistant layer and drying it together immediately after coating the fusion layer without drying. It is very good to do and is another feature of the present invention.
  • the method of manufacturing a composite separator according to an embodiment of the present invention may include the following steps.
  • Drying step It may be prepared to include.
  • the simultaneous coating method of applying the heat-resistant layer coating liquid and then drying and applying the fusion layer coating liquid sequentially without drying is preferred.
  • the coating layer of the heat-resistant layer coating layer and the fusion layer freely migrates and is mixed by mixing at a predetermined thickness at the interface of the two layers, and thus the surface of the fusion layer is coated very uniformly. This adhesion is made semi-permanently, further improving the longevity and battery performance.
  • the interface layer in which the inorganic particles and the amorphous polymer particles are further mixed between the heat-resistant layer and the fusion layer is not specifically limited, Although it can experimentally observe up to 40% of the thickness of a fusion layer, it is not necessarily limited to this.
  • the long-term life of the battery is not damaged even by long-term use at the laminated interface of each layer of the composite film of the present invention is good because it has an effect that significantly increases.
  • the heat-resistant layer is coated and dried, and then the fusion layer is coated and dried, the long-term life is greatly reduced by 10%, in some cases by more than 30%, due to adhesive deterioration of the interface. It was confirmed that the number of times the battery capacity was significantly lowered.
  • the solvent used as the coating liquid for forming the heat-resistant layer or the fusion layer of the present invention is not limited, but for example, water, methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, methyl ethyl ketone, ethyl acetate, N-methyl It may be one or more selected from pyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide, and the like, but is not limited thereto.
  • Lithium secondary battery according to an embodiment of the present invention can be prepared including a composite separator, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode and the negative electrode may be prepared by mixing and stirring a solvent, a binder, a conductive material, a dispersant, and the like into a positive electrode active material and a negative electrode active material to prepare a mixture, applying the same to a current collector of a metal material, drying, and pressing the same. .
  • the positive electrode active material can be used as long as it is an active material commonly used for the positive electrode of a secondary battery.
  • Lithium metal oxide particles including one or more metals selected from the group consisting of can be used.
  • the negative electrode active material can be used as long as it is an active material commonly used for the negative electrode of a secondary battery.
  • the negative electrode active material of the lithium secondary battery is preferably a lithium intercalable material.
  • the negative electrode active material is lithium (metal lithium), digraphitizable carbon, non-graphitizable carbon, graphite, silicon, Sn alloy, Si alloy, Sn oxide, Si oxide, Ti oxide, Ni oxide, Fe
  • the oxide (FeO) and lithium-titanium oxide (LiTiO 2 , Li 4 Ti 5 O 12 ) may be one or two or more materials selected from the group of the negative electrode active material.
  • a conventional conductive carbon material can be used without particular limitation.
  • the current collector of the metal material is a metal having high conductivity and which can be easily adhered to the mixture of the positive electrode or the negative electrode active material, and can be used as long as it is not reactive in the voltage range of the battery.
  • Non-limiting examples of the positive electrode current collector is a foil made by aluminum, nickel or a combination thereof
  • non-limiting examples of the negative electrode current collector is made by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
  • a separator is interposed between the positive electrode and the negative electrode.
  • a method of applying the separator to a battery may include lamination, stacking, and folding of the separator and the electrode, in addition to winding, which is a general method.
  • the nonaqueous electrolyte includes a lithium salt as an electrolyte and an organic solvent, and lithium salts may be used without limitation, those conventionally used in a lithium secondary battery electrolyte, and may be represented by Li + X ⁇ .
  • the lithium salt anion is not particularly limited, F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, Either one or more of SCN - and (CF 3 CF 2 SO 2 ) 2 N - can be used.
  • Organic solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, diethoxyethane, sulfolane, gamma-buty Rolactone, and tetrahydrofuran, any one selected from the group consisting of, or a mixture of two or more thereof may be used.
  • the nonaqueous electrolyte may be injected into an electrode structure including an anode, a cathode, and a separator interposed between the anode and the cathode.
  • the external shape of the lithium secondary battery is not particularly limited, but may be cylindrical, square, pouch or coin type using a can.
  • the characteristics evaluation method of the separator for secondary batteries was performed by the following method.
  • the method of measuring the gas permeability of the separator was in accordance with JIS P8117 standard, and compared by recording the time it takes for 100cc of air to pass through the area of 1inch 2 of the separator in seconds.
  • the separator is cut into a 10 cm square shape to prepare a sample, and then the area of the sample is measured and recorded using a camera. Place five sheets of paper above and below the sample so that the sample is in the center of the sample, and fasten the four sides of the paper with clips. The sample wrapped with paper was left to stand in 130 degreeC hot air drying oven for 1 hour. After leaving the sample, the sample was taken out and the area of the separator was measured by a camera to calculate the shrinkage ratio of the following Equation 1.
  • Shrinkage (%) (area before heating-area after heating) ⁇ 100 / area before heating
  • a sample for measuring the adhesion between the separator and the electrode is placed in a positive electrode and a negative electrode plate, soaked in a separator for 1 hour, and then immersed in an electrolyte solution.
  • the sample is immediately placed in a heat press and fused by applying heat and pressure of 100 ° C. and 1 MPa for 150 seconds. .
  • the specimen thus prepared was immersed in the electrolyte for 1 hour and then taken out, and the peel strength was measured immediately before the electrolyte evaporated.
  • Each battery manufactured through the assembly process was charged and discharged 500 times at a discharge rate of 1C, and then cycle evaluation was performed to measure the degree of reduction compared to the initial capacity by measuring the discharge capacity.
  • the thickness of the battery was measured using a thickness gauge of Mitsutoyo after 500 charging and discharging, and then compared with the thickness before charging and discharging.
  • the battery thickness increase rate of the following Equation 2 was measured.
  • A Battery thickness before charge and discharge (mm)
  • the membrane was prepared in a size of 5 ⁇ 5 ⁇ m, and the Ra value was measured by roughness analysis at the entire size of the sample using AFM (Digital Instruments Nanoscope V MMAFM-8 Multimode).
  • each of the prepared cells were fully charged with 100% SOC (charge rate), and then nail penetration evaluation was performed. At this time, the diameter of the nail was fixed to 3.0mm, the penetration rate of the nail all 80 mm / min.
  • L1 no change
  • L2 small heat generation
  • L3 leakage
  • L4 smoke
  • L5 ignition
  • L1 to L3 are Pass
  • L4 to L5 are determined to be Fail.
  • LiCoO 2 LiCoO 2
  • polyvinylidene fluoride 2.5% by weight of polyvinylidene fluoride
  • carbon black 3.5% by weight of carbon black (D50: 15 ⁇ m)
  • NMP N-methyl-2 -pyrrolidone
  • alumina particles with an average particle diameter of 1.0 ⁇ m 2 wt% of polyvinyl alcohol having a melting temperature of 220 ° C. and a saponification degree of 99%, and 4 wt% of acrylic latex having a Tg of ⁇ 52 ° C. (solid content of 20 wt%). %, was added to water as a solvent and stirred to prepare a uniform heat resistant slurry.
  • a total of four heat-resistant layer and fusion layer slurries were formed on the front and back surfaces of the microporous membrane substrate by using two multilayer slot coating dies in a polyolefin microporous membrane (35% porosity) having a thickness of 7 ⁇ m manufactured by SK Innovation.
  • the layers were coated simultaneously in succession without a separate drying process.
  • Simultaneously coated microporous membrane was wound in a roll after evaporating the water in a dryer, the thickness of the double-sided heat-resistant layer was 1.5 ⁇ m each, the thickness of the double-sided fusion layer was 0.8 ⁇ m respectively.
  • Pouch-type batteries were assembled by stacking using the positive electrode, negative electrode, and separator prepared above, and ethylene carbonate (EC) / ethyl in which 1 M lithium hexafluorophosphate (LiPF 6 ) was dissolved in the assembled battery.
  • EMC methyl carbonate
  • DMC dimethyl carbonate
  • the pouch-type batteries stacked in Example 1 were assembled, and heat-sealing was performed by applying heat and pressure of 100 ° C. and 1 MPa for 150 seconds without injecting a separate electrolyte, and then injecting the electrolyte, and then injecting the electrolyte. It was.
  • Example 2 The same procedure as in Example 1 was carried out except that the following heat-resistant layer slurry and fusion layer slurry were used. As a result, the thickness of the double-sided heat-resistant layer was 2.5 ⁇ m, respectively, and the thickness of the double-sided fusion layer was 1.0 ⁇ m, respectively.
  • boehmite with an average particle diameter of 0.7 ⁇ m
  • polyvinyl alcohol having a melting temperature of 220 ° C and a saponification degree of 99%
  • acrylic latex having a Tg of -52 ° C
  • Styrene, methyl methacrylate and butyl acrylate, butyl methacrylate and ethylhexyl acrylate (2-EthylHexylAcrylate) were polymerized to prepare a fusion layer.
  • spherical particles having an average particle diameter of 0.7 ⁇ m having a glass transition temperature of 85 ° C. were diluted so as to have a ratio of 12% by weight to water to prepare a fusion layer slurry.
  • Example 3 it carried out similarly except having formed the heat-resistant layer and the fusion layer on one surface of the base material layer, and only the fusion layer on the other surface. At this time, the thickness was 3.0 ⁇ m, and the thickness of the double-sided fusion layer was 1.0 ⁇ m, respectively.
  • heat fusion was performed by applying heat and pressure of 100 ° C. and 1 MPa for 150 seconds, followed by the same procedure except that an electrolyte solution was injected.
  • electrolyte of ethylene carbonate (EC) / ethylmethyl carbonate (EMC) / dimethyl carbonate (DMC) in which 1 M lithium hexafluorophosphate (LiPF6) was dissolved was 3: 5: 2 (volume ratio). Except for injecting was carried out in the same manner as in Comparative Example 1.
  • Example 1 The same process as in Example 1 was carried out except that there was no heat-resistant layer in the separator.
  • a composite membrane was prepared in the same manner as in Example 1 except that a slurry obtained by dispersing 20 wt% of BA (Butylacrylate) and EHA (Ethylhexylacrylate) copolymer particles having a glass transition temperature of 5 ° C. and an average particle diameter of 0.2 ⁇ m was used.
  • the thickness of the double-sided heat-resistant layer was 1.5 m, respectively, and the thickness of the double-sided fusion layer was 0.8 m, respectively.
  • the battery was manufactured in the same manner as in Example 1, except that thermal fusion was performed by applying a heat and pressure of 70 ° C. and 1 MPa for 150 seconds.
  • the composite membrane was prepared by diluting the methyl methacrylate copolymer particles having a glass transition temperature of 93 ° C. and an average particle diameter of 0.6 ⁇ m to a ratio of 15 wt% to water as a fusion layer slurry as a fusion layer slurry. Except that it was carried out as in Example 2. The thickness of both the heat resistant layer and the fusion layer was 1.4 ⁇ m.
  • methyl methacrylate polymer particles having a glass transition temperature of 110 ° C. and an average particle diameter of 0.8 ⁇ m were diluted to a ratio of 12% by weight to water, and used as a fusion layer slurry.
  • Two layers were used to simultaneously and simultaneously coat a total of four layers of the heat-resistant layer slurry and the fusion layer slurry on the front and back surfaces of the substrate without separate drying.
  • the membrane was evaporated through a dryer to evaporate water, and then wound in a roll.
  • the thicknesses of the double-sided heat-resistant layers were 1.5 ⁇ m, respectively, and the thicknesses of the double-sided fusion layers were 1.4 ⁇ m, respectively.
  • Example 2 After assembling the pouch-type battery by the stacking method using the separator, the battery was placed in a heat press in the absence of the electrolyte solution and subjected to heat fusion by applying heat and pressure of 100 ° C. and 1 MPa for 150 seconds.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Gas permeability sec / 100 cc 250 246 324 312 307 358 130 °C shrinkage % 2.0 1.8 2.6 2.2 2.6 2.2
  • Adhesive strength gf / cm 10.6 11.1 12.7 13.5 11.1 10.1 Room temperature % 88.7 89.3 91.3 90.5 89.1 92.2 Battery thickness increase rate % 1.1 1.2 1.1 1.1 1.0 1.2 Ra ⁇ m 0.16 0.15 0.15 0.19 0.21 0.22
  • Penetration Evaluation L3 (pass) L3 (pass) L3 (pass) L3 (pass) L3 (pass) L3 (pass) L3 (pass) L3 (pass) L3 (pass) L3 (pass)
  • the composite separator according to the present invention has the characteristics of improving the lifespan and safety of the battery, and is uniformly and strongly fused in the entire area of the positive electrode and the negative electrode of a wide area secondary battery, and the movement of ions through uniformly distributed pores of each layer. Since this becomes smooth, it is particularly advantageous for improving the performance of a large secondary battery for an electric vehicle, and is very good in the life characteristics of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 수명 및 안전성 향상 효과가 우수한 리튬 이차전지용 복합 분리막 및 이의 제조방법에 관한 것으로, 보다 상세하게는 다공성 기재층, 상기 다공성 기재층의 일면 또는 양면에 형성되는 내열층 및 최외층에 형성되는 융착층을 포함하고, 상기 내열층은 무기입자가 바인더 고분자에 의해 연결 및 고정되고, 상기 융착층은 유리전이온도가 30℃ 이상 90℃ 이하이며, 융착온도와 상기 유리전이온도의 차이가 60℃ 이하인 비결정성 고분자 입자를 포함하여 제조되는 것인 리튬 이차전지용 복합 분리막에 관한 것이다.

Description

리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
본 발명은 전지의 수명 및 안전성을 개선한 리튬 이차전지용 융착형 분리막 및 이의 제조방법에 관한 것이다.
리튬 이차전지는 용도가 점차 확대됨에 따라 대면적화, 고용량화에 대한 요구가 강해지고 있다. 또한 최근에는 전지의 용량이 급격히 증가하고 있는 것이 추세이며, 이를 위해 사용되는 전극판의 면적도 급격히 넓어지고 있다. 이러한 고용량의 전지의 경우, 장시간의 충방전 시 양극과 음극 전극판이 서로 밀착되지 않고 들뜬 부분이 발생하거나, 전지가 팽창하거나 변형되는 현상이 발생하여 전지의 수명이 감소하는 경우가 있다.
이에 리튬 이차전지에 사용되고 있는 분리막인 폴리에틸렌이나 폴리프로필렌 재질의 다공성 박막 필름에 기능성을 부여하기 위한 여러 방법들이 시도 되고 있다. 이러한 시도들 중의 하나로, 분리막의 양면에 융착층을 코팅하여 전지의 양극과 음극에 융착시킴으로써 전지의 성능을 향상시키는 방법이 있다. 즉, 분리막에 융착성(또는 접착성)을 부여, 전극과 융착을 시켜 상기와 같은 전극판의 들뜸 또는 전지의 팽창, 변형을 방지함으로써 전지의 수명을 개선하는 효과를 얻을 수 있다.
한편, 폴리올레핀계 미세다공막은 열적 안정성이 떨어지면 전지의 이상 거동으로부터 발생하는 온도 상승으로 인하여 미세다공막의 손상 또는 변형과 함께 수반되는 전극 간 단락이 발생할 수 있다. 더 나아가 전지의 과열 또는 발화, 폭발의 위험성이 존재한다.
따라서, 상기와 같은 융착 특성 이외에 별도의 특성을 분리막에 부여하여 전지의 안전성을 개선하려는 접근이 진행 중이다.
일본 등록특허 제4127989호에서는 폴리올레핀 미세다공막의 기재의 양면에 전해액을 팽윤하고 이를 지지하는 유기 고분자로 이루어진 다공질 융착층이 배치되어 있는 분리막을 기재하고 있다. 상기 기술은 이온 전도성과 융착성 면에서는 장점을 가지지만, 내열성이 부족하다는 점과 융착층의 두께가 두꺼워서 분리막의 박막화 요구와 배치된다는 문제점이 있다.
대한민국 등록특허 제1156961호에서는 실란계 화합물을 전극과 분리막의 상하 외주면에 부분적으로 코팅함으로써, 융착력을 높이면서 융착층에 의한 이온전도도의 저하를 방지할 수 있다고 기재하고 있다. 하지만, 대면적 전지에서는 분리막의 상하 외주면 부근만을 융착하였을 경우, 전극의 가운데 부분이 들뜨는 것을 방지할 수 없기 때문에 한계가 있다.
본 발명은 상기와 같은 문제를 해결하기 위하여 안출된 것으로써, 전극과의 융착성이 좋으며, 고강도, 내화학성, 내전기화학성, 내열성을 향상 시킬 수 있으며 특히 전극과의 접착성이 현저히 향상되고, 상온수명이 향상되는 새로운 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법을 제공하는 데에 그 목적이 있다.
본 발명은 다공성 기재층;
무기입자가 바인더 고분자에 의해 연결 및 고정되며, 상기 다공성 기재층 상에 형성된 내열층; 및
유리전이온도가 30℃ 이상 90℃ 이하인 비결정성 고분자 입자를 포함하며, 상기 내열층 상에 형성된 융착층;을 포함하는 리튬 이차전지용 복합 분리막에 관한 것이다.
본 발명에서 상기 비결정성 고분자 입자의 유리전이온도와 전극과 복합분리막의 융착에 필요한 융착온도의 차이는 60℃ 이하일 수 있다.
본 발명의 복합 분리막은 내열층과 융착층 사이에 형성되며, 상기 무기입자와 상기 비결정성 고분자 입자가 혼화된 계면층을 더 포함할 수 있다.
본 발명에서 상기 내열층은 전체 조성물 100 중량%에 대하여, 무기입자 60 내지 99 중량% 및 바인더 고분자 40 내지 1 중량%를 포함하며, 무기 입자의 크기가 0.1 내지 2.0 ㎛이 바람직하며, 알루미나, 베마이트 등의 알루미늄 산화물, 바륨 티타늄 옥사이드(Barium Titanium Oxide), 티타늄 산화물, 마그네슘 산화물, 클레이(Clay) 글래스 파우더(Glass powder)중에서 선택되는 하나 또는 둘 이상의 무기입자를 포함 할 수 있지만, 반드시 이에 한정하는 것은 아니다.
또한 본 발명에서 상기 내열층의 바인더의 예로는 폴리비닐리덴풀루오라이드-헥사풀루오로 프로필렌(PVdF-HFP), 폴리메틸메타클릴레이트(PMMA), 폴리아크릴로니트릴(PAN), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리이미드(polyimide), 폴리에틸렌 옥사이드(PEO), 셀룰로오스 아세테이트(cellulose acetate), 폴리비닐알콜(PVA), 카르복실메틸셀룰로오스(CMC) 등에서 선택되는 하나 또는 둘 이상의 것을 포함할 수 있지만 반드시 이에 한정하는 것은 아니다.
본 발명에서 상기 융착층은 비결정성 고분자 입자를 포함하는 층으로서, 상기 고분자 입자는 Tg(유리전이온도)가 30~90℃이고 상기 유리전이온도가 열융착온도와 60℃ 이내의 차이를 가지는 비결정성(amorphous) 고분자 입자를 포함하는 이차전지용 복합 분리막이다. 상기에서 열융착 온도는 통상 70~100℃의 범위를 기준으로 하며 상기 유리전이온도와 열융착온도의 차이는 상기 열융착을 70~100℃에서 수행하는 경우를 기준으로 한다.
상기의 조건에서 투과도 저하가 나타나지 않고, 전지수명이 길어지며, 전지의 안전성에서도 증가된다.
본 발명에서 상기 비결정성 고분자 입자의 크기는 0.05 내지 0.8 ㎛이 본 발명에서 목적으로 하는 효과를 달성하는 데에 좋다. 또한 본 발명의 상기 융착층의 두께는 1.0㎛ 이하인 것이 바람직하다.
본 발명에서 상기 융착층에 사용하는 비결정성 고분자로서는 제한하지 않지만 유리전이온도가 30~90℃인 아크릴레이트(Acrylate)계나 메타크릴레이트계의 중합체나 공중합체인 고분자 물질을 사용하는 것이 좋은데, 이는 공중합의 단량체 비율을 조절함으로써, 비결정성의 고분자로서 유리전이온도의 조절이 편리하기 때문이지만 반드시 이에 한정하는 것은 아니다.
상기 입자 형태의 비결정성 고분자의 경우, 유리전이온도(Glass Transition Temperature)는 30~90℃ 범위가 바람직한데, 분리막을 전극과 융착시키는 열융착 조건이 대부분 70~100℃의 온도에서 이루어지게 되더라도 접착강도 및 상온수명 등의 전지의 특성이나 적층체에서의 물리적 특성에서 좋은 특성을 나타내어 좋다. 본 발명에서 상기 융착층이 상기의 조건을 만족하는 경우, 접착강도가 현저히 우수하고 놀랍게도 전지의 상온수명이 현저하게 개선되는 효과를 가진다.
또한 본 발명에서는 상기 융착층이 내열층에서 사용하는 무기물입자를 추가로 투입하는 경우 더욱 우수한 접착성을 부여하여, 전지의 안전성이나 성능에서 우수한 결과를 나타내는 것을 확인하였다. 이 경우, 무기입자의 함량은 융착층 전체 입자의 함량에 대하여 30부피% 이하의 것이 좋다.
또한 본 발명에서는 상기 복합 분리막을 전극과 융착할 때, 전해액을 포함한 상태에서의 융착도 가능하지만, 전해액을 포함하지 않은 상태에서 융착을 시키는 경우 모두 가능하며, 전해액을 포함하지 않고 전극과 융착하는 경우에는 더욱 융착력 구현에 효과적이다.
특히 원통형 및 각형 전지의 경우, 파우치형 전지와는 달리, 구성 요소인 전극과 분리막이 딱딱한 실린더 또는 캔 안에 들어가게 되나, 이 경우 전지 조립 후에 온도와 압력을 가하여 융착을 시킬 수 없게 되므로, 미리 전극과 분리막을 융착시킨 후 실린더 또는 캔에 넣고 나서 전해액을 주입하는 방법으로 융착을 적용할 경우에 효과적이다.
본 발명에 따른 복합 분리막은 주로 파우치형 또는 원통형 리튬 이차전지의 수명 및 안전성 개선을 위해 적용될 수 있으며 열융착을 하여 전지를 제조한 후에 전해액을 주입하거나 또는 전해액을 주입한 후에 열융착을 하거나 상관없이, 매우 우수한 융착 성능을 발휘하지만 이에 국한되는 것은 아니다.
본 발명에 따른 복합 분리막은 전지의 수명 및 안전성 개선 특성을 가지는 동시에, 면적이 넓은 이차전지의 양극과 음극의 전체 면적에서 균일하고 강하게 융착 되고, 각 층의 균일하게 분포된 기공을 통하여 이온의 이동이 원활하게 되므로, 특히 전기 자동차용 대형 이차전지의 성능 개선에 유리하고, 전지의 수명특성에서 매우 좋다.
이하 본 발명에 대하여 구체적으로 설명한다.
다음에 소개되는 실시예 및 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명은 다공성 기재층;
무기입자가 바인더 고분자에 의해 연결 및 고정되며, 상기 다공성 기재층 상에 형성된 내열층; 및
유리전이온도가 30℃ 이상 90℃ 이하인 비결정성 고분자 입자를 포함하며, 상기 내열층 상에 형성된 융착층;을 포함하는 리튬 이차전지용 복합 분리막에 관한 것이다.
본 발명에서 상기 비결정성 고분자 입자의 유리전이온도와 융착층의 융착온도의 차이는 60℃ 이하일 수 있다.
본 발명에서 상기 내열층과 상기 융착층 사이에 형성되며, 상기 무기입자와 상기 비결정성 고분자 입자가 혼화된 계면층을 더 포함할 수 있으며, 상기 계면층의 두께는 상기 융착층 두께의 40% 이하일 수 있다.
본 발명에서 상기 융착층은 내열층에 적층되어 있는 상태라면 일면 적층 또는 양면 적층 어느 것이든 본 발명의 범주에 속할 수 있다.
또한 본 발명의 또 다른 양태는 복합 분리막의 표면 조도가 0.3㎛ 이하로 유지함으로써 더욱 전지의 수명을 향상시키고 전기적 특성이 우수한 고에너지의 전지를 제공할 수 있는 복합 분리막을 제조할 수 있다. 이는 전극과 접착이 보다 균일하게 이루어져 전지의 전기적 특성을 향상시킬 수 있기 때문이다.
본 발명에서 상기 다공성 기재층은 폴리올레핀계 미세다공막이라면 제한되지 않고 사용 가능하며, 나아가 부직포, 종이 및 이들의 미세다공막 내부 기공 또는 표면에 무기입자를 포함하는 등 기공을 갖고 전지에 적용될 수 있는 다공막이라면 특별히 제한되지 않는다.
상기 폴리올레핀계 수지는 1종 이상의 폴리올레핀계 수지 단독 또는 혼합물인 것이 바람직하고, 특히 폴리에틸렌, 폴리프로필렌 및 이들의 공중합체로부터 선택되는 1종 또는 2종 이상인 것이 바람직하다. 또한 상기 기재층은 상기 폴리올레핀 수지 단독 또는 폴리올레핀 수지를 주성분으로 하고 무기입자 또는 유기입자를 추가로 더 포함하여 제조된 것일 수도 있다. 또한 상기 기재층은 폴리올레핀계 수지가 다층으로 구성될 수 있으며, 다층으로 구성된 기재층 역시 어느 하나의 층 또는 모든 층이 폴리올레핀 수지 내 무기입자 및 유기입자가 포함하는 것도 배제하지 않는다.
상기 다공성 기재층의 두께는 특별히 제한되지 않으나, 바람직하게는 5 내지 30 ㎛ 일 수 있다. 상기 다공성 기재층은 주로 연신을 통하여 만들어진 다공성 고분자 필름이다.
본 발명의 일 실시예에 따른 폴리올레핀계 다공성 기재층을 제조하는 방법은 통상의 기술자가 제조하는 방법이면 제한되지는 않으나, 일 실시예로, 건식법 또는 습식법으로 제조 할 수 있다. 건식법은 폴리올레핀 필름을 만든 후 저온에서 연신하여 폴리올레핀의 결정부분인 라멜라(lamella) 사이에 미세 크랙(micro crack)을 유발시켜 미세 공극을 형성시키는 방법이다. 습식법은 폴리올레핀계 수지가 용융되는 고온에서 폴리올레핀계 수지와 다일루언트를 혼련하여 단일상을 만들고, 냉각과정에서 폴리올레핀과 다일루언트를 상분리 시킨 후 다일루언트 부분을 추출시켜 내부에 공극을 형성 시키는 방법이다. 습식법은 상분리 과정 후에 연신/추출과정을 통해 기계적 강도와 투과도를 부여하는 방법으로 건식법에 비해 필름의 두께가 얇고 기공 크기도 균일하며 물성도 우수하여 더욱 바람직할 수 있다.
상기 다일루언트는 폴리올레핀계 수지와 단일상을 이루는 유기 물질이라면 제한없이 가능하며, 그 예로는 노난(nonane), 데칸(decane), 데칼린(decalin), 파라핀 오일(paraffin oil), 파라핀 왁스(paraffin wax) 등의 지방족(aliphatic) 또는 디부틸 프탈레이트(dibutyl phthalate), 디옥틸 프탈레이트(dioctyl phthalate) 등의 프탈산 에스테르(phthalic acid ester)와 팔미트산, 스테아린산, 올레산, 리놀레산, 리놀렌산 등의 탄소수 10 내지 20개의 지방산류와 팔미트산알코올, 스테아린산알코올, 올레산알코올 등의 탄소수 10 내지 20개의 지방산 알코올류와 이들의 혼합물 등을 사용할 수 있다.
다음은 본 발명의 내열층에 대하여 구체적으로 설명하지만 이에 반드시 한정하는 것은 아니다.
본 발명에서 내열층은 무기입자에 소량의 바인더를 섞어서 상기 기재층과 접합되어, 전지의 열적 안정성, 전기적 안전성, 및 전기특성을 높여주고, 또한 고온에서 발생하는 기재층의 수축을 억제하는 역할을 한다.
상기 내열층은 무기입자의 크기는 크게 제한하지 않지만, 0.1 내지 2.0㎛ 크기의 무기입자에 바인더 고분자를 섞어서 기재층의 단면, 혹은 양면에 1 내지 10 ㎛ 두께로 코팅하는 것이 본 발명에서 목적으로 하는 효과를 용이하게 달성할 수 있어서 좋다.
상기 내열층은 전체 조성물 100 중량%에 대하여, 무기입자 60 내지 99 중량% 및 바인더 고분자 40 내지 1 중량%를 포함할 수 있다. 상기의 함량에서 전지의 성능이 효과적으로 달성할 수 있어서 좋다.
내열층에 포함되는 무기 입자는 강성이 있어서 외부의 충격 및 힘에 의해서 변형이 일어나지 않고, 고온에서도 열변형 및 부반응이 일어나지 않게 하는 것으로, 알루미나(Alumina), 베마이트(Boehmite), 알루미늄 하이드록사이드(Aluminum Hydroxide), 티타늄 옥사이드(Titanium Oxide), 바륨 티타늄 옥사이드(Barium Titanium Oxide), 마그네슘 옥사이드(Magnesium Oxide), 마그네슘 하이드록사이드(Magnesium Hydroxide), 실리카(Silica), 클레이(Clay) 및 글라스 파우더(Glass powder)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 무기 입자가 바람직하나 이에 제한되는 것은 아니다.
본 발명에서 내열층에 포함되는 바인더 고분자는 무기 입자들 사이를 연결 및 안정하게 고정시켜주는 바인더 역할을 하는 것으로, 폴리비닐리덴풀루오라이드(PVdF), 폴리비닐리덴풀루오라이드-헥사풀루오로프로필렌 (PVdF-HFP), 폴리메틸메타클릴레이트(PMMA), 폴리아크릴로니트릴(PAN), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리이미드(polyimide), 폴리에틸렌 옥사이드(PEO), 셀룰로오스 아세테이트(cellulose acetate), 폴리비닐알콜(PVA), 카르복실메틸셀룰로오스(CMC) 및 폴리부틸아크릴레이트(Polybutylacrylate)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 바인더 고분자가 바람직하나 이에 제한되는 것은 아니다. 내열층은 필요에 따라 접착력을 향상시키기 위해 아크릴(Acryl)계 또는 부타디엔(butadiene)계열의 고분자를 더 포함할 수 있다.
본 발명에서 내열층을 형성할 때 용매로는 상기 바인더를 용해할 수 있고 무기입자를 분산할 수 있는 것이라면 크게 제한하지 않지만 예를 들면 물, 메탄올, 에탄올, 2-프로판올, 아세톤, 테트라히드로퓨란, 메틸에틸케톤, 아세트산에틸, N-메틸피롤리돈, 디메틸아세트아미드, 디메틸포름아미드, 디메틸포름아미드 등에서 선택되는 1종 또는 2종 이상일 수 있다.
내열층의 두께는 무기 입자에 바인더 고분자를 섞어서 기재층의 일면 혹은 양면에 1 내지 20 ㎛, 바람직하게는 1 내지 10 ㎛ 두께를 가지는 것이 내열성 확보가 가능하며 상대적으로 이온 투과성이 우수하여 전지 용량이 향상 될 수 있다.
다음은 본 발명의 융착층에 대하여 설명한다.
본 발명의 일 실시예에 따른 융착층은 복합 분리막의 최외층에 형성되며, 전극판과 분리막을 접착시킴으로써, 전극판 일정한 간격으로 균일하게 밀착하는 층으로서, 상기 융착층은 내열층에 적층되어 있는 상태라면 일면 적층 또는 양면 적층 어느 것이든 본 발명의 범주에 속할 수 있다. 구체적으로 융착층/내열층/다공성 기재층/내열층/융착층의 적층 형태와 융착층/다공성 기재층/내열층/융착층의 적층 형태와 다공성 기재층/내열층/융착층 등의 적층 형태를 가질 수 있으나 이에 제한되는 것은 아니다.
본 발명의 융착층은 전극판과 분리막을 융착시킴으로써, 양극과 음극 전극판의 전체 면적에 있어서 접착력을 증가시켜 상기 양극과 음극간의 밀착을 강하게 그리고 균일하고 일정하게 밀착하는 효과를 가져 전지의 성능과 수명을 현저하게 증가시키는 효과를 얻을 수 있다. 본 발명에서 융착층은 고분자 입자 형태로 형성함으로써 매우 우수한 전지 특성을 부여할 수 있다. 또한 각 고분자 입자들 사이의 공간을 통하여 이온의 이동성이 확보 될 수 있다. 특히 본 발명의 특성을 가지는 융착층의 고분자 입자를 사용하면, 융착 특성과 전지의 수명이 우수하여 국부적인 밀착 불량이 발생하지 않는 우수한 효과를 가져서 전지의 특성이 증가될 수 있다.
본 발명의 융착층을 구성하는 고분자 입자의 크기는 0.05 내지 0.8㎛ 가 바람직하다. 상기의 범주에서 리튬이온의 전달이 원할하게 되고, 저항이 낮으며, 융착온도에서도 성능의 저하가 없다. 본 발명의 융착층의 두께는 2 ㎛ 이하로 조절하는 것이 좋고 더욱 좋게는 1 ㎛ 이하로 하는 것이 좋다. 두께가 두꺼우면 리튬이온이 이동해야 하는 거리가 늘어나게 되고, 이 때문에 저항이 높아지는 문제가 발생하므로 융착층의 두께는 2 ㎛ 이하로 구성하는 것이 바람직하다.
또한 상기 두께로 유지하는 경우, 융착층이 형성된 후, 표면 조도도 매우 우수하여 전지 성능이 향상된다. 따라서 상기 입자경과 두께를 동시에 만족하는 경우 전지성능과 전극과의 접착력이 조화되어 본 발명이 목적으로 하는 현저한 효과를 가진다.
상기 분리막의 원재료로 사용되는 무기 입자나 고분자 물질은 모두 이차전지 내에서 화학적, 전기화학적으로 안정한 물질이어야 한다.
상기 융착층의 비결정성 고분자 물질은 전극과 분리막의 융착력을 확보할 수 있다면 특별히 제한이 없지만, 전지 제조시, 온도와 압력을 높였을 때에만 융착력이 발현되는 물질을 사용하는 것이 바람직하다. 특히 운반 중에 주변온도가 높아지는 경우, 서로 겹쳐진 열융착층끼리 융착되어 분리막으로서 사용이 불가능하게 되는 경우가 발생할 수 있으므로, 상기 분리막을 두 겹 적층하였을 때, 60℃ 이하의 온도와 1MPa 이하의 압력에서는 겹쳐진 다공성 융착층 간의 융착력이 0.3 gf/cm 이하인 것이 바람직하다. 이는 보관 및 운송중에 온도가 높아지는 경우에라도 융착층과 융착층이 접착하지 않고 장기 보관이 가능한 효과를 부여할 수 있어서 좋다.
또한 상기 분리막과 전극 간의 융착력이 70~100℃의 온도와 1MPa 이상의 압력에서 융착력이 1.0 gf/cm 이상이 되도록 고분자 물질을 선정하고, 융착층을 구성하는 것이 가장 바람직하다.
본 발명의 융착층에서 유기고분자 입자로서 Tg(유리전이온도)가 30~90℃이고 상기 유리전이온도가 열융착온도(70 내지 100℃ 기준)와 60℃ 이하의 온도 차이를 가지는 비결정성(amorphous) 고분자 입자를 포함하는 융착층을 형성하는 경우, 상기와 같이 낮은 압력과 낮은 온도에서는 낮은 접착력을 나타내고 높은 온도와 높은 압력에서는 매우 높은 좋게는 5 gf/cm 이상, 더욱 좋게는 8 gf/cm 이상, 아주 좋게는 10 gf/cm 이상의 접착력을 가지는 효과를 나타낸다. 상기 융착층의 유기고분자 입자의 유리전이 온도가 30~90℃의 비결정질 고분자가 아니라면 상기 접착력 측정 조건에서 큰 편차를 나타내기 어렵다. 즉 낮은 온도인 60℃ 이하에서 융착했을 때 접착력과 70~100℃의 온도에서 융착했을 때의 융착력의 차이를 극대화하기 어렵다.
본 발명에서 상기 융착층에 사용하는 비결정성 고분자로서는 제한하지 않지만 유리전이온도가 30~90℃인 아크릴레이트(Acrylate)계 또는 메티크릴레이트계의 중합체나 이의 공중합체인 고분자 물질을 사용하는 것이 좋은데, 이는 공중합의 단량체 비율을 조절함으로써, 비결정성의 고분자로서 유리전이온도의 조절이 편리하기 때문이며 본 발명에서 목적으로 하는 효과를 잘 발휘할 수 있기 때문이며, 그러나 반드시 이에 한정하는 것은 아니다.
본 발명에서 융착층으로는 압력이 가해졌을 때 기공을 안정적으로 유지하기 위하여, 상기 본 발명의 효과를 충분히 발휘할 수 있는 조건에서는 접착성 고분자 물질과 무기 입자를 혼합하여 구성하는 것도 가능하며, 그 함량은 전체 입자의 부피에 대하여 무기입자 30 부피%까지를 포함할 수 있지만, 이는 본 발명의 효과를 충분히 달성할 수 있는 한에서 사용 가능하다. 상기 융착층의 무기입자는 크게 제한 하지 않지만 예를 들면 베마이트 등의 알루미늄 산화물, 바륨 티타늄 옥사이드(Barium Titanium Oxide), 티타늄 산화물, 마그네슘 산화물, 클레이(Clay), 글래스 파우더(Glass powder), 질화붕소, 알루미늄 질화물 중에서 선택되는 하나 또는 둘 이상의 무기입자를 포함 할 수 있지만 이에 한정하는 것은 아니다.
본 발명에 따른 분리막을 형성하는 방법에 대하여 설명한다.
본 발명에서 분리막에 내열층과 융착층을 형성하는 방법으로는 이 분야에서 채택하는 통상의 방법으로 제조할 수 있는 것으로 특별한 제한을 두지는 않으며 일례로써, 바(bar)코팅 법, 로드(rod) 코팅 법, 다이(die) 코팅 법, 와이어(wire) 코팅 법, 콤마(comma) 코팅 법, micro gravure/gravure법, 딥(dip) 코팅 법, 스프레이(spray) 법, 잉크젯(ink-jet) 코팅 법 또는 이들을 혼합한 방식 및 변형한 방식 등이 사용될 수 있다.
그러나 본 발명에서 상온수명안정성이나 열적안정성, 치수안정성 및 표면조도등을 현저히 향상하기 위하여는 내열층을 코팅한 후 건조등이 없이 바로 융착층을 코팅한 후 함께 건조하여 제조하는 동시코팅법을 채택하는 것이 매우 좋으며 본 발명의 또 다른 특징이다.
구체적으로, 본 발명의 일 실시예에 따른 복합 분리막을 제조하는 방법은 다음의 단계를 포함할 수 있다.
다공성 기재의 일면 또는 양면에 무기 입자와 바인더 고분자를 포함하는 내열층 코팅액을 도포하는 단계; 및
상기 도포된 내열층 코팅액 상에 유리전이온도가 30℃ 이상 90℃ 이하인 비결정성 고분자 입자를 포함하는 융착층 코팅액을 도포하는 단계; 및
건조단계; 를 포함하여 제조될 수 있다.
특히 상기 제조방법에서 동시 코팅방법을 채택하는 것이 현저한 효과를 얻을 수 있다.
즉, 내열층 코팅액을 도포한 후 건조하지 않고 융착층 코팅액을 순차적으로 도포한 건조하여 제조하는 동시 코팅법을 선호한다. 이러한 동시 코팅 방법을 채택함으로써, 내열층 코팅층과 융착층의 코팅층이 자유이행을 하여 두 층의 계면에서 일정 두께로 혼화함으로서 결착되고 따라서 융착층의 표면이 매우 균일하게 코팅되고, 내열층과 융착층이 접착이 반영구적으로 이루어지며, 장지 수명안정성 및 전지성능이 더욱 개선된다.
즉, 이를 통해, 내열층과 융착층 사이에 상기 무기입자와 상기 비결정성 고분자 입자가 혼화된 계면층이 더 포함된다. 본 발명에서 상기 계면층의 정도는 특별히 한정하는 것은 아니지만, 실험적으로 융착층 두께의 40%까지 관찰할 수 있지만 이에 반드시 한정하는 것은 아니다.
따라서 본 발명의 복합필름의 각 층별 적층 계면에서 장기사용에 의해서도 손상되지 않아 전지의 장기 수명이 현저히 증가되는 효과를 가지므로 좋다. 본 발명에서 내열층을 코팅하여 건조하고, 이어서 융착층을 코팅하여 건조하여 제조하는 경우 그 계면의 접착성의 열세로 장기 수명이 크게는 10%, 어떤 경우는 30% 이상 저하되고, 또한 충방전에 따른 전지 용량의 횟수가 현저히 저하되는 것을 확인하였다.
본 발명의 상기 내열층 또는 융착층을 형성하는 코팅액으로 사용하는 용매는 제한하지 않지만 예를 들면 물, 메탄올, 에탄올, 2-프로판올, 아세톤, 테트라히드로퓨란, 메틸에틸케톤, 아세트산에틸, N-메틸피롤리돈, 디메틸아세트아미드, 디메틸포름아미드, 디메틸포름아미드 등에서 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 리튬이차전지는 복합 분리막, 양극, 음극, 및 비수 전해액을 포함하여 제조할 수 있다.
양극 및 음극은 양극활물질 및 음극활물질에 용매, 필요에 따라 바인더, 도전재, 분산재 등을 혼합 및 교반하여 합제를 제조한 후 이를 금속 재료의 집전체에 도포하고 건조한 뒤, 프레스하여 제조할 수 있다.
양극활물질은 이차전지의 양극에 통상적으로 사용되는 활물질이면 사용 가능하다. 예를 들어, Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga, B 및 이들의 조합으로 이루어진 군에서 선택되는 하나 또는 둘 이상의 금속을 포함한 리튬금속산화물 입자를 사용할 수 있다.
음극활물질은 이차전지의 음극에 통상적으로 사용되는 활물질이면 사용 가능하다. 리튬이차전지의 음극활물질은 리튬 인터칼레이션 가능한 물질이 바람직하다. 비 한정적인 일 실시예로, 음극활물질은 리튬(금속 리튬), 이흑연화성 탄소, 난흑연화성 탄소, 그라파이트, 실리콘, Sn 합금, Si 합금, Sn 산화물, Si 산화물, Ti 산화물, Ni 산화물, Fe 산화물(FeO) 및 리튬-티타늄 산화물(LiTiO2, Li4Ti5O12)의 음극활물질 군에서 선택되는 하나 또는 둘 이상의 물질일 수 있다.
도전재로는 통상적인 도전성 탄소재가 특별한 제한 없이 사용될 수 있다.
금속 재료의 집전체는 전도성이 높고 상기 양극 또는 음극 활물질의 합제가 용이하게 접착할 수 있는 금속으로서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있고, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
양극과 음극 사이에는 분리막이 개재되는데, 분리막을 전지에 적용하는 방법으로는 일반적인 방법인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 등이 가능하다.
비수전해액은 전해질인 리튬염과 유기 용매를 포함하며, 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, Li+X-로 표현할 수 있다.
리튬염의 음이온으로는 특별히 제한되지 않으며, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N- 중 어느 하나 또는 둘 이상이 사용될 수 있다.
유기 용매로는 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 설포란, 감마-부티로락톤, 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 사용될 수 있다.
비수 전해액은 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 주입할 수 있다.
리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다
이하, 본 발명을 보다 구체적으로 설명하기 위하여 하기 실시예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
본 발명의 실시예 및 비교예에서 이차전지용 분리막의 특성 평가방법은 다음과 같은 방법으로 수행하였다.
1. 기체 투과도 측정
분리막의 기체 투과도를 측정하는 방법은 JIS P8117 규격에 따르며, 100cc의 공기가 분리막 1inch2의 면적을 통과하는 데 걸리는 시간을 초 단위로 기록하여 비교하였다.
2. 130℃ 열수축율 측정
분리막의 130℃ 열수축율을 측정하는 방법은, 분리막을 한 변이 10cm인 정사각형 모양으로 잘라서 시료를 만든 후, 실험 전 시료의 면적을 카메라를 이용하여 측정 및 기록한다. 시료가 정중앙에 위치하도록 시료의 위와 아래에 각각 종이를 5장씩 놓고, 종이의 네 변을 클립으로 고정한다. 종이로 감싸진 시료를 130℃ 열풍건조 오븐에 1시간 방치하였다. 방치가 끝나면, 시료를 꺼내어 분리막의 면적을 카메라로 측정하여 하기 수학식 1의 수축율을 계산하였다.
[수학식 1]
수축률(%) = (가열전 면적- 가열후 면적) × 100 / 가열전 면적
3. 접착강도 측정
분리막과 전극간 융착력 측정을 위한 시료는 양극 및 음극 전극판에 분리막을 한 장 끼워 넣고 전해액에 1시간 동안 담근 후 꺼내어 바로 열프레스기에 놓고 100℃, 1MPa의 열과 압력을 150초 동안 가하여 융착시킨다. 이렇게 만들어진 시편을 다시 전해액에 1시간 동안 담근 후 꺼내어 전해액이 증발하기 전에 바로 180°벗김 강도를 측정하였다.
4. 전지 수명 측정
상기 조립과정을 거쳐 제조한 각 전지들을 1C의 방전 속도로 500회 충방전 한 다음, 방전 용량을 측정하여 초기 용량 대비 감소한 정도를 측정하는 사이클 (Cycle) 평가를 진행하였다.
5. 전지 두께 측정
전지의 충방전 시 전극판과 분리막 사이의 들뜸 현상 및 전지의 변형 여부를 확인하기 위해서, 500회 충방전 후 Mitsutoyo사의 Thickness Gauge를 사용하여 전지의 두께를 측정한 다음, 충방전 전의 두께와 비교, 다음 수학식 2의 전지 두께 증가율을 측정하였다.
[수학식 2]
A : 충방전 전의 전지두께(mm)
B : 충방전 후의 전지두께(mm)
전지두께 증가율(%) = (B-A) / A x 100
6. 표면조도(surface roughness)(Ra) 평가
분리막을 5 X 5 ㎛ 크기로 시료를 만들어 AFM(Digital Instruments Nanoscope V MMAFM-8 Multimode)을 사용하여 시료 전체 크기에서 표면조도 분석(Roughness Analysis)을 하여 Ra값을 측정하였다.
7. 전지 안전성 측정
전지의 안전성을 측정하기 위하여, 제조한 각 전지들을 SOC(충전률) 100%로 완전히 충전시킨 다음, 못 관통 (nail penetration) 평가를 수행하였다. 이때, 못의 직경은 3.0mm, 못의 관통 속도는 모두 80 mm/min으로 고정하였다. L1: 변화없음, L2: 소폭발열, L3: 누액, L4: 발연, L5: 발화이며, L1 내지 L3는 Pass, L4 내지 L5는 Fail로 판정한다.
[실시예 1]
양극의 제조
LiCoO2(D50, 15㎛)를 94중량%, Polyvinylidene fluoride를 2.5중량%, 카본블랙(D50 : 15㎛)을 3.5중량%로, NMP(N-methyl-2 -pyrrolidone)에 첨가하고 교반하여 균일한 양극 슬러리를 제조하였다. 슬러리를 30㎛ 두께의 알루미늄 호일 위에 코팅, 건조 및 압착하여 150 ㎛ 두께의 양극 전극판을 제조하였다.
음극의 제조
흑연 95 중량%, Tg가 -52℃인 Acrylic latex(고형분 20wt%)를 3 중량%, CMC(Carboxymethyl cellulose)를 2 중량%의 비율로, 용매인 물에 첨가하고 교반하여 균일한 음극 슬러리를 제조하였다. 슬러리를 20 ㎛ 두께의 구리 호일 위에 코팅, 건조 및 압착하여 150 ㎛ 두께의 음극 전극판을 제조하였다.
복합 분리막의 제조
평균입경 1.0㎛ 인 알루미나(Alumina) 입자 94 중량%, 용융온도가 220℃이고 비누화도가 99%인 폴리비닐알콜을 2 중량%, Tg가 -52℃인 Acrylic latex(고형분 20wt%)를 4 중량%로, 용매인 물에 첨가하고 교반하여 균일한 내열층 슬러리를 제조하였다.
물에 분산된 15 중량%의 메틸메타아크릴레이트(Methyl methacrylate) 및 부틸아크릴레이트(Butyl acrylate)의 공중합체로서 유리전이온도가 48℃인 0.5㎛의 구형 형상의 입자를 융착층 슬러리로 사용하였다.
SK이노베이션에서 제조한 두께 7㎛의 폴리올레핀 미세다공막(기공도 35%)에, 다층 슬롯 코팅다이를 2대 사용하여 상기 미세다공막 기재의 앞/뒷면에 내열층 슬러리와 융착층 슬러리 총 4개 층을 별도의 건조공정 없이 연속하여 동시에 코팅하였다. 동시 코팅된 미세다공막은 건조기에서 물을 증발시킨 후, 롤 형태로 권취하였으며, 양면 내열층의 두께는 각각 1.5㎛이었고, 양면 융착층의 두께는 각각 0.8㎛ 이었다.
전지의 제조
상기에서 제조한 양극, 음극 및 분리막을 사용하여 적층(Stacking) 방식으로 파우치형 전지를 조립하였으며, 조립된 전지에 1M의 리튬헥사플로로포스페이트(LiPF6)가 용해된 에틸렌카보네이트(EC) /에틸메틸카보네이트(EMC) /디메틸카보네이트(DMC)=3:5:2(부피비)인 전해액을 주입하여 용량 1,500mAh의 리튬 이차전지를 제조하였다. 이후 양극, 음극 및 분리막을 서로 융착시키기 위해, 전지를 열프레스기에 넣고 100℃, 1MPa의 열과 압력을 150초 동안 가해서 열융착을 시켰다.
[실시예 2]
실시예 1에서 적층한 파우치형 전지를 조립하고, 별도의 전해액을 주입하지 않고, 100℃, 1MPa의 열과 압력을 150초 동안 가해서 열융착을 시킨 다음, 전해액을 주입한 것을 제외하고는 동일하게 실시하였다.
[실시예 3]
하기 내열층 슬러리 및 융착층 슬러리를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 그 결과, 양면 내열층의 두께는 각각 2.5㎛ 이었고, 양면 융착층의 두께는 각각 1.0㎛ 이었다.
내열층을 제조하기 위하여, 평균입경 0.7㎛ 인 베마이트(Boehmite) 95 중량%, 용융온도가 220℃이고 비누화도가 99%인 폴리비닐알콜 2 중량%, Tg가 -52℃인 Acrylic latex를 3 중량%를 사용하여 슬러리를 제조하였다. 융착층을 제조하기 위하여 스티렌(Styrene), 메틸메타아크릴레이트(Methyl methacrylate) 및 부틸아크릴레이트(Butyl acrylate), 부틸메타아크릴레이트(Butyl Methacrylate) 및 에틸헥실아크릴레이트(2-EthylHexylAcrylate)를 주성분으로 중합한, 유리전이온도가 85℃인 평균입경 0.7㎛의 구형 입자를 물 대비 12 중량%의 비율이 되도록 희석하여 융착층 슬러리를 제조하였다.
[실시예 4]
실시예 3에서 기재층의 일면에는 내열층과 융착층을 형성하고 다른 면에는 융착층만을 형성한 것 이외에는 동일하게 실시하였다. 이때, 두께는 3.0㎛이었고, 양면 융착층의 두께는 각각 1.0㎛ 이었다.
[실시예 5]
실시예 4에서 적층(Stacking) 방식으로 파우치형 전지를 조립한 후, 100℃, 1MPa의 열과 압력을 150초 동안 가해서 열융착을 시킨 다음, 전해액을 주입한 것 이외에는 동일하게 실시하였다.
[실시예 6]
메틸메타아크릴레이트(Methyl methacrylate) 및 부틸아크릴레이트(Butyl acrylate) 및 에틸헥실아크릴레이트(2-EthylHexylAcrylate)를 공중합하여 유리전이온도가 32℃인 평균입경 0.7㎛의 구형 형상을 유지하는 고분자 입자를, 물 대비 12 중량%의 비율이 되도록 희석하여 융착층 슬러리로 사용하고, 상기 내열층과 융착층을 모두 기재층의 양면에 순차적으로 동시 코팅한 후에 건조하여 롤 형태로 권취하였으며, 양면 내열층의 두께는 각각 1.5㎛이었고, 양면 융착층의 두께는 각각 0.3㎛ 의 복합 분리막을 제조하고, 이를 이용하여 적층(Stacking) 방식으로 파우치형 전지를 조립한 후, 전해액이 없는 상태에서 전지를 열프레스기에 넣고 75℃, 1MPa의 열과 압력을 150초 동안 가해서 열융착을 시킨 다음, 1M의 리튬헥사플로로포스페이트(LiPF6)가 용해된 에틸렌카보네이트(EC)/ 에틸메틸카보네이트(EMC)/ 디메틸카보네이트(DMC) = 3:5:2(부피비)인 전해액을 주입한 것을 제외하고는 상기 실시예 5와 동일하게 실시하였다.
[비교예 1]
분리막에 융착층이 없는 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
[비교예 2]
전해액 없이 전지를 조립한 후, 1M의 리튬헥사플로로포스페이트 (LiPF6)가 용해된 에틸렌카보네이트(EC)/ 에틸메틸카보네이트(EMC)/ 디메틸 카보네이트(DMC) = 3:5:2(부피비)인 전해액을 주입한 것을 제외하고는 비교예 1과 동일하게 실시하였다.
[비교예 3]
분리막에 내열층이 없다는 점을 제외하고는, 상기 실시예 1과 동일하게 실시하였다.
[비교예 4]
유리전이온도가 5℃이고 평균입경 0.2㎛인 BA(Butylacrylate) 및 EHA(Ethylhexylacrylate) 공중합체 입자 20 중량%를 물에 분산한 슬러리를 사용한 것 이외에는 실시예 1과 동일하게 복합 분리막을 제조하였으며 이때, 양면 내열층의 두께는 각각 1.5㎛ 이었고, 양면 융착층의 두께는 각각 0.8㎛ 이었다. 상기 복합 분리막을 이용하여 전지를 제조한 후 융착온도를 70℃, 1MPa의 열과 압력을 150초 동안 가해서 열융착을 시킨 것을 제외하고는, 실시예 1과 동일하게 전지를 제조하였다.
[비교예 5]
융착층으로 유리전이온도가 93℃이고, 평균입경 0.6㎛인 메틸메타아크릴레이트(Methyl methacrylate) 공중합체 입자를, 물 대비 15 중량%의 비율이 되도록 희석하여 융착층 슬러리로 사용하여 복합 분리막을 제조한 것을 제외하고는 실시예 2와 같이 실시하였다. 내열층과 융착층의 두께는 모두 1.4㎛ 이었다.
[비교예 6]
융착층으로 유리전이온도가 110℃이고, 평균입경 0.8㎛인 메틸메타아크릴레이트(Methyl methacrylate) 중합체 입자를, 물 대비 12 중량%의 비율이 되도록 희석하여 융착층 슬러리로 사용하고, 다층 슬롯 코팅다이를 2대 사용하여 기재의 앞/뒷면에 내열층 슬러리와 융착층 슬러리 총 4개 층을 별도의 건조없이 연속하여 동시에 코팅하였다. 분리막은 건조기를 통하여 용매인 물을 증발시킨 후, 롤 형태로 권취하였으며, 양면 내열층의 두께는 각각 1.5㎛이었고, 양면 융착층의 두께는 각각 1.4㎛ 이었다.
상기 분리막을 사용하여 적층(Stacking) 방식으로 파우치형 전지를 조립한 후, 전해액이 없는 상태에서 전지를 열프레스기에 넣고 100℃, 1MPa의 열과 압력을 150초 동안 가해서 열융착을 시킨 다음, 1M의 리튬헥사플로로포스페이트(LiPF6)가 용해된 에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)/디메틸카보네이트(DMC) =3:5:2(부피비)인 전해액을 주입한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
항목 단위 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6
기체투과도 sec/100cc 250 246 324 312 307 358
130℃ 수축률 % 2.0 1.8 2.6 2.2 2.6 2.2
접착강도 gf/cm 10.6 11.1 12.7 13.5 11.1 10.1
상온수명 % 88.7 89.3 91.3 90.5 89.1 92.2
전지두께 증가율 % 1.1 1.2 1.1 1.1 1.0 1.2
Ra 0.16 0.15 0.15 0.19 0.21 0.22
관통평가 L3(pass) L3(pass) L3(pass) L3(pass) L3(pass) L3(pass)
항목 단위 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6
기체투과도 sec/100cc 209 209 197 1274 225 214
130℃ 수축률 % 2.5 2.5 35.9 2.3 2.3 2.2
접착강도 gf/cm 접착안됨 접착안됨 14.7 5.1 접착안됨 접착안됨
상온수명 %(1C 500회) 72.2 71.7 89.7 57.2 65.1 70.1
전지두께 증가율 % 5.9 4.8 1.1 1.4 4.9 5.2
Ra 0.57 0.21 0.46 0.20 0.21 0.17
관통평가 L3(pass) L3(pass) L5(fail) L3(pass) L3(pass) L3(pass)
상기 결과를 통해, 본 발명의 실시예는 모두 기체투과도, 접착강도 및 상온수명에 있어서 동시에 현저히 우수한 특성을 나타내었고, 본 발명의 범주에 속하지 않은 비교예의 경우에는 특히 비교예 4 내지 6에서 보듯이 접착이 되지 않거나 또는 투기도에 있어서 현저히 저하되거나, 또는 상온수명에서 현저히 낮아지는 효과를 가지는 것을 알 수 있다. 즉, 유리전이온도가 30~90℃ 이고, 유리전이온도와 융착온도의 차이가 60℃ 이하의 경우에 해당하는 비결정성 고분자의 입자로 구성된 융착층과, 무기물과 바인더로 구성된 내열층을 동시에 보유한 경우가, 전지 수명 및 안전성을 현저히 상승시킴을 확인하였다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
본 발명에 따른 복합 분리막은 전지의 수명 및 안전성 개선 특성을 가지는 동시에, 면적이 넓은 이차전지의 양극과 음극의 전체 면적에서 균일하고 강하게 융착 되고, 각 층의 균일하게 분포된 기공을 통하여 이온의 이동이 원활하게 되므로, 특히 전기 자동차용 대형 이차전지의 성능 개선에 유리하고, 전지의 수명특성에서 매우 좋다.

Claims (11)

  1. 다공성 기재층;
    무기입자가 바인더 고분자에 의해 연결 및 고정되며, 상기 다공성 기재층 상에 형성된 내열층; 및
    유리전이온도가 30℃ 이상 90℃ 이하인 비결정성 고분자 입자를 포함하며, 상기 내열층 상에 형성된 융착층;을 포함하는 리튬 이차전지용 복합 분리막.
  2. 제 1항에 있어서,
    상기 비결정성 고분자 입자의 유리전이온도와 상기 복합 분리막과 전극의 융착 시 융착온도의 차이는 60℃ 이하인 리튬 이차전지용 복합 분리막.
  3. 제 1항에 있어서,
    상기 내열층과 상기 융착층 사이에 형성되며, 상기 무기입자와 상기 비결정성 고분자 입자가 혼화된 계면층을 더 포함하는 리튬 이차전지용 복합 분리막.
  4. 제 1항에 있어서,
    상기 내열층은 무기 입자의 크기가 0.1 내지 2.0㎛인 리튬 이차전지용 복합 분리막.
  5. 제 1항에 있어서,
    상기 융착층은 비결정성 고분자 입자의 크기가 0.05 내지 0.8㎛ 인 리튬 이차전지용 복합 분리막.
  6. 제 1항에 있어서,
    상기 융착층의 두께가 2 ㎛ 이하인 리튬 이차전지용 복합 분리막.
  7. 제 1항에 있어서,
    상기 비결정성 고분자는 아크릴레이트계 중합체, 메타크릴레이트계 중합체 또는 이들의 공중합체로 이루어진 것인 리튬 이차전지용 복합 분리막.
  8. 제 1항에 있어서,
    상기 내열층은 알루미나, 베마이트 등의 알루미늄 산화물, 바륨 티타늄 옥사이드, 티타늄 산화물, 마그네슘 산화물, 클레이, 글래스 파우더, 질화붕소, 알루미늄 질화물 중에서 선택되는 하나 또는 둘 이상의 무기입자를 포함하는 리튬 이차전지용 복합 분리막.
  9. 다공성 기재의 일면 또는 양면에 무기 입자와 바인더 고분자를 포함하는 내열층 코팅액을 도포하는 단계; 및
    상기 도포된 내열층 코팅액 상에 유리전이온도가 30℃ 이상 90℃ 이하인 비결정성 고분자 입자를 포함하는 융착층 코팅액을 도포하는 단계;를 포함하는 리튬 이차전지용 복합 분리막의 제조방법.
  10. 제 9항에 있어서,
    상기 내열층 코팅액을 도포한 후 건조하지 않고 융착층 코팅액을 도포하여 동시 코팅하는 것인 리튬 이차전지용 복합 분리막의 제조방법.
  11. 제 9항에 있어서,
    상기 비결정성 고분자 입자의 유리전이온도와 상기 융착층의 융착온도의 차이는 60℃ 이하인 리튬 이차전지용 복합 분리막의 제조방법.
PCT/KR2016/003428 2015-04-02 2016-04-01 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법 WO2016159724A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680020181.1A CN107534117B (zh) 2015-04-02 2016-04-01 用于锂二次电池的熔合型复合分离膜及其制备方法
US15/562,534 US10333126B2 (en) 2015-04-02 2016-04-01 Fusion type composite separation membrane for lithium secondary battery, and preparation method therefor
DE112016001490.2T DE112016001490T5 (de) 2015-04-02 2016-04-01 Verbund-Trennmembran vom Verschmelzungsstyp für Lithiumionen-Sekundärbatterien und Herstellungsverfahren hierfür
JP2017549521A JP7073105B2 (ja) 2015-04-02 2016-04-01 リチウム二次電池用融着型複合分離膜およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150046671 2015-04-02
KR10-2015-0046671 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016159724A1 true WO2016159724A1 (ko) 2016-10-06

Family

ID=57006447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003428 WO2016159724A1 (ko) 2015-04-02 2016-04-01 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법

Country Status (6)

Country Link
US (2) US10985356B2 (ko)
JP (1) JP7073105B2 (ko)
KR (2) KR102604599B1 (ko)
CN (1) CN107534117B (ko)
DE (1) DE112016001490T5 (ko)
WO (1) WO2016159724A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522097A (ja) * 2018-01-05 2020-07-27 エルジー・ケム・リミテッド ガラス転移温度の相異なるバインダーを含む分離膜及びその製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821049B1 (ko) * 2016-07-15 2018-01-23 한국과학기술원 1차원의 고분자 나노섬유들이 준정렬된 그리드 형상으로 직교하여 적층되어 기공 분포 및 기공 크기가 제어된 3차원 고분자 나노섬유 멤브레인 및 그 제조방법
KR102215959B1 (ko) * 2016-11-14 2021-02-15 상하이 딘호 뉴 머터리얼 테크놀러지 컴퍼니 리미티드 리튬이온배터리용 다층 복합 기능 격막
KR102115596B1 (ko) * 2016-11-24 2020-05-26 주식회사 엘지화학 리튬 전극의 전처리 방법 및 리튬 금속 전지
JP6496762B2 (ja) 2017-03-03 2019-04-03 住友化学株式会社 非水電解液二次電池用セパレータ
US12080843B2 (en) 2017-11-16 2024-09-03 Apple Inc. Battery cell with multiple separator layers that include adhesive and ceramic material
KR102280606B1 (ko) 2018-01-05 2021-07-22 주식회사 엘지에너지솔루션 Cmc, 입자형 바인더 및 용해형 바인더를 포함하는 분리막
KR102295079B1 (ko) 2018-01-30 2021-08-27 주식회사 엘지에너지솔루션 전기화학소자용 분리막 및 상기 분리막을 제조하는 방법
KR102211371B1 (ko) * 2018-02-12 2021-02-03 삼성에스디아이 주식회사 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지
US11870037B2 (en) 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes
KR20190128440A (ko) 2018-05-08 2019-11-18 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN111902965B (zh) * 2018-06-27 2024-02-09 东丽株式会社 多孔性膜、二次电池用隔膜及二次电池
KR102607418B1 (ko) * 2018-10-22 2023-11-27 주식회사 엘지화학 접착층이 구비된 폴리올레핀 분리막 및 그의 제조방법
KR102331720B1 (ko) * 2019-02-18 2021-11-26 삼성에스디아이 주식회사 분리막 및 이를 채용한 리튬전지
WO2020246497A1 (ja) * 2019-06-04 2020-12-10 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR102196914B1 (ko) * 2019-08-22 2020-12-31 지머터리얼즈 주식회사 리튬이차전지용 복합분리막 및 이의 제조방법
WO2021071125A1 (ko) * 2019-10-11 2021-04-15 주식회사 엘지화학 리튬 이차 전지 및 리튬 이차 전지의 제조방법
DE112020006592T5 (de) * 2020-01-23 2022-12-01 Rogers Corporation Beschichteter Separator, elektrochemische Zelle mit einem beschichteten Separator und Verfahren zur Herstellung eines beschichteten Separators
US20210305632A1 (en) * 2020-03-25 2021-09-30 Gs Yuasa International Ltd. Energy storage device
KR20220052851A (ko) * 2020-10-21 2022-04-28 주식회사 엘지에너지솔루션 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
KR20240004328A (ko) * 2021-04-28 2024-01-11 니폰 제온 가부시키가이샤 비수계 이차 전지용 적층체, 접착용 조성물 및 비수계 이차 전지
KR102569078B1 (ko) * 2021-07-09 2023-08-23 주식회사 엘지에너지솔루션 전극 조립체 제조 방법
WO2023282718A1 (en) * 2021-07-09 2023-01-12 Lg Energy Solution, Ltd. Manufacturing method for electrode assembly and electrode assembly manufacturing equipment
JP2023551993A (ja) * 2021-10-06 2023-12-13 エルジー エナジー ソリューション リミテッド 二次電池用分離膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052526A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
KR101341196B1 (ko) * 2012-12-10 2013-12-12 삼성토탈 주식회사 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
KR20130136149A (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 그의 제조방법
KR101430975B1 (ko) * 2013-08-21 2014-08-18 에스케이씨 주식회사 내열성이 우수한 이차전지용 분리막
KR20150001148A (ko) * 2013-06-26 2015-01-06 제일모직주식회사 코팅층을 포함하는 분리막 및 상기 분리막을 이용한 전지

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185733A (ja) * 1997-12-22 1999-07-09 Mitsubishi Chemical Corp リチウムポリマー二次電池の製造方法
JP4470248B2 (ja) 1999-11-10 2010-06-02 宇部興産株式会社 電池用セパレータ
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
DE10255122A1 (de) * 2002-11-26 2004-06-03 Creavis Gesellschaft Für Technologie Und Innovation Mbh Langzeitstabiler Separator für eine elektrochemische Zelle
JP3919667B2 (ja) * 2003-01-06 2007-05-30 三菱電機株式会社 リチウム二次電池用接着剤及びその製造方法並びにそれを用いた電池
KR20070113374A (ko) 2006-05-23 2007-11-29 명지대학교 산학협력단 고분자 나노섬유를 함유한 구형입자로 구성된폴리불화비닐리덴계 다공성 중공사막 및 이의 제조방법
KR101156961B1 (ko) 2006-08-21 2012-06-20 주식회사 엘지화학 전극과 분리막의 결합력 및 도전성이 우수한 전극조립체 및이를 포함하고 있는 전기화학 셀
KR20090102874A (ko) 2007-03-15 2009-09-30 히다치 막셀 가부시키가이샤 전기 화학 소자용 세퍼레이터, 전기 화학 소자용 전극 및 전기 화학 소자
KR101394622B1 (ko) * 2009-04-06 2014-05-20 에스케이이노베이션 주식회사 물성과 고온 안정성이 우수한 폴리올레핀계 다층 미세다공막
WO2011062460A2 (ko) * 2009-11-23 2011-05-26 주식회사 엘지화학 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
KR101934706B1 (ko) 2011-02-25 2019-01-03 제온 코포레이션 이차 전지용 다공막, 이차 전지 다공막용 슬러리 및 이차 전지
KR101281037B1 (ko) * 2011-04-06 2013-07-09 주식회사 엘지화학 세퍼레이터 및 이를 구비하는 전기화학소자
TWI501451B (zh) * 2011-04-08 2015-09-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
EP2736093B1 (en) * 2011-07-20 2018-01-10 LG Chem, Ltd. Separator, manufacturing method thereof, and electrochemical device employing same
WO2013073503A1 (ja) 2011-11-15 2013-05-23 帝人株式会社 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
KR101369326B1 (ko) 2011-12-27 2014-03-04 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
JP2013137943A (ja) * 2011-12-28 2013-07-11 Panasonic Corp リチウムイオン二次電池およびその製造方法
KR101492906B1 (ko) 2012-03-30 2015-02-12 서울시립대학교 산학협력단 Pvdf의 고결정성을 위한 열처리 방법
KR102165556B1 (ko) * 2012-04-05 2020-10-14 제온 코포레이션 이차 전지용 세퍼레이터
WO2014142450A1 (ko) 2013-03-14 2014-09-18 (주)에프티이앤이 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막
KR102210881B1 (ko) * 2013-04-16 2021-02-03 삼성에스디아이 주식회사 세퍼레이터 및 이를 채용한 리튬전지
US10038174B2 (en) * 2013-04-16 2018-07-31 Samsung Sdi Co., Ltd. Separator and lithium battery including the separator
JP2015028842A (ja) 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
JP6155967B2 (ja) * 2013-08-23 2017-07-05 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP6462994B2 (ja) * 2014-04-10 2019-01-30 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
CN104064707B (zh) * 2014-06-09 2017-02-08 东莞市魔方新能源科技有限公司 无机/有机复合隔膜、其制备方法及含该隔膜的锂离子二次电池
KR102246767B1 (ko) * 2014-08-13 2021-04-30 삼성에스디아이 주식회사 리튬이차전지용 세퍼레이터, 이를 채용한 리튬이차전지 및 그 제조방법
KR102295367B1 (ko) * 2014-12-08 2021-08-31 삼성에스디아이 주식회사 리튬이차전지용 복합 세퍼레이터 및 이를 채용한 리튬이차전지
JP6399922B2 (ja) * 2014-12-22 2018-10-03 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
WO2017033993A1 (ja) 2015-08-27 2017-03-02 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052526A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
KR20130136149A (ko) * 2012-06-04 2013-12-12 주식회사 엘지화학 접착력이 개선된 전기화학소자용 분리막 및 그의 제조방법
KR101341196B1 (ko) * 2012-12-10 2013-12-12 삼성토탈 주식회사 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
KR20150001148A (ko) * 2013-06-26 2015-01-06 제일모직주식회사 코팅층을 포함하는 분리막 및 상기 분리막을 이용한 전지
KR101430975B1 (ko) * 2013-08-21 2014-08-18 에스케이씨 주식회사 내열성이 우수한 이차전지용 분리막

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522097A (ja) * 2018-01-05 2020-07-27 エルジー・ケム・リミテッド ガラス転移温度の相異なるバインダーを含む分離膜及びその製造方法
US11189885B2 (en) 2018-01-05 2021-11-30 Lg Chem, Ltd. Separator including binders having different glass transition temperatures and method of manufacturing the same

Also Published As

Publication number Publication date
JP2018510472A (ja) 2018-04-12
US20180097216A1 (en) 2018-04-05
US10985356B2 (en) 2021-04-20
US20180114968A1 (en) 2018-04-26
KR102604599B1 (ko) 2023-11-22
JP7073105B2 (ja) 2022-05-23
US10333126B2 (en) 2019-06-25
DE112016001490T5 (de) 2018-01-04
KR20160118986A (ko) 2016-10-12
KR102570912B1 (ko) 2023-08-28
CN107534117B (zh) 2022-02-11
CN107534117A (zh) 2018-01-02
KR20160118966A (ko) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2016159724A1 (ko) 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
WO2016159720A1 (ko) 리튬 이차전지용 복합 분리막 및 이의 제조방법
WO2019164130A1 (ko) 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2017171524A1 (ko) 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체
WO2017034353A1 (ko) 접착층을 포함하는 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2012060604A2 (ko) 내열성 분리막, 전극 조립체 및 이를 이용한 이차 전지와 그 제조방법
WO2020067778A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2013028046A2 (ko) 미소 캡슐을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2020013675A1 (ko) 저저항 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2013012292A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2019009564A1 (ko) 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
WO2019156410A1 (ko) 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지
WO2020022851A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021210922A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
WO2022045858A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021020887A1 (ko) 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2019240501A1 (ko) 무기 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2023027558A1 (ko) 전기화학소자용 분리막, 이를 포함하는 전극 조립체 및 전기화학소자
WO2022149912A1 (ko) 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549521

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016001490

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773505

Country of ref document: EP

Kind code of ref document: A1