WO2022149912A1 - 양극 및 이를 포함하는 리튬 이차전지 - Google Patents

양극 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022149912A1
WO2022149912A1 PCT/KR2022/000312 KR2022000312W WO2022149912A1 WO 2022149912 A1 WO2022149912 A1 WO 2022149912A1 KR 2022000312 W KR2022000312 W KR 2022000312W WO 2022149912 A1 WO2022149912 A1 WO 2022149912A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
content
slurry
Prior art date
Application number
PCT/KR2022/000312
Other languages
English (en)
French (fr)
Inventor
안지수
성기원
이은주
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023519128A priority Critical patent/JP2023543243A/ja
Priority to EP22736889.1A priority patent/EP4207359A1/en
Priority to US18/029,661 priority patent/US20240014392A1/en
Priority to CN202280006688.7A priority patent/CN116325213A/zh
Publication of WO2022149912A1 publication Critical patent/WO2022149912A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode and a lithium secondary battery including the same, and more particularly, to a positive electrode exhibiting high initial efficiency and excellent fast charging performance, and a lithium secondary battery including the same.
  • a lithium secondary battery has a structure in which an electrolyte containing lithium salt is impregnated in an electrode assembly with a porous separator interposed between a positive electrode and a negative electrode, each of which is coated with an active material on an electrode current collector, and the electrode is an active material, a binder And it is prepared by applying a slurry in which a conductive material is dispersed in a solvent to a current collector, drying and pressing.
  • Lithium secondary batteries are secondary batteries in which lithium ions are responsible for the conduction of electricity between the electrodes in the charge/discharge reaction. Compared with other secondary batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries, they have high energy density and low memory effect. . Therefore, when reaching from small power sources such as portable electronic devices and household electrical devices to medium-sized power sources such as stationary power sources such as power storage devices, UPS devices, and power leveling devices, or driving power sources for ships, railways, hybrid vehicles, and electric vehicles, etc. Its use has been expanded to the present day, and a new improvement in battery performance is required. For example, in in-vehicle applications, such as hybrid vehicles and electric vehicles, high energy density for realizing a long cruising distance and high output for improving acceleration response are required.
  • electrodes are being manufactured using positive electrodes with high nickel (Ni) content.
  • the present invention is to solve the above problems, and one object of the present invention is to provide a positive electrode that prevents an increase in resistance at a low SOC during discharge and a secondary battery including the same.
  • the positive electrode of the following embodiment is provided.
  • a lower layer region including a first positive electrode active material and a first binder polymer while the positive electrode active material layer is in contact with the positive electrode current collector; and an upper layer area extending to the surface of the positive electrode active material layer while being in contact with the lower layer area, and including a second positive electrode active material and a second binder polymer;
  • the first positive electrode active material in the lower layer region is represented by the following Chemical Formula 1
  • the second positive active material in the upper layer region is represented by the following Chemical Formula 2
  • the Ni content of the second positive electrode active material is greater than the Ni content of the first positive electrode active material
  • M1 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd,
  • M2 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd.
  • the Ni content of the first positive electrode active material may be 40 to 75 mol% of the total transition metal of the first positive electrode active material, and the Ni content of the second positive electrode active material may be 80 to 90 mol% of the total transition metal of the second positive electrode active material have.
  • the Ni content of the first positive electrode active material may be 50 to 75 mol% of the total transition metal of the first positive electrode active material, and the Ni content of the second positive electrode active material may be 81 to 90 mol% of the total transition metal of the second positive electrode active material have.
  • the Ni content of the first positive electrode active material is 65 to 70 mol% of the total transition metal of the first positive electrode active material
  • the Ni content of the second positive electrode active material is 86 to 90 mol% of the total transition metal of the second positive electrode active material.
  • a weight ratio of the lower region and the upper region of the cathode active material layer may be 20:80 to 80:20.
  • a method of manufacturing a positive electrode comprising; drying the coated slurry for the lower layer and the slurry for the upper layer at the same time to form a positive electrode active material layer:
  • M1 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd,
  • M2 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd.
  • the Ni content of the first positive electrode active material may be 40 to 75 mol% of the total transition metal of the first positive electrode active material, and the Ni content of the second positive electrode active material may be 80 to 90 mol% of the total transition metal of the second positive electrode active material have.
  • the Ni content of the first positive electrode active material may be 50 to 75 mol% of the total transition metal of the first positive electrode active material, and the Ni content of the second positive electrode active material may be 81 to 90 mol% of the total transition metal of the second positive electrode active material have.
  • the Ni content of the first positive electrode active material is 65 to 70 mol% of the total transition metal of the first positive electrode active material
  • the Ni content of the second positive electrode active material is 86 to 90 mol% of the total transition metal of the second positive electrode active material.
  • a lithium secondary battery including the positive electrode of any one of the first to fifth embodiments is provided.
  • the positive electrode active material layer has a lower layer region containing a first positive electrode active material and a first binder polymer while interfacing with the positive electrode current collector, and an upper layer region positioned on the lower layer region, and within the upper layer region.
  • the present invention is more effective in a high-loading positive electrode coated with a high positive electrode active material, and is applicable to realizing a high-capacity, high-density electric vehicle (EV) battery.
  • EV electric vehicle
  • a positive electrode according to an aspect of the present invention is a positive electrode according to an aspect of the present invention.
  • a lower layer region including a first positive electrode active material and a first binder polymer while the positive electrode active material layer is in contact with the positive electrode current collector; and an upper layer area extending to the surface of the positive electrode active material layer while being in contact with the lower layer area, and including a second positive electrode active material and a second binder polymer;
  • the first positive electrode active material in the lower layer region is represented by the following Chemical Formula 1
  • the second positive active material in the upper layer region is represented by the following Chemical Formula 2
  • the Ni content of the second positive electrode active material is greater than the Ni content of the first positive electrode active material more:
  • M1 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd,
  • M2 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd.
  • the present invention two kinds of positive electrode active materials having different Ni contents are disposed on the upper and lower layers of the positive electrode through the double layer (DLD) coating technology of the positive electrode, but the Ni content of the positive electrode active material of the upper layer is the Ni content of the positive electrode active material of the lower layer
  • DLD double layer
  • a high Ni (high Ni) positive electrode active material which is a positive electrode active material having a high Ni content, means containing 80 mol% or more of Ni in the total transition metal.
  • Such a high content Ni cathode active material has a problem in that the output tends to decrease due to a sharp increase in resistance at the lower end of the SOC due to the weak structural stability due to a greater width of structural change during charge/discharge behavior.
  • the increase in resistance can be improved by increasing structural stability by disposing a cathode active material having a small Ni content in the lower region of the double-layer cathode active material layer.
  • the Ni content of the first positive electrode active material is 40 to 75 mol%, or 50 to 75 mol%, or 55 to 75 mol%, or 60 to 75 mol% of the total transition metal of the first positive electrode active material 75 mole %, or 65 to 75 mole %, or 65 to 70 mole %.
  • the Ni content of the second positive electrode active material is 80 to 90 mol%, or 81 to 90 mol%, or 82 to 90 mol%, or 84 to 90 mol%, or 86 to 90 mol% of the total transition metal of the second positive electrode active material 90 mole %.
  • the first positive active material and the second positive active material may be primary particles or secondary particles formed by aggregating primary particles to each other through a granulation process.
  • the average particle diameter (D50) of the first positive electrode active material may be 3 ⁇ m to 15 ⁇ m, specifically 5 ⁇ m to 12 ⁇ m, and more specifically 6 ⁇ m to 10 ⁇ m.
  • the D50 of the second positive electrode active material may be 5 ⁇ m to 20 ⁇ m, specifically 7 ⁇ m to 18 ⁇ m, and more specifically 10 ⁇ m to 15 ⁇ m.
  • particle diameter Dn means a particle diameter at an n% point of the cumulative distribution of the number of particles according to the particle diameter.
  • D50 is the particle size at 50% of the cumulative distribution of the number of particles according to the particle size, that is, the average particle diameter
  • D90 is the particle size at 90% of the cumulative distribution of the number of particles according to the particle size
  • D10 is the cumulative number of particles according to the particle size It is the particle size at the 10% point of the distribution.
  • the Dn may be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in the dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam to measure the particle size distribution to calculate D10, D50, and D90 can be measured by calculating the particle diameter at the point used as 10%, 50%, and 90% of the particle number cumulative distribution according to the particle diameter in a measuring apparatus.
  • a laser diffraction particle size measuring device eg Microtrac S3500
  • the first positive electrode active material included in the lower layer region of the positive electrode and the second positive electrode active material included in the upper layer region are lithium oxide active materials of nickel cobalt manganese having different Ni contents, so these A mixing region (intermixing) in which these different types of active materials are mixed with each other may exist at a portion where the lower layer region and the upper layer region contact each other.
  • This is a method in which the lower layer slurry containing the first positive electrode active material and the upper layer slurry containing the second positive electrode active material are continuously coated on the current collector at the same time or with a very short time difference, and then the active material layer is dried at the same time.
  • a predetermined mixing section is generated on the interface between the slurry for the lower layer and the slurry for the upper layer before drying, and after drying, the mixing section is formed in the form of a layer of the mixing section.
  • the weight ratio (ratio of the loading amount per unit area) of the lower layer region and the upper layer region of the positive electrode active material layer may be 20:80 to 80:20, specifically 30:70 to 70:30. . When this weight ratio range is satisfied, the adhesive force between the current collector and the positive electrode active material layer is further increased, and excellent fast charging performance can be exhibited.
  • the ratio of the thickness of the upper layer region and the lower layer region may be 20:80 to 80:20, specifically 30:70 to 70:30.
  • the thickness ratio range is satisfied, the adhesion between the current collector and the positive electrode active material layer is further increased, and excellent fast charging performance can be exhibited.
  • the total thickness of the positive electrode active material layer is not particularly limited. For example, it may be 40 to 200 ⁇ m.
  • the thickness of the lower layer region may be 20 to 150 ⁇ m, or 30 to 100 ⁇ m
  • the thickness of the upper layer region may be 20 to 150 ⁇ m, or 30 to 100 ⁇ m.
  • the adhesive force between the current collector and the positive electrode active material layer is further increased, and excellent fast charging performance can be exhibited.
  • the weight % of the first binder polymer in the lower layer region may be greater than the weight % of the second binder polymer in the upper layer region.
  • the ratio (a/b) of the weight % (a) of the first binder polymer in the solid content of the lower layer slurry to the weight % (b) of the second binder polymer in the solid content of the upper layer slurry is 1 to 5 , or from 1.1 to 5, or from 1 to 4, or from 1.2 to 4, or from 1 to 3, or from 1.5 to 3, or from 2.1 to 3.
  • the ratio (% by weight) of the first binder polymer in the lower region of the positive electrode active material layer is 1 to 3% by weight, or 1.5 to 2.5% by weight, or 1.5 to 2.4% by weight, and the positive electrode active material
  • the proportion (wt%) of the second binder polymer in the upper layer may be 0.5 to 3 wt%, or 1 to 2.5 wt%, or 1 to 2.4 wt%.
  • the total ratio (wt%) of the first binder polymer and the second binder polymer in the entire positive electrode active material layer is 1 to 3 wt%, or 1 to 2 wt%, or 2 to 3 wt% , or 1 to 2.4% by weight, or 2.4 to 3% by weight.
  • Simultaneously drying the coated slurry for the lower layer and the slurry for the upper layer to form a positive electrode active material layer includes:
  • M1 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd,
  • M2 is at least one element selected from the group consisting of Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd and Gd.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon, nickel, Titanium, one surface-treated with silver, an aluminum-cadmium alloy, etc. may be used.
  • the thickness of the positive electrode current collector is not particularly limited, but may have a commonly applied thickness of 3 to 500 ⁇ m.
  • the first positive active material and the second positive active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the lower layer slurry and the upper layer slurry, respectively.
  • the positive electrode active material layer may further include a conductive material, and thus the lower layer slurry and the upper layer slurry may further include a conductive material, respectively.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon black, acetylene black, Ketjen black, channel black, Farness black, lamp black, thermal black, etc. carbon black-based carbon-based compounds; conductive fibers such as carbon fibers and metal fibers; metal powders such as fluorocarbon, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be added in an amount of 0.1 to 20% by weight based on the total weight of the positive electrode slurry composition.
  • the first binder polymer and the second binder polymer are components that assist in bonding between the conductive material, the active material, or the positive electrode current collector, and are typically included in an amount of 0.1 to 20% by weight based on the total weight of the positive electrode slurry composition.
  • first binder polymer and the second binder polymer are each independently polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile ( polyacrylonitrile), polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, poly acrylic acid, styrene butyrene rubber (SBR), lithium-substituted polyacrylate (Li-PAA), and the like.
  • PVDF-co-HEP polyvinylidene fluoride-hexafluoropropylene copolymer
  • polyvinylidene fluoride polyvinylidenefluoride
  • polyacrylonitrile polyacrylonitrile
  • the first dispersion medium and the second dispersion medium may each independently contain water or an organic solvent such as N-methyl-2-pyrrolidone (NMP), and the upper slurry and the lower slurry are the first cathode active material/second When the cathode active material, the first binder polymer/second binder polymer, and a conductive material are included, it may be used in an amount having a desirable viscosity.
  • NMP N-methyl-2-pyrrolidone
  • the coating method of the slurry for the lower layer and the slurry for the upper layer is not particularly limited as long as it is a method commonly used in the art.
  • a coating method using a slot die may be used, and in addition, a Mayer bar coating method, a gravure coating method, a dip coating method, a spray coating method, etc. may be used.
  • a double slot die A device such as a double slot die
  • the step of simultaneously drying the coated slurry for the lower layer and the slurry for the upper layer to form an active material layer includes drying the coated slurry for the lower layer and the slurry for the upper layer at the same time to remove the dispersion medium in the slurry, rolling, and vacuum drying It may include the step of forming an active material layer through.
  • the rolling may be performed by a method commonly used in the art, such as roll pressing, for example, may be performed at a pressure of 1 to 20 MPa and a temperature of 15 to 30 °C.
  • the rolling may be performed under the condition that the porosity of the electrode (active material layer) after rolling is 20 to 40%, or 25 to 35%, or 20 to 30%, or 30 to 40%.
  • Drying the coated slurry may be carried out, for example, at 70 to 110° C., or 75 to 100° C., or 80 to 90° C., for 10 to 30 minutes, or 15 to 25 minutes, or 20 to 30 minutes.
  • the drying temperature and time may be appropriately adjusted according to the type and content of the dispersion medium.
  • the drying temperature and time may be appropriately adjusted according to the type and content of the dispersion medium.
  • the ratio (a/b) of the weight % (a) of the first binder polymer in the solid content of the lower layer slurry to the weight % (b) of the second binder polymer in the solid content of the upper layer slurry is 1 to 5, or 1.1 to 5, or from 1 to 4, or from 1.2 to 4, or from 1 to 3, or from 1.5 to 3, or from 2.1 to 3.
  • the weight% of the first binder polymer in the solid content of the slurry for the lower layer is 1 to 3% by weight, or 1.5 to 2.5% by weight, or 1.5 to 2.4% by weight
  • the weight% of the second binder polymer in the solid content of the slurry for the upper layer may be 0.5 to 3% by weight, or 1 to 2.5% by weight, or 1 to 2.4% by weight.
  • the total ratio (weight %) of the first binder polymer and the second binder polymer in the total solid content of the slurry for the lower layer and the slurry for the upper layer is 1 to 3% by weight, or 1 to 2% by weight, or 2 to 3% by weight, or 1 to 2.4% by weight, or 2.4 to 3% by weight.
  • the positive electrode active material layer has a double-layer structure, and while interfacing with the positive electrode current collector, the lower layer region containing the first positive electrode active material and the first binder polymer and the lower layer region extending to the surface of the positive electrode active material layer while interfacing with the lower layer region and an upper layer region including a second positive electrode active material and a second binder polymer.
  • the lithium secondary battery including the positive electrode.
  • the lithium secondary battery may be manufactured by injecting a lithium salt-containing electrolyte into an electrode assembly including the positive electrode, the negative electrode, and a separator interposed therebetween as described above.
  • the negative electrode may be prepared in a form in which the negative electrode active material is bound to the negative electrode current collector according to a conventional method known in the art.
  • a conventional negative electrode active material that can be used for a negative electrode of a conventional electrochemical device can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon. , graphite or other carbons, silicon metal, lithium adsorption materials such as silicon oxide, etc. are preferable.
  • Non-limiting examples of the negative electrode current collector include a foil made of copper, gold, nickel, or a copper alloy, or a combination thereof.
  • the negative electrode active material After preparing a slurry by mixing the negative electrode active material, conductive material, binder and solvent, it is coated directly on the negative electrode current collector, or cast on a separate support and laminated with the negative electrode active material film peeled from the support on the negative electrode collector to form the negative electrode. can be manufactured.
  • the separator is a conventional porous polymer film used as a conventional separator, for example, an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer.
  • the prepared porous polymer film may be used alone or by laminating them.
  • an insulating thin film having high ion permeability and mechanical strength may be used.
  • the separator may include a safety reinforced separator (SRS) in which a ceramic material is thinly coated on a surface of the separator.
  • a conventional porous nonwoven fabric may be used, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like, but is not limited thereto.
  • the electrolyte includes a lithium salt as an electrolyte and an organic solvent for dissolving the same.
  • the lithium salt may be used without limitation as long as it is commonly used in electrolytes for secondary batteries.
  • the organic solvent included in the electrolyte may be used without limitation as long as it is commonly used, and representatively, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, dipropyl carbonate, dimethyl sulfoxide At least one selected from the group consisting of side, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite and tetrahydrofuran may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • a low-viscosity, low-dielectric constant linear carbonate such as carbonate is mixed in an appropriate ratio
  • an electrolyte having a high electrical conductivity can be prepared, which can be more preferably used.
  • the electrolyte stored according to the present invention may further include additives such as an overcharge inhibitor included in a conventional electrolyte.
  • a lithium secondary battery according to an embodiment of the present invention forms an electrode assembly by arranging a separator between a positive electrode and a negative electrode, and places the electrode assembly in, for example, a pouch, a cylindrical battery case or a prismatic battery case, and then the electrolyte When injected, the secondary battery can be completed.
  • a lithium secondary battery may be completed by stacking the electrode assembly, impregnating it with an electrolyte, and sealing the obtained result in a battery case.
  • the lithium secondary battery may be a stack type, a winding type, a stack and fold type, or a cable type.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • Preferred examples of the mid-to-large device include electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems. In particular, it is useful for hybrid electric vehicles and new and renewable energy storage batteries, which are areas requiring high output. can be used
  • Denka black was put in N-methyl pyrrolidone (NMP) and dispersed in a high-speed dispersing equipment (Spike Mill, Inoue Co.) to prepare a conductive material pre-dispersion. Thereafter, a slurry for the lower layer having a viscosity of 10,000 cps was prepared by mixing the positive electrode active material and the binder polymer with the conductive material linear dispersion.
  • NMP N-methyl pyrrolidone
  • Spike Mill, Inoue Co. high-speed dispersing equipment
  • the slurry for the lower layer contains 96.3 wt% of a cathode active material of the formula Li[Ni 0.65 Mn 0.15 Co 0.20 ]O 2 having a Ni content of 65% of the total transition metal, 1.3 wt% of Denka Black as a conductive material, and poly as a binder polymer 2.4% by weight of vinylidenefluoride (PVdF).
  • a cathode active material of the formula Li[Ni 0.65 Mn 0.15 Co 0.20 ]O 2 having a Ni content of 65% of the total transition metal, 1.3 wt% of Denka Black as a conductive material, and poly as a binder polymer 2.4% by weight of vinylidenefluoride (PVdF).
  • a slurry for the upper layer having a viscosity of 10,000 cps was prepared in the same manner as above, wherein the slurry for the upper layer had the formula Li[Ni 0.86 Mn 0.05 Co 0.07 ]Al 0.2 O 2 in which the Ni content was 86% of the total transition metal. 96.3 wt% of the cathode active material, 1.3 wt% of Denka Black as a conductive material, and 2.4 wt% of polyvinylidene fluoride (PVdF) as a binder polymer.
  • PVdF polyvinylidene fluoride
  • the slurry for the lower layer was placed in the lower slurry tank of the double-layer coater, and the slurry for the upper layer was provided in the upper slurry tank of the coater.
  • the total thickness of the positive electrode active material layer of the positive electrode was 175 ⁇ m
  • the thickness of the lower region of the positive electrode active material layer was 87 ⁇ m
  • the thickness of the upper region of the positive electrode active material layer was 87 ⁇ m.
  • the porosity of the positive electrode was 29%.
  • the weight ratio of the lower layer region and the upper layer region of the positive electrode active material layer was 50:50.
  • a negative active material slurry was prepared by dispersing 95.6% by weight of a negative active material (artificial graphite), 1.0% by weight of a conductive material (Super-C), and 3.4% by weight of a binder polymer (styrene-butadiene rubber) in water.
  • the slurry was applied on a copper negative electrode current collector having a thickness of 8 ⁇ m, and then dried and rolled under 150° C. conditions to prepare a negative electrode.
  • the total thickness of the negative electrode active material layer of the negative electrode was 212 ⁇ m, and the porosity of the negative electrode was 29.0%.
  • a polyethylene porous film was put as a separator between the negative electrode and the positive electrode, and this was put into a battery case, and then electrolyte was injected to prepare a secondary battery.
  • a secondary battery was prepared using a mixed solution of ethylene carbonate and ethylmethyl (3/7 volume ratio) in which 1.1M LiPF 6 was dissolved.
  • a positive electrode, a negative electrode, and a secondary battery were prepared in the same manner as in Example 1, except that the Ni content in the positive electrode active material was changed as shown in Table 1 below.
  • Denka black was put in N-methyl pyrrolidone (NMP) and dispersed in a high-speed dispersing equipment (Spike Mill, Inoue Co.) to prepare a conductive material pre-dispersion. Thereafter, a slurry having a viscosity of 10,000 cps was prepared by mixing the positive electrode active material and the binder polymer with the conductive material linear dispersion.
  • NMP N-methyl pyrrolidone
  • Spike Mill, Inoue Co. high-speed dispersing equipment
  • the slurry contains 96.3 wt% of a cathode active material of the formula Li[Ni 0.86 Mn 0.05 Co 0.07 ] Al 0.2 O 2 in which the Ni content is 86% of the total transition metal, 1.3 wt% of Denka Black as a conductive material, and poly as a binder polymer 2.4% by weight of vinylidenefluoride (PVdF).
  • a cathode active material of the formula Li[Ni 0.86 Mn 0.05 Co 0.07 ] Al 0.2 O 2 in which the Ni content is 86% of the total transition metal, 1.3 wt% of Denka Black as a conductive material, and poly as a binder polymer 2.4% by weight of vinylidenefluoride (PVdF).
  • the slurry was applied on an aluminum positive electrode current collector having a thickness of 12 ⁇ m using a single layer coater.
  • the total thickness of the positive electrode active material layer of the positive electrode was 175 ⁇ m.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode thus prepared was used.
  • the manufactured lithium secondary battery is reduced by 5% SOC from 100% to 0% of the depth of charge (SOC) within the driving voltage range of 2.5 to 4.25V at room temperature, and the resistance when each discharged under the conditions of 2.5C at SOC is measured. compared.
  • the resistance increase rate of the lower SOC (5-20%) section compared to the SOC 50 resistance was calculated by the following formula.
  • Resistance increase rate (%) [(resistance of the lower SOC (5-20%)) / (resistance of SOC 50%)] X 100
  • the resistance of the lower SOC (200%) is the average value of the resistances measured at SOC 5%, 10%, 15%, and 20%.)
  • the high temperature capacity retention rate was derived by calculating the ratio of the discharge capacity after 170 cycles to the discharge capacity after 1 cycle. The results are shown in Table 1 and FIG. 1 below.
  • Example 1 double layer coating Ni content in the total transition metal of the upper region cathode active material 86% Ni content in the total transition metal of the cathode active material in the lower layer region: 65% 145.3 96.2
  • Comparative Example 2 single layer coating Ni content in total transition metal of positive electrode active material 86% 163.0 92.3
  • SOC 50 resistance It was found that the resistance increase rate of the lower SOC (5-20%) section was low, and exhibited an excellent high-temperature capacity retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

양극집전체; 및 상기 양극집전체의 적어도 일면에 위치하는 양극활물질층을 구비하고, 상기 양극활물질층이 상기 양극집전체와 면접하면서 제1 양극활물질과 제1 바인더 고분자를 포함하는 하층 영역; 및 상기 하층 영역과 면접하면서 양극활물질층의 표면까지 연장되고, 제2 양극활물질과 제2 바인더 고분자를 포함하는 상층 영역;을 포함하고, 상기 상층 영역 내의 제2 양극활물질의 Ni 함량이 상기 하층 영역 내의 제1 양극활물질의 Ni 함량 보다 더 많은 것을 특징으로 하는 양극, 및 이를 포함하는 리튬 이차전지가 제시된다.

Description

양극 및 이를 포함하는 리튬 이차전지
본 발명은 양극, 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는 높은 초기효율과, 우수한 급속충전 성능을 나타내는 양극 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2021년 1월 8일에 출원된 한국출원 제10-2021-0002853호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 갖고 사이클 수명이 길며, 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 전해질이 함침되어 있는 구조로 이루어져 있으며, 상기 전극은 활물질, 바인더 및 도전재가 용매에 분산되어 있는 슬러리를 집전체에 도포하고 건조 및 압연(pressing)하여 제조된다.
리튬 이차전지는 충방전 반응의 전극 간의 전기 전도를 리튬이온이 담당하는 이차전지이며 니켈 수소 축전지나 니켈 카드뮴 축전지 등의 다른 이차전지와 비교하여 에너지 밀도가 높고 메모리 효과가 작은 등의 특징을 가지고 있다. 따라서 휴대 전자기기, 가정용 전기기기 등의 소형 전원에서 전력 저장 장치, UPS 장치, 전력 평준화 장치 등의 정치용 전원이나 선박, 철도, 하이브리드 자동차, 전기 자동차 등의 구동 전원 등의 중형 대형 전원에 이를 때까지 그 용도가 확대해 있고 전지 성능의 새로운 향상이 요구되고 있다. 예를 들면 하이브리드 자동차나 전기 자동차 등의 차재 용도에 있어서는 항속 거리의 장거리화를 실현하는 고에너지 밀도나 가속 응답성을 향상시키기 위한 고출력화가 요구되어 있다.
고출력 및 고에너지밀도 전기 자동차용 이차전지 구현을 위해 니켈(Ni) 함량이 높은 양극을 사용하여 전극을 제조하고 있다.
하지만, 낮은 Ni 조성의 양극 대비 높은 Ni 조성의 양극을 사용할 경우, 전지의 SOC(state of charge)에 따른 저항변화 등에서 영향이 있고, 대부분 이차전지의 저항이 높아진다는 단점이 있다. 이런 문제를 개선하기 위하여 양극의 구조 및 조성 설계를 통해 전극 및 셀의 저항을 제어할 수 있는 연구가 여전히 요구되고 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 한 목적은 방전 시 낮은 SOC에서 저항 증가가 방지되는 양극 및 이를 포함하는 이차전지를 제공하는 것이다.
전술한 본 발명의 과제를 해결하고자, 본 발명의 일 측면에 따르면 하기 구현예의 양극이 제공된다.
제1 구현예에 따르면,
양극집전체; 및
상기 양극집전체의 적어도 일면에 위치하는 양극활물질층을 구비하고,
상기 양극활물질층이 상기 양극집전체와 면접하면서 제1 양극활물질과 제1 바인더 고분자를 포함하는 하층 영역; 및 상기 하층 영역과 면접하면서 양극활물질층의 표면까지 연장되고, 제2 양극활물질과 제2 바인더 고분자를 포함하는 상층 영역;을 포함하고,
상기 하층 영역 내의 제1 양극활물질이 하기 화학식 1로 표시되고, 상기 상층 영역 내의 제2 양극활물질이 하기 화학식 2로 표시되고, 상기 제2 양극활물질의 Ni 함량이 상기 제1 양극활물질의 Ni 함량 보다 더 많은 것을 특징으로 하는 양극이 제공된다:
[화학식 1]
Li1+a[NixMnyCoz]M1tO2
상기 식에서,
0≤a≤0.2이고, 0.4≤x≤0.9이며, 0<y<1, 0<z<1, 0≤t<0.1, x+y+z+t=1 이고,
M1은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이고,
[화학식 2]
Li1+b[NiuMnvCow]M2sO2
상기 식에서,
0≤b≤0.2이고, 0.4≤u≤0.9이며, 0<v<1, 0<w<1, 0≤s<0.1, u+v+w+s=1 이고,
M2은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이다.
제2 구현예에 따르면, 제1 구현예에 있어서,
상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 40 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 80 내지 90 몰%일 수 있다.
제3 구현예에 따르면, 제1 구현예 또는 제2 구현예에 있어서,
상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 50 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 81 내지 90 몰%일 수 있다.
제4 구현예에 따르면, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 65 내지 70 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 86 내지 90 몰%알 수 있다.
제5 구현예에 따르면, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 양극활물질층의 하층 영역과 상층 영역의 중량비가 20:80 내지 80:20일 수 있다.
제6 구현예에 따르면,
하기 화학식 1로 표시되는 제1 양극활물질, 제1 바인더 고분자, 및 제1 분산매를 포함하는 하층용 슬러리와 하기 화학식 2로 표시되는 제2 양극활물질, 제2 바인더 고분자, 및 제2 분산매를 포함하는 상층용 슬러리를 준비하고, 이때, 상기 제2 양극활물질의 Ni 함량이 상기 제1 양극활물질의 Ni 함량 보다 더 많은 단계;
양극집전체의 적어도 일면에 상기 하층용 슬러리를 코팅하고, 상기 하층용 슬러리 위에 상기 상층용 슬러리를 코팅하는 단계; 및
상기 코팅된 하층용 슬러리 및 상층용 슬러리를 동시 건조하여 양극활물질층을 형성하는 단계;를 포함하는 양극의 제조방법이 제공된다:
[화학식 1]
Li1+a[NixMnyCoz]M1tO2
상기 식에서,
0≤a≤0.2이고, 0.4≤x≤0.9이며, 0<y<1, 0<z<1, 0≤t<0.1, x+y+z+t=1 이고,
M1은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이고,
[화학식 2]
Li1+b[NiuMnvCow]M2sO2
상기 식에서,
0≤b≤0.2이고, 0.4≤u≤0.9이며, 0<v<1, 0<w<1, 0≤s<0.1, u+v+w+s=1 이고,
M2은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이다.
제7 구현예에 따르면, 제6 구현예에 있어서,
상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 40 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 80 내지 90 몰%일 수 있다.
제8 구현예에 따르면, 제6 구현예 또는 제7 구현예에 있어서,
상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 50 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 81 내지 90 몰%일 수 있다.
제9 구현예에 따르면, 제6 구현예 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 65 내지 70 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 86 내지 90 몰%알 수 있다.
제10 구현예에 따르면,
제1 구현예 내지 제5 구현예 중 어느 한 구현예의 양극을 포함하는 리튬 이차전지가 제공된다.
본 발명의 일 구현예에 따르면, 양극활물질층에서 양극집전체와 면접하면서 제1 양극활물질과 제1 바인더 고분자를 포함하는 하층 영역과 상기 하층 영역 상에 위차하는 상층 영역을 구비하고 상기 상층 영역 내의 제2 양극활물질의 Ni 함량이 상기 하층 영역 내의 제1 양극활물질의 Ni 함량 보다 더 많도록 제어한 결과, 방전 시 낮은 SOC에서의 급격한 출력 저하를 보일 수 있는 저항 증가를 방지하고, 고온 사이클 성능이 개선된 양극과 이를 포함하는 이차전지를 제공할 수 있다.
또한, 본 발명의 일 구현예에 따르면, 양극활물질이 높게 코팅되는 고로딩 양극에서 더 효과를 가지며, 고용량, 고밀도화 전기차(EV)향 전지 구현에 적용 가능하다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 실시예 1, 실시예 2, 비교예 1, 및 비교예 2에서 제조된 이차전지의 사이클 증가에 따른 고온 용량 유지율을 나타낸 그래프이다.
이하, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 측면에 따른 양극은,
양극집전체; 및
상기 양극집전체의 적어도 일면에 위치하는 양극활물질층을 구비하고,
상기 양극활물질층이 상기 양극집전체와 면접하면서 제1 양극활물질과 제1 바인더 고분자를 포함하는 하층 영역; 및 상기 하층 영역과 면접하면서 양극활물질층의 표면까지 연장되고, 제2 양극활물질과 제2 바인더 고분자를 포함하는 상층 영역;을 포함하고,
상기 하층 영역 내의 제1 양극활물질이 하기 화학식 1로 표시되고, 상기 상층 영역 내의 제2 양극활물질이 하기 화학식 2로 표시되고, 상기 제2 양극활물질의 Ni 함량이 상기 제1 양극활물질의 Ni 함량 보다 더 많다:
[화학식 1]
Li1+a[NixMnyCoz]M1tO2
상기 식에서,
0≤a≤0.2이고, 0.4≤x≤0.9이며, 0<y<1, 0<z<1, 0≤t<0.1, x+y+z+t=1 이고,
M1은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이고,
[화학식 2]
Li1+b[NiuMnvCow]M2sO2
상기 식에서,
0≤b≤0.2이고, 0.4≤u≤0.9이며, 0<v<1, 0<w<1, 0≤s<0.1, u+v+w+s=1 이고,
M2은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이다.
본 발명에서는 양극의 이중증(Double layer, DLD) 코팅 기술을 통해 양극의 상층 및 하층에 Ni 함량이 다른 2종 양극활물질을 배치하되, 상층의 양극활물질의 Ni 함량이 하층의 양극활물질의 Ni 함량 보다 많도록 제어하여 양극을 제조하는 기술을 제시한다. 이를 활용하여 본 발명에서는 이차전지의 출력에 영향을 주는 하단 SOC 영역의 저항을 제어하는 것을 목적으로 한다.
또한, 본 발명은 기본적으로 양극활물질이 높게 코팅되는 고로딩 전극에서 더 효과를 가지며, 고용량, 고밀도화 전기차(EV)향 전지 구현에 적용 가능할 수 있다. 통상 Ni 함량이 많은 양극활물질인 고함량 Ni(high Ni) 양극활물질은 전체 전이금속 중 Ni를 80 몰% 이상 포함하는 것을 의미한다.
이러한 고함량 Ni 양극활물질은 충/방전 거동 시 구조 변화의 폭이 더 많아 구조적 안정성이 약한 이유로 SOC 하단에서 저항이 급격히 증가하여 출력이 저하되는 경향을 보이는 문제가 있다.
본 발명에서는 이중층 양극활물질층의 하층 영역에 Ni 함량이 작은 양극활물질을 배치함으로써 구조적 안정성을 높임으로써 저항증가를 개선할 수 있다.
본 발명의 일 구현예에 따르면, 상기 제1 양극활물질의 Ni 함량은 제1 양극활물질의 전체 전이금속 중 40 내지 75 몰%, 또는 50 내지 75 몰%, 또는 55 내지 75 몰%, 또는 60 내지 75 몰%, 또는 65 내지 75 몰%, 또는 65 내지 70 몰%일 수 있다.
또한, 상기 제2 양극활물질의 Ni 함량은 제2 양극활물질의 전체 전이금속 중 80 내지 90 몰%, 또는 81 내지 90 몰%, 또는 82 내지 90 몰%, 또는 84 내지 90 몰%, 또는 86 내지 90 몰%일 수 있다.
상기 제1 양극활물질 및 제2 양극활물질은 1차 입자, 또는 1차 입자가 조립화 공정을 통해 서로 응집되어 형성된 2차 입자일 수 있다.
입도 분포도 상에서, 상기 제1 양극활물질의 평균입경(D50)은 3 ㎛ 내지 15 ㎛일 수 있으며, 구체적으로 5 ㎛ 내지 12 ㎛일 수 있고, 보다 구체적으로 6 ㎛ 내지 10 ㎛일 수 있다.
또한, 상기 제2 양극활물질의 D50은 5 ㎛ 내지 20 ㎛일 수 있으며, 구체적으로 7 ㎛ 내지 18 ㎛일 수 있고, 보다 구체적으로 10 ㎛ 내지 15 ㎛일 수 있다.
본 명세서에서, “입경 Dn”은, 입경에 따른 입자 개수 누적 분포의 n% 지점에서의 입경을 의미한다. D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경, 즉, 평균입경이라고 칭하며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다.
상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
본 발명의 일 구현예에 따르면, 상기 양극의 하층 영역에 포함되는 제1 양극활물질과 상층 영역에 포함되는 및 제2 양극활물질은 Ni 함량이 서로 상이한 종류의 니켈코발트망간의 리튬산화물 활물질이므로, 이러한 하층 영역과 상층 영역이 맞닿는 부분에 이들 상이한 종류의 활물질들이 서로 혼재하는 혼합 영역(인터믹싱, intermixing)이 존재할 수 있다. 이는 제1 양극활물질을 포함하는 하층용 슬러리와 제2 양극활물질을 포함하는 상층용 슬러리를 집전체 상에 동시에 또는 매우 짧은 시간 차이를 두고 연속적으로 코팅을 하고, 이후 동시에 건조하는 방식으로 활물질층을 형성하는 경우에, 하층용 슬러리와 상층용 슬러리가 건조 전에 맞닿은 계면 상에 소정의 혼합 구간이 발생하고 이후 건조되면서 이러한 혼합 구간이 혼합 영역의 층 형태로 형성되기 때문이다.
본 발명의 일 구현예에서, 상기 양극활물질층의 하층 영역과 상층 영역의 중량비(단위 면적당 로딩양의 비)가 20:80 내지 80:20, 상세하게는 30:70 내지 70:30 일 수 있다. 이러한 중량비 범위를 만족하는 경우에 집전체와 양극활물질층 간의 접착력이 더 증가되며, 우수한 급속충전 성능을 발휘할 수 있다.
본 발명의 일 구현예에서, 상기 상층 영역과 상기 하층 영역의 두께의 비는 20:80 내지 80:20, 상세하게는 30:70 내지 70:30 일 수 있다. 이러한 두께의 비 범위를 만족하는 경우에 집전체와 양극활물질층 간의 접착력이 더 증가되며, 우수한 급속충전 성능을 발휘할 수 있다.
본 발명의 일 구현예에서, 상기 양극활물질층의 전체 두께는 특별히 한정되지 않는다. 예컨대 40 내지 200㎛일 수 있다. 또한, 상기 양극활물질층에서 상기 하층 영역의 두께는 20 내지 150 ㎛, 또는 30 내지 100 ㎛일 수 있고, 상기 상층 영역의 두께는 20 내지 150 ㎛, 또는 30 내지 100 ㎛일 수 있다.
이때, 상기 상층 영역과 하층 영역의 두께가 이러한 범위를 만족하는 경우에 집전체와 양극활물질층 간의 접착력이 더 증가되며, 우수한 급속충전 성능을 발휘할 수 있다.
상기 하층 영역에서 제1 바인더 고분자의 중량%가 상기 상층 영역에서 제2 바인더 고분자의 중량% 보다 클 수 있다.
구체적으로, 상기 상층용 슬러리의 고형분에서 제2 바인더 고분자의 중량%(b)에 대한 상기 하층용 슬러리의 고형분에서 제1 바인더 고분자의 중량%(a)의 비(a/b)가 1 내지 5, 또는 1.1 내지 5, 또는 1 내지 4, 또는 1.2 내지 4, 또는 1 내지 3, 또는 1.5 내지 3, 또는 2.1 내지 3 일 수 있다.
이때, 상기 하층 영역에서 제1 바인더의 중량% 및 상기 상층 영역에서 제2 바인더의 중량%의 비율이 이러한 범위를 만족하는 경우에 우수한 집전체와 양극활물질층간의 접착력과 급속충전 성능을 발휘할 수 있다.
본 발명의 일 구현예에서, 상기 양극활물질층 하층 영역내의 제1 바인더 고분자의 비율(중량%)이 1 내지 3 중량%, 또는 1.5 내지 2.5 중량%, 또는 1.5 내지 2.4 중량%이고, 상기 양극활물질층 상층 내의 제2 바인더 고분자의 비율(중량%)이 0.5 내지 3 중량%, 또는 1 내지 2.5 중량%, 또는 1 내지 2.4 중량%일 수 있다.
본 발명의 일 구현예에서, 상기 양극활물질층 전체의 제1 바인더 고분자 및 제2 바인더 고분자의 총비율(중량%)이 1 내지 3 중량%, 또는 1 내지 2 중량%, 또는 2 내지 3 중량%, 또는 1 내지 2.4 중량%, 또는 2.4 내지 3 중량%일 수 있다.
본 발명의 일 측면에 따른 양극의 제조방법은,
하기 화학식 1로 표시되는 제1 양극활물질, 제1 바인더 고분자, 및 제1 분산매를 포함하는 하층용 슬러리와 하기 화학식 2로 표시되는 제2 양극활물질, 제2 바인더 고분자, 및 제2 분산매를 포함하는 상층용 슬러리를 준비하고, 이때, 상기 제2 양극활물질의 Ni 함량이 상기 제1 양극활물질의 Ni 함량 보다 더 많은 단계;
양극집전체의 적어도 일면에 상기 하층용 슬러리를 코팅하고, 상기 하층용 슬러리 위에 상기 상층용 슬러리를 코팅하는 단계; 및
상기 코팅된 하층용 슬러리 및 상층용 슬러리를 동시 건조하여 양극활물질층을 형성하는 단계;를 포함한다:
[화학식 1]
Li1+a[NixMnyCoz]M1tO2
상기 식에서,
0≤a≤0.2이고, 0.4≤x≤0.9이며, 0<y<1, 0<z<1, 0≤t<0.1, x+y+z+t=1 이고,
M1은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이고,
[화학식 2]
Li1+b[NiuMnvCow]M2sO2
상기 식에서,
0≤b≤0.2이고, 0.4≤u≤0.9이며, 0<v<1, 0<w<1, 0≤s<0.1, u+v+w+s=1 이고,
M2은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이다.
상기 양극집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 양극집전체의 두께는 특별히 제한되지는 않으나, 통상적으로 적용되는 3 내지 500 ㎛의 두께를 가질 수 있다.
상기 제1 양극활물질 및 제2 양극활물질은 하층용 슬러리와 상층용 슬러리의 각각 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 양극활물질층에는 도전재를 더 포함할 수 있으며, 따라서 상기 하층용 슬러리와 상층용 슬러리에도 각각 도전재를 더 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지는 않으며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙계 탄소계 화합물; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 도전재는 양극 슬러리 조성물의 전체 중량을 기준으로 0.1 내지 20 중량%로 첨가될 수 있다.
상기 제1 바인더 고분자 및 제2 바인더 고분자는 도전재, 및 활물질, 또는 양극집전체 간의 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 조성물 전체 중량을 기준으로 0.1 내지 20 중량%로 포함된다. 상기 제1 바인더 고분자 및 제2 바인더 고분자의 예로는 각각 독립적으로 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 스티렌 부티렌 고무(SBR), 리튬-치환된 폴리아크릴레이트(lithium polyacrylate, Li-PAA) 등을 들 수 있다.
상기 제1 분산매 및 제2 분산매는 각각 독립적으로 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 상층용 슬러리 및 하층용 슬러리가 제1 양극활물질/제2 양극활물질, 및 제1 바인더 고분자/제2 바인더 고분자, 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다.
또한, 상기 하층용 슬러리 및 상층용 슬러리의 코팅 방법은 당해 분야에서 통상적으로 사용되는 방법이라면 특별히 한정되지 않는다. 예컨대, 슬롯 다이를 이용한 코팅법이 사용될 수도 있고, 그 이외에도 메이어 바 코팅법, 그라비아 코팅법, 침지 코팅법, 분무 코팅법 등이 사용될 수 있다.
본 발명의 일 구현예에서, 양극집전체의 일면에 상기 하층용 슬러리를 코팅하고, 상기 하층용 슬러리 위에 상기 상층용 슬러리를 코팅하는 단계가 동시에 또는 매우 짧은 시간 내에 실시되는 경우에 이중 슬롯 다이(double slot die) 등의 장치를 사용할 수 있다.
상기 코팅된 하층용 슬러리 및 상층용 슬러리를 동시에 건조하여 활물질층을 형성하는 단계는, 상기 코팅된 하층용 슬러리 및 상층용 슬러리를 동시에 건조하여 슬러리 내의 분산매를 제거하고, 압연을 한 후, 진공 건조를 거쳐서 활물질층을 형성하는 단계를 포함할 수 있다.
이때, 상기 압연은 롤 프레싱(roll pressing)과 같이 당업 분야에서 통상적으로 사용되는 방법에 의해 수행될 수 있으며, 예컨대, 1 내지 20 MPa의 압력 및 15 내지 30℃의 온도에서 수행될 수 있다. 또한, 상기 압연은 압연 후 전극(활물질층)의 기공도가 20 내지 40%, 또는 25 내지 35%, 또는 20 내지 30%, 또는 30 내지 40%가 되는 조건으로 실시될 수 있다.
상기 코팅된 슬러리를 건조하는 단계는 예를 들어, 70 내지 110℃, 또는 75 내지 100℃, 또는 80 내지 90℃에서, 10 내지 30분, 또는 15 내지 25분, 또는 20 내지 30분 동안 실시될 수 있으나, 이러한 건조 온도 및 시간은 분산매의 종류 및 함량에 따라서 적절하게 조절될 수 있다.
또한, 상기 건조된 슬러리층을 압연한 후에 100 내지 170℃, 또는 120 내지 150℃, 또는 130 내지 150℃의 온도에서 약 3 내지 10 시간, 또는 5 내지 8 시간 동안 진공 건조 방식으로 실시될 수 있으나, 이러한 건조 온도 및 시간은 분산매의 종류 및 함량에 따라서 적절하게 조절될 수 있다.
상기 상층용 슬러리의 고형분에서 제2 바인더 고분자의 중량%(b)에 대한 상기 하층용 슬러리의 고형분에서 제1 바인더 고분자의 중량%(a)의 비(a/b)가 1 내지 5, 또는 1.1 내지 5, 또는 1 내지 4, 또는 1.2 내지 4, 또는 1 내지 3, 또는 1.5 내지 3, 또는 2.1 내지 3 일 수 있다.
이때, 상기 코팅된 하층용 슬러리에서 제1 바인더의 중량% 및 상기 코팅된 상층용 슬러리에서 제2 바인더의 중량%의 비율이 이러한 범위를 만족하는 경우에 우수한 접착력과 급속충전 성능을 발휘할 수 있다.
상기 하층용 슬러리의 고형분에서 제1 바인더 고분자의 중량%가 1 내지 3 중량%, 또는 1.5 내지 2.5 중량%, 또는 1.5 내지 2.4 중량%이고, 상기 상층용 슬러리의 고형분에서 제2 바인더 고분자의 중량%가 0.5 내지 3 중량%, 또는 1 내지 2.5 중량%, 또는 1 내지 2.4 중량%일 수 있다.
상기 하층용 슬러리 및 상기 상층용 슬러리 전체의 고형분에서 제1 바인더 고분자 및 제2 바인더 고분자의 총비율(중량%)이 1 내지 3 중량%, 또는 1 내지 2 중량%, 또는 2 내지 3 중량%, 또는 1 내지 2.4 중량%, 또는 2.4 내지 3 중량%일 수 있다.
전술한 바와 같이 상기 양극활물질층은 이중층 구조를 가지며, 상기 양극집전체와 면접하면서 제1 양극활물질과 제1 바인더 고분자를 포함하는 하층 영역과 상기 하층 영역과 면접하면서 양극활물질층의 표면까지 연장되면서 제2 양극활물질과 제2 바인더 고분자를 포함하는 상층 영역을 포함한다.
본 발명의 또 다른 일 실시형태는 상기 양극을 포함하는 리튬 이차전지에 관한 것이다. 구체적으로, 상기 리튬 이차전지는 상술한 바와 같은 양극, 음극 및 그 사이에 개재된 세퍼레이터를 포함하는 전극 조립체에 리튬염 함유 전해질을 주입하여 제조될 수 있다.
상기 음극은 당업계에 알려진 통상적인 방법에 따라 음극활물질을 음극집전체에 결착된 형태로 제조할 수 있다. 상기 음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류, 규소 금속, 규소산화물 등과 같은 리튬 흡착물질 등이 바람직하다. 음극집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
음극 활물질, 도전재, 바인더 및 용매를 혼합하여 슬러리를 제조한 후 이를 음극집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 음극 활물질 필름을 음극집전체에 라미네이션하여 음극을 제조할 수 있다.
상기 세퍼레이터는 종래 세퍼레이터로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독 또는 이들을 적층하여 사용할 수 있다. 또한, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있다. 상기 세퍼레이터는 세퍼레이터 표면에 세라믹 물질이 얇게 코팅된 안정성 강화 세퍼레이터(SRS, safety reinforced separator)을 포함할 수 있다. 이외에도 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 전해액은 전해질로서 리튬염 및 이를 용해시키기 위한 유기용매를 포함한다.
상기 리튬염은 이차전지용 전해액에 통상적으로 사용되는 것들이면 제한 없이 사용될 수 있으며, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN-, (CF3CF2SO2)2N-, 또는 이들 중 2 이상을 사용할 수 있다.
상기 전해액에 포함되는 유기 용매로는 통상적으로 사용되는 것들이면 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이트 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌카보네이트 및 프로필렌카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명에 따라 저장되는 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 리튬 이차전지는 양극과 음극 사이에 세퍼레이터를 배치하여 전극 조립체를 형성하고, 상기 전극 조립체를 예를 들어, 파우치, 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음, 전해질을 주입하면 이차전지가 완성될 수 있다. 또는 상기 전극 조립체를 적층한 다음, 이를 전해액에 함침시키고, 얻어진 결과물을 전지 케이스에 넣어 밀봉하면 리튬 이차전지가 완성될 수 있다.
본 발명의 일 실시예에 따르면, 상기 리튬 이차전지는 스택형, 권취형, 스택 앤 폴딩형 또는 케이블형일 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있으며, 특히 고출력이 요구되는 영역인 하이브리드 전기자동차 및 신재생 에너지 저장용 배터리 등에 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
(1) 양극 제조
도전재로 덴카 블랙(Denka black)을 N-메틸 피롤리돈(NMP)에 넣고 고속 분산 장비(스파이크 밀, Inoue 社)에 넣고 분산시켜 도전재 선분산액을 제조하였다. 이후, 상기 도전재 선분산액에 양극 활물질과 바인더 고분자를 혼합하여 점도가 10,000 cps인 하층용 슬러리를 제조하였다.
이때, 상기 하층용 슬러리는 Ni 함량이 전체 전이금속 중 65%인 화학식 Li[Ni0.65Mn0.15Co0.20]O2 의 양극활물질 96.3 중량%, 도전재로 덴카 블랙 1.3 중량%, 및 바인더 고분자로 폴리비닐리덴플루오라이드(PVdF) 2.4 중량%를 포함하였다.
또한, 상기와 같은 방식으로 점도가 10,000cps인 상층용 슬러리를 제조하였는데, 이 때 상기 상층용 슬러리는 Ni 함량이 전체 전이금속 중 86%인 화학식 Li[Ni0.86Mn0.05Co0.07]Al0.2O2 의 양극활물질 96.3 중량%, 도전재로 덴카 블랙 1.3 중량%, 및 바인더 고분자로 폴리비닐리덴플루오라이드(PVdF) 2.4 중량%를 포함하였다.
상기 하층용 슬러리를 이중층 코팅기의 하층부 슬러리 탱크에, 상층용 슬러리를 코팅기의 상층부 슬러리 탱크에 구비하여 12㎛ 두께의 알루미늄 양극집전체 상에 상기 하층용 슬러리와 상층용 슬러리를 동시 순차적으로 도포하였다.
이후, 이를 110℃ 조건 하에서 건조하고 압연하여 2층 코팅층이 적층된 양극을 제조하였다. 이때 상기 양극의 양극활물질층의 전체 두께는 175㎛이었고, 상기 양극활물질층의 하층 영역의 두께는 87㎛이었고, 상기 양극활물질층의 상층 영역의 두께는 87㎛이었다. 상기 양극의 공극율은 29%이었다. 상기 양극활물질층의 하층 영역과 상층 영역의 중량비는 50:50이었다.
(2) 음극 제조
음극 활물질(인조흑연) 95.6 중량%, 도전재(Super-C) 1.0 중량%, 및 바인더 고분자(스티렌부타디엔고무) 3.4 중량%를 물에 분산시켜 음극활물질 슬러리를 제조하였다. 상기 슬러리를 8㎛ 두께의 구리 음극집전체 상에 도포한 다음, 이를 150℃ 조건 하에서 건조하고 압연하여 음극을 제조하였다. 이때 음극의 음극활물질층의 전체 두께는 212㎛이었고, 상기 음극의 공극율은 29.0 %이었다.
(3) 전지 제조
상기 음극과 양극 사이에 세퍼레이터로 폴리에틸렌 다공성 필름을 넣고, 이를 전지 케이스에 넣은 다음 전해액을 주입하여 이차 전지를 제조하였다. 이때, 전해액은 1.1M LiPF6가 용해된 에틸렌 카보네이트 및 에틸메틸 (3/7 부피비)의 혼합 용액을 사용하여 이차 전지를 제조하였다.
실시예 2
하기 표 1에 기재된 바와 같이 양극활물질에서 Ni 함량을 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 양극, 음극, 및 이차 전지를 제조하였다.
비교예 1
Ni 함량이 전체 전이금속 중 86%인 화학식 Li[Ni0.86Mn0.05Co0.07]Al0.2O2 의 양극활물질 96.3 중량%, 도전재로 덴카 블랙 1.3 중량%, 및 바인더 고분자로 폴리비닐리덴플루오라이드(PVdF) 2.4 중량%를 혼합하여 점도가 10,000 cps인 하층용 슬러리를 제조하고,
Ni 함량이 전체 전이금속 중 65%인 화학식 Li1+b[Ni0.65Mn0.15Co0.20]O2의 양극활물질 96.3 중량%, 도전재로 덴카 블랙 1.3 중량%, 및 바인더 고분자로 폴리비닐리덴플루오라이드(PVdF) 2.4 중량%를 혼합하여 점도가 10,000 cps인 상층용 슬러리를 제조한 점을 제외하고는 실시예 1과 동일한 방법으로 음극활물질 및 음극을 제조하였다.
비교예 2
도전재로 덴카 블랙(Denka black)을 N-메틸 피롤리돈(NMP)에 넣고 고속 분산 장비(스파이크 밀, Inoue 社)에 넣고 분산시켜 도전재 선분산액을 제조하였다. 이후, 상기 도전재 선분산액에 양극 활물질과 바인더 고분자를 혼합하여 점도가 10,000 cps인 슬러리를 제조하였다.
이때, 상기 슬러리는 Ni 함량이 전체 전이금속 중 86%인 화학식 Li[Ni0.86Mn0.05Co0.07]Al0.2O2 의 양극활물질 96.3 중량%, 도전재로 덴카 블랙 1.3 중량%, 및 바인더 고분자로 폴리비닐리덴플루오라이드(PVdF) 2.4 중량%를 포함하였다.
상기 슬러리를 단층 코팅기를 이용하여, 12 ㎛ 두께의 알루미늄 양극집전체 상에 도포하였다.
이후, 이를 110℃ 조건 하에서 건조하고 압연하여 단일층 코팅층이 적층된 양극을 제조하였다. 이때 상기 양극의 양극활물질층의 전체 두께는 175 ㎛이었다.
이렇게 제조된 양극을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
전술한 실시예 1 내지 2 및 비교예 1 내지 2에서 제조된 양극, 및 리튬 이차전지의 특성을 아래와 같이 평가하였다.
실험예 1: SOC 50% 저항 대비 하단 SOC (5~20%) 구간의 저항 증가율 평가
실시예 1 내지 2, 및 비교예 1 내지 2에서 제조된 리튬 이차전지를 각각 사용하여, 하기 조건과 방법으로 SOC 50% 저항 대비 하단 SOC (5~20%) 구간의 저항 증가율 평가하고, 그 결과를 표 1에 나타내었다.
제조된 리튬 이차전지를 상온에서 2.5 내지 4.25V 구동전압 범위 내에서 충전심도(SOC) 100%에서 0%까지 SOC 5%씩 감소시키며 각각 SOC에서 2.5C의 조건으로 방전하였을 때의 저항을 측정하여 비교하였다.
또한, SOC 50 저항 대비 하단 SOC (5~20%) 구간의 저항 증가율은 하기 식에 의해 계산하였다.
저항 증가율(%) = [(하단 SOC (5~20%)의 저항) / (SOC 50%의 저항)] X 100
(상기 식에서, 이때, 하단 SOC (5~20%)의 저항은 SOC 5%, 10%, 15%, 및 20%에서 측정된 저항의 평균값이다.)
실험예 2: 고온 용량 유지율 평가
실시예 1 내지 2, 및 비교예 1 내지 2에서 리튬 이차전지에 대해 45℃에서 하기 조건으로 충전 및 방전을 170 사이클 동안 수행하여 고온 용량 유지율을 평가하였다.
충전 조건: CC (정전류)/C V(정전압), (4.25V, 0.005C current cut-off)
방전 조건: CC (정전류)조건 2.5V
고온 용량 유지율은 1 사이클 후 방전 용량 대비 170 사이클 후 방전 용량의 비를 계산에 의해 도출하였다. 그 결과를 하기 표 1 및 도 1에 나타내었다.
전극 코팅
형태
양극활물질에서 Ni 함량
(전체 전이금속 중 몰%)
SOC 50 저항 대비
하단 SOC (5~20%)
구간의 저항 증가율 (%)
고온 용량 유지율 (%)
(170 사이클 후)
실시예 1 이중층 코팅 상층 영역 양극활물질의 전체 전이금속 중 Ni 함량: 86%
하층 영역 양극활물질의 전체 전이금속 중 Ni 함량: 65%
145.3 96.2
실시예 2 이중층 코팅 상층 영역 양극활물질의 전체 전이금속 중 Ni 함량: 90%
하층 영역 양극활물질의 전체 전이금속 중 Ni 함량: 70%
147.6 95.7
비교예 1 이중층 코팅 상층 영역 양극활물질의 전체 전이금속 중 Ni 함량: 65%
하층 영역 양극활물질의 전체 전이금속 중 Ni 함량: 86%
157.7 94.9
비교예 2 단일층 코팅 양극활물질의 전체 전이금속 중 Ni 함량: 86% 163.0 92.3
표 1을 참조하면, 상기 상층 영역 내의 제2 양극활물질의 Ni 함량이 상기 하층 영역 내의 제1 양극활물질의 Ni 함량 보다 더 많도록 제어된 이중층 활물질층을 구비한 양극을 채용한 실시예 1 및 실시예 2의 이차전지가 Ni 함량이 서로 뒤바뀐 이중층 활물질층을 구비한 양극을 채용한 비교예 1 및 단일층 활물질층을 구비한 양극을 채용한 비교예 2의 이차전지와 비교하여, SOC 50 저항 대비 하단 SOC (5~20%) 구간의 저항 증가율이 낮고, 우수한 고온 용량 유지율을 나타내는 것을 알 수 있었다.

Claims (10)

  1. 양극집전체; 및
    상기 양극집전체의 적어도 일면에 위치하는 양극활물질층을 구비하고,
    상기 양극활물질층이 상기 양극집전체와 면접하면서 제1 양극활물질과 제1 바인더 고분자를 포함하는 하층 영역; 및 상기 하층 영역과 면접하면서 양극활물질층의 표면까지 연장되고, 제2 양극활물질과 제2 바인더 고분자를 포함하는 상층 영역;을 포함하고,
    상기 하층 영역 내의 제1 양극활물질이 하기 화학식 1로 표시되고, 상기 상층 영역 내의 제2 양극활물질이 하기 화학식 2로 표시되고, 상기 제2 양극활물질의 Ni 함량이 상기 제1 양극활물질의 Ni 함량 보다 더 많은 것을 특징으로 하는 양극:
    [화학식 1]
    Li1+a[NixMnyCoz]M1tO2
    상기 식에서,
    0≤a≤0.2이고, 0.4≤x≤0.9이며, 0<y<1, 0<z<1, 0≤t<0.1, x+y+z+t=1 이고,
    M1은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이고,
    [화학식 2]
    Li1+b[NiuMnvCow]M2sO2
    상기 식에서,
    0≤b≤0.2이고, 0.4≤u≤0.9이며, 0<v<1, 0<w<1, 0≤s<0.1, u+v+w+s=1 이고,
    M2은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이다.
  2. 제1항에 있어서,
    상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 40 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 80 내지 90 몰%인 것을 특징으로 하는 양극.
  3. 제1항에 있어서,
    상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 50 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 81 내지 90 몰%인 것을 특징으로 하는 양극.
  4. 제1항에 있어서,
    상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 65 내지 70 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 86 내지 90 몰%인 것을 특징으로 하는 양극.
  5. 제1항에 있어서,
    상기 양극활물질층의 하층 영역과 상층 영역의 중량비가 20:80 내지 80:20인 것을 특징으로 하는 양극.
  6. 하기 화학식 1로 표시되는 제1 양극활물질, 제1 바인더 고분자, 및 제1 분산매를 포함하는 하층용 슬러리와 하기 화학식 2로 표시되는 제2 양극활물질, 제2 바인더 고분자, 및 제2 분산매를 포함하는 상층용 슬러리를 준비하고, 이때, 상기 제2 양극활물질의 Ni 함량이 상기 제1 양극활물질의 Ni 함량 보다 더 많은 단계;
    양극집전체의 적어도 일면에 상기 하층용 슬러리를 코팅하고, 상기 하층용 슬러리 위에 상기 상층용 슬러리를 코팅하는 단계; 및
    상기 코팅된 하층용 슬러리 및 상층용 슬러리를 동시 건조하여 양극활물질층을 형성하는 단계;를 포함하는 양극의 제조방법:
    [화학식 1]
    Li1+a[NixMnyCoz]M1tO2
    상기 식에서,
    0≤a≤0.2이고, 0.4≤x≤0.9이며, 0<y<1, 0<z<1, 0≤t<0.1, x+y+z+t=1 이고,
    M1은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이고,
    [화학식 2]
    Li1+b[NiuMnvCow]M2sO2
    상기 식에서,
    0≤b≤0.2이고, 0.4≤u≤0.9이며, 0<v<1, 0<w<1, 0≤s<0.1, u+v+w+s=1 이고,
    M2은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이다.
  7. 제6항에 있어서,
    상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 40 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 80 내지 90 몰%인 것을 특징으로 하는 양극의 제조방법.
  8. 제6항에 있어서,
    상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 50 내지 75 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 81 내지 90 몰%인 것을 특징으로 하는 양극의 제조방법.
  9. 제6항에 있어서,
    상기 제1 양극활물질의 Ni 함량이 제1 양극활물질의 전체 전이금속 중 65 내지 70 몰%이고, 상기 제2 양극활물질의 Ni 함량이 제2 양극활물질의 전체 전이금속 중 86 내지 90 몰%인 것을 특징으로 하는 양극의 제조방법.
  10. 제1항 내지 제5항 중 어느 한 항의 양극을 포함하는 리튬 이차전지.
PCT/KR2022/000312 2021-01-08 2022-01-07 양극 및 이를 포함하는 리튬 이차전지 WO2022149912A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023519128A JP2023543243A (ja) 2021-01-08 2022-01-07 正極及びそれを含むリチウム二次電池
EP22736889.1A EP4207359A1 (en) 2021-01-08 2022-01-07 Positive electrode and lithium secondary battery comprising same
US18/029,661 US20240014392A1 (en) 2021-01-08 2022-01-07 Positive electrode and lithium secondary battery including the same
CN202280006688.7A CN116325213A (zh) 2021-01-08 2022-01-07 正极和包含该正极锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0002853 2021-01-08
KR20210002853 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149912A1 true WO2022149912A1 (ko) 2022-07-14

Family

ID=82358255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000312 WO2022149912A1 (ko) 2021-01-08 2022-01-07 양극 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20240014392A1 (ko)
EP (1) EP4207359A1 (ko)
JP (1) JP2023543243A (ko)
KR (1) KR20220100537A (ko)
CN (1) CN116325213A (ko)
WO (1) WO2022149912A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050473A (ko) * 2011-11-08 2013-05-16 주식회사 엘지화학 이중 코팅 구조의 리튬 이차전지용 양극
JP2019029205A (ja) * 2017-07-31 2019-02-21 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
KR20200034382A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 전지 성능이 개선된 리튬 이차전지용 양극 제조 방법
CN112072068A (zh) * 2020-09-04 2020-12-11 珠海冠宇电池股份有限公司 一种正极极片及包括该正极极片的锂离子电池
KR20200142340A (ko) * 2019-06-12 2020-12-22 에스케이이노베이션 주식회사 고온 특성이 우수한 이차전지
KR20210002853A (ko) 2019-07-01 2021-01-11 주식회사 케이씨텍 리테이너 링

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130050473A (ko) * 2011-11-08 2013-05-16 주식회사 엘지화학 이중 코팅 구조의 리튬 이차전지용 양극
JP2019029205A (ja) * 2017-07-31 2019-02-21 パナソニック株式会社 非水電解質二次電池用正極、及び非水電解質二次電池
KR20200034382A (ko) * 2018-09-21 2020-03-31 주식회사 엘지화학 전지 성능이 개선된 리튬 이차전지용 양극 제조 방법
KR20200142340A (ko) * 2019-06-12 2020-12-22 에스케이이노베이션 주식회사 고온 특성이 우수한 이차전지
KR20210002853A (ko) 2019-07-01 2021-01-11 주식회사 케이씨텍 리테이너 링
CN112072068A (zh) * 2020-09-04 2020-12-11 珠海冠宇电池股份有限公司 一种正极极片及包括该正极极片的锂离子电池

Also Published As

Publication number Publication date
CN116325213A (zh) 2023-06-23
EP4207359A1 (en) 2023-07-05
US20240014392A1 (en) 2024-01-11
JP2023543243A (ja) 2023-10-13
KR20220100537A (ko) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2018164494A1 (ko) 탄소계 박막이 형성된 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019182364A1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
WO2018169247A2 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021201399A1 (ko) 이차전지용 음극 및 이를 포함하는 이차전지
WO2020080887A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법
WO2019013449A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019009564A1 (ko) 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2019212315A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019112353A1 (ko) 리튬 이온 이차 전지용 분리막 및 이를 포함하는 리튬 금속 전지
WO2019059637A2 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019031766A2 (ko) 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
WO2020067792A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021071125A1 (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조방법
WO2020159202A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519128

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18029661

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022736889

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE