WO2012111956A2 - 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 - Google Patents

세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 Download PDF

Info

Publication number
WO2012111956A2
WO2012111956A2 PCT/KR2012/001099 KR2012001099W WO2012111956A2 WO 2012111956 A2 WO2012111956 A2 WO 2012111956A2 KR 2012001099 W KR2012001099 W KR 2012001099W WO 2012111956 A2 WO2012111956 A2 WO 2012111956A2
Authority
WO
WIPO (PCT)
Prior art keywords
meth
separator
coating layer
acrylate
organic
Prior art date
Application number
PCT/KR2012/001099
Other languages
English (en)
French (fr)
Other versions
WO2012111956A3 (ko
Inventor
하정민
김노마
조병규
김기영
진선미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120013889A external-priority patent/KR101254693B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12746471.7A priority Critical patent/EP2677590B1/en
Priority to JP2013553373A priority patent/JP5976015B2/ja
Priority to CN201280009067.0A priority patent/CN103477491B/zh
Publication of WO2012111956A2 publication Critical patent/WO2012111956A2/ko
Publication of WO2012111956A3 publication Critical patent/WO2012111956A3/ko
Priority to US13/965,660 priority patent/US9130215B2/en
Priority to US14/820,264 priority patent/US9954211B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator of an electrochemical device such as a lithium secondary battery, a method of manufacturing the same, and an electrochemical device having the same, and more particularly, a porous organic-inorganic coating layer formed of a mixture of inorganic particles and a binder polymer on a porous substrate surface. It relates to a separator and an electrochemical device having the same.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • lithium ion batteries have safety problems such as ignition and explosion due to the use of the organic electrolyte, and are difficult to manufacture.
  • the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively low compared to the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.
  • electrochemical devices are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that an electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 degrees or more due to material characteristics and manufacturing process characteristics including stretching, and thus a short circuit between the anode and the cathode. There is a problem that causes.
  • Korean Patent Publication No. 10-2007-231 discloses a porous organic-coated by coating a mixture of inorganic particles and a binder polymer on at least one surface of a porous substrate having a plurality of pores.
  • a separator having an inorganic coating layer has been proposed.
  • the inorganic particles in the porous organic-inorganic coating layer coated on the porous substrate serve as a kind of spacer to maintain the physical form of the porous organic-inorganic coating layer, thereby preventing the porous substrate from thermally shrinking when the electrochemical device is overheated. Will be suppressed.
  • an interstitial volume exists between the inorganic particles to form fine pores.
  • inorganic particles in order for the porous organic-inorganic coating layer coated on the separator to suppress heat shrinkage of the porous substrate, inorganic particles must be sufficiently contained in a predetermined amount or more.
  • the content of the inorganic particles increases, the content of the binder polymer is relatively small. Accordingly, binding property with the electrode decreases and the porous organic-inorganic coating layer is caused by stress generated during the assembly of the electrochemical device such as winding. Inorganic particles may be detached. Desorbed inorganic particles act as local defects of the electrochemical device, which adversely affects the safety of the electrochemical device. Therefore, there is a need for the development of a binder polymer that can enhance the binding force of the porous organic-inorganic coating layer on the porous substrate. There is also a need to improve the binding to the electrodes of the porous organic-inorganic coating layer.
  • the thickness of the separator to increase the capacity of the electrochemical device is required because the porous organic-inorganic coating layer must be formed thicker to perform the function of the porous organic-inorganic coating layer. You will be pushed to the limit.
  • the technical problem to be solved by the present invention is to solve the above-mentioned problems, exhibit a high packing density, easy to realize the thinning of the battery without impairing the stability, as well as improved organic organic-inorganic inorganic binder and improved binding force with the electrode
  • a separator having a coating layer and an electrochemical device having the same are provided.
  • Another object of the present invention is to provide a method for easily manufacturing a separator having the above-mentioned object.
  • a porous substrate having pores having pores
  • an organic coating layer of the second binder polymer dispersed to have a plurality of uncoated regions scattered on the surface of the organic-inorganic coating layer.
  • the content of the first monomer unit is 10 to 80 mol% based on the entire copolymer, and the content of the second monomer unit is preferably 20 to 90 mol%.
  • the copolymer further comprises (c) a third monomer unit containing a cyano group, and the content of the preferred third monomer unit is 5 to 50 mol% based on the entire copolymer. to be.
  • the copolymer is preferably crosslinked with each other by the crosslinkable functional group by including a monomer unit having a crosslinkable functional group.
  • the content of the binder polymer is preferably 2 to 30 parts by weight based on 100 parts by weight of the inorganic particles, and the binder polymer of the porous organic-inorganic composite layer is part or all of the surface of the inorganic particles.
  • the inorganic particles are connected and fixed to each other by the coating layer in close contact, it is preferable that the pores are formed due to the empty space present between the inorganic particles.
  • the packing density D of the porous organic-inorganic coating layer included in the separator is preferably in the range of 0.40 ⁇ D inorg ⁇ D ⁇ 0.70 ⁇ D inorg .
  • D (Sg-Fg) / (St-Et)
  • Sg is the weight (g) of the unit area (m 2 ) of the separator having the porous organic-inorganic coating layer formed on the porous substrate
  • Fg is the unit of the porous substrate
  • St is the thickness ( ⁇ m) of the separator where the porous organic-inorganic coating layer is formed on the porous substrate
  • Ft is the thickness ( ⁇ m) of the porous substrate.
  • the second binder polymer has a solubility index difference between the first binder polymer and 4 (J / cm 3 ) 0.5 It is preferable that it is more than 8 (J / cm 3 ) 0.5 It is more preferable that it is above.
  • the second binder polymer polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polyacrylonitrile, polyvinylpyrrolidone, and the like may be used alone or in combination of two or more thereof. .
  • the forming area of the organic coating layer is preferably 5 to 80% of the entire surface of the organic-inorganic coating layer, 10 More preferably from 60%.
  • (S2) a (meth) acrylate having inorganic particles dispersed therein, (a) a first monomer unit containing at least one of an amine group or an amide group in the side chain, and (b) an alkyl group having 1 to 14 carbon atoms.
  • Forming a porous organic-inorganic coating layer by coating and drying a slurry obtained by dissolving a first binder polymer containing a copolymer including a second monomer unit in a solvent on at least one surface of the porous substrate;
  • Such a separator of the present invention may be interposed between an anode and a cathode to be used in an electrochemical device such as a lithium secondary electron or a super capacitor device.
  • the separator of the present invention exhibits a high packing density of the porous organic-inorganic coating layer and shows good binding to the porous substrate. Accordingly, the resistance is reduced and the electrochemical device thin film can be easily realized without inhibiting stability, thereby increasing the capacity of the electrochemical device. In addition, the problem that the inorganic particles in the porous organic-inorganic coating layer are detached due to resistance to thermal and mechanical impact is improved. In addition, since the organic coating layer formed on the surface of the organic-inorganic coating layer is dispersed to have a plurality of uncoated regions, it is possible to increase the binding force of the separator to the electrode with little increase in resistance.
  • FIG. 1 is a cross-sectional view schematically showing a separator of the present invention.
  • FIG. 3 is a SEM photograph of the surface of the separator according to Example 2.
  • FIG. 4 is an SEM photograph of the surface of the separator according to Example 3.
  • FIG. 4 is an SEM photograph of the surface of the separator according to Example 3.
  • FIG. 5 is a SEM photograph of the surface of the separator according to Example 4.
  • FIG. 6 is a SEM photograph of the surface of the separator according to Example 5.
  • FIG. 7 is an SEM photograph of the surface of the separator according to Example 6.
  • FIG. 8 is an SEM photograph of the surface of the separator according to Example 7.
  • FIG. 9 is a SEM photograph of the surface of the separator according to Comparative Example 1.
  • FIG. 10 is a SEM photograph of the surface of the separator according to Comparative Example 2.
  • FIG. 10 is a SEM photograph of the surface of the separator according to Comparative Example 2.
  • FIG. 11 is an SEM photograph of the surface of the separator according to Comparative Example 3.
  • FIG. 11 is an SEM photograph of the surface of the separator according to Comparative Example 3.
  • FIG. 12 is a SEM photograph of the surface of the separator according to Comparative Example 4.
  • FIG. 12 is a SEM photograph of the surface of the separator according to Comparative Example 4.
  • FIG. 13 is a SEM photograph of the surface of the separator according to Comparative Example 5.
  • the separator of the present invention includes a porous substrate having pores; And a porous organic-inorganic coating layer formed on at least one surface of the porous substrate and including a mixture of inorganic particles and a first binder polymer.
  • the first binder polymer used in the porous organic-inorganic coating layer is (meth) having (a) a first monomer unit containing at least one or more of an amine group or an amide group in the side chain, and (b) an alkyl group having 1 to 14 carbon atoms.
  • a copolymer comprising a second monomer unit of acrylate may be represented by (first monomer unit) m ⁇ (second monomer unit) n (0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 1), which includes a first monomer unit and a second monomer unit If it is a copolymer, the form of all copolymers, such as a random copolymer and a block copolymer, is included.
  • the first monomer unit and the second monomer unit included in the copolymer impart high binding force between the inorganic material or between the inorganic material and the porous substrate.
  • the porous organic-inorganic coating layer formed using the same has little defect and exhibits a high packing density. Accordingly, when the separator of the present invention is used, it is easy to realize thinning of the battery, high stability against external impact, and desorption of inorganic particles. The phenomenon is improved.
  • the first monomer unit containing at least one of an amine group or an amide group in the side chain may be 2-(((butoxyamino) carbonyl) oxy) ethyl (meth) acrylate, 2- (diethylamino) ethyl ( Meth) acrylate, 2- (dimethylamino) ethyl (meth) acrylate, 3- (diethylamino) propyl (meth) acrylate, 3- (dimethylamino) propyl (meth) acrylate, methyl 2-acetoami Degree (meth) acrylate, 2- (meth) acrylamidoglycolic acid, 2- (meth) acrylamido-2-methyl-1-propanesulfonic acid, (3- (meth) acrylamidopropyl) trimethyl ammonium Chloride, N- (meth) acryloylamido-ethoxyethanol, 3- (meth) acryloyl amino-1-propanol, N
  • the second monomer unit of (meth) acrylate having an alkyl group having 1 to 14 carbon atoms (methyl) methacrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl ( Meta) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate, pentyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, lauryl (meth) acrylate, tetradecyl (meth) acrylate, etc.
  • the packing density of the porous organic-inorganic coating layer may decrease because the alkyl group becomes too long to increase the nonpolarity.
  • the content of the first monomer unit is preferably 10 to 80 mol%, more preferably 15 to 80 mol% based on the entire copolymer. If the content is less than 10 mol%, the packing density and binding force of the porous organic-inorganic coating layer may be lowered. If the content exceeds 80 mol%, the electrical resistance may increase as the packing density of the porous organic-inorganic coating layer is excessively increased. Can be too high.
  • the content of the second monomer unit is preferably 20 to 90 mol% based on the entire copolymer. If the content is less than 20 mol%, the binding force with the porous substrate may be lowered. If the content is more than 90 mol%, the packing property of the porous organic-inorganic coating layer may be reduced as the content of the first monomer unit is lowered. have.
  • the copolymer further comprises (c) a third monomer unit containing a cyano group, wherein the third monomer unit is ethyl cis- (beta-cyano) (meth) Acrylate, (meth) acrylonitrile, 2- (vinyloxy) ethanenitrile, 2- (vinyloxy) propanenitrile, cyanomethyl (meth) acrylate, cyanoethyl (meth) acrylate, cyanopropyl ( Meth) acrylate, etc. are mentioned.
  • the content of the preferred third monomer unit is 5 to 50 mol% based on the entire copolymer.
  • the copolymer is preferably crosslinked with each other by the crosslinkable functional group by including a monomer unit having a crosslinkable functional group.
  • a crosslinkable functional group a hydroxyl group, a primary amine group, a secondary amine group, an acidic group, an epoxy group, an oxetane group, an imidazole group, an oxazoline group, etc. can be illustrated,
  • the monomer which has such a crosslinkable functional group is mentioned.
  • 1 to 20 mol% may be further copolymerized, and then a curing agent such as an isocyanate compound, an epoxy compound, an oxetane compound, an aziridine compound, or a metal chelating agent may be added to crosslink the copolymers with each other.
  • a curing agent such as an isocyanate compound, an epoxy compound, an oxetane compound, an aziridine compound, or a metal chelating agent may be added to crosslink the copolymers with each other.
  • the copolymer described above may further include other monomer units within the scope of not impairing the object of the present invention.
  • alkoxy diethylene glycol (meth) acrylic acid ester having 1 to 8 carbon atoms alkoxy triethylene glycol (meth) acrylic acid ester, alkoxy tetraethylene glycol (meth) acrylic acid ester, phenoxy (Meth) acrylic acid alkylene oxide adducts such as diethylene glycol (meth) acrylic acid esters, alkoxy dipropylene glycol (meth) acrylic acid esters, alkoxy tripropylene glycol (meth) acrylic acid esters, phenoxy dipropylene glycol (meth) acrylic acid esters And the like can be further copolymerized.
  • first binder polymer may be used in combination with other binder polymers in addition to the copolymers described above without departing from the object of the present invention.
  • the inorganic particles used for forming the porous organic-inorganic coating layer are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li + ) of the applied electrochemical device. In particular, in the case of using the inorganic particles having the ion transport ability, it is possible to improve the performance by increasing the ion conductivity in the electrochemical device.
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt such as lithium salt in the liquid electrolyte.
  • the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
  • inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO , NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2, etc. may be used alone or in combination of two or more thereof.
  • Inorganic particles such as Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT) and hafnia (HfO 2 ) not only show high dielectric constants with dielectric constant above 100, but also When applied or stretched or compressed, it has a piezoelectricity in which electric charge is generated and a potential difference occurs between both surfaces, thereby preventing the occurrence of an internal short circuit between two electrodes due to an external impact, thereby improving safety of an electrochemical device. .
  • synergistic effects of the high dielectric constant inorganic particles and the inorganic particles having lithium ion transfer ability may be doubled.
  • the inorganic particles having a lithium ion transfer capacity refers to an inorganic particle containing lithium element but having a function of transferring lithium ions without storing lithium, and the inorganic particles having a lithium ion transfer capacity are formed inside the particle structure. Since lithium ions can be transferred and transported due to a kind of defect present, lithium ion conductivity in the battery is improved, thereby improving battery performance.
  • Non-limiting examples of the inorganic particles having a lithium ion transfer capacity is lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) , Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P (LiAlTiP) x O y series glass such as 2 O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3 ), Li germanium thiophosphate such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S
  • the inorganic particle size of the porous organic-inorganic coating layer is not limited, but in order to form a coating layer of uniform thickness and an appropriate porosity, it is preferable to be in the range of 0.001 to 10 ⁇ m as possible. If it is less than 0.001 ⁇ m dispersibility is not easy to control the physical properties of the separator, if it exceeds 10 ⁇ m it may increase the thickness of the porous organic-inorganic coating layer may lower the mechanical properties, too large pore size This increases the probability of internal short circuits during battery charging and discharging.
  • the content of the binder polymer of the porous organic-inorganic coating layer coated on the separator according to the present invention is preferably 2 to 30 parts by weight, more preferably 5 to 15 parts by weight based on 100 parts by weight of the inorganic particles.
  • the content of the binder polymer is less than 2 parts by weight, problems such as desorption of inorganic materials may occur.
  • the binder polymer may block pores of the porous substrate to increase resistance and the porosity of the porous organic-inorganic coating layer. Can be degraded.
  • the first binder polymer is located as a coating layer on part or all of the surface of the inorganic particles, the inorganic particles are connected and fixed to each other by the coating layer in close contact with each other.
  • pores are formed due to the empty space present between the inorganic particles. That is, the inorganic particles of the porous organic-inorganic composite layer are in close contact with each other, and the empty space generated when the inorganic particles are in close contact with each other becomes the pores of the porous organic-inorganic composite layer.
  • the size of the void space present between the inorganic particles is preferably equal to or smaller than the average particle diameter of the inorganic particles so as to exhibit a high packing density.
  • the first binder polymer positioned as a coating layer on part or all of the surface of the inorganic particles connects and fixes the inorganic particles to each other, and fixes the inorganic particles in contact with the porous substrate to the porous substrate.
  • the packing density D of the porous organic-inorganic coating layer may be defined as the density of the porous organic-inorganic coating layer loaded at a height of 1 ⁇ m per unit area (m 2 ) of the porous substrate. It is preferable to be in the range of 0.40 ⁇ D inorg ⁇ D ⁇ 0.70 ⁇ D inorg :
  • Sg is the weight (g) of the unit area (m 2 ) of the separator in which the porous organic-inorganic coating layer is formed on the porous substrate,
  • Fg is the weight (g) of the unit area (m 2 ) of the porous substrate
  • St is the thickness ( ⁇ m) of the separator where the porous organic-inorganic coating layer is formed on the porous substrate
  • Ft is the thickness of the porous substrate ( ⁇ m)
  • D inorg is the density (g / m 2 ⁇ ⁇ m) of the inorganic particles used. If two or more kinds of inorganic particles are used, D inorg is calculated by reflecting the density and the fraction of each inorganic particle used.
  • D is less than the above-described lower limit, the structure of the porous organic-inorganic coating layer may be loosened, thereby lowering the heat shrinkage inhibiting function of the porous substrate and reducing the resistance to mechanical impact. If D exceeds the aforementioned upper limit, physical properties due to an increase in packing density may be improved, but the porosity of the porous organic-inorganic coating layer may be lowered, thereby lowering the electrical conductivity of the separator.
  • the thickness of the porous organic-inorganic coating layer composed of inorganic particles and a binder polymer is not particularly limited, but is preferably in the range of 0.5 to 10 ⁇ m.
  • the porous substrate having pores includes polyolefin, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, poly Any porous material, such as a porous substrate formed of at least one of phenylene oxide, polyphenylene sulfide, and polyethylene naphthalene, can be used as long as it can be used as a separator of an electrochemical device.
  • a porous substrate As a porous substrate. Both membrane and nonwoven forms can be used.
  • the thickness of the porous substrate is not particularly limited, but is preferably 5 to 50 ⁇ m, and the pore size and pore present in the porous substrate are also not particularly limited, but are preferably 0.01 to 50 ⁇ m and 10 to 95%, respectively.
  • the separator of the present invention includes an organic coating layer of the second binder polymer dispersed to have a plurality of uncoated regions scattered on the surface of the organic-inorganic coating layer.
  • the organic coating layer forms the periphery of the separator but does not completely cover the entire surface of the organic-inorganic coating layer.
  • On the surface of the organic-inorganic coating layer a large number of uncoated regions where no organic coating layer is formed are scattered. That is, the uncoated region and the organic coating layer are dispersed on each other on the surface of the organic-inorganic coating layer.
  • the organic coating layer formed on the surface of the organic-inorganic coating layer is dispersed to have a plurality of uncoated regions, so that ions can pass through the uncoated region.
  • the binding force of the separator to the electrode can be increased without increasing the resistance substantially.
  • the second binder polymer constituting the organic coating layer is different from the first binder polymer constituting the organic-inorganic coating layer. Accordingly, both binder polymers have different solubility indices.
  • the first binder polymer and the second binder polymer are copolymers having the same monomer types, if the content of each monomer is different, they have different solubility indices, resulting in different binder polymers.
  • different binder polymers may have different solubility indices if the content ratios of the mixed polymers are different.
  • the difference between the solubility index of the first binder polymer and the first binder polymer is 4 (J / cm 3 ) 0.5 or more, and more preferably 8 (J / cm 3 ) 0.5 or more.
  • the second binder polymer polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polyacrylonitrile, polyvinylpyrrolidone, or the like may be used alone or in combination of two or more thereof. It is not limited to this.
  • the formation area of the organic coating layer is preferably 5 to 80% of the entire surface of the organic-inorganic coating layer, in consideration of improving the binding strength with the electrode and increasing the resistance, more preferably 10 to 60%. desirable. Moreover, it is preferable that it is 0.1-2 micrometers, and, as for the thickness of an organic coating layer, it is more preferable that it is 0.1-1 micrometer.
  • FIG. 1 is a cross-sectional view schematically showing a separator of the present invention having the aforementioned components.
  • a porous organic-inorganic coating layer including inorganic particles 3 and a first binder polymer 5 is formed on a porous substrate 1 having pores.
  • an organic coating layer 7 of the second binder polymer dispersed to have a plurality of scattered uncoated regions is formed on the surface of the organic-inorganic coating layer.
  • Preferred manufacturing method of the separator according to the present invention is as follows.
  • a porous substrate having pores is prepared (step S1).
  • the kind of porous substrate is as described above.
  • a copolymer comprising the first monomer unit and the second monomer unit described above is prepared, and dissolved in a solvent alone or in combination with other binder polymers to prepare a solution of the first binder polymer, and a solution of the first binder polymer.
  • the inorganic particles are added to and dispersed.
  • the solubility index is similar to that of the first binder polymer to be used, and the boiling point is preferably low. This is to facilitate uniform mixing and subsequent solvent removal.
  • Non-limiting examples of solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone, NMP), cyclohexane, water or a mixture thereof.
  • the inorganic particles are preferably crushed.
  • the crushing time is suitably 1 to 20 hours, and the particle size of the crushed inorganic particles is preferably 0.001 to 10 ⁇ as mentioned above.
  • the shredding method a conventional method can be used, and a ball mill method is particularly preferable.
  • the solution of the first binder polymer in which the inorganic particles are dispersed is coated on a porous substrate and dried to form a porous organic-inorganic coating layer (step S2).
  • Humidity condition during coating is preferably 10 to 80%, the drying process is possible any method such as hot air drying if the method can volatilize the solvent.
  • Coating the solution of the binder polymer in which the inorganic particles are dispersed on the porous substrate may be a conventional coating method known in the art, for example, dip coating, die coating, roll Various methods such as coating, comma coating, or a mixture thereof can be used.
  • the porous organic-inorganic coating layer may be selectively formed on both surfaces or only one surface of the porous substrate.
  • step S3 the polymer solution in which the second binder polymer is dissolved in an amount of 0.2 to 2.0 wt% on the organic-inorganic coating layer is coated and dried (step S3).
  • the solution of the second binder polymer all of the above-described coating methods of the first polymer solution may be used.
  • the solution of the second binder polymer coated on the entire surface of the organic-inorganic coating layer is self-assembled on the surface of the organic-inorganic coating layer while the solvent is volatilized to form the organic coating layer.
  • the organic coating layer forms an outer portion of the separator but does not completely cover the entire surface of the organic-inorganic coating layer.
  • a plurality of uncoated regions are scattered between the organic coating layers.
  • the solubility index of the second binder polymer must be different from that of the first binder polymer, and the concentration of the solution of the second polymer needs to be adjusted.
  • the amount of the solution of the second polymer penetrates into the pores of the organic-inorganic coating layer having a good affinity, resulting in a slight amount of the surface layer of the organic-inorganic coating layer. Only the second polymer remains.
  • the content of the second polymer in the solution is less than 0.2% by weight, the effect of improving binding strength with the electrode may be insignificant, and when the content is more than 2.0% by weight, it is difficult to form an organic coating layer having a desired property having an uncoated region.
  • the concentration of the second polymer solution may vary depending on the type of the second polymer.
  • the content in the second polymer solution it is preferable to adjust the content in the second polymer solution to the above-mentioned range, and the type of the second polymer and the thickness of the organic coating layer are also preferably adjusted as described above.
  • the separator of the present invention prepared as described above may be used as a separator of an electrochemical device.
  • the separator of the present invention can be usefully used as a separator interposed between the positive electrode and the negative electrode and laminated with both electrodes.
  • Electrochemical devices include all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • the electrochemical device may be manufactured according to conventional methods known in the art, and for example, may be manufactured by injecting an electrolyte after assembling the separator described above between an anode and a cathode. .
  • the electrode to be applied with the separator of the present invention is not particularly limited, and according to a conventional method known in the art, the electrode active material may be prepared in a form bound to the electrode current collector.
  • the positive electrode active material of the electrode active material may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or combinations thereof It is preferable to use one lithium composite oxide.
  • Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred.
  • Non-limiting examples of the positive electrode current collector is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector by copper, gold, nickel or copper alloy or a combination thereof Foils produced.
  • Electrolyte that may be used in the present invention is A + B - A salt of the structure, such as, A + is Li +, Na +, K + comprises an alkaline metal cation or an ion composed of a combination thereof, such as, and B - is PF 6 -, BF 4 -, Cl - , Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2 )
  • Salts containing ions consisting of anions such as 3 - or combinations thereof include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , Dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (
  • the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • DMAAm is NN-dimethylacrylamide (N, N-dimethylacrylamide)
  • DMAEA is NN-dimethylaminoethyl acrylate (N, N-dimethylaminoethyl acrylate)
  • AN is acrylonitrile
  • EA is ethyl acrylate
  • BA is n-butyl acrylate
  • HBA is hydroxybutyl acrlate.
  • Each copolymer and an epoxy curing agent were dissolved in acetone to prepare a solution of the first binder polymer.
  • the slurry thus prepared was coated on both sides of a polyethylene porous film (porosity 45%) having a thickness of 12 ⁇ m by dip coating and dried to form an organic-inorganic coating layer.
  • the organic-inorganic coating layer was coated with a porous membrane formed by a dip coating method and dried to form an organic coating layer. It was.
  • the air permeability was evaluated by the time taken for the separator to fully pass 100 ml of air (s).
  • the thermal contraction rate stored the separator for 1 hour at 150 degree
  • Adhesive force is the force required to fix the tape on the glass plate using double-sided tape, and then firmly attach the tape (3M transparent tape) to the exposed porous organic-inorganic coating layer, and then use the tensile strength measuring device to remove the tape (gf / 15 mm).
  • N-methyl-2 a solvent
  • carbon powder as a negative electrode active material
  • PVdF polyvinylidene fluoride
  • carbon black as a conductive material, respectively, at 96 wt%, 3 wt%, and 1 wt%.
  • a negative electrode mixture slurry was prepared by adding to Rollidone (NMP).
  • NMP Rollidone
  • the negative electrode mixture slurry was coated on a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, to prepare a negative electrode through drying, and then roll press was performed.
  • Cu copper
  • a lithium cobalt composite oxide as a positive electrode active material 92% by weight of a lithium cobalt composite oxide as a positive electrode active material, 4% by weight of carbon black as a conductive material, and 4% by weight of PVDF as a binder were added to N-methyl-2 pyrrolidone (NMP) as a solvent to slurry a positive electrode mixture.
  • NMP N-methyl-2 pyrrolidone
  • the positive electrode mixture slurry was applied to an aluminum (Al) thin film of a positive electrode current collector having a thickness of 20 ⁇ m, and a positive electrode was manufactured by drying, followed by roll press.
  • LiPF6 lithium hexa 1 mole of fluorophosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

본 발명의 세퍼레이터는 기공들을 갖는 다공성 기재; 상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물 입자들과 제1 바인더 고분자의 혼합물을 포함하고, 상기 제1 바인더 고분자는 소정의 공중합체를 함유하는 다공성 유기-무기 코팅층; 및 상기 유기-무기 코팅층의 표면에 흩어진 다수의 비코팅 영역들을 갖도록 분산된 제2 바인더 고분자의 유기 코팅층을 구비한다. 본 발명의 세퍼레이터에 형성된 다공성 유기-무기 코팅층은 높은 패킹 밀도를 보일 수 있어 안정성의 저해 없이 전지의 박막화 실현이 용이할 뿐만 아니라, 다공성 기재와의 결착력이 양호하여 전기화학소자의 조립 과정에서 다공성 유기-무기 코팅층 내의 무기물 입자가 탈리되는 문제점이 개선된다. 또한, 유기 코팅층은 저항을 거의 증가시키지 않으면서도 전극에 대한 세퍼레이터의 결착력을 증대시킨다.

Description

세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
본 발명은 리튬 이차전지와 같은 전기화학소자의 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자에 관한 것으로서, 보다 상세하게는 다공성 기재 표면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 유기-무기 코팅층을 포함하는 세퍼레이터 및 이를 구비한 전기화학소자에 관한 것이다.
본 출원은 2011년 2월 15일에 출원된 대한민국 특허출원 제10-2011-0013312호 및 2012년 2월 10일에 출원한 대한민국 특허출원 제10-2012-0013889호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 촛점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.
상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 대한민국 특허공개공보 제10-2007-231호에는 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 유기-무기 코팅층을 형성한 세퍼레이터가 제안되었다. 세퍼레이터에 있어서, 다공성 기재에 코팅된 다공성 유기-무기 코팅층 내의 무기물 입자들은 다공성 유기-무기 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로서 전기화학소자 과열시 다공성 기재가 열 수축되는 것을 억제하게 된다. 또한, 무기물 입자들 사이에는 빈 공간(interstitial volume)이 존재하여 미세 기공을 형성한다.
이와 같이, 세퍼레이터에 코팅된 다공성 유기-무기 코팅층이 다공성 기재의 열 수축을 억제하기 위해서는 무기물 입자들이 소정 함량 이상으로 충분히 함유되어야 한다. 그러나, 무기물 입자들의 함량이 높아짐에 따라 바인더 고분자의 함량은 상대적으로 작아지게 되므로, 이에 따라 전극과의 결착성이 저하되고 권취 등 전기화학소자의 조립과정에서 발생하는 응력에 의하여 다공성 유기-무기 코팅층의 무기물 입자들이 탈리될 수 있다. 탈리된 무기물 입자들은 전기화학소자의 국부적인 결점으로 작용하여 전기화학소자의 안전성에 악영향을 미치게 된다. 따라서, 다공성 기재에 대한 다공성 유기-무기 코팅층의 결착력을 강화시킬 수 있는 바인더 고분자의 개발이 필요하다. 또한, 다공성 유기-무기 코팅층의 전극에 대한 결착성을 개선할 필요도 있다.
한편, 다공성 유기-무기 코팅층의 패킹 밀도가 낮으면, 다공성 유기-무기 코팅층의 기능이 수행될 수 있도록 보다 두껍게 다공성 유기-무기 코팅층을 형성해야 하므로 전기화학소자의 용량을 증대시키기 위한 세퍼레이터의 박막화가 한계에 부딛히게 된다.
따라서, 본 발명이 이루고자 하는 기술적 과제는 전술한 문제점을 해결하여, 높은 패킹 밀도를 나타내어 안정성의 저해 없이 전지의 박막화 실현이 용이할 뿐만 아니라, 다공성 기재 및 전극과의 결착력이 개선된 다공성 유기-무기 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자를 제공하는데 있다.
또한, 본 발명이 이루고자 하는 다른 기술적 과제는, 전술한 목적으로 갖는 세퍼레이터를 용이하게 제조할 수 있는 방법을 제공하는데 있다.
상기 과제를 달성하기 위하여, 본 발명의 세퍼레이터는,
기공들을 갖는 다공성 기재;
상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물 입자들과 제1 바인더 고분자의 혼합물을 포함하고, 상기 제1 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유하는 다공성 유기-무기 코팅층; 및
상기 유기-무기 코팅층의 표면에 흩어진 다수의 비코팅 영역들을 갖도록 분산된 제2 바인더 고분자의 유기 코팅층을 구비한다.
본 발명의 세퍼레이터에 있어서, 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰%이고, 상기 제2 단량체 유니트의 함량은 20 내지 90 몰%인 것이 바람직하다.
전술한 제1 단량체 유니트로는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드, N-비닐피롤리디논 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있고, 제2 단량체 유니트로는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트, 테트라데실 (메타)아크릴레이트 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다.
본 발명의 세퍼레이터에 있어서, 상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것이 바람직한데, 바람직한 제3 단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%이다.
본 발명의 세퍼레이터에 있어서, 상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함함으로서 상기 가교성 관능기에 의해 서로 가교되는 것이 바람직하다.
본 발명의 세퍼레이터에 있어서, 상기 바인더 고분자의 함량은 상기 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것이 바람직하고, 상기 다공성 유기-무기 복합층의 바인더 고분자는 상기 무기물 입자들 표면의 일부 또는 전체에 코팅층으로 위치하고, 상기 무기물 입자들은 밀착된 상태로 상기 코팅층에 의해 서로 연결 및 고정되며, 상기 무기물 입자들 사이에 존재하는 빈 공간으로 인해 기공들이 형성되어 있는 것이 바람직하다.
본 발명의 세퍼레이터에 있어서, 세퍼레이터에 구비된 다공성 유기-무기 코팅층의 패킹 밀도인 D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg 의 범위 내인 것이 바람직하다. 여기서, D = (Sg-Fg)/(St-Et)이고, Sg는 다공성 유기-무기 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고, Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고, St는 다공성 유기-무기 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고, Ft는 다공성 기재의 두께(㎛)이다.
본 발명의 세퍼레이터에 있어서, 상기 제2 바인더 고분자는 상기 제1 바인더 고분자와 용해도 지수 차이가 4 (J/cm3)0.5 이상인 것이 바람직하고 8 (J/cm3)0.5 이상인 것이 더욱 바람직하다. 제2 바인더 고분자로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 폴리비닐리덴 플루오라이드-트리클로로에틸렌, 폴리아크릴로니트릴, 폴리비닐피롤리돈 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다.
본 발명의 세퍼레이터에 있어서, 상기 유기 코팅층의 형성 면적은 유기-무기 코팅층의 표면 전체의 5 내지 80%인 것이 바람직한데, 10 내지 60%인 것이 더욱 바람직하다.
본 발명의 세퍼레이터 제조방법은,
(S1) 기공들을 갖는 다공성 기재를 준비하는 단계;
(S2) 무기물 입자들이 분산되어 있으며, (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유하는 제1 바인더 고분자를 용매에 용해시킨 슬러리를 상기 다공성 기재의 적어도 일면 위에 코팅하고 건조시켜 다공성 유기-무기 코팅층을 형성하는 단계;
(S3) 상기 유기-무기 코팅층 위에 제2 바인더 고분자가 0.2 내지 2.0 중량%로 용해된 고분자 용액을 코팅하고 건조시키는 단계를 포함한다.
이와 같은 본 발명의 세퍼레이터는 양극과 음극 사이에 개재되어 리튬 이차전자나 수퍼 캐패시터 소자와 같은 전기화학소자에 이용될 수 있다.
본 발명의 세퍼레이터는 다공성 유기-무기 코팅층이 높은 패킹 밀도를 보이며, 다공성 기재에 대한 양호한 결착력을 나타낸다. 이에 따라 저항이 감소되고 안정성의 저해 없이 전기화학소자 박막화 실현이 용이하여 전기화학소자의 용량 증대가 가능하다. 또한, 열적, 기계적 충격에 대한 저항성이 커서 다공성 유기-무기 코팅층 내의 무기물 입자가 탈리되는 문제점이 개선된다. 또한, 유기-무기 코팅층 표면에 형성된 유기 코팅층은 다수의 비코팅 영역들을 갖도록 분산되어 있으므로, 저항을 거의 증가시키지 않으면서도 전극에 대한 세퍼레이터의 결착력을 증대시킬 수 있다.
명세서 내에 통합되어 있고 명세서의 일부를 구성하는 첨부도면은 발명의 현재의 바람직한 실시예를 예시하며, 다음의 바람직한 실시예의 상세한 설명과 함께 본 발명의 원리를 설명하는 역할을 할 것이다.
도 1은 본 발명의 세퍼레이터를 개략적으로 도시한 단면도이다
도 2는 실시예 1에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 3은 실시예 2에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 4는 실시예 3에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 5는 실시예 4에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 6은 실시예 5에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 7은 실시예 6에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 8은 실시예 7에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 9는 비교예 1에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 10은 비교예 2에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 11은 비교예 3에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 12는 비교예 4에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
도 13은 비교예 5에 따른 세퍼레이터의 표면을 촬영한 SEM사진이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 세퍼레이터는 기공들을 갖는 다공성 기재; 및 상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물 입자들과 제1 바인더 고분자의 혼합물을 포함하는 다공성 유기-무기 코팅층을 구비한다.
다공성 유기-무기 코팅층에 사용된 제1 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유한다. 이와 같은 공중합체는 (제1 단량체 유니트)m-(제2 단량체 유니트)n (0<m<1, 0<n<1)로 표시될 수 있는데, 제1 단량체 유니트와 제2 단량체 유니트를 포함하는 공중합체라면, 랜덤 공중합체, 블록 공중합체 등 모든 공중합체의 형태가 포함된다.
공중합체에 포함된 제1 단량체 유니트와 제2 단량체 유니트는 무기물 간 또는 무기물과 다공성 기재 사이에 높은 결착력을 부여한다. 또한, 이를 이용하여 형성된 다공성 유기-무기 코팅층은 디펙트가 적고 높은 패킹 밀도를 보인다. 이에 따라 본 발명의 세퍼레이터를 이용하면 전지의 박막화 실현이 용이하며, 외부의 충격에도 안정성이 높으며 무기물 입자의 탈리. 현상이 개선된다.
측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트로는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드, N-비닐피롤리디논 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다. 전술한 제1 단량체 유니트는 아크릴계 단량체 유니트인 것이 바람직하다.
또한, 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트로는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트, 테트라데실 (메타)아크릴레이트 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있다. 제2 단량체 유니트의 알킬기에 포함된 탄소수가 14를 초과하면, 알킬기가 지나치게 길어져서 비극성도가 커지게 되므로 다공성 유기-무기 코팅층의 패킹 밀도가 저하될 수 있다.
본 발명의 세퍼레이터에 있어서, 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰% 바람직하며, 15 내지 80 몰%인 것이 더욱 바람직하다. 그 함량이 10 몰% 미만이면 다공성 유기-무기 코팅층의 패킹 밀도와 결착력이 저하될 수 있고, 그 함량이 80 몰%를 초과하면 다공성 유기-무기 코팅층의 패킹 밀도가 과대하게 증가함에 따라 전기저항이 지나치게 높아질 수 있다. 한편, 제2 단량체 유니트의 함량은 공중합체 전체를 기준으로 20 내지 90 몰%인 것이 바람직하다. 그 함량이 20 몰% 미만이면 다공성 기재와의 결착력이 저하될 수 있고, 그 함량이 90 몰%를 초과하면 제1 단량체 유니트의 함량이 낮아짐에 따라 다공성 유기-무기 코팅층의 패킹성이 저하될 수 있다.
본 발명의 세퍼레이터에 있어서, 상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것이 바람직한데, 이러한 제3 단량체 유니트로는 에틸 시스-(베타-시아노)(메타)아크릴레이트, (메타)아크릴로니트릴, 2-(비닐옥시)에탄니트릴, 2-(비닐옥시)프로판니트릴, 시아노메틸(메타)아크릴레이트, 시아노에틸(메타)아크릴레이트, 시아노프로필(메타)아크릴레이트 등을 들 수 있다. 바람직한 제3 단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%이다.
본 발명의 세퍼레이터에 있어서, 상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함함으로서 상기 가교성 관능기에 의해 서로 가교되는 것이 바람직하다. 가교성 관능기로는 히드록시기, 1차 아민기, 2차 아민기, 에시드기, 에폭시기, 옥세탄기, 이미다졸기, 옥사졸린기 등을 예시할 수 있는데, 이러한 가교성 관능기를 갖는 단량체를 예를 들어 1 내지 20 몰%를 더 공중합시킨 다음, 이소시아네이트 화합물, 에폭시 화합물, 옥세탄 화합물, 아지리딘 화합물, 메탈 킬레이팅제와 같은 경화제를 첨가하여 공중합체를 서로 가교시킬 수 있다.
이 외에도, 전술한 공중합체는 본 발명의 목적을 저해하지 않는 한도 내에서 다른 단량체 유니트를 더 포함할 수 있다. 예를 들어 세퍼레이터의 이온전도도를 향상시키기 위하여, 탄소수가 1 내지 8인 알콕시 디에틸렌글리콜 (메타)아크릴산 에스테르, 알콕시 트리에틸렌글리콜 (메타)아크릴산 에스테르, 알콕시 테트라에틸렌글리콜 (메타)아크릴산 에스테르, 페녹시 디에틸렌글리콜 (메타)아크릴산 에스테르, 알콕시 디프로필렌글리콜 (메타)아크릴산 에스테르, 알콕시 트리프로필렌글리콜 (메타)아크릴산 에스테르, 페녹시 디프로필렌글리콜 (메타)아크릴산 에스테르와 같은 (메타)아크릴산 알킬렌 옥사이드 부가물 등을 더 공중합시킬 수 있다.
제1 바인더 고분자로는 본 발명의 목적을 저해하지 않는 한도 내에서 전술한 공중합체 외에 다른 바인더 고분자를 혼용하여 사용할 수 있음은 당업자에게 자명하다 할 것이다.
본 발명의 세퍼레이터에 있어서, 다공성 유기-무기 코팅층 형성에 사용되는 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우 전기화학소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있다.
또한, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합체를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2 등을 각각 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다
특히, 전술한 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2)와 같은 무기물 입자들은 유전율 상수 100 이상인 고유전율 특성을 나타낼 뿐만 아니라, 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 양쪽 면 간에 전위차가 발생하는 압전성(piezoelectricity)을 가짐으로써, 외부 충격에 의한 두 전극의 내부 단락 발생을 방지하여 전기화학소자의 안전성 향상을 도모할 수 있다. 또한, 전술한 고유전율 무기물 입자와 리튬 이온 전달 능력을 갖는 무기물 입자들을 혼용할 경우 이들의 상승 효과는 배가될 수 있다.
본 발명에서 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다. 상기 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
본 발명의 세퍼레이터에 있어서, 다공성 유기-무기 코팅층의 무기물 입자 크기는 제한이 없으나, 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 가능한 한 0.001 내지 10㎛ 범위인 것이 바람직하다. 0.001㎛ 미만인 경우 분산성이 저하되어 세퍼레이터의 물성을 조절하기가 용이하지 않고, 10㎛를 초과하는 경우 다공성 유기-무기 코팅층의 두께가 증가하여 기계적 물성이 저하될 수 있으며, 또한 지나치게 큰 기공 크기로 인해 전지 충방전시 내부 단락이 일어날 확률이 높아진다.
본 발명에 따라 세퍼레이터에 코팅된 다공성 유기-무기 코팅층의 바인더 고분자의 함량은 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것이 바람직하고, 5 내지 15 중량부인 것이 더욱 바람직하다. 바인더 고분자의 함량이 2 중량부 미만이면 무기물의 탈리와 같은 문제점이 발생할 수 있고, 그 함량이 30 중량부를 초과하면 바인더 고분자가 다공성 기재의 공극을 막아 저항이 상승하며 다공성 유기-무기 코팅층의 다공도도 저하될 수 있다.
다공성 기재 위에 형성되는 다공성 유기-무기 복합층에 있어서, 제1 바인더 고분자는 상기 무기물 입자들 표면의 일부 또는 전체에 코팅층으로 위치하고, 상기 무기물 입자들은 밀착된 상태로 상기 코팅층에 의해 서로 연결 및 고정되며, 상기 무기물 입자들 사이에 존재하는 빈 공간으로 인해 기공들이 형성되어 있는 것이 바람직하다. 즉, 다공성 유기-무기 복합층의 무기물 입자들은 서로 밀착된 상태로 존재하며, 무기물 입자들이 밀착된 상태에서 생기는 빈 공간이 다공성 유기-무기 복합층의 기공이 된다. 무기물 입자 사이에 존재하는 빈 공간의 크기는 높은 패킹밀도를 나타내도록 무기물 입자들의 평균 입경보다 같거나 작은 것이 바람직하다. 무기물 입자들 표면의 일부 또는 전체에 코팅층으로 위치한 제1 바인더 고분자는 무기물 입자들을 서로 연결 및 고정하며, 다공성 기재와 접촉하는 무기물 입자를 다공성 기재에 고정시킨다.
본 발명의 세퍼레이터에 있어서, 다공성 유기-무기 코팅층의 패킹 밀도 D는 다공성 기재의 단위면적((m2)당 1㎛의 높이에 로딩되는 다공성 유기-무기 코팅층의 밀도로 정의될 수 있는데, D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg 의 범위 내인 것이 바람직하다:
여기서, D = (Sg-Fg)/(St-Et)이고,
Sg는 다공성 유기-무기 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고,
Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고,
St는 다공성 유기-무기 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고,
Ft는 다공성 기재의 두께(㎛)이고,
Dinorg은 사용된 무기물 입자의 밀도(g/m2×㎛)이다. 만일, 사용된 무기물 입자의 종류가 2종 이상이라면, 사용된 각각의 무기물 입자의 밀도와 사용 분율을 반영하여 Dinorg을 산출한다.
D가 전술한 하한치 미만이면 다공성 유기-무기 코팅층의 구조가 느슨해져서 다공성 기재의 열수축율 억제 기능이 저하될 수 있고, 기계적 충격에 대한 저항성도 저하될 우려가 있다. D가 전술한 상한치를 초과하면 패킹 밀도 증가에 의한 물성은 향상되나 다공성 유기-무기 코팅층의 다공도가 저하되어 세퍼레이터의 전기전도도가 저화될 수 있다.
무기물 입자와 바인더 고분자로 구성되는 다공성 유기-무기 코팅층의 두께는 특별한 제한이 없으나, 0.5 내지 10㎛ 범위가 바람직하다.
또한, 본 발명의 세퍼레이터에 있어서, 기공들을 갖는 다공성 기재로는 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌 중 적어도 어느 하나로 형성된 다공성 기재와 같이 통상적으로 전기화학소자의 분리막으로서 사용가능한 것이라면 모두 사용이 가능하다. 다공성 기재로는. 막(membrane)이나 부직포 형태를 모두 사용할 수 있다. 다공성 기재의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛가 바람직하고, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다.
본 발명의 세퍼레이터는 상기 유기-무기 코팅층의 표면에 흩어진 다수의 비코팅 영역들을 갖도록 분산된 제2 바인더 고분자의 유기 코팅층을 구비한다. 유기 코팅층은 세퍼레이터의 외곽부를 형성하나, 유기-무기 코팅층의 전 표면을 완전히 덮지는 않는다. 유기-무기 코팅층의 표면에는 유기 코팅층이 형성되지 않은 다수의 비코팅 영역들이 흩어져 있다. 즉, 비코팅 영역과 유기 코팅층은 유기-무기 코팅층의 표면에 서로 분산되어 있게 된다. 이와 같이, 유기-무기 코팅층 표면에 형성된 유기 코팅층은 다수의 비코팅 영역들을 갖도록 분산되어 있으므로, 이러한 비코팅 영역을 통해 이온이 통과할 수 있게 된다. 이에 따라, 저항을 거의 증가시키지 않으면서도 전극에 대한 세퍼레이터의 결착력을 증대시킬 수 있다.
본 발명의 세퍼레이터에 있어서, 유기 코팅층을 구성하는 제2 바인더 고분자는 유기-무기 코팅층을 구성하는 제1 바인더 고분자와 서로 다르다. 이에 따라, 양 바인더 고분자는 서로 다른 용해도 지수를 갖게 된다. 제1 바인더 고분자와 제2 바인더 고분자가 동일한 단량체 종류들을 갖는 공중합체라고 할지라도, 각 단량체의 함량이 다르다면 서로 다른 용해도 지수를 갖게 되므로 서로 다른 바인더 고분자가 된다. 또한, 제1 바인더 고분자와 제2 바인더 고분자가 2종의 동일한 고분자의 혼합물로 이루어진 경우에도, 혼합된 고분자의 함량비가 다르다면 서로 다은 용해도 지수를 갖게 되므로 서로 다른 바인더 고분자가 된다.
이러한 측면에서, 상기 제2 바인더 고분자는 상기 제1 바인더 고분자와 용해도 지수 차이가 4 (J/cm3)0.5 이상인 것이 바람직하고, 8 (J/cm3)0.5 이상인 것이 더욱 바람직하다. 제2 바인더 고분자로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 폴리비닐리덴 플루오라이드-트리클로로에틸렌, 폴리아크릴로니트릴, 폴리비닐피롤리돈 등을 각각 단독으로 또는 이들을 2종 이상 사용할 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 세퍼레이터에 있어서, 상기 유기 코팅층의 형성 면적은 전극과의 결착력 향상과 저항 증가를 고려할 때, 유기-무기 코팅층의 표면 전체의 5 내지 80%인 것이 바람직한데, 10 내지 60%인 것이 더욱 바람직하다. 또한, 유기 코팅층의 두께는 0.1 내지 2 ㎛인 것이 바람직하고, 0.1 내지 1 ㎛인 것이 더욱 바람직하다.
도 1은 전술한 구성요소들을 구비한 본 발명의 세퍼레이터를 개략적으로 도시한 단면도이다. 도 1을 참조하면, 본 발명의 세퍼레이터(10)는 기공들을 갖는 다공성 기재(1) 위에 무기물 입자들(3)과 제1 바인더 고분자(5)를 포함하는 다공성 유기-무기 코팅층이 형성되어 있다. 또한, 유기-무기 코팅층의 표면에는 흩어진 다수의 비코팅 영역들을 갖도록 분산된 제2 바인더 고분자의 유기 코팅층(7)이 형성되어 있다.
본 발명에 따른 세퍼레이터의 바람직한 제조방법은 다음과 같다.
먼저, 기공들을 갖는 다공성 기재를 준비한다(S1 단계). 다공성 기재의 종류 등은 전술한 바와 같다.
이어서, 전술한 제1 단량체 유니트 및 제2 단량체 유니트를 포함하는 공중합체 준비하고, 이를 단독으로 또는 다른 바인더 고분자와 함께 용매에 용해시켜 제1 바인더 고분자의 용액을 제조하고, 제1 바인더 고분자의 용액에 무기물 입자를 첨가하여 분산시킨다. 용매로는 사용하고자 하는 제1 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다. 제1 바인더 고분자 용액에 무기물 입자들을 첨가한 후, 무기물 입자의 파쇄를 실시하는 것이 바람직하다. 이때 파쇄 시간은 1 내지 20 시간이 적절하며, 파쇄된 무기물 입자의 입도는 상기에 언급된 바와 같이 0.001 내지 10㎛가 바람직하다. 파쇄 방법으로는 통상적인 방법을 사용할 수 있으며, 특히 볼밀(ball mill)법이 바람직하다.
무기물 입자가 분산된 제1 바인더 고분자의 용액을 다공성 기재에 코팅하고 건조시켜 다공성 유기-무기 코팅층을 형성한다(S2 단계). 코팅시 습도 조건은 10 내지 80%인 것이 바람직하고, 건조 공정은 용매를 휘발시킬 수 있는 방법이라면 열풍 건조 등 모든 방법이 가능하다.
무기물 입자가 분산된 바인더 고분자의 용액을 다공성 기재상에 코팅하는 방법은 당 업계에 알려진 통상적인 코팅 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다. 또한, 다공성 유기-무기 코팅층은 다공성 기재의 양면 모두 또는 일면에만 선택적으로 형성할 수 있다.
이어서, 상기 유기-무기 코팅층 위에 제2 바인더 고분자가 0.2 내지 2.0 중량%로 용해된 고분자 용액을 코팅하고 건조시킨다(S3 단계).
제2 바인더 고분자의 용액은 전술한 제1 고분자 용액의 코팅방법을 모두 사용할 수 있다. 유기-무기 코팅층의 표면 전부에 코팅된 제2 바인더 고분자의 용액은 용매가 휘발되면서 유기-무기 코팅층의 표면에서 셀프-어셈블리(self-assembly)되어 유기 코팅층을 형성한다. 유기 코팅층은 전술한 바와 같이, 세퍼레이터의 외곽부를 형성하나, 유기-무기 코팅층의 전 표면을 완전히 덮지는 않는다. 유기-무기 코팅층의 표면에는 셀프-어셈블리(self-assembly)되어 형성된 유기 코팅층 외에, 유기 코팅층들 사이에 다수의 비코팅 영역들이 흩어져 있게 된다. 이러한 성상의 유기 코팅층을 형성하기 위해서는 전술한 바와 같이 제2 바인더의 용해도 지수가 제1 바인더 고분자의 용해도 지수와 달라야 하며, 제2 고분자의 용액의 농도 또한 조절될 필요가 있다.
만일 제1 바인더 고분자와 같은 제2 고분자의 용액으로 코팅 및 건조하면, 친화성이 좋은 유기-무기 코팅층의 기공으로 제2 고분자의 용액이 스며드는 양이 크게 되어 유기-무기 코팅층의 표층에는 미미한 양의 제2 고분자만 남게 된다. 또한, 제2 고분자의 용액 내 함량이 0.2 중량% 미만이면 전극과의 결착력 개선효과가 미미할 수 있고, 그 함량이 2.0 중량%를 초과하면, 비코팅 영역을 갖는 원하는 성상의 유기 코팅층을 형성하기 어렵다. 물론, 이러한 제2 고분자 용액의 농도는 제2 고분자의 종류에 따라 달라질 수 있다.
이러한 측면에서, 제2 고분자 용액 내의 함량을 전술한 범위로 조절하는 것이 바람직하고, 제2 고분자의 종류 및 유기 코팅층의 두께 역시 전술한 바에 따라 조절하는 것이 바람직하다.
본 명세서에 있어서, 바람직한 예로 기재된 전술한 구성요소들의 조합예를 적시하지는 않았으나, 모든 구성요소들은 서로 2개 이상 조합되어 본 발명의 다양한 구성으로 채택될 수 있다.
이와 같이 제조된 본 발명의 세퍼레이터는 전기화학소자의 세퍼레이터(separator)으로 사용될 수 있다. 즉, 양극과 음극 사이에 개재시켜 양 전극과 라미네이팅하는 세퍼레이터로서 본 발명의 세퍼레이터가 유용하게 사용될 수 있다. 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
전기화학소자는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 양극과 음극 사이에 전술한 세퍼레이터를 개재(介在)시켜 조립한 후 전해액을 주입함으로써 제조될 수 있다.
본 발명의 세퍼레이터와 함께 적용될 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 양극활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
공중합체의 준비
하기 표 1에 기재된 단량체들을 기재된 함량(몰부)에 따라 투입하여 공중합체를 제조하였다.
표 1
Figure PCTKR2012001099-appb-I000001
상기 표 1에서, DMAAm은 N-N-디메틸아크릴아마이드(N,N-dimethylacrylamide)이고, DMAEA는 N-N-디메틸아미노에틸 아크릴레이트(N,N-dimethylaminoethyl acrylate)이고, AN은 아크릴로니트릴(acrylonitrlie)이고, EA는 에틸아크릴레이트(ethyl acrylate)이고, BA는 n-부틸 아크릴레이트(n-butyl acrlate)이고, HBA는 하이드록시부틸아크릴레이트(hydroxybutyl acrlate)이다.
실시예 및 비교예
하기 표 2에 기재된 성분에 따라 아래와 같이 세퍼레이터를 제조하였다.
각각의 공중합체와 에폭시 경화제를 아세톤에 용해시켜 제1 바인더 고분자의 용액을 제조하였다. 제조한 바인더 고분자 용액에 알루미나 입자들을 바인더 고분자/경화제/무기물 입자 = 7.15/0.35/92.5의 중량비가 되도록 첨가하여 3시간 이상 볼밀법(ball mill)을 이용하여 무기물 입자를 입경은 약 400nm로 파쇄 및 분산하여 슬러리를 제조하였다.
이와 같이 제조된 슬러리를 두께 12㎛의 폴리에틸렌 다공성 필름(기공도 45%)의 양면에 딥 코팅의 방법으로 코팅하고 건조시켜 유기-무기 코팅층을 형성시켰다.
이어서, 하기 표 2에 기재된 농도로 HFP의 함량을 달리한 PVdF-HFP를 아세톤에 용해시킨 용액을 제조한 후 유기-무기 코팅층이 형성된 다공성 막에 딥 코팅의 방법으로 코팅하고 건조시켜 유기 코팅층을 형성하였다.
제조된 세퍼레이터를 50mm×50mm로 재단한 후, 통기도, 다공성 유기-무기 코팅층의 패킹 밀도 D 등을 측정하여 하기 표 3에 나타냈다.
통기도는 세퍼레이터를 공기 100ml가 완전히 통과하는데 걸리는 시간(s)으로 평가하였다.
열수축율은 150도에서 1시간 동안 세퍼레이터를 보관한 후, 연신 방향의 세퍼레이터 열수출율을 측정하였다.
접착력은 양면 테이프를 이용하여 세퍼레이터를 유리판 위에 고정시킨 후, 노출된 다공성 유기-무기 코팅층에 테이프(3M 투명 테이프)를 견고히 부착시킨 다음, 인장강도 측정장비를 이용하여 테이프를 떼어내는데 필요한 힘(gf/15mm)으로 평가하였다.
표 2
Figure PCTKR2012001099-appb-I000002
표 3
Figure PCTKR2012001099-appb-I000003
음극의 제조
음극 활물질로 탄소 분말, 결합재로 폴리비닐리덴플로라이드(PVdF), 도전재로 카본 블랙 (carbon black)을 각각 96 중량%, 3 중량%, 1 중량%로 하여, 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10 ㎛인 음극 집전체인 구리(Cu) 박막에 도포, 건조를 통하여 음극을 제조한 후 롤 프레스(roll press)를 실시하였다.
양극의 제조
양극 활물질로 리튬 코발트 복합산화물 92 중량%, 도전재로 카본 블랙 (carbon black) 4 중량%, 결합제로 PVDF 4 중량%를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛인 양극 집전체의 알루미늄(Al) 박막에 도포, 건조를 통하여 양극을 제조한 후 롤 프레스(roll press)를 실시하였다.
전지의 제조
이상 제조된 전극 및 하기 표 3의 세퍼레이터들을 stacking(스태킹)방식을 이용하여 조립하였으며, 조립된 전지에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC) = 1 / 2 (부피비), 리튬헥사플로로포스페이트 (LiPF6) 1몰)을 주입하였다.
제조한 전지에 대하여 상온 및 60℃에서의 사이클 성능을 테스트하였고, 그 결과를 각각 하기 표 4에 나타냈다. 또한, 실시예 1 내지 6과 비교예 1 내지 5의 세퍼레이터에 대한 표면 SEM 사진을 촬영하여 도면에 나타냈다.
표 4
Figure PCTKR2012001099-appb-I000004
상기 표 4에서, "-"는 전극과 세퍼레이터 사이의 결착력이 없거나 약하여 전지 조립이 불가능한 경우를 의미한다.

Claims (26)

  1. 기공들을 갖는 다공성 기재;
    상기 다공성 기재의 적어도 일면에 형성되어 있으며, 무기물 입자들과 제1 바인더 고분자의 혼합물을 포함하고, 상기 제1 바인더 고분자는 (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유하는 다공성 유기-무기 코팅층; 및
    상기 유기-무기 코팅층의 표면에 흩어진 다수의 비코팅 영역들을 갖도록 분산된 제2 바인더 고분자의 유기 코팅층을 구비하는 세퍼레이터,
  2. 제 1항에 있어서,
    상기 제1 단량체 유니트의 함량은 공중합체 전체를 기준으로 10 내지 80 몰%이고, 상기 제2 단량체 유니트의 함량은 20 내지 90 몰%인 것을 특징으로 하는 세퍼레이터.
  3. 제 1항에 있어서,
    상기 제1 단량체 유니트는 2-(((부톡시아미노)카보닐)옥시)에틸(메타)아크릴레이트, 2-(디에틸아미노)에틸(메타)아크릴레이트, 2-(디메틸아미노)에틸(메타)아크릴레이트, 3-(디에틸아미노)프로필(메타)아크릴레이트, 3-(디메틸아미노)프로필(메타)아크릴레이트, 메틸 2-아세토아미도(메타)아크릴레이트, 2-(메타)아크릴아미도글리콜산, 2-(메타)아크릴아미도-2-메틸-1-프로판설폰산, (3-(메타)아크릴아미도프로필)트리메틸 암모늄 클로라이드, N-(메타)아크릴로일아미도-에톡시에탄올, 3-(메타)아크릴로일 아미노-1-프로판올, N-(부톡시메틸)(메타)아크릴로아마이드, N-tert-부틸(메타)아크릴아마이드, 디아세톤(메타)아크릴아마이드, N,N-디메틸(메타)아크릴아마이드, N-(이소부톡시메틸)아크릴아마이드, N-(이소프로필)(메타)아크릴아마이드, (메타)아크릴아마이드, N-페닐(메타)아크릴아마이드, N-(트리스(히드록시메틸)메틸)(메타)아크릴아마이드, N-N'-(1,3-페닐렌)디말레이미드, N-N'-(1,4-페닐렌)디말레이미드, N-N'-(1,2-디하이드록시에틸렌)비스아크릴아마이드, N-N'-에틸렌비스(메타)아크릴아마이드 및 N-비닐피롤리디논으로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.
  4. 제 1항에 있어서,
    상기 제2 단량체 유니트는 (메틸)메타 아크릴레이트, 에틸(메타)아크릴레이트, n-프로필 (메타)아크릴레이트, 이소프로필 (메타)아크릴레이트, n-부틸 (메타)아크릴레이트, t-부틸 (메타)아크릴레이트, sec-부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트 및 테트라데실 (메타)아크릴레이트로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.
  5. 제 1항에 있어서,
    상기 공중합체는 (c) 시아노기를 포함하는 제3 단량체 유니트를 더 포함하는 것을 특징으로 하는 세퍼레이터.
  6. 제 5항에 있어서,
    상기 제3단량체 유니트의 함량은 공중합체 전체를 기준으로 5 내지 50 몰%인 것을 특징으로 하는 세퍼레이터.
  7. 제 1항에 있어서,
    상기 공중합체는 가교성 관능기를 갖는 단량체 유니트를 포함하고, 상기 가교성 관능기에 의해 서로 가교된 것을 특징으로 하는 세퍼레이터.
  8. 제 1항에 있어서,
    상기 무기물 입자들의 평균 입경은 0.001 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터.
  9. 제 1항에 있어서,
    상기 무기물 입자들은 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 특징으로 하는 세퍼레이터.
  10. 제 9항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 적어도 어느 어느 하나인 것을 특징으로 하는 세퍼레이터.
  11. 제 9항에 있어서,
    상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 glass(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 glass 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 glass로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 세퍼레이터.
  12. 제 1항에 있어서,
    상기 제1 바인더 고분자의 함량은 상기 무기물 입자 100 중량부를 기준으로 2 내지 30 중량부인 것을 특징으로 하는 세퍼레이터.
  13. 제 1항에 있어서,
    상기 다공성 유기-무기 코팅층의 제1 바인더 고분자는 상기 무기물 입자들 표면의 일부 또는 전체에 코팅층으로 위치하고, 상기 무기물 입자들은 밀착된 상태로 상기 코팅층에 의해 서로 연결 및 고정되며, 상기 무기물 입자들 사이에 존재하는 빈 공간으로 인해 기공들이 형성된 것을 특징으로 하는 세퍼레이터.
  14. 제 1항에 있어서,
    상기 다공성 유기-무기 코팅층의 패킹 밀도 D는 0.40×Dinorg ≤ D ≤ 0.70×Dinorg 의 범위 내인 것을 특징으로 하는 세퍼레이터:
    여기서, D = (Sg-Fg)/(St-Et)이고,
    Sg는 다공성 유기-무기 코팅층이 다공성 기재에 형성된 세퍼레이터의 단위면적(m2)의 무게(g)이고,
    Fg는 다공성 기재의 단위면적(m2)의 무게(g)이고,
    St는 다공성 유기-무기 코팅층이 다공성 기재에 형성된 세퍼레이터의 두께(㎛)이고,
    Ft는 다공성 기재의 두께(㎛)이고,
    Dinorg은 사용된 무기물 입자의 밀도(g/m2×㎛)이다.
  15. 제 1항에 있어서,
    상기 다공성 유기-무기 코팅층의 두께는 0.5 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터.
  16. 제 1항에 있어서,
    상기 다공성 기재는 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 적어도 어느 하나로 형성된 것을 특징으로 하는 세퍼레이터.
  17. 제 1항에 있어서,
    상기 제2 바인더 고분자는 상기 제1 바인더 고분자와 용해도 지수 차이가 4 (J/cm3)0.5 이상인 것을 특징으로 하는 세퍼레이터.
  18. 제 1항에 있어서,
    상기 제2 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 폴리비닐리덴 플루오라이드-트리클로로에틸렌, 폴리아크릴로니트릴 및 폴리비닐피롤리돈으로 이루어진 군으로부터 선택된 적어도 어느 하나로 형성된 것을 특징으로 하는 세퍼레이터.
  19. 제 1항에 있어서,
    상기 유기 코팅층의 형성 면적은 유기-무기 코팅층의 표면 전체의 5 내지 80%인 것을 특징으로 하는 세퍼레이터.
  20. 제 19항에 있어서,
    상기 유기 코팅층의 형성 면적은 유기-무기 코팅층의 표면 전체의 10 내지 60%인 것을 특징으로 하는 세퍼레이터.
  21. 제 1항에 있어서,
    상기 유기 코팅층의 두께는 0.1 내지 2 ㎛인 것을 특징으로 하는 세퍼레이터.
  22. (S1) 기공들을 갖는 다공성 기재를 준비하는 단계;
    (S2) 무기물 입자들이 분산되어 있으며, (a) 측쇄에 아민기 또는 아마이드기 중 적어도 하나 이상을 포함하는 제1 단량체 유니트 및 (b) 탄소수가 1 내지 14인 알킬기를 갖는 (메타)아크릴레이트로 된 제2 단량체 유니트를 포함하는 공중합체를 함유하는 제1 바인더 고분자를 용매에 용해시킨 슬러리를 상기 다공성 기재의 적어도 일면 위에 코팅하고 건조시켜 다공성 유기-무기 코팅층을 형성하는 단계;
    (S3) 상기 유기-무기 코팅층 위에 제2 바인더 고분자가 0.2 내지 2.0 중량%로 용해된 고분자 용액을 코팅하고 건조시키는 단계를 포함하는 세퍼레이터의 제조방법.
  23. 제 22항에 있어서,
    상기 제2 바인더 고분자는 상기 제1 바인더 고분자와 용해도 지수 차이가 4 (J/cm3)0.5 이상인 것을 특징으로 하는 세퍼레이터의 제조방법.
  24. 제 22항에 있어서,
    상기 제2 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌, 폴리비닐리덴 플루오라이드-트리클로로에틸렌, 폴리아크릴로니트릴 및 폴리비닐피롤리돈으로 이루어진 군으로부터 선택된 적어도 어느 하나로 형성된 것을 특징으로 하는 세퍼레이터의 제조방법.
  25. 양극, 음극, 상기 양극과 음극 사이에 개재되어 라미네이팅된 세퍼레이터를 포함하는 전기화학소자에 있어서,
    상기 세퍼레이터가 제 1항 내지 제 21항 중 어느 한 항의 세퍼레이터인 것을 특징으로 하는 전기화학소자.
  26. 제 25항에 있어서,
    상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
PCT/KR2012/001099 2011-02-15 2012-02-14 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 WO2012111956A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12746471.7A EP2677590B1 (en) 2011-02-15 2012-02-14 Separator, preparation method thereof, and electrochemical device comprising same
JP2013553373A JP5976015B2 (ja) 2011-02-15 2012-02-14 セパレータ、その製造方法、及びそれを備える電気化学素子
CN201280009067.0A CN103477491B (zh) 2011-02-15 2012-02-14 隔膜、其制造方法和包括该隔膜的电化学装置
US13/965,660 US9130215B2 (en) 2011-02-15 2013-08-13 Separator, method for producing the same and electrochemical device including the same
US14/820,264 US9954211B2 (en) 2011-02-15 2015-08-06 Separator, method for producing the same and electrochemical device including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110013312 2011-02-15
KR10-2011-0013312 2011-02-15
KR10-2012-0013889 2012-02-10
KR1020120013889A KR101254693B1 (ko) 2011-02-15 2012-02-10 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/965,660 Continuation US9130215B2 (en) 2011-02-15 2013-08-13 Separator, method for producing the same and electrochemical device including the same

Publications (2)

Publication Number Publication Date
WO2012111956A2 true WO2012111956A2 (ko) 2012-08-23
WO2012111956A3 WO2012111956A3 (ko) 2012-12-20

Family

ID=46673032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001099 WO2012111956A2 (ko) 2011-02-15 2012-02-14 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자

Country Status (3)

Country Link
EP (1) EP2677590B1 (ko)
TW (1) TWI469425B (ko)
WO (1) WO2012111956A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915589A (zh) * 2013-01-08 2014-07-09 东莞市振华新能源科技有限公司 一种锂离子电池隔膜的制备方法
WO2014151801A1 (en) * 2013-03-15 2014-09-25 Apple Inc. Manufacturing techniques for three-dimensional stacked-cell batteries
JP2015506060A (ja) * 2012-09-24 2015-02-26 エルジー・ケム・リミテッド リチウム二次電池用セパレータの製造方法、その方法で製造されたセパレータ、及びそれを含むリチウム二次電池
TWI479725B (zh) * 2012-10-05 2015-04-01 Lg Chemical Ltd 分隔器及含有此分隔器之電化學裝置
JP2015138769A (ja) * 2014-01-24 2015-07-30 旭化成イーマテリアルズ株式会社 積層体、蓄電デバイス及びリチウムイオン二次電池
CN112074969A (zh) * 2018-06-12 2020-12-11 株式会社Lg化学 含无机涂层的电化学装置用隔膜及其制造方法
CN113745759A (zh) * 2020-05-14 2021-12-03 深圳市鼎泰祥新能源科技有限公司 一种涂层隔膜、制备方法和抑制锂枝晶的方法
CN115836436A (zh) * 2020-11-30 2023-03-21 宁德时代新能源科技股份有限公司 一种隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856522B (zh) * 2012-10-09 2015-04-29 中国海诚工程科技股份有限公司 耐高温含纤维素纤维基材的锂电子电池隔膜及其制备方法
KR101707193B1 (ko) 2014-04-01 2017-02-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
TWI589052B (zh) * 2015-04-13 2017-06-21 國立中央大學 電解質隔離膜
CN111969159B (zh) * 2016-04-01 2022-09-30 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN108630894A (zh) * 2017-03-23 2018-10-09 株式会社东芝 二次电池、电池包及车辆
CN113363486A (zh) * 2021-05-28 2021-09-07 东莞维科电池有限公司 一种软包锂离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070000231A (ko) 2005-06-27 2007-01-02 주식회사 엘지화학 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW519777B (en) * 1999-10-18 2003-02-01 Zeon Corp The binder composition for the secondary battery electrode of lithium ion and its utilization
JP2001118558A (ja) * 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
KR100749301B1 (ko) * 2004-07-07 2007-08-14 주식회사 엘지화학 신규 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학소자
WO2006025662A1 (en) * 2004-09-02 2006-03-09 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
KR100758482B1 (ko) * 2004-12-07 2007-09-12 주식회사 엘지화학 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자
KR100775310B1 (ko) * 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR100727247B1 (ko) * 2005-12-06 2007-06-11 주식회사 엘지화학 모폴로지 그래디언트를 갖는 유기/무기 복합 분리막, 그제조방법 및 이를 구비한 전기화학소자
TWI368347B (en) * 2006-02-16 2012-07-11 Lg Chemical Ltd Electrode including organic/inorganic composite coating layer and electrochemical device prepared thereby
KR100754746B1 (ko) * 2007-03-07 2007-09-03 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
KR100947181B1 (ko) * 2007-11-19 2010-03-15 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
KR100913176B1 (ko) * 2007-11-28 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR101187767B1 (ko) * 2010-03-17 2012-10-05 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070000231A (ko) 2005-06-27 2007-01-02 주식회사 엘지화학 이질적 표면을 갖는 2층 구조의 유/무기 복합 다공성분리막 및 이를 이용한 전기 화학 소자

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506060A (ja) * 2012-09-24 2015-02-26 エルジー・ケム・リミテッド リチウム二次電池用セパレータの製造方法、その方法で製造されたセパレータ、及びそれを含むリチウム二次電池
EP2899776A4 (en) * 2012-09-24 2016-04-27 Lg Chemical Ltd METHOD FOR MANUFACTURING A LITHIUM SECONDARY BATTERY SEPARATOR, SEPARATOR MANUFACTURED THEREBY, AND LITHIUM SECONDARY BATTERY COMPRISING SAID SEPARATOR
US10411234B2 (en) 2012-09-24 2019-09-10 Lg Chem, Ltd. Method of preparing separator for lithium secondary battery, separator prepared therefrom, and lithium secondary battery comprising the same
TWI479725B (zh) * 2012-10-05 2015-04-01 Lg Chemical Ltd 分隔器及含有此分隔器之電化學裝置
CN103915589A (zh) * 2013-01-08 2014-07-09 东莞市振华新能源科技有限公司 一种锂离子电池隔膜的制备方法
WO2014151801A1 (en) * 2013-03-15 2014-09-25 Apple Inc. Manufacturing techniques for three-dimensional stacked-cell batteries
JP2015138769A (ja) * 2014-01-24 2015-07-30 旭化成イーマテリアルズ株式会社 積層体、蓄電デバイス及びリチウムイオン二次電池
CN112074969A (zh) * 2018-06-12 2020-12-11 株式会社Lg化学 含无机涂层的电化学装置用隔膜及其制造方法
US11728542B2 (en) 2018-06-12 2023-08-15 Lg Chem, Ltd. Separator for electrochemical device comprising inorganic coating layer and method for manufacturing the same
CN113745759A (zh) * 2020-05-14 2021-12-03 深圳市鼎泰祥新能源科技有限公司 一种涂层隔膜、制备方法和抑制锂枝晶的方法
CN115836436A (zh) * 2020-11-30 2023-03-21 宁德时代新能源科技股份有限公司 一种隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置

Also Published As

Publication number Publication date
TWI469425B (zh) 2015-01-11
EP2677590A4 (en) 2016-12-07
TW201246663A (en) 2012-11-16
WO2012111956A3 (ko) 2012-12-20
EP2677590B1 (en) 2019-04-03
EP2677590A2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
KR101254693B1 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2012111956A2 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2011115376A2 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2017171524A1 (ko) 접착층을 포함하는 전기화학소자용 분리막 및 상기 분리막을 포함하는 전극 조립체
WO2013100519A1 (ko) 세퍼레이터의 제조방법 및 이에 따라 제조된 세퍼레이터를 구비한 전기화학소자
WO2016148408A1 (ko) 일체형 전극조립체 및 이를 포함하는 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2014054919A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2011105866A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2013005898A1 (ko) 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
WO2012165758A1 (ko) 리튬 이차전지
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2009110726A2 (en) Separator having porous coating layer and electrochemical device containing the same
WO2012046966A2 (ko) 사이클 특성이 개선된 전기화학소자
WO2011065765A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2010076989A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2013157902A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2012150838A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2011105865A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2013066052A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2016171519A1 (ko) 리튬 이차전지용 분리막 및 그의 제조방법
WO2018147714A1 (ko) 접착층을 구비한 리튬 이차전지용 분리막
WO2015072753A1 (ko) 젤리-롤형 전극 조립체 및 이를 구비한 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746471

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013553373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012746471

Country of ref document: EP