WO2015065118A1 - 전극조립체 및 그를 포함하는 리튬 이차전지 - Google Patents

전극조립체 및 그를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2015065118A1
WO2015065118A1 PCT/KR2014/010388 KR2014010388W WO2015065118A1 WO 2015065118 A1 WO2015065118 A1 WO 2015065118A1 KR 2014010388 W KR2014010388 W KR 2014010388W WO 2015065118 A1 WO2015065118 A1 WO 2015065118A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
porous coating
electrode assembly
porous
anode
Prior art date
Application number
PCT/KR2014/010388
Other languages
English (en)
French (fr)
Inventor
최정석
오송택
이수림
이혁무
박지혜
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/436,264 priority Critical patent/US9786891B2/en
Priority to JP2016526334A priority patent/JP6390037B2/ja
Priority to EP14857843.8A priority patent/EP2996188B1/en
Priority to PL14857843T priority patent/PL2996188T3/pl
Publication of WO2015065118A1 publication Critical patent/WO2015065118A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/14Assembling a group of electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly and a lithium secondary battery comprising the same, and more particularly, to an electrode assembly having a separator sheet including a porous coating layer formed to selectively contact a cathode and an anode, and a lithium secondary battery comprising the same. It is about.
  • the electrochemical device is the area that is receiving the most attention in this respect, and the development of a secondary battery capable of charging and discharging has been the focus of attention, and in recent years in the development of such a battery in order to improve the capacity density and specific energy R & D on the design of electrodes and batteries is underway.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • a lithium secondary battery has safety problems such as ignition and explosion caused by using an organic electrolyte, and has a disadvantage in that manufacturing is difficult.
  • the lithium secondary batteries as described above are produced by many companies, but their safety characteristics show different aspects. It is very important to evaluate the safety and secure the safety of the lithium secondary battery, and to secure such safety, a separator having a porous coating layer formed by coating a mixture of inorganic particles and a polymer binder on at least one surface of a porous substrate having a plurality of pores is Proposed.
  • a separator manufacturing technique in which the composition or thickness of the outermost porous coating layer of the separator is applied asymmetrically has been applied so that the contact surfaces of the separators in contact with the cathode and the anode are suitable for the cathode and the anode, respectively.
  • the lithium secondary battery is classified according to the structure of the electrode assembly of the cathode / separator / anode structure, typically, long sheet-shaped cathodes and anodes of the structure wound around the separator Jelly-roll (wound) electrode assembly, a predetermined length of a continuous separator sheet of bi-cell (full-cell) or full-cell unit cell laminated by the cathode and anode of a predetermined unit via a separator It is divided into a stack-folding electrode assembly and the like of the structure wound using.
  • the structure of the electrode assembly of the cathode / separator / anode structure typically, long sheet-shaped cathodes and anodes of the structure wound around the separator Jelly-roll (wound) electrode assembly, a predetermined length of a continuous separator sheet of bi-cell (full-cell) or full-cell unit cell laminated by the cathode and anode of a predetermined unit via a separator It is divided into a stack-
  • the jelly-roll electrode assembly can be selectively contacted with the cathode in terms of the structure by using the above-described separator asymmetrically applied to the composition or thickness of the porous coating layer.
  • the long sheet-type cathode and anode are wound in a dense state and manufactured in a cylindrical or oval structure in cross section, stress caused by expansion and contraction of the electrode during charge and discharge accumulate inside the electrode assembly, and the accumulated When the stress exceeds a certain limit, deformation of the electrode assembly occurs. Due to the deformation of the electrode assembly, the spacing between the electrodes is uneven and the performance of the battery is drastically degraded, and the safety of the battery is threatened due to the internal short circuit.
  • the long sheet-type cathode and the anode have to be wound, it is difficult to wind up quickly while keeping the gap between the cathode and the anode constant, which also has a problem of lowering productivity.
  • the problem to be solved by the present invention by applying a separator formed on each side of the porous coating layer having a different composition, thickness or porosity, the porous coating layer suitable for the cathode and anode, respectively, by selectively contacting the cell, It is to provide an electrode assembly and a lithium secondary battery including the same to improve the degradation prevention and safety.
  • At least one first electrode body including a cathode; At least one second electrode body comprising an anode; And a separator sheet separating between the first electrode body and the second electrode body, which are alternately stacked, and including a plurality of folding parts, wherein the separator sheet comprises a first porous polymer substrate and the first porous polymer.
  • the electrode assembly includes a first porous coating layer and a second porous coating layer having a different composition, thickness, or porosity.
  • the separator sheet may include a plurality of folding portions folded in a zigzag shape, and the electrode assembly may be a zigzag-folding type.
  • the porosity of the first porous coating layer may be 20 to 50%, and the porosity of the second porous coating layer may be 30 to 60%.
  • the ratio of the thickness of the first porous coating layer and the second porous coating layer may be 1: 9 to 4: 6, and the ratio of the thickness of the first porous coating layer and the second porous coating layer may be 6: 4. To 9: 1.
  • the porosity of the first porous coating layer is 20 to 50%
  • the porosity of the second porous coating layer is 30 to 60%
  • the ratio of the thickness of the first porous coating layer and the second porous coating layer is , 1: 9 to 9: 1.
  • the first porous coating layer may further include inorganic particles.
  • the inorganic particles may be inorganic particles having a dielectric constant of 5 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
  • the inorganic particles having the lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium Aluminum Titanium Phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), lithium nitride (Li 3 PO 4
  • the polymer binder is polyvinylidene fluoride (polyvinylidene fluoride (PVDF)), hexafluoro propylene (hexafluoro propylene, HFP), polyvinylidene fluoride-hexafuluropropylene (polyvinylidene fluoride-co- hexafluoro propylene), polyvinylidene fluoride-co-trichloroethylene, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, Polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate (cellulose acetate propionate), cyanoethylpullula n), cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxy
  • the first porous polymer substrate may be a polyolefin-based porous membrane or a nonwoven fabric.
  • the first porous polymer substrate may include high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, Polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide ( polyphenyleneoxide), polyphenylene sulfide (polyphenylenesulfide) and polyethylene naphthalate (polyethylenenaphthalate) may be formed of any one or a mixture of two or more thereof selected from the group consisting of.
  • the first porous polymer substrate may be formed of one layer or may be formed by stacking two or more layers.
  • the cathode may be provided with a cathode active material containing a lithium-containing oxide.
  • the anode may include an anode active material including a lithium metal, a carbon material, a metal compound, or a mixture thereof.
  • the metal compound is Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, and Ba It may be any one selected from the group consisting of or a mixture of two or more thereof.
  • the first electrode body may be formed of a single layer of cathode
  • the second electrode body may be formed of a single layer of anode
  • the first electrode body may include one or more cathodes, one or more anodes, and a separator separating the cathodes and the anodes stacked alternately.
  • the separator is formed on one surface of the second porous polymer substrate, the second porous polymer substrate, includes a polymer binder, and is formed on the other surface of the third porous coating layer and the second porous polymer substrate facing the cathode. And a mixture of a polymer binder and inorganic particles, facing the anode, and having a fourth porous coating layer having a different composition, thickness, or porosity from the third porous coating layer.
  • the porosity of the third porous coating layer may be 20 to 50%, and the porosity of the fourth porous coating layer may be 30 to 60%.
  • the ratio of the thickness of the third porous coating layer and the fourth porous coating layer may be 1: 9 to 4: 6, and the ratio of the thickness of the third porous coating layer and the fourth porous coating layer may be 6: 4. To 9: 1.
  • the porosity of the third porous coating layer is 20 to 50%
  • the porosity of the fourth porous coating layer is 30 to 60%
  • the ratio of the thickness of the third porous coating layer and the fourth porous coating layer is , 1: 9 to 9: 1.
  • composition, thickness and porosity of the first porous coating layer and the third porous coating layer may be the same
  • composition, thickness and porosity of the second porous coating layer and the fourth porous coating layer may be the same. have.
  • the second electrode body may include one or more anodes, one or more cathodes, and a separator that separates the anodes and the cathodes stacked at each other.
  • the separator is formed on one surface of the second porous polymer substrate, the second porous polymer substrate, includes a polymer binder, and is formed on the other surface of the third porous coating layer and the second porous polymer substrate facing the cathode. And a mixture of a polymer binder and inorganic particles, facing the anode, and having a fourth porous coating layer having a different composition, thickness, or porosity from the third porous coating layer.
  • a cathode, a first separator, an anode, a second separator, and a cathode are sequentially stacked with a plurality of first bicells;
  • a plurality of second bicells in which an anode, a second separator, a cathode, a first separator, and an anode are sequentially stacked;
  • a separator sheet separating a plurality of first bi-cells and the second bi-cells stacked in a cross-section, and including a plurality of folding portions folded in a zigzag shape, wherein the separator sheet comprises: a first porous polymer substrate; It is formed on one surface of the first porous polymer substrate, includes a polymer binder, is formed on the first porous coating layer facing the cathode and the other surface of the first porous polymer substrate, and comprises a mixture of a polymer binder and inorganic particles, The second porous coating layer facing the anode and having a
  • the electrode assembly A nonaqueous electrolyte solution for impregnating the electrode assembly; And a battery case incorporating the electrode assembly and the nonaqueous electrolyte solution, wherein the electrode assembly is a lithium secondary battery, wherein the electrode assembly is the electrode assembly of the present invention described above.
  • a porous coating layer having different compositions, thicknesses, or porosities from each other is applied to each surface, so that the porous coating layers respectively suitable for the cathode and the anode are completely matched without mismatch.
  • porous coating layer facing the anode by-products generated at the anode block pores of the porous substrate to prevent the degradation of the battery, and the porous coating layer facing the cathode improves its mechanical strength to improve battery safety. Can be improved.
  • FIG. 1 is a cross-sectional view showing an A type bicell (first bicell).
  • FIG. 2 is a cross-sectional view showing a type C bicell (second bicell).
  • FIG 3 is a cross-sectional view schematically showing a cross section of a conventional stack-folding electrode assembly.
  • FIG. 4 is a cross-sectional view schematically showing a cross section of the zigzag-folding electrode assembly of the present invention.
  • Figure 5 is a graph showing the capacity retention ratio of the polymer pouch-type battery prepared in one embodiment and comparative example of the present invention.
  • Figure 6 is a graph showing a comparison of the temperature change of the cell according to the nail penetration for the polymer pouch-type battery prepared in one embodiment and comparative example of the present invention.
  • cathode 1 ⁇ third porous coating layer
  • first porous coating layer 20 second bicell
  • separator sheet 100 zigzag-folding electrode assembly
  • At least one first electrode body including a cathode; At least one second electrode body comprising an anode; And a separator sheet separating between the first electrode body and the second electrode body, which are alternately stacked, and including a plurality of folding parts, wherein the separator sheet comprises a first porous polymer substrate and the first porous polymer.
  • the electrode assembly includes a first porous coating layer and a second porous coating layer having a different composition, thickness, or porosity.
  • porous coating layers suitable for each of the cathode and the anode are selectively faced, so that the first porous coating layer facing the cathode can improve its mechanical strength and improve the safety of the battery, and the second facing the anode.
  • by-products generated at the anode block pores of the porous substrate to prevent the degradation of the battery.
  • the separator sheet may include a plurality of folding portions folded in a zigzag shape, and the electrode assembly may be a zigzag-folding type.
  • the porosity of the first porous coating layer may be 20 to 50%, and the porosity of the second porous coating layer may be 30 to 60%.
  • the porosity of the second porous coating layer facing the anode by increasing the porosity of the second porous coating layer facing the anode, the by-products of the anode block pores of the separator, thereby delaying a phenomenon in which cell deterioration is accelerated.
  • the ratio of the thickness of the first porous coating layer and the second porous coating layer may be 1: 9 to 4: 6, 6: 4 to 9: 1, more preferably 2: 8.
  • the first porous coating layer may be composed of only a polymer binder as described above, but may be composed of a mixture of a polymer binder and inorganic particles as in the second porous coating layer.
  • the inorganic particles in the first and second porous coating layers serve as a kind of spacer to maintain the physical form of the porous coating layer, thereby suppressing thermal shrinkage of the porous polymer substrate when the lithium secondary battery is overheated, and porous Even when the polymer substrate is damaged, the cathode and the anode are prevented from directly contacting each other, thereby contributing to the improvement of the safety of the lithium secondary battery.
  • the inorganic particles that can be used in the present invention is not particularly limited as long as it is electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the lithium secondary battery (for example, 0 to 5V based on Li / Li + ).
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt, such as lithium salt, in the liquid electrolyte.
  • the inorganic particles may include high dielectric constant inorganic particles having a dielectric constant of 5 or more, or 10 or more.
  • Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr x Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, where , 0 ⁇ x ⁇ 1), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 , It may be any one
  • the inorganic particles may be inorganic particles having lithium ion transfer capability, that is, inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium.
  • inorganic particles having a lithium ion transfer capacity include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 (LiAlTiP) x O y series glasses such as O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x
  • the size of the inorganic particles is not limited, but for proper porosity of the separator and the separator sheet, the average particle diameter may be in the range of 0.001 ⁇ m to 100 ⁇ m.
  • the polymer binder independently of each other, polyvinylidene fluoride (PVDF), hexafluoro propylene (HFP), polyvinylidene fluoride-hexafulopropylene (polyvinylidene fluoride-co-hexafluoro propylene, polyvinylidene fluoride-co-trichloroethylene, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone (polyvinylpyrrolidone), polyvinylacetate, ethylene vinyl co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose Cellulose acetate propionate, cyanoethylpullu (cyanoethylpullulan), cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl
  • the adhesive force between the cathode and the anode and the separator by using a material having a high affinity with the binder used in each of the cathode and the anode as a kind of the polymer binder constituting the first porous coating layer and the second porous coating layer facing the cathode and the anode, respectively Can improve.
  • the first porous polymer substrate of the present invention any porous polymer substrate commonly used in the art can be used, for example, a polyolefin-based porous membrane (membrane) or non-woven fabric can be used, but is specifically limited thereto It is not.
  • polyolefin-based porous membrane examples include polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyolefin-based polymers such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polyethylene such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • polypentene such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, respectively, or a mixture thereof
  • the nonwoven fabric may be, for example, polyethylene terephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate, or polycarbonate. ), Polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalate, etc. Or the nonwoven fabric formed from the polymer which mixed these is mentioned.
  • the structure of the nonwoven can be a spunbond nonwoven or melt blown nonwoven composed of long fibers.
  • the thickness of the porous polymer substrate is not particularly limited, but may be 5 to 50 ⁇ m, and the pore size and pore present in the porous polymer substrate are also not particularly limited, but may be 0.01 to 50 ⁇ m and 10 to 95%, respectively.
  • the porous polymer substrate may be formed of one layer or may be formed by stacking two or more layers.
  • the cathode has a structure in which a cathode layer including a cathode active material, a conductive material, and a binder is supported on one or both surfaces of a current collector.
  • the cathode active material may include a lithium-containing oxide, a lithium-containing transition metal oxide may be preferably used.
  • a lithium-containing oxide a lithium-containing transition metal oxide
  • Li x CoO 2 (0.5 ⁇ x ⁇ 1.3), Li x NiO 2 (0.5 ⁇ x ⁇ 1.3), Li x MnO 2 (0.5 ⁇ x ⁇ 1.3), Li x Mn 2 O 4 (0.5 ⁇ x ⁇ 1.3), Li x (Ni a Co b Mn c ) O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 1, a + b + c 1), Li x Ni 1-y Co y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Co 1-y Mn y O 2 (0.5 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 1), Li x Ni 1-y Mn y O 2 (0.5 ⁇ x ⁇ 1.3
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the lithium secondary battery.
  • carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
  • acetylene black, carbon black, graphite, etc. are mentioned.
  • the anode has a structure in which an anode layer including an anode active material and a binder is supported on one side or both sides of a current collector.
  • anode active material a lithium metal, a carbon material, a metal compound, or a mixture thereof, which may normally occlude and release lithium ions, may be used.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • metal elements such as Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba, etc.
  • the compound containing 1 or more types is mentioned.
  • These metal compounds may be used in any form, such as single, alloys, oxides (TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and alloys with lithium. High capacity can be achieved.
  • one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
  • the binder used for the cathode and the anode has a function of retaining the cathode active material and the anode active material in the current collector and connecting the active materials, and a binder commonly used may be used without limitation.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluorofluoropropylene
  • PVDF polyvinylidene fluoride
  • PVDF polyacrylonitrile
  • binders such as (polymethyl methacrylate), styrene-butadiene rubber (SBR), and carboxyl methyl cellulose (CMC).
  • the current collectors used for the cathode and the anode are metals of high conductivity, and metals to which the slurry of the active material can easily adhere can be used as long as they are not reactive in the voltage range of the battery.
  • a non-limiting example of a cathode current collector is a foil prepared by aluminum, nickel or a combination thereof
  • a non-limiting example of an anode current collector is copper, gold, nickel or a copper alloy or a combination thereof.
  • the current collector may be used by stacking substrates made of the materials.
  • the cathode and the anode are kneaded using an active material, a conductive material, a binder, and a high boiling point solvent to form an electrode mixture, and then the mixture is applied to a copper foil of a current collector, dried, and press-molded. It may be produced by heat treatment under vacuum at a temperature of about 2 hours.
  • the thickness of the electrode layer of the cathode may be 30 to 120 ⁇ m, or 50 to 100 ⁇ m
  • the thickness of the electrode layer of the anode may be 1 to 100 ⁇ m, or 3 to 70 ⁇ m.
  • the first electrode body may be formed of a single layer of cathode
  • the second electrode body may be formed of a single layer of anode
  • the first electrode body may include one or more cathodes, one or more anodes, and a separator that separates the cathode and the anode stacked at an intersection
  • the second electrode body may include one or more anodes and one or more anodes. It may include a separator for separating between the cathode and the cathode stacked in the above-described cathode and cross.
  • the separator is formed on one surface of the second porous polymer substrate, the second porous polymer substrate, includes a polymer binder, and is formed on the other surface of the third porous coating layer and the second porous polymer substrate facing the cathode. And a mixture of a polymer binder and inorganic particles, facing the anode, and having a fourth porous coating layer having a different composition, thickness, or porosity from the third porous coating layer.
  • porous coating layers suitable for each of the cathode and the anode present in the first electrode body and the second electrode body are selectively faced to each other, so that the mechanical strength of the third porous coating layer facing the cathode is improved to improve battery safety.
  • by-products generated at the anode may prevent pores of the porous substrate from accelerating degeneration of the battery.
  • the third porous coating layer may have the same porosity, composition, or thickness as the first porous coating layer
  • the fourth porous coating layer may have the same porosity, composition, or thickness as the second porous coating layer
  • the second porous polymer substrate may be the same as the first porous polymer substrate described above.
  • FIG. 1 is a cross-sectional view showing an A-type bicell (first bicell)
  • FIG. 2 is a cross-sectional view showing a C-type bicell (second bicell)
  • FIG. 3 is a view of a conventional stack-folding electrode assembly.
  • 4 is a cross-sectional view schematically showing a cross section
  • FIG. 4 is a cross-sectional view schematically showing a cross section of a zigzag-folding electrode assembly of the present invention.
  • FIGS. 1 to 4 the characteristics of the zigzag-foldable electrode assembly according to an embodiment of the present invention will be described in comparison with the conventional stack-folded electrode assembly.
  • FIG. 1 shows an A-type bicell (corresponding to the first bicell 10 of the present invention), in which the cathode 1, the first separator 4, the anode 2, and the second are sequentially from the lower surface.
  • the separator 5 and the cathode 1 are stacked to each other, and the first separator 4 includes a third porous coating layer 1 ′, a second porous polymer substrate 3, and a fourth porous coating layer 2 ′.
  • the second separator 5 is formed by stacking a fourth porous coating layer 2 ′, a second porous polymer substrate 3, and a third porous coating layer 1 ′.
  • the second separator 5 shows a C-type bicell (corresponding to the second bicell 20 of the present invention), in which the anode 2, the second separator 5, the cathode 1, and the first are in order from the lower surface.
  • the separator 4 and the anode 2 are formed by lamination, and the second separator 5 includes a fourth porous coating layer 2 ′, a second porous polymer substrate 3, and a third porous coating layer 1 ′.
  • the first separator 4 is formed by stacking a third porous coating layer 1 ′, a second porous polymer substrate 3, and a fourth porous coating layer 2 ′.
  • the bicells 10 and 20 are formed by selectively contacting a porous coating layer suitable for each of the cathode 1 and the anode 2.
  • Tables 1 and 2 the mismatch occurrence rate according to the number of bicells existing in the conventional stack-foldable electrode assembly is shown in Tables 1 and 2 below.
  • Table 1 shows the case where n + 1 is a multiple of 4 (n is the total number of bicells), and Table 2 shows the case where n-1 is a multiple of 4 (n is the total number of bicells).
  • the separator sheet 40 faces the first porous coating layer 10 ′, but the anode is mismatched.
  • a plurality of first bicells in which the cathode 1, the first separator 4, the anode 2, the second separator 5, and the cathode 1 are sequentially stacked 10);
  • a plurality of second bicells 20 in which an anode 2, a second separator 5, a cathode 1, a first separator 4, and an anode 2 are sequentially stacked;
  • a separator sheet 40 that separates the first bi-cell 10 and the second bi-cell 20 stacked in a cross-section, and includes a plurality of folding portions folded in a zigzag shape.
  • the first 40 is formed on one surface of the first porous polymer substrate 30 and the first porous polymer substrate 30, and includes a polymer binder, and faces the cathode 1. And formed on the other surface of the first porous polymer substrate 30, and include a mixture of a polymer binder and inorganic particles, and face the anode 2, and have a composition, thickness, and thickness of the first porous coating layer 10 ′. Or a second porous coating layer 20 ′ having a different porosity from each other, and the first separator 4 and the second separator 5 are each independently of the second porous polymer substrate 3 and the second.
  • the polymer bar is formed on one surface of the porous polymer substrate 3 It further comprises, and formed on the other surface of the third porous coating layer (1 ⁇ ) and the second porous polymer substrate (3) facing the cathode (1), and comprises a mixture of a polymer binder and inorganic particles, the anode A zigzag-foldable electrode assembly 100 is provided that faces (2) and includes a fourth porous coating layer 2 'different from the third porous coating layer 1' and having a composition, thickness, or porosity different from each other.
  • Table 3 shows the rate of mismatching according to the number of bicells present in the zigzag-folding electrode assembly according to an embodiment of the present invention.
  • the zigzag-folded electrode assembly 100 is manufactured using the separator sheet 40 including a plurality of folding portions folded in a zigzag shape, a mismatch between the electrode and the porous coating layer is achieved. Will not occur.
  • the electrode assembly A nonaqueous electrolyte solution for impregnating the electrode assembly; And a battery case incorporating the electrode assembly and the nonaqueous electrolyte solution, wherein the electrode assembly is a lithium secondary battery, wherein the electrode assembly is the electrode assembly of the present invention described above.
  • the nonaqueous electrolyte may include an electrolyte salt and an organic solvent, and the electrolyte salt is a lithium salt.
  • the lithium salt may be used without limitation those conventionally used in the lithium secondary battery electrolyte.
  • organic solvent included in the aforementioned non-aqueous electrolyte those conventionally used in the lithium secondary battery electrolyte may be used without limitation, and for example, ethers, esters, amides, linear carbonates, and cyclic carbonates may be used alone or in combination of two or more. It can be mixed and used.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
  • halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
  • linear carbonate compounds may be any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Mixtures of two or more of them may be representatively used, but are not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, so that they can dissociate lithium salts in the electrolyte better, and cyclic carbonates such as dimethyl carbonate and diethyl carbonate
  • cyclic carbonates such as dimethyl carbonate and diethyl carbonate
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and One or a mixture of two or more selected from the group consisting of ⁇ -caprolactone may be used, but is not limited thereto.
  • the injection of the nonaqueous electrolyte may be performed at an appropriate step in the manufacturing process of the lithium secondary battery according to the manufacturing process and required physical properties of the final product. That is, the lithium secondary battery may be applied before assembling or at the final stage of assembling the electrochemical device.
  • a cathode active material of Li (Li 0.2 Mn 0.55 Ni 0.15 Co 0.1 ) O 2 Denka black conductive material: A PVDF binder was added at a weight% of 90: 5: 5 to slurry After the preparation, the slurry was coated on a 20 ⁇ m thick aluminum (Al) foil, which is a cathode current collector, and rolled and dried to prepare a cathode.
  • a slurry was prepared by adding 96% by weight of natural graphite as an anode active material, 3% by weight of PVDF as a binder, and 1% by weight of denca black as a conductive material. It was coated on a 10 ⁇ m thick copper (Cu) foil as an anode current collector, rolled and vacuum dried to produce an anode.
  • DI water deionized water
  • each prepared slurry for the second porous coating layer was prepared.
  • Each of these slurries were then coated on both sides of a porous substrate consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP). That is, one surface of the porous substrate is coated with a slurry for the first porous coating layer to form a first porous coating layer, and a slurry for the second porous coating layer is formed to form a second porous coating layer.
  • the ratio of the thickness of the first porous coating layer and the second porous coating layer was formed to be 1: 9, the porosity was adjusted to be 40% and 60%, respectively.
  • Ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) 30: 20: 50% by weight, lithium hexafluoro phosphate (LiPF 6 ) to prepare a non-aqueous electrolyte solution.
  • EC propylene carbonate
  • PC diethyl carbonate
  • LiPF 6 lithium hexafluoro phosphate
  • a polymer pouch-type battery having a discharge capacity of 40 Ah and a total of 23 bicells was assembled.
  • the zigzag folding method was used as shown in FIG. 4, and after the surface of the thick separator of the porous coating layer was assembled to contact the anode, the lithium secondary battery was manufactured by injecting the nonaqueous electrolyte.
  • the battery was charged up to 3.8 V, and a part of the surface of the battery case was cut and degassed for 2 seconds at a vacuum pressure of -95 kPa, and then the battery case was sealed. Subsequently, discharge was performed at 0.1 C under the conditions of CC / CV up to 4.5 V and 0.1 C under the conditions of CC up to 2.5 V, and then a part of the sealed battery case was cut, and a vacuum pressure of -95 kPa was applied. After degassing for 2 seconds, the cut surface was sealed with heat and pressure to prepare a final lithium secondary battery.
  • a manufacturing and activation process of the lithium secondary battery was performed in the same manner as in the embodiment, except that the lithium secondary battery was assembled in a stack & folding manner as shown in FIG. 3. At this time, the number of mismatches between the separator sheet and the outermost anode of the bicell was confirmed as 12 planes.
  • the porous coating layer dispersed in an acetone solvent.
  • the slurry was then coated on both sides of the porous substrate consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP).
  • the ratio of the thicknesses of the porous coating layers coated on both surfaces of the porous substrate was formed to be 5: 5 symmetry, and the porosity was adjusted to 50%. That is, the total amount of the inorganic material coated on both sides of the separator and the average porosity of the porous coating layer was prepared to be the same conditions as in the embodiment.
  • a polymer pouch-type battery having a discharge capacity of 40 Ah and a total of 23 bicells was assembled.
  • a stack & folding method was used as in FIG. 3, and a lithium secondary battery was manufactured by injecting the nonaqueous electrolyte.
  • FIG. 1 is a graph showing capacity retention rates of the polymer pouch-type batteries of Examples and Comparative Examples 1 and 2.
  • FIG. 1 is a graph showing capacity retention rates of the polymer pouch-type batteries of Examples and Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing a comparison of the temperature change of the cell according to the nail penetration for the polymer pouch-type battery prepared in Examples, Comparative Examples 1 and 2.
  • the batteries of Example and Comparative Example 1 did not ignite, but the batteries of Comparative Example 2 ignited after about 10 minutes had passed through.
  • the temperature of the battery after the penetration is lower than that of Comparative Example 1, it can be confirmed that the battery prepared in Example was more excellent in safety than the case of Comparative Examples 1 and 2.

Abstract

본 발명은 전극조립체 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는 캐소드와 애노드에 선택적으로 접촉하도록 각각 형성된 다공성 코팅층을 포함하는 세퍼레이터 시트를 구비하는 전극조립체 및 그를 포함하는 리튬 이차전지에 관한 것이다. 본 발명에 따르면, 조성, 두께 또는 기공도가 서로 상이한 다공성 코팅층이 각 일면에 형성된 세퍼레이터를 적용하여, 캐소드와 애노드에 각각 적합한 다공성 코팅층이 선택적으로 미스매치(mismatch) 없이 완전하게 접촉되도록 한다.

Description

전극조립체 및 그를 포함하는 리튬 이차전지
본 발명은 전극조립체 및 그를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는 캐소드와 애노드에 선택적으로 접촉하도록 각각 형성된 다공성 코팅층을 포함하는 세퍼레이터 시트를 구비하는 전극조립체 및 그를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2013년 10월 31일에 출원된 한국특허출원 제10-2013-0131681호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2014년 10월 31일에 출원된 한국특허출원 제10-2014-0149996호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이차전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다.
한편, 상기와 같은 리튬 이차전지는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 리튬 이차전지의 안전성 평가 및 안전성 확보는 매우 중요하며, 이러한 안전성 확보를 위하여, 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 무기물 입자와 고분자 바인더의 혼합물을 코팅하여 다공성 코팅층을 형성한 세퍼레이터가 제안되었다. 그리고, 최근에는 캐소드 및 애노드와 접하는 세퍼레이터의 접촉면이 캐소드와 애노드에 각각 적합하도록, 세퍼레이터의 최외곽의 다공성 코팅층의 조성 또는 두께를 비대칭적으로 적용한 세퍼레이터 제조기술이 적용되고 있다.
한편, 리튬 이차전지는 캐소드/세퍼레이터/애노드 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 캐소드들과 애노드들을 세퍼레이터가 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 단위의 캐소드와 애노드들을 세퍼레이터를 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell)인 단위셀들을 긴 길이의 연속적인 세퍼레이터 시트를 이용하여 권취한 구조의 스택-폴딩형 전극조립체 등으로 구분된다.
우선, 기존의 스택-폴딩형 전극조립체의 제조방식으로는, 다공성 코팅층의 조성 또는 두께를 비대칭적으로 적용한 전술한 세퍼레이터를 사용하게 되더라도, 그 구조상 세퍼레이터와 캐소드 및 애노드의 완전한 선택적 접촉이 불가능하다.
한편, 젤리-롤 전극조립체는 다공성 코팅층의 조성 또는 두께를 비대칭적으로 적용한 전술한 세퍼레이터를 사용하게 되면, 그 구조상 캐소드와 애노드의 선택적인 접촉이 가능하다. 하지만, 긴 시트형의 캐소드와 애노드를 밀집된 상태로 권취하여 단면상으로 원통형 또는 타원형의 구조로 제조되므로, 충방전시 전극의 팽창 및 수축으로 인해 유발되는 응력이 전극조립체 내부에 축적하게 되고, 그러한 축적된 응력이 일정한 한계를 넘어서면 전극조립체의 변형이 발생하게 된다. 상기 전극조립체의 변형으로, 전극 간의 간격이 불균일해져 전지의 성능이 급격히 저하되고, 내부 단락으로 인해 전지의 안전성이 위협받게 되는 문제점을 초래한다. 또한, 긴 시트형의 캐소드와 애노드를 권취해야 하므로, 캐소드와 애노드의 간격을 일정하게 유지하면서 빠르게 권취하는 것이 어려우므로 생산성이 저하되는 문제점도 가지고 있다.
따라서, 본 발명이 해결하고자 하는 과제는, 조성, 두께 또는 기공도가 서로 상이한 다공성 코팅층이 각 일면에 형성된 세퍼레이터를 적용하여, 캐소드와 애노드에 각각 적합한 다공성 코팅층이 선택적으로 완전하게 접촉되도록 함으로써, 셀 퇴화 현상 방지 및 안전성을 향상시킨 전극조립체 및 그를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 캐소드를 포함하는 하나 이상의 제1 전극체; 애노드를 포함하는 하나 이상의 제2 전극체; 및 교차로 적층된 상기 제1 전극체와 상기 제2 전극체의 사이를 분리시키며, 다수의 폴딩부를 포함하는 세퍼레이터 시트;를 구비하되, 상기 세퍼레이터 시트는, 제1 다공성 고분자 기재, 상기 제1 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제1 다공성 코팅층 및 상기 제1 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제1 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제2 다공성 코팅층을 구비하는 전극조립체가 제공된다.
이때, 상기 세퍼레이터 시트는, 지그재그형으로 접힌 다수의 폴딩부를 포함하고, 상기 전극조립체는, 지그재그-폴딩형일 수 있다.
그리고, 상기 제1 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제2 다공성 코팅층의 기공도는, 30 내지 60 %일 수 있다.
그리고, 상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 1:9 내지 4:6일 수 있고, 상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 6:4 내지 9:1일 수 있다.
그리고, 상기 제1 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제2 다공성 코팅층의 기공도는, 30 내지 60 %이며, 상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 1:9 내지 9:1일 수 있다.
그리고, 상기 제1 다공성 코팅층은, 무기물 입자를 더 포함하는 것일 수 있다.
한편, 상기 무기물 입자는, 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물일 수 있다.
여기서, 상기 유전율 상수가 5 이상인 무기물 입자는, BaTiO3, Pb(ZrxTi1-x)O3(PZT, 여기서, 0<x<1임), Pb1-xLaxZr1-yTiyO3(PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 여기서, 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2, SiO2, AlOOH 및 Al(OH)3로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 리튬 이온 전달 능력을 갖는 무기물 입자는, 리튬 포스페이트(Li3PO4), 리튬 티타늄 포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬 알루미늄 티타늄 포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy계열 글래스(0<x<4, 0<y<13), 리튬 란탄 티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬 게르마니움 티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬 나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz, 0<x<3, 0<y<2, 0<z<4)계열 글래스 및 P2S5(LixPySz, 0<x<3, 0<y<3, 0<z<7)계열 글래스로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 고분자 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 헥사풀루오로프로필렌 (hexafluoro propylene, HFP), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
한편, 상기 제1 다공성 고분자 기재는, 폴리올레핀계 다공성 막 또는 부직포일 수 있다.
그리고, 상기 제1 다공성 고분자 기재는, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide) 및 폴리에틸렌나프탈레이트(polyethylenenaphthalate)으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성된 것일 수 있다.
그리고, 상기 제1 다공성 고분자 기재는, 하나의 층으로 형성되거나, 2 이상의 층이 적층되어 형성될 수 있다.
한편, 상기 캐소드는, 리튬 함유 산화물을 포함하는 캐소드 활물질을 구비하는 것일 수 있다.
여기서, 상기 리튬 함유 산화물은, 리튬 함유 전이금속 산화물일 수 있으며, 이때, 상기 리튬 함유 전이금속 산화물은, LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
그리고, 상기 애노드는, 리튬 금속, 탄소재, 금속 화합물 또는 이들의 혼합물을 포함하는 애노드 활물질을 구비하는 것일 수 있다.
여기서, 상기 금속 화합물은, Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, 및 Ba로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
한편, 상기 제1 전극체는, 단층의 캐소드로 이루어질 수 있고, 상기 제2 전극체는, 단층의 애노드로 이루어질 수 있다.
그리고, 상기 제1 전극체는, 하나 이상의 캐소드, 하나 이상의 애노드 및 교차로 적층된 상기 캐소드와 상기 애노드의 사이를 분리시키는 세퍼레이터를 포함할 수 있다.
이때, 상기 세퍼레이터는, 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 것일 수 있다.
여기서, 상기 제3 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제4 다공성 코팅층의 기공도는, 30 내지 60 %일 수 있다.
그리고, 상기 제3 다공성 코팅층과 상기 제4 다공성 코팅층의 두께의 비는, 1:9 내지 4:6일 수 있고, 상기 제3 다공성 코팅층과 상기 제4 다공성 코팅층의 두께의 비는, 6:4 내지 9:1일 수 있다.
그리고, 상기 제3 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제4 다공성 코팅층의 기공도는, 30 내지 60 %이며, 상기 제3 다공성 코팅층과 상기 제4 다공성 코팅층의 두께의 비는, 1:9 내지 9:1일 수 있다.
한편, 상기 제1 다공성 코팅층과 상기 제3 다공성 코팅층의 조성, 두께 및 기공도가 서로 동일할 수 있고, 상기 제2 다공성 코팅층과 상기 제4 다공성 코팅층의 조성, 두께 및 기공도가 서로 동일할 수 있다.
한편, 상기 제2 전극체는, 하나 이상의 애노드, 하나 이상의 캐소드 및 교차로 적층된 상기 애노드와 상기 캐소드의 사이를 분리시키는 세퍼레이터를 포함할 수 있다.
이때, 상기 세퍼레이터는, 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 것일 수 있다.
한편, 본 발명의 다른 측면에 따르면, 캐소드, 제1 세퍼레이터, 애노드, 제2 세퍼레이터 및 캐소드가 순차적으로 적층된 복수의 제1 바이셀; 애노드, 제2 세퍼레이터, 캐소드, 제1 세퍼레이터 및 애노드가 순차적으로 적층된 복수의 제2 바이셀; 및 교차로 적층된 상기 제1 바이셀과 상기 제2 바이셀의 사이를 분리시키며, 지그재그형으로 접힌 다수의 폴딩부를 포함하는 세퍼레이터 시트;를 구비하되, 상기 세퍼레이터 시트는, 제1 다공성 고분자 기재, 상기 제1 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제1 다공성 코팅층 및 상기 제1 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제1 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제2 다공성 코팅층을 구비하고, 상기 제1 세퍼레이터 및 상기 제2 세퍼레이터는, 서로 독립적으로 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 지그재그-폴딩형 전극조립체가 제공된다.
한편, 본 발명의 또 다른 측면에 따르면, 전극조립체; 상기 전극조립체를 함침시키는 비수 전해액; 및 상기 전극조립체와 상기 비수 전해액을 내장하는 전지케이스;를 포함하는 리튬 이차전지로서, 상기 전극조립체는, 전술한 본 발명의 전극조립체인 것을 특징으로 하는 리튬 이차전지가 제공된다.
본 발명의 일 실시예에 따르면, 조성, 두께 또는 기공도가 서로 상이한 다공성 코팅층이 각 일면에 형성된 세퍼레이터를 적용하여, 캐소드와 애노드에 각각 적합한 다공성 코팅층이 미스매치(mismatch) 없는 완전한 매칭이 된다.
즉, 이로써 애노드와 대면하는 다공성 코팅층에서는 애노드에서 발생하는 부산물이 다공성 기재의 기공을 막아 전지의 퇴화가 가속되는 현상을 방지하고, 캐소드와 대면하는 다공성 코팅층에서는 그 기계적 강도를 향상시켜 전지의 안전성을 개선시킬 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 A 타입 바이셀(제1 바이셀)을 나타낸 단면도이다.
도 2는 C 타입 바이셀(제2 바이셀)을 나타낸 단면도이다.
도 3은 종래의 스택-폴딩형 전극조립체의 단면을 모식적으로 나타낸 단면도이다.
도 4는 본 발명의 지그재그-폴딩형 전극조립체의 단면을 모식적으로 나타낸 단면도이다.
도 5는 본 발명의 일 실시예 및 비교예에서 제조된 폴리머 파우치형 전지의 용량 유지율을 비교하여 나타낸 그래프이다.
도 6은 본 발명의 일 실시예 및 비교예에서 제조된 폴리머 파우치형 전지에 대한 못 관통에 따른 전지의 온도변화를 비교하여 나타낸 그래프이다.
[부호의 설명]
1: 캐소드 1`: 제3 다공성 코팅층
2: 애노드 2`: 제4 다공성 코팅층
3: 제2 다공성 고분자 기재 4: 제1 세퍼레이터
5: 제2 세퍼레이터 10: 제1 바이셀
10`: 제1 다공성 코팅층 20: 제2 바이셀
20`: 제2 다공성 코팅층 30: 제1 다공성 고분자 기재
40: 세퍼레이터 시트 100: 지그재그-폴딩형 전극조립체
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 측면에 따르면, 캐소드를 포함하는 하나 이상의 제1 전극체; 애노드를 포함하는 하나 이상의 제2 전극체; 및 교차로 적층된 상기 제1 전극체와 상기 제2 전극체의 사이를 분리시키며, 다수의 폴딩부를 포함하는 세퍼레이터 시트;를 구비하되, 상기 세퍼레이터 시트는, 제1 다공성 고분자 기재, 상기 제1 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제1 다공성 코팅층 및 상기 제1 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제1 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제2 다공성 코팅층을 구비하는 전극조립체가 제공된다.
이와 같이, 캐소드와 애노드 각각에 적합한 서로 다른 다공성 코팅층이 선택적으로 대면하게 됨으로써, 캐소드와 대면하는 제1 다공성 코팅층에서는 그 기계적 강도를 향상시켜 전지의 안전성을 개선시킬 수 있고, 애노드와 대면하는 제2 다공성 코팅층에서는 애노드에서 발생하는 부산물이 다공성 기재의 기공을 막아 전지의 퇴화가 가속되는 현상을 방지할 수 있다.
이때, 상기 세퍼레이터 시트는, 지그재그형으로 접힌 다수의 폴딩부를 포함하고, 상기 전극조립체는, 지그재그-폴딩형일 수 있다.
여기서, 상기 제1 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제2 다공성 코팅층의 기공도는, 30 내지 60 %일 수 있다. 이와 같이, 애노드와 대면하는 상기 제2 다공성 코팅층의 기공도를 크게 함으로써, 애노드의 부산물이 세퍼레이터의 기공을 막아 셀 퇴화가 가속되는 현상을 지연시킬 수 있다.
또한, 상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 1:9 내지 4:6, 6:4 내지 9:1일 수 있으며, 더욱 바람직하게는 2:8일 수 있다. 이러한 두께의 비, 즉 코팅량을 비대칭적으로 함으로써, 전술한 바와 같이 애노드의 부산물이 세퍼레이터의 기공을 막아 셀 퇴화가 가속되는 현상을 지연시킬 수 있다.
나아가, 상기 다공성 코팅층의 기공도와 두께의 비를 동시에 만족하게 함으로써 전술한 효과를 더욱 효율적으로 발휘할 수도 있다.
한편, 상기 제1 다공성 코팅층은, 전술한 바와 같이 고분자 바인더로만 구성될 수도 있지만, 제2 다공성 코팅층에서와 같이 고분자 바인더와 무기물 입자의 혼합물로 구성될 수도 있다.
그리고, 상기 제1 및 제2 다공성 코팅층 내의 무기물 입자들은 다공성 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로써, 리튬 이차전지의 과열 시 다공성 고분자 기재가 열 수축되는 것을 억제하며, 다공성 고분자 기재가 손상되는 경우에도 캐소드와 애노드가 직접 접촉하는 것을 방지함으로써 리튬 이차전지의 안전성 향상에 기여한다.
이때, 본 발명에서 사용될 수 있는 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 리튬 이차전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 또는 10 이상인 고유전율 무기물 입자를 포함할 수 있다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(ZrxTi1-x)O3(PZT, 여기서, 0<x<1임), Pb1-xLaxZr1-yTiyO3(PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 여기서, 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2, SiO2, AlOOH 및 Al(OH)3로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬 포스페이트(Li3PO4), 리튬 티타늄 포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬 알루미늄 티타늄 포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 글래스(0 < x < 4, 0 < y < 13), 리튬 란탄 티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬 게르마니움 티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬 나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 글래스(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 글래스(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
그리고, 상기 무기물 입자의 크기는 제한이 없으나, 세퍼레이터 및 세퍼레이터 시트의 적절한 공극률을 위해, 평균 입경이 0.001 ㎛ 내지 100 ㎛ 범위일 수 있다.
한편, 상기 고분자 바인더는, 서로 독립적으로, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 헥사풀루오로프로필렌 (hexafluoro propylene, HFP), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
이때, 캐소드 및 애노드와 각각 대면하는 제1 다공성 코팅층 및 제2 다공성 코팅층을 구성하는 고분자 바인더의 종류를 캐소드와 애노드 각각에 사용되는 바인더와 친화성이 높은 물질을 사용함으로써 캐소드 및 애노드와 세퍼레이터간의 접착력을 향상시킬 수 있다.
한편, 본 발명의 제1 다공성 고분자 기재는, 당해 분야에서 통상적으로 사용되는 다공성 고분자 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.
상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈레이트(polyethylenenaphthalate) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포를 들 수 있다. 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛일 수 있고, 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95 %일 수 있다. 그리고, 이때, 상기 다공성 고분자 기재는, 하나의 층으로 형성되거나, 2 이상의 층이 적층되어 형성되는 것일 수 있다.
한편, 상기 캐소드는 캐소드 활물질, 도전재 및 바인더를 포함하는 캐소드층이 집전체의 일면 또는 양면에 담지된 구조를 갖는다.
상기 캐소드 활물질로는 리튬 함유 산화물을 포함할 수 있으며, 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있다. 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬 함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬 함유 전이금속 산화물 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
상기 도전재로는 리튬 이차전지에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.
상기 애노드는 애노드 활물질 및 바인더를 포함하는 애노드층이 집전체의 일면 또는 양면에 담지된 구조를 갖는다.
상기 애노드 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 리튬 금속, 탄소재, 금속 화합물 또는 이들의 혼합물을 사용할 수 있다.
구체적으로는 상기 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba 등의 금속 원소를 1종 이상 함유하는 화합물을 들 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.
상기 캐소드 및 애노드에 사용되는 바인더는 캐소드 활물질 및 애노드 활물질을 집전체에 유지시키고, 또 활물질들 사이를 이어주는 기능을 갖는 것으로서, 통상적으로 사용되는 바인더가 제한 없이 사용될 수 있다.
예를 들면, 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (PVDF-co-HFP), 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복실 메틸 셀룰로오스 (CMC, carboxyl methyl cellulose) 등의 다양한 종류의 바인더가 사용될 수 있다.
상기 캐소드 및 상기 애노드에 사용되는 집전체는 전도성이 높은 금속으로, 상기 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 캐소드용 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드용 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
상기 캐소드 및 애노드는, 활물질, 도전재, 바인더, 고비점 용제를 이용해 혼련하여 전극 합제로 한 후, 이 합제를 집전체의 동박 등에 도포하여, 건조, 가압 성형한 후, 50℃ 내지 250℃ 정도의 온도로 2시간 정도 진공 하에서 가열 처리함으로써 각각 제조될 수 있다.
또한, 상기 캐소드의 전극층의 두께(집전체 한 면당)는 30 내지 120㎛, 또는 50 내지 100㎛일 수 있고, 상기 애노드의 전극층의 두께는 1 내지 100㎛, 또는 3 내지 70㎛일 수 있다. 상기 캐소드 및 상기 애노드가 이러한 두께 범위를 만족하는 경우, 전극 재료층에서의 활물질량이 충분히 확보되어, 전지 용량이 작아지는 것을 방지할 수 있고, 사이클 특성이나 레이트 특성이 개선될 수 있다.
한편, 상기 제1 전극체는, 단층의 캐소드로 이루어질 수 있고, 상기 제2 전극체는, 단층의 애노드로 이루어질 수 있다.
나아가, 상기 제1 전극체는, 하나 이상의 캐소드, 하나 이상의 애노드 및 교차로 적층된 상기 캐소드와 상기 애노드의 사이를 분리시키는 세퍼레이터를 포함하는 것일 수 있고, 상기 제2 전극체는, 하나 이상의 애노드, 하나 이상의 캐소드 및 교차로 적층된 상기 애노드와 상기 캐소드의 사이를 분리시키는 세퍼레이터를 포함하는 것일 수 있다.
이때, 상기 세퍼레이터는, 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 것일 수 있다.
이로써, 상기 제1 전극체 및 제2 전극체 내에 존재하는 캐소드와 애노드 각각에 적합한 서로 다른 다공성 코팅층이 선택적으로 대면하게 됨으로써, 캐소드와 대면하는 제3 다공성 코팅층에서는 그 기계적 강도를 향상시켜 전지의 안전성을 개선시킬 수 있고, 애노드와 대면하는 제4 다공성 코팅층에서는 애노드에서 발생하는 부산물이 다공성 기재의 기공을 막아 전지의 퇴화가 가속되는 현상을 방지할 수 있다.
이때, 상기 제3 다공성 코팅층은 상기 제1 다공성 코팅층과 기공도, 조성 또는 두께가 동일할 수 있고, 상기 제4 다공성 코팅층은 상기 제2 다공성 코팅층과 기공도, 조성 또는 두께가 동일할 수 있다.
나아가, 상기 제2 다공성 고분자 기재는 전술한 제1 다공성 고분자 기재와 동일한 것이 사용될 수 있다.
한편, 도 1은 A 타입 바이셀(제1 바이셀)을 나타낸 단면도이고, 도 2는 C 타입 바이셀(제2 바이셀)을 나타낸 단면도이며, 도 3은 종래의 스택-폴딩형 전극조립체의 단면을 모식적으로 나타낸 단면도이고, 도 4는 본 발명의 지그재그-폴딩형 전극조립체의 단면을 모식적으로 나타낸 단면도이다.
이하, 도 1 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 지그재그-폴딩형 전극조립체의 특징을 종래의 스택-폴딩형 전극조립체와 비교하여 설명하도록 한다.
우선, 도 1은 A 타입 바이셀(본 발명의 제1 바이셀(10)과 대응)을 나타낸 것으로서, 하면부터 순서대로 캐소드(1), 제1 세퍼레이터(4), 애노드(2), 제2 세퍼레이터(5) 및 캐소드(1)가 적층되어 형성되되, 상기 제1 세퍼레이터(4)는 제3 다공성 코팅층(1`), 제2 다공성 고분자 기재(3) 및 제4 다공성 코팅층(2`)이 적층되어 형성되고, 상기 제2 세퍼레이터(5)는 제4 다공성 코팅층(2`), 제2 다공성 고분자 기재(3) 및 제3 다공성 코팅층(1`)이 적층되어 형성된다.
그리고, 도 2는 C 타입 바이셀(본 발명의 제2 바이셀(20)과 대응)을 나타낸 것으로서, 하면부터 순서대로 애노드(2), 제2 세퍼레이터(5), 캐소드(1), 제1 세퍼레이터(4) 및 애노드(2)가 적층되어 형성되되, 상기 제2 세퍼레이터(5)는 제4 다공성 코팅층(2`), 제2 다공성 고분자 기재(3) 및 제3 다공성 코팅층(1`)이 적층되어 형성되고, 상기 제1 세퍼레이터(4)는 제3 다공성 코팅층(1`), 제2 다공성 고분자 기재(3) 및 제4 다공성 코팅층(2`)이 적층되어 형성된다.
전술한 바와 같이, 상기 바이셀(10, 20)들은 캐소드(1)와 애노드(2) 각각에 적합한 다공성 코팅층이 선택적으로 접촉되어 형성된다.
상기와 같은 바이셀(10, 20)들과, 양면에 제1 다공성 코팅층(10`)과 제2 다공성 코팅층(20`)이 각각 형성된 긴 시트형의 세퍼레이터 시트(40)를 이용하여, 도 3에서와 같은 종래 방식의 스택-폴딩형 전극조립체를 구성하게 되면, 전극과 다공성 코팅층간에 미스매치(mismatch)가 발생하게 된다. 즉, 일 예로 애노드가 최외곽의 양쪽 면에 존재하는 C 타입 바이셀(제2 바이셀(20))은, 제2 다공성 코팅층과 대면해야 하지만, 제1 다공성 코팅층과 대면하는 경우가 발생하게 된다. 도 3에서 원형으로 표시한 네 부분(A)은 상기 제2 바이셀(20)에서의 미스매칭 부분을 나타낸다.
이와 관련하여, 종래의 스택-폴딩형 전극조립체에 존재하는 바이셀의 개수에 따른 미스매치(mismatch) 발생 비율을 아래의 표 1 및 표 2에 나타내었다. 표 1은 n+1이 4의 배수인 경우(n은 바이셀의 총 개수)를 나타내고, 표 2는 n-1이 4의 배수인 경우(n은 바이셀의 총 개수)를 나타낸다.
표 1
바이셀의 개수 3 7 11 15 19 23 27 31 35 39
C 타입 바이셀의 개수 2 4 6 8 10 12 14 16 18 20
세퍼레이터 시트와 대면하는 애노드 면수 4 8 12 16 20 24 28 32 36 40
세퍼레이터 시트와 대면하나, 미스매칭이 일어난 애노드 면수 2 4 6 8 10 12 14 16 18 20
세퍼레이터 시트와 대면하나, 미스매칭이 일어난 애노드 면수의 비율(%) 50 50 50 50 50 50 50 50 50 50
전체 애노드 면수(전체 애노드 수×2) 10 22 34 46 58 70 82 94 106 118
전체 애노드 면수 중 미스매칭 비율(%) 20.0 18.2 17.6 17.4 17.2 17.1 17.0 17.0 16.9 16.9
표 2
바이셀의 개수 5 9 13 17 21 25 29 33 37 41
C 타입 바이셀의 개수 3 5 7 9 11 13 15 17 19 21
세퍼레이터 시트와 대면하는 애노드 면수 6 10 14 18 22 26 30 34 38 42
세퍼레이터 시트와 대면하나, 미스매칭이 일어난 애노드 면수 2 4 6 8 10 12 14 16 18 20
세퍼레이터 시트와 대면하나, 미스매칭이 일어난 애노드 면수의 비율(%) 33.3 40.0 42.9 44.4 45.5 46.2 46.7 47.1 47.4 47.6
전체 애노드 면수(전체 애노드 수×2) 16 28 40 52 64 76 88 100 112 124
전체 애노드 면수 중 미스매칭 비율(%) 12.5 14.3 15.0 15.4 15.6 15.8 15.9 16.0 16.1 16.1
상기 표 1 및 표 2를 참조하면, 종래의 스택-폴딩 방식에 따르면, 세퍼레이터 시트(40)에 대면하지만, 제1 다공성 코팅층(10`)과 접촉하게 되어 미스매칭이 되는 애노드가 발생하게 된다.
한편, 본 발명의 일 측면에 따르면, 캐소드(1), 제1 세퍼레이터(4), 애노드(2), 제2 세퍼레이터(5) 및 캐소드(1)가 순차적으로 적층된 복수의 제1 바이셀(10); 애노드(2), 제2 세퍼레이터(5), 캐소드(1), 제1 세퍼레이터(4) 및 애노드(2)가 순차적으로 적층된 복수의 제2 바이셀(20); 및 교차로 적층된 상기 제1 바이셀(10)과 상기 제2 바이셀(20)의 사이를 분리시키며, 지그재그형으로 접힌 다수의 폴딩부를 포함하는 세퍼레이터 시트(40);를 구비하되, 상기 세퍼레이터 시트(40)는, 제1 다공성 고분자 기재(30), 상기 제1 다공성 고분자 기재(30)의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드(1)와 대면하는 제1 다공성 코팅층(10`) 및 상기 제1 다공성 고분자 기재(30)의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드(2)와 대면하고, 상기 제1 다공성 코팅층(10`)과 조성, 두께 또는 기공도가 서로 상이한 제2 다공성 코팅층(20`)을 구비하고, 상기 제1 세퍼레이터(4) 및 상기 제2 세퍼레이터(5)는, 서로 독립적으로 제2 다공성 고분자 기재(3), 상기 제2 다공성 고분자 기재(3)의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드(1)와 대면하는 제3 다공성 코팅층(1`) 및 상기 제2 다공성 고분자 기재(3)의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드(2)와 대면하고, 상기 제3 다공성 코팅층(1`)과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층(2`)을 구비하는 지그재그-폴딩형 전극조립체(100)가 제공된다.
아래의 표 3은 본 발명의 일 실시예에 따른 지그재그-폴딩형 전극조립체에 존재하는 바이셀의 개수에 따른 미스매칭 발생 비율을 나타낸다.
표 3
바이셀의 개수 3 5 7 9 11 13 15 17 19 21
C 타입 바이셀의 개수 2 3 4 5 6 7 8 9 10 11
세퍼레이터 시트와 대면하는 애노드 면수 4 6 8 10 12 14 16 18 20 22
세퍼레이터 시트와 대면하나, 미스매칭이 일어난 애노드 면수 0 0 0 0 0 0 0 0 0 0
세퍼레이터 시트와 대면하나, 미스매칭이 일어난 애노드 면수의 비율(%) 0 0 0 0 0 0 0 0 0 0
전체 애노드 면수(전체 애노드 수×2) 10 16 22 28 34 40 46 52 58 64
전체 애노드 면수 중 미스매칭 비율(%) 0 0 0 0 0 0 0 0 0 0
본 발명에서와 같이, 지그재그형으로 접힌 다수의 폴딩부를 포함하는 세퍼레이터 시트(40)를 이용하여, 지그재그-폴딩형의 전극조립체(100)를 제조하게 되면, 전극과 다공성 코팅층간에 미스매치(mismatch)가 발생하지 않게 된다.
이로써, 애노드와 대면하는 다공성 코팅층에서는 애노드에서 발생하는 부산물이 다공성 기재의 기공을 막아 전지의 퇴화가 가속되는 현상을 방지하고, 캐소드와 대면하는 다공성 코팅층에서는 그 기계적 강도를 향상시켜 전지의 안전성을 개선시킬 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전극조립체; 상기 전극조립체를 함침시키는 비수 전해액; 및 상기 전극조립체와 상기 비수 전해액을 내장하는 전지케이스;를 포함하는 리튬 이차전지로서, 상기 전극조립체는, 전술한 본 발명의 전극조립체인 것을 특징으로 하는 리튬 이차전지가 제공된다.
여기서, 상기 비수 전해액은 전해질 염과 유기용매를 포함할 수 있으며, 상기 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
전술한 비수 전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트 로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
또한, 상기 유기용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 리튬 이차전지의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 리튬 이차전지 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
1. 실시예
(1) 캐소드의 제조
N-메틸피롤리돈(NMP)의 용매에, Li(Li0.2Mn0.55Ni0.15Co0.1)O2의 캐소드 활물질:덴카블랙 도전재: PVDF 바인더를 90:5:5의 중량%로 투입하여 슬러리를 제조한 후, 상기 슬러리를 캐소드 집전체인 20 ㎛ 두께의 알루미늄(Al) 포일 위에 코팅하고 압연 및 건조하여 캐소드를 제조하였다.
(2) 애노드의 제조
탈이온화 물(DI water)의 용매에, 애노드 활물질로 천연흑연 96 중량%, 바인더로 PVDF 3 중량%, 도전재로 덴카블랙 1 중량%를 첨가하여 슬러리를 만들었다. 이를 애노드 집전체인 10 ㎛ 두께의 구리(Cu) 포일 위에 코팅하고, 압연 및 진공 건조하여 애노드를 제조하였다.
(3) 세퍼레이터 및 세퍼레이터 시트의 제조
Al2O3 80 중량%와 PVDF 바인더 20 중량%를 혼합하여, 아세톤 용매에 분산시킨 제1 다공성 코팅층용 슬러리, Al2O3 60 중량%와 PVDF 바인더 40 중량%를 혼합하여, 아세톤 용매에 분산시킨 제2 다공성 코팅층용 슬러리를 각각 제조하였다. 이어서, 상기 각각의 슬러리를, 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP) 3층으로 이루어진 다공성 기재의 양면에 각각 코팅하였다. 즉, 상기 다공성 기재의 일면에는 제1 다공성 코팅층용 슬러리를 코팅하여, 제1 다공성 코팅층을 형성하였고, 제2 다공성 코팅층용 슬러리를 코팅하여, 제2 다공성 코팅층을 형성하였다. 이때, 상기 제1 다공성 코팅층과 제2 다공성 코팅층의 두께의 비는 1:9가 되도록 형성하였으며, 기공도는 각각 40 % 및 60 %가 되도록 조절하였다.
(4) 비수 전해액의 제조
에틸렌카보네이트(EC):프로필렌카보네이트(PC):디에틸카보네이트(DEC)=30:20:50 중량%, 리튬헥사플로로포스페이트(LiPF6)는 1몰이 되도록 비수 전해액을 제조하였다.
(5) 리튬 이차전지의 조립
상기 캐소드, 상기 애노드, 상기 세퍼레이터와 세퍼레이터 시트를 이용하여, 1 C 방전 용량이 40 Ah이며, 바이셀의 개수가 총 23장인 폴리머 파우치형 전지를 조립하였다. 이때, 도 4에서와 같이 지그재그 폴딩 방식을 사용하였으며, 다공성 코팅층의 두께가 두꺼운 세퍼레이터의 면이 애노드에 맞닿도록 조립한 후, 상기 비수 전해액을 주입하여 리튬 이차전지를 제조하였다.
(6) 리튬 이차전지의 활성화 공정
상기 전지에 대해 3.8 V까지 충전하고, 전지케이스의 일부면을 절단하여, -95 kPa의 진공압력으로 2초간 가스 제거를 실시한 후, 전지케이스를 밀봉하였다. 이어서, 4.5 V까지 CC/CV의 조건으로 0.1 C로 충전/2.5 V까지 CC의 조건으로 0.1 C로 방전을 진행한 후, 상기 밀봉된 전지케이스의 일부분을 절단하여, -95 kPa의 진공압력으로 2초간 가스 제거를 실시한 후, 절단면을 열과 압력으로 밀봉하여 최종적인 리튬 이차전지를 제조하였다.
2. 비교예 1
리튬 이차전지의 조립과 관련하여, 도 3에서와 같이 스택&폴딩(stack&folding) 방식으로 조립하는 것을 제외하고는 실시예와 동일한 방법으로 리튬 이차전지의 제조 및 활성화 공정을 수행하였다. 이때 세퍼레이터 시트와 바이셀의 최외곽 애노드 간의 미스매칭 수는 12 면으로 확인되었다.
3. 비교예 2
(1) 캐소드, 애노드 및 비수 전해액은 실시예와 동일한 방법으로 제조하였다.
(2) 세퍼레이터 및 세퍼레이터 시트의 제조
Al2O3 70 중량%와 PVDF 바인더 30 중량%를 혼합하여, 아세톤 용매에 분산시킨 다공성 코팅층용 슬러리를 제조하였다. 이어서, 상기 슬러리를 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP) 3층으로 이루어진 다공성 기재의 양면에 코팅하였다. 이때 상기 다공성 기재의 양면에 각각 코팅된 다공성 코팅층의 두께의 비는 5:5 대칭이 되도록 형성하였으며, 기공도는 각각 50 %가 되도록 조절하였다. 즉, 세퍼레이터의 양면에 코팅된 무기물의 총량과, 다공성 코팅층의 평균 기공도는 실시예와 동일한 조건이 되도록 제조하였다.
(3) 리튬 이차전지의 조립 및 활성화 공정
상기 캐소드, 상기 애노드, 상기 세퍼레이터와 세퍼레이터 시트를 이용하여, 1 C 방전 용량이 40 Ah이며, 바이셀의 개수가 총 23장인 폴리머 파우치형 전지를 조립하였다. 이때, 도 3에서와 같이 스택&폴딩(stack&folding) 방식을 사용하였고, 상기 비수 전해액을 주입하여 리튬 이차전지를 제조하였다.
그 후, 실시예와 동일한 방법으로 활성화 공정을 수행하였다.
4. 전지의 수명 평가
상기 활성화 공정이 수행된 실시예, 비교예 1 및 2의 폴리머 파우치형 전지를 45 ℃에서, 1 C 충전(4.35 V CC/CV, cut-off 0.05 C), 1 C 방전(2.5 V CC cut-off) 조건으로 충/방전을 반복하여, 사이클에 따른 용량 유지율을 각각 측정하였다.
도 1은 실시예, 비교예 1 및 2의 폴리머 파우치형 전지의 용량 유지율을 나타낸 그래프이다.
도 1을 참조하면, 실시예의 경우 비교예 1 및 2의 경우보다, 우수한 수명 특성을 나타내었음을 확인할 수 있다.
5. 전지의 안전성 평가
상기 활성화 공정이 수행된 실시예, 비교예 1 및 2의 폴리머 파우치형 전지를 1 C, 4.35 V, CC/CV(cut-off 0.05 C)조건으로 충전한 후, 베이클라이트(bakelite) 판 사이에 고정한 후, 55 ℃ 챔버에 3 시간 동안 노출시켰다. 이후, 끝이 뾰족한 못(지름 3 mm, 뾰쪽한 부분의 길이 6 mm, 스테인레스스틸 소재)으로 80 mm/sec의 속도로 전지를 완전 관통시킨 후, 전지의 온도를 측정하였다.
도 6은 실시예, 비교예 1 및 2에서 제조된 폴리머 파우치형 전지에 대한 못 관통에 따른 전지의 온도변화를 비교하여 나타낸 그래프이다.
도 6을 참조하면, 실시예와 비교예 1의 전지는 발화가 일어나지 않았으나, 비교예 2의 전지는 관통 후 약 10분이 경과된 후에 발화가 일어났다. 그리고, 실시예의 경우 관통 후 전지의 온도가 비교예 1의 경우보다 낮은 것으로 보아, 실시예에서 제조된 전지는 비교예 1 및 2의 경우보다 안전성이 더욱 우수하였음을 확인할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (32)

  1. 캐소드를 포함하는 하나 이상의 제1 전극체;
    애노드를 포함하는 하나 이상의 제2 전극체; 및
    교차로 적층된 상기 제1 전극체와 상기 제2 전극체의 사이를 분리시키며, 다수의 폴딩부를 포함하는 세퍼레이터 시트;를 구비하되,
    상기 세퍼레이터 시트는, 제1 다공성 고분자 기재, 상기 제1 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제1 다공성 코팅층 및 상기 제1 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제1 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제2 다공성 코팅층을 구비하는 전극조립체.
  2. 제1항에 있어서,
    상기 세퍼레이터 시트는, 지그재그형으로 접힌 다수의 폴딩부를 포함하고,
    상기 전극조립체는, 지그재그-폴딩형인 것을 특징으로 하는 전극조립체.
  3. 제1항에 있어서,
    상기 제1 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제2 다공성 코팅층의 기공도는, 30 내지 60 %인 것을 특징으로 하는 전극조립체.
  4. 제1항에 있어서,
    상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 1:9 내지 4:6인 것을 특징으로 하는 전극조립체.
  5. 제1항에 있어서,
    상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 6:4 내지 9:1인 것을 특징으로 하는 전극조립체.
  6. 제1항에 있어서,
    상기 제1 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제2 다공성 코팅층의 기공도는, 30 내지 60 %이며,
    상기 제1 다공성 코팅층과 상기 제2 다공성 코팅층의 두께의 비는, 1:9 내지 9:1인 것을 특징으로 하는 전극조립체.
  7. 제1항에 있어서,
    상기 제1 다공성 코팅층은, 무기물 입자를 더 포함하는 것을 특징으로 하는 전극조립체.
  8. 제1항에 있어서,
    상기 무기물 입자는, 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물인 것을 특징으로 하는 전극조립체.
  9. 제8항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자는, BaTiO3, Pb(ZrxTi1-x)O3(PZT, 여기서, 0<x<1임), Pb1-xLaxZr1-yTiyO3(PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 여기서, 0 < x < 1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, SiC, TiO2, SiO2, AlOOH 및 Al(OH)3로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극조립체.
  10. 제8항에 있어서,
    상기 리튬 이온 전달 능력을 갖는 무기물 입자는, 리튬 포스페이트(Li3PO4), 리튬 티타늄 포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬 알루미늄 티타늄 포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy계열 글래스(0<x<4, 0<y<13), 리튬 란탄 티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬 게르마니움 티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬 나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2(LixSiySz, 0<x<3, 0<y<2, 0<z<4)계열 글래스 및 P2S5(LixPySz, 0<x<3, 0<y<3, 0<z<7)계열 글래스로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극조립체.
  11. 제1항에 있어서,
    상기 고분자 바인더는, 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 헥사풀루오로프로필렌 (hexafluoro propylene, HFP), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluoride-co-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer) 및 폴리이미드 (polyimide)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극조립체.
  12. 제1항에 있어서,
    상기 제1 다공성 고분자 기재는, 폴리올레핀계 다공성 막 또는 부직포인 것을 특징으로 하는 전극조립체.
  13. 제1항에 있어서,
    상기 제1 다공성 고분자 기재는, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide) 및 폴리에틸렌나프탈레이트(polyethylenenaphthalate)으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성된 것을 특징으로 하는 전극조립체.
  14. 제1항에 있어서,
    상기 제1 다공성 고분자 기재는, 하나의 층으로 형성되거나, 2 이상의 층이 적층되어 형성되는 것을 특징으로 하는 전극조립체.
  15. 제1항에 있어서,
    상기 캐소드는, 리튬 함유 산화물을 포함하는 캐소드 활물질을 구비하는 것을 특징으로 하는 전극조립체.
  16. 제15항에 있어서,
    상기 리튬 함유 산화물은, 리튬 함유 전이금속 산화물인 것을 특징으로 하는 전극조립체.
  17. 제16항에 있어서,
    상기 리튬 함유 전이금속 산화물은, LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극조립체.
  18. 제1항에 있어서,
    상기 애노드는, 리튬 금속, 탄소재, 금속 화합물 또는 이들의 혼합물을 포함하는 애노드 활물질을 구비하는 것을 특징으로 하는 전극조립체.
  19. 제18항에 있어서,
    상기 금속 화합물은, Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, 및 Ba로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전극조립체.
  20. 제1항에 있어서,
    상기 제1 전극체는, 단층의 캐소드로 이루어진 것을 특징으로 하는 전극조립체.
  21. 제1항에 있어서,
    상기 제2 전극체는, 단층의 애노드로 이루어진 것을 특징으로 하는 전극조립체.
  22. 제1항에 있어서,
    상기 제1 전극체는, 하나 이상의 캐소드, 하나 이상의 애노드 및 교차로 적층된 상기 캐소드와 상기 애노드의 사이를 분리시키는 세퍼레이터를 포함하는 것을 특징으로 하는 전극조립체.
  23. 제22항에 있어서,
    상기 세퍼레이터는, 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 것을 특징으로 하는 전극조립체.
  24. 제23항에 있어서,
    상기 제3 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제4 다공성 코팅층의 기공도는, 30 내지 60 %인 것을 특징으로 하는 전극조립체.
  25. 제23항에 있어서,
    상기 제3 다공성 코팅층과 상기 제4 다공성 코팅층의 두께의 비는, 1:9 내지 4:6인 것을 특징으로 하는 전극조립체.
  26. 제23항에 있어서,
    상기 제3 다공성 코팅층과 상기 제4 다공성 코팅층의 두께의 비는, 6:4 내지 9:1인 것을 특징으로 하는 전극조립체.
  27. 제23항에 있어서,
    상기 제3 다공성 코팅층의 기공도는, 20 내지 50 %이고, 상기 제4 다공성 코팅층의 기공도는, 30 내지 60 %이며,
    상기 제3 다공성 코팅층과 상기 제4 다공성 코팅층의 두께의 비는, 1:9 내지 9:1인 것을 특징으로 하는 전극조립체.
  28. 제23항에 있어서,
    상기 제1 다공성 코팅층과 상기 제3 다공성 코팅층의 조성, 두께 및 기공도가 서로 동일하고, 상기 제2 다공성 코팅층과 상기 제4 다공성 코팅층의 조성, 두께 및 기공도가 서로 동일한 것을 특징으로 하는 전극조립체.
  29. 제1항에 있어서,
    상기 제2 전극체는, 하나 이상의 애노드, 하나 이상의 캐소드 및 교차로 적층된 상기 애노드와 상기 캐소드의 사이를 분리시키는 세퍼레이터를 포함하는 것을 특징으로 하는 전극조립체.
  30. 제29항에 있어서,
    상기 세퍼레이터는, 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 것을 특징으로 하는 전극조립체.
  31. 캐소드, 제1 세퍼레이터, 애노드, 제2 세퍼레이터 및 캐소드가 순차적으로 적층된 복수의 제1 바이셀;
    애노드, 제2 세퍼레이터, 캐소드, 제1 세퍼레이터 및 애노드가 순차적으로 적층된 복수의 제2 바이셀; 및
    교차로 적층된 상기 제1 바이셀과 상기 제2 바이셀의 사이를 분리시키며, 지그재그형으로 접힌 다수의 폴딩부를 포함하는 세퍼레이터 시트;를 구비하되,
    상기 세퍼레이터 시트는, 제1 다공성 고분자 기재, 상기 제1 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제1 다공성 코팅층 및 상기 제1 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제1 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제2 다공성 코팅층을 구비하고,
    상기 제1 세퍼레이터 및 상기 제2 세퍼레이터는, 서로 독립적으로 제2 다공성 고분자 기재, 상기 제2 다공성 고분자 기재의 일면에 형성되고, 고분자 바인더를 포함하며, 상기 캐소드와 대면하는 제3 다공성 코팅층 및 상기 제2 다공성 고분자 기재의 타면에 형성되고, 고분자 바인더와 무기물 입자의 혼합물을 포함하며, 상기 애노드와 대면하고, 상기 제3 다공성 코팅층과 조성, 두께 또는 기공도가 서로 상이한 제4 다공성 코팅층을 구비하는 지그재그-폴딩형 전극조립체.
  32. 전극조립체;
    상기 전극조립체를 함침시키는 비수 전해액; 및
    상기 전극조립체와 상기 비수 전해액을 내장하는 전지케이스;를 포함하는 리튬 이차전지로서,
    상기 전극조립체는, 제1항 내지 제31항 중 어느 한 항의 전극조립체인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/010388 2013-10-31 2014-10-31 전극조립체 및 그를 포함하는 리튬 이차전지 WO2015065118A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/436,264 US9786891B2 (en) 2013-10-31 2014-10-31 Electrode assembly and lithium secondary battery comprising the same
JP2016526334A JP6390037B2 (ja) 2013-10-31 2014-10-31 電極組立体及びそれを含むリチウム二次電池
EP14857843.8A EP2996188B1 (en) 2013-10-31 2014-10-31 Electrode assembly and lithium secondary battery comprising the same
PL14857843T PL2996188T3 (pl) 2013-10-31 2014-10-31 Zespół elektrod oraz litowa bateria akumulatorowa go zawierająca

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130131681 2013-10-31
KR10-2013-0131681 2013-10-31
KR10-2014-0149996 2014-10-31
KR1020140149996A KR101618317B1 (ko) 2013-10-31 2014-10-31 전극조립체 및 그를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2015065118A1 true WO2015065118A1 (ko) 2015-05-07

Family

ID=53125876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010388 WO2015065118A1 (ko) 2013-10-31 2014-10-31 전극조립체 및 그를 포함하는 리튬 이차전지

Country Status (7)

Country Link
US (1) US9786891B2 (ko)
EP (1) EP2996188B1 (ko)
JP (1) JP6390037B2 (ko)
KR (1) KR101618317B1 (ko)
CN (2) CN204614858U (ko)
PL (1) PL2996188T3 (ko)
WO (1) WO2015065118A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515421A (ja) * 2016-08-12 2019-06-06 エルジー・ケム・リミテッド 二次電池分離膜用インク組成物およびこれを含む二次電池用分離膜

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307909B1 (ko) * 2015-05-08 2021-10-01 삼성에스디아이 주식회사 리튬 전지
KR101977639B1 (ko) * 2016-02-16 2019-05-14 주식회사 엘지화학 전극조립체 및 그의 제조방법
CN106025374A (zh) * 2016-05-29 2016-10-12 合肥国轩高科动力能源有限公司 一种叠片电池的制作方法
WO2018009042A1 (ko) * 2016-07-08 2018-01-11 주식회사 엘지화학 전극 조립체 및 그의 제조 방법
KR102016645B1 (ko) 2016-07-08 2019-08-30 주식회사 엘지화학 전극 조립체 및 그의 제조 방법
CN106229465B (zh) * 2016-08-18 2018-07-17 长安大学 一种基于1,4-萘二酸钴的锂离子电池负极及其制备方法
JP6854100B2 (ja) * 2016-08-31 2021-04-07 株式会社日本マイクロニクス 二次電池
CN109073709B (zh) * 2016-11-04 2020-12-04 株式会社Lg化学 用于估计二次电池的反应的方法和用于该方法的包括电池单元的二次电池
EP3573140A4 (en) * 2017-01-23 2020-11-11 Hitachi Chemical Company, Ltd. ELECTRODE FOR POWER DEVICES AND POWER DEVICE
KR20180092364A (ko) * 2017-02-09 2018-08-20 에스케이이노베이션 주식회사 리튬 이차 전지
EP3367483A1 (de) * 2017-02-23 2018-08-29 Alevo International, S.A. Wiederaufladbare batteriezelle mit einem separator
FR3068831B1 (fr) * 2017-07-04 2021-11-26 Commissariat Energie Atomique Procedes de realisation d'un faisceau electrochimique d'un accumulateur metal-ion au moyen d'une membrane a electrolyte polymere gelifie, accumulateurs associes
US20200243895A1 (en) * 2017-09-29 2020-07-30 Envision Aesc Energy Devices Ltd. Secondary battery
CN107528087B (zh) * 2017-09-30 2020-07-14 惠州亿纬锂能股份有限公司 一种锂离子电池叠片电芯及其制备方法
KR102270120B1 (ko) * 2017-12-01 2021-06-28 주식회사 엘지에너지솔루션 전극 및 전극조립체
WO2019108017A1 (ko) * 2017-12-01 2019-06-06 주식회사 엘지화학 전극 및 전극조립체
CN108258299B (zh) * 2018-01-10 2020-04-17 深圳市正翔电池能源有限公司 一种锂离子动力电池
CN109065817B (zh) * 2018-08-22 2022-04-08 深圳市博盛新材料有限公司 一种多孔多层复合隔膜及其制备方法
US11322804B2 (en) 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods
JP7320172B2 (ja) * 2019-03-20 2023-08-03 株式会社Aescジャパン 電極、電極の製造方法及び電池
CN112350026B (zh) * 2019-12-25 2023-03-17 万向一二三股份公司 一种隔膜及使用该隔膜的锂电池
CN111816934A (zh) * 2020-01-17 2020-10-23 深圳市麦格松电气科技有限公司 柱状二次电池及电池控制器
JP2023552533A (ja) * 2021-07-09 2023-12-18 エルジー エナジー ソリューション リミテッド 電極組立体の製造装置および製造方法
CN115832166B (zh) * 2021-09-23 2024-01-12 宁德时代新能源科技股份有限公司 正极极片、二次电池、电池模块、电池包和用电装置
CN115084437A (zh) * 2022-08-23 2022-09-20 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池及用电装置
CN116315456B (zh) * 2023-05-08 2023-08-01 合肥长阳新能源科技有限公司 一种五层共挤锂电池微孔隔膜及其制备方法
CN116315459B (zh) * 2023-05-23 2023-09-05 宁德新能源科技有限公司 隔膜、电化学装置以及电子设备
CN116345069B (zh) * 2023-05-29 2023-09-05 宁德卓高新材料科技有限公司 一种复合固态电解质隔膜及其制备方法及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080095770A (ko) * 2007-04-24 2008-10-29 주식회사 엘지화학 이종의 세퍼레이터를 구비한 전기화학소자
KR20120035858A (ko) * 2010-10-05 2012-04-16 주식회사 엘지화학 사이클 특성이 개선된 전기화학소자
KR20130006256A (ko) * 2011-07-07 2013-01-16 주식회사 엘지화학 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
KR20130052526A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
KR20130066746A (ko) * 2011-12-13 2013-06-21 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497147B1 (ko) * 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
JP2007324073A (ja) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd リチウム二次電池並びにそのセパレータ及びその製造方法
KR101002161B1 (ko) 2007-11-29 2010-12-17 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
CN102064300A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子二次电池用多孔复合隔膜及其制备方法
JP5966285B2 (ja) 2011-09-05 2016-08-10 日産自動車株式会社 耐熱絶縁層付セパレータ
US10461358B2 (en) * 2011-10-11 2019-10-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US9412987B2 (en) 2011-11-25 2016-08-09 Nissan Motor Co., Ltd. Separator for electric device and electric device using the same
JP2013191485A (ja) * 2012-03-15 2013-09-26 Hitachi Maxell Ltd 非水二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080095770A (ko) * 2007-04-24 2008-10-29 주식회사 엘지화학 이종의 세퍼레이터를 구비한 전기화학소자
KR20120035858A (ko) * 2010-10-05 2012-04-16 주식회사 엘지화학 사이클 특성이 개선된 전기화학소자
KR20130006256A (ko) * 2011-07-07 2013-01-16 주식회사 엘지화학 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
KR20130052526A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
KR20130066746A (ko) * 2011-12-13 2013-06-21 주식회사 코캄 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996188A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515421A (ja) * 2016-08-12 2019-06-06 エルジー・ケム・リミテッド 二次電池分離膜用インク組成物およびこれを含む二次電池用分離膜
US11264675B2 (en) 2016-08-12 2022-03-01 Lg Chem, Ltd. Ink composition for secondary battery separation film, and secondary battery separation film including same

Also Published As

Publication number Publication date
EP2996188B1 (en) 2018-09-19
US9786891B2 (en) 2017-10-10
EP2996188A4 (en) 2016-06-22
CN104600240A (zh) 2015-05-06
US20160028064A1 (en) 2016-01-28
EP2996188A1 (en) 2016-03-16
JP6390037B2 (ja) 2018-09-19
CN104600240B (zh) 2017-08-15
KR20150050505A (ko) 2015-05-08
JP2016535401A (ja) 2016-11-10
PL2996188T3 (pl) 2019-06-28
CN204614858U (zh) 2015-09-02
KR101618317B1 (ko) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2014182063A1 (ko) 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2016060521A1 (ko) 전기절연층이 코팅되어 있는 전극탭 및 이를 포함하는 이차전지
WO2011019187A2 (ko) 리튬 이차전지
WO2015047034A1 (ko) 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
WO2012074300A2 (ko) 리튬 이차전지
WO2020067778A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2013089428A1 (ko) 전기화학소자용 전극 및 이를 구비한 전기화학소자
WO2015105365A1 (ko) 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2012093864A2 (ko) 비대칭 코팅된 분리막을 포함하는 전극조립체 및 상기 전극조립체를 포함하는 전기화학소자
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2019135640A1 (ko) 절연 코팅층이 구비된 전극탭을 포함하는 이차전지
WO2019013449A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019139424A1 (ko) 리튬 전극을 포함하는 리튬 금속 이차전지의 제조방법
WO2019093836A1 (ko) 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
WO2014200214A1 (ko) 내진동 특성이 향상된 전기화학소자 및 전지 모듈
WO2022075637A1 (ko) 전극조립체의 적층 불량 검출 방법, 절연 부재를 포함하는 전극조립체 및 이를 포함하는 전지 셀
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021020844A1 (ko) 열적 안정성이 향상된 이차전지용 양극 및 그의 제조방법
WO2021034060A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014857843

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016526334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE