WO2012176586A1 - 耐浸炭性金属材料 - Google Patents

耐浸炭性金属材料 Download PDF

Info

Publication number
WO2012176586A1
WO2012176586A1 PCT/JP2012/063696 JP2012063696W WO2012176586A1 WO 2012176586 A1 WO2012176586 A1 WO 2012176586A1 JP 2012063696 W JP2012063696 W JP 2012063696W WO 2012176586 A1 WO2012176586 A1 WO 2012176586A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
metal
content
metal material
carburization
Prior art date
Application number
PCT/JP2012/063696
Other languages
English (en)
French (fr)
Inventor
西山 佳孝
岡田 浩一
孝裕 小薄
越雄 旦
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12802133.4T priority Critical patent/ES2688672T3/es
Priority to KR1020137032064A priority patent/KR101567183B1/ko
Priority to BR112013025511-0A priority patent/BR112013025511B1/pt
Priority to CN201280031282.0A priority patent/CN103620077B/zh
Priority to DK12802133.4T priority patent/DK2725112T3/en
Priority to JP2012524983A priority patent/JP5177330B1/ja
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP12802133.4A priority patent/EP2725112B1/en
Priority to RU2014102241/02A priority patent/RU2553136C1/ru
Priority to CA2830155A priority patent/CA2830155C/en
Priority to US14/129,137 priority patent/US10233523B2/en
Publication of WO2012176586A1 publication Critical patent/WO2012176586A1/ja
Priority to ZA2013/07153A priority patent/ZA201307153B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Definitions

  • the present invention has a high temperature strength and excellent corrosion resistance, and is particularly a metal material used in a carburizing gas atmosphere containing hydrocarbon gas, CO gas or the like, particularly a cracking furnace or modified in an oil / gas refining or chemical plant.
  • the present invention relates to a metal material excellent in weldability and metal dusting resistance suitable as a material for a quality furnace, a heating furnace or a heat exchanger.
  • a synthesis gas produced in the above-described reaction apparatus that is, a gas containing hydrocarbons such as H 2 , CO, CO 2 , H 2 O and methane is mixed with a metal material such as a reaction tube and around 1000 ° C. It is in contact at higher temperatures. On the surface of the metal material in this temperature range, elements such as Cr and Si, which have a higher tendency to oxidize than Fe and Ni, are selectively oxidized, and a dense film such as Cr oxide and Si oxide is formed. Corrosion is suppressed.
  • the heating furnace tube of a catalytic cracking furnace that increases the octane number of naphtha obtained by distillation of crude oil also becomes a severe carburizing environment consisting of hydrocarbons and hydrogen, and carburizing and metal dusting occur.
  • the carbide becomes supersaturated, and then graphite is deposited directly, so that the base metal is peeled off and the base metal is thinned. In other words, corrosion consumption called metal dusting proceeds. Further, the peeled metal powder serves as a catalyst and generates coking.
  • Patent Document 1 discloses that Cr is 11 to 60% (mass%, the same applies hereinafter) with respect to metal dusting resistance in an atmosphere gas of 400 to 700 ° C. containing H 2 , CO, CO 2 , and H 2 O. .) Fe-based alloys or Ni-based alloys have been proposed. Specifically, an Fe-based alloy containing 24% or more of Cr and 35% or more of Ni, a Ni-based alloy containing 20% or more of Cr and 60% or more of Ni, and an alloy material obtained by adding Nb to these alloys. The invention is shown to be superior. However, merely increasing the Cr or Ni content of the Fe-based alloy or Ni-based alloy does not provide a sufficient carburization suppressing effect, and a metal material having further metal dusting resistance is desired.
  • Patent Document 2 is based on the group VIII, IB, IV and V of the periodic table of elements against corrosion due to metal dusting of a high temperature alloy containing iron, nickel and chromium.
  • One or more metals and mixtures thereof are deposited on the surface by conventional physical or chemical means and annealed in an inert atmosphere to form a thin layer having a thickness of 0.01 to 10 ⁇ m. This is intended to protect the alloy surface.
  • Sn, Pb, Bi and the like are particularly effective.
  • this method is effective in the initial stage, there is a possibility that the thin layer peels off due to long-term use and the effect is lost.
  • Patent Document 3 regarding the metal dusting resistance of a metal material in an atmosphere gas of 400 to 700 ° C. containing H 2 , CO, CO 2 , and H 2 O, from the viewpoint of solute elements in iron.
  • addition of elements that form stable carbides in metal materials such as Ti, Nb, V, Mo, or Si, Al, Ni, Cu.
  • an alloy element such as Co having a positive interaction coefficient ⁇ is effective in suppressing metal dusting.
  • increasing Si, Al, etc. may lead to a decrease in hot workability and weldability, and there is room for improvement in terms of manufacturing stability and plant construction.
  • Patent Document 4 low Si-based 25Cr-20Ni (HK40) heat-resisting steel and low Si-based 25Cr-35Ni heat-resisting steel are preoxidized in the atmosphere at a temperature in the vicinity of 1000 ° C. for 100 hours or more. And a method for pre-oxidizing austenitic heat-resisting steel containing 20 to 35% Cr in the air is disclosed. Further, Patent Document 7 proposes a method for improving carburization resistance by heating a high Ni—Cr alloy in a vacuum to form a scale film.
  • Patent Document 8 discloses that a Cr-based oxide film having high adhesion even under an environment subjected to a heating / cooling cycle by satisfying Si ⁇ (Cr + 0.15Ni-18) / 10 for the contents of Si, Cr and Ni.
  • An austenitic alloy having excellent carburization resistance has been proposed even in an environment exposed to corrosive gas at high temperatures.
  • Patent Document 9 even when Cu or rare earth elements (Y and Ln groups) are contained, a uniform oxide film having a high Cr concentration in the film is formed, and even under an environment where a heating / cooling cycle is received.
  • An austenitic stainless steel with excellent scale peeling resistance has been proposed. However, the weldability or creep ductility due to the addition of Cu has not been studied.
  • Patent Document 10 proposes a method for improving carburization resistance by forming a concentrated layer of Si or Cr by surface treatment.
  • these conventional techniques all require special heat treatment and surface treatment, and are inferior in economic efficiency.
  • the pre-oxidation scale and the scale repair defect (scale regeneration) after the surface treatment layer is peeled off are not considered, once damage occurs, the subsequent effect cannot be expected.
  • Patent Document 11 a Cr-deficient layer having a Cr concentration of 10% or more and a lower concentration than that of the base metal is formed on the surface of the steel pipe, and the Cr content is excellent in carburization resistance of 20 to 55%.
  • Stainless steel pipes have been proposed. However, no improvement has been made with respect to a decrease in weldability due to Cr content or Si addition.
  • Patent Document 12 proposes a metal material that reduces HAZ cracking sensitivity, which is one of weldability, by increasing C with respect to Si and Cu-containing steel. However, addition of high C increases the weld solidification cracking susceptibility and also causes a decrease in creep ductility.
  • H 2 S may significantly reduce the activity of the catalyst used for reforming, its application is limited.
  • Patent Document 13 and Patent Document 14 propose to suppress gas dissociative adsorption (gas / metal surface reaction) by containing an appropriate amount of one or more of P, S, Sb and Bi. ing. Since these elements segregate on the metal surface, carburization and metal dusting corrosion can be significantly suppressed without adding excessive amounts. However, since these elements segregate not only at the metal surface but also at the grain boundaries of the metal crystal grains, problems remain in hot workability and weldability.
  • Patent Document 15 describes that by adding Cu, the corrosion resistance is increased, while S and O are reduced as much as possible to improve the hot workability improvement effect by B.
  • Patent Document 16 describes that “ ⁇ The GI value (General Corrosion Index) indicated by "Cr + 3.6Ni + 4.7Mo + 11.5Cu” is set to 60 to 90, and the CI value (Crevice Corrosion Index) indicated by "Cr + 0.4Ni + 2.7Mo + Cu + 18.7N”. It is described that by setting the crevice corrosion resistance index) to 35 to 50, excellent corrosion resistance and crevice corrosion resistance are improved in a sulfuric acid and sulfate environment.
  • Patent Document 17 improves hot workability by increasing the Cu content while adding more than 0.0015% B to keep the oxygen content low. All of these limit the upper limit of the C content to be low in order to avoid a decrease in corrosion resistance. Therefore, solid solution strengthening of C cannot be expected, and sufficient high-temperature strength cannot be obtained. Therefore, it is unsuitable as a metal material used at high temperatures.
  • Japanese Patent Laid-Open No. 9-78204 Japanese Patent Laid-Open No. 11-172473 JP 2003-73763 A JP-A-53-66832 Japanese Unexamined Patent Publication No. 53-66835 JP 57-43989 A JP 11-29776 A JP 2002-256398 A JP 2006-291290 A Special Table 2000-509105 Japanese Patent Laying-Open No. 2005-48284 WO2009 / 107585 JP 2007-186727 A JP 2007-186728 A Japanese Unexamined Patent Publication No. 1-21038 Japanese Patent Laid-Open No. 2-170946 JP-A-4-346638
  • the present invention has been made in view of the above-mentioned present situation, and its purpose is to use a carburizing gas and a metal in a cracking furnace tube for an ethylene plant, a heating furnace tube of a catalytic reforming furnace, a reforming furnace tube of a synthesis gas, or the like.
  • a metal material having metal dusting resistance, carburization resistance and coking resistance, and further improved weldability and creep characteristics is provided.
  • HAZ weld heat affected zone
  • Patent Document 12 the present inventors precipitated a high melting point Cr carbide containing a large amount of C. As a result, it succeeded in reducing HAZ cracking by increasing grain boundary surface area by suppressing crystal grain coarsening and decreasing segregation of Si, Cu, etc. to grain boundaries.
  • inclusion of a large amount of C causes C to segregate between the solidified structure dendrite trees in the weld metal, thereby increasing the sensitivity to solidification cracking.
  • the precipitation of Cr carbide in the base material grains and grain boundaries results in excessively high creep strength and poor creep ductility.
  • the present inventors have reexamined various methods that can suppress HAZ cracking during welding even if a considerable amount of Si or Cu is added to improve corrosion resistance. As a result, the inventors have found that the following methods (f) to (h) can suppress HAZ cracking without impairing solidification cracking or creep ductility.
  • (G) HAZ cracking susceptibility is due to the strength imbalance between the base material grains and the grain boundaries. Therefore, by reducing the strength within the grain, the strength imbalance with the grain is relatively eliminated, and the HAZ crack sensitivity is improved.
  • (I) Cr is effective in resistance to metal dusting, but decreases the creep strength as it is contained. Therefore, it is effective to limit Cr in order to increase the creep strength. Since the Cr restriction strengthens the austenite structure itself of the base material, it does not lower the creep ductility unlike precipitation strengthening.
  • the present invention has been completed based on these findings, and the gist thereof is as shown in the following (1) to (4).
  • the metal material of the present invention has an effect of suppressing the surface reaction between the carburizing gas and the metal, and is excellent in metal dusting resistance, carburization resistance and coking resistance.
  • it because it has improved weldability and creep ductility, it can be used for welded structural members such as cracking furnaces, reforming furnaces, heating furnaces, heat exchangers, etc. in petroleum refining and petrochemical plants. Can significantly improve performance and operational efficiency.
  • C 0.03-0.075%
  • C is one of the most important elements in the present invention.
  • C combines with Cr to form carbides, thereby increasing the strength at high temperatures. For this reason, the content of 0.03% or more of C is necessary.
  • containing C increases the susceptibility to solidification cracking during welding, and causes a decrease in creep ductility at high temperatures. Therefore, the upper limit is limited to 0.075%.
  • it is 0.03% to 0.07%, and a more preferable range is 0.04% to 0.07%.
  • Si 0.6-2.0% Si is one of the important elements in the present invention. Since the affinity with oxygen is strong, a Si-based oxide scale is formed under the protective oxide scale layer such as Cr 2 O 3 to block the carburizing gas. This effect is exhibited by containing 0.6% or more. However, if it exceeds 2.0%, the weldability is remarkably lowered, so the upper limit is made 2.0%. A preferred range is 0.8 to 1.5%, and a more preferred range is 0.9 to 1.3%.
  • Mn 0.05 to 2.5%
  • Mn has a deoxidizing ability and improves workability and weldability, so 0.05% or more is added.
  • Mn is an austenite generating element. It is also possible to substitute a part of Ni with Mn. However, excessive addition hinders the carburizing gas barrier performance of the protective oxide scale layer, so the upper limit of the Mn content is set to 2.5%.
  • a preferred range is 0.1 to 2.0%.
  • a more preferable range is 0.6 to 1.5%.
  • P 0.04% or less P lowers the hot workability and weldability, so the upper limit of P is 0.04%.
  • the effect is particularly important when the content of Si or Cu is high.
  • a preferable upper limit of P is 0.03%, and a more preferable upper limit is 0.025%.
  • P since it has a function of suppressing the dissociative adsorption reaction on the metal surface of the carburizing gas, P may be contained in the case where a decrease in weldability can be tolerated.
  • S 0.015% or less S, like P, reduces hot workability and weldability, so the upper limit of S is 0.015%.
  • the effect is particularly important when the content of Si or Cu is high.
  • a preferable upper limit of S is 0.005%, and a more preferable upper limit is 0.002%.
  • P similarly to P, it has a function of suppressing the dissociative adsorption reaction of the carburizing gas on the metal surface, and therefore S may be contained when a decrease in weldability can be tolerated.
  • Cr more than 16.0% and less than 20.0% Cr is one of the most important elements in the present invention. Stable formation of oxide scale such as Cr 2 O 3 and the effect of blocking carburizing gas. Sufficient carburizing resistance, metal dusting resistance and coking resistance even in severe carburizing gas environment. Gives sex. In order to fully exhibit this effect, it is necessary to contain exceeding 16.0%. On the other hand, Cr combines with C to form a carbide, thereby reducing creep ductility. Moreover, the creep strength of an austenite structure is reduced by containing Cr. In particular, the influence is large when the content of Si or Cu is high. In order to suppress this adverse effect, it is necessary to limit the Cr content to less than 20.0%. A preferable range of the Cr content is 18.0% or more and less than 20.0%. A more preferable range is 18.0% or more and less than 19.5%.
  • Ni 20.0% or more and less than 30.0%
  • Ni is an element necessary for obtaining a stable austenite structure depending on the Cr content, and a content of 20.0% or more is necessary.
  • C penetrates into steel, it has a function of reducing the penetration speed.
  • it has the function of ensuring the high temperature strength of the metal structure.
  • the content is more than necessary, the cost is high and the manufacturing is difficult.
  • coking and metal dusting may be promoted, so the Ni content is less than 30.0%.
  • a preferable range of the Ni content is 22.0 to 28.0%, and a more preferable range is 23.0 to 27.0%.
  • Cu 0.5 to 10.0%
  • Cu is one of the important elements in the present invention.
  • Cu suppresses the surface reaction between the carburizing gas and the metal, and greatly improves the metal dusting resistance and the like. Further, since it is an austenite-forming element, it is possible to replace part of Ni with Cu. In order to exhibit the effect of improving metal dusting resistance, it is necessary to contain Cu by 0.5% or more. However, if the content exceeds 10.0%, the weldability is lowered, so the upper limit of the content is 10.0%.
  • a preferable content of Cu is 1.5 to 6.0%. A more preferable content is 2.1 to 4.0%.
  • Al 0.15% or less
  • Al is an element effective for improving the creep strength by precipitation strengthening.
  • the content of coexisting Si and Cu is high, the HAZ cracking sensitivity is increased and the creep ductility is also decreased.
  • the content is limited to 0.15% or less.
  • it is 0.12% or less, More preferably, it is 0.10% or less.
  • Al works effectively as a deoxidizing element at the time of melting, it is preferable to contain 0.005% or more in order to obtain the effect.
  • Ti 0.15% or less Ti is an element effective for improving the creep strength by precipitation strengthening.
  • the Ti content is limited to 0.15% or less. Preferably it is 0.08% or less, More preferably, it is 0.05% or less.
  • 0.005% or more is preferably contained.
  • N 0.005 to 0.20%
  • N has the effect of increasing the high temperature strength of the metal material. Furthermore, it combines with elements such as Nb and Ta to form a Z phase, thereby reducing the HAZ crack sensitivity. These effects are exhibited by containing 0.005% or more. However, if the N content exceeds 0.20%, workability is impaired. Accordingly, the upper limit of the N content is 0.20%.
  • a preferable content range of N is 0.015 to 0.15%. In order to improve the decrease in creep rupture strength due to limiting Al and Ti, solid solution strengthening or precipitation strengthening of nitrogen may be utilized. In this case, the preferable content range is 0.05 to 0.12%, and the more preferable content range is 0.07 to 0.12%.
  • O (oxygen) 0.02% or less
  • O (oxygen) is an impurity element mixed from a raw material or the like when a metal material is melted.
  • the content of O (oxygen) exceeds 0.02%, a large amount of oxide inclusions are present in the steel, workability is deteriorated, and the surface of the metal material is wrinkled. Therefore, the upper limit of O (oxygen) is set to 0.02%.
  • the metal material according to the present invention contains the above-mentioned element or an optional element to be described later, with the balance being Fe and impurities.
  • impurities are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores or scraps, when producing metal materials industrially, and have an adverse effect on the present invention. It is acceptable as long as it is not given.
  • At least one of the following first group to fifth group in addition to the above alloy elements You may contain the at least 1 sort (s) of the components selected from one grape.
  • Co has an effect of stabilizing the austenite phase
  • a part of the Ni component can be substituted. Therefore, Co may be contained as necessary.
  • the content exceeds 10%, the hot workability is lowered. Therefore, when Co is contained, the content is made 10% or less.
  • the Co content is preferably 5% or less, more preferably 3% or less.
  • the content is preferably 0.01% or more.
  • Second group (mass%, Mo: 5% or less, W: 5% or less, Ta: 5% or less) Since Mo, W, and Ta are all solid solution strengthening elements, one or more of them may be contained as necessary. However, if each of these contents exceeds 5%, the workability is deteriorated and the tissue stability is inhibited, so the content is made 5% or less. The preferred contents are each 3.5% or less. When two or more of these elements are contained, the total content is preferably 10% or less. In addition, when it is desired to obtain the effect of containing Mo, W, or Ta, the content is preferably 0.01% or more.
  • the above-mentioned Mo, W and Ta can be contained alone or in combination of two or more.
  • the total amount when these elements are combined and contained is 15% or less. It is preferable to make it 10% or less.
  • B 0.1% or less, V: 0.5% or less, Zr: 0.5% or less, Nb: 2% or less, Hf: 0.5% or less
  • B, V, Zr, Nb, and Hf are all effective elements for improving the high-temperature strength characteristics, one or more of them may be contained as necessary.
  • B if the content exceeds 0.1%, the weldability is lowered, so the content is made 0.1% or less. Preferably it is 0.05% or less.
  • V is contained, if the content exceeds 0.5%, the weldability is lowered, so the content is 0.5% or less. Preferably it is 0.1% or less.
  • Zr When Zr is contained, if its content exceeds 0.5%, the weldability is remarkably lowered, so its content is 0.5% or less. Preferably it is 0.1% or less.
  • Nb When Nb is contained, if its content exceeds 2%, weldability is lowered, so its content is made 2% or less. Preferably it is 0.8% or less.
  • Hf when Hf is contained, if its content exceeds 0.5%, the weldability is lowered, so the content is made 0.5% or less. Preferably it is 0.1%.
  • B or Hf In order to obtain the effect of containing B, V, Zr, Nb or Hf, it is preferable to contain B or Hf in an amount of 0.0005% or more and V, Zr or Nb in an amount of 0.005% or more.
  • the above-mentioned B, V, Zr, Nb and Hf can be contained alone or in combination of two or more.
  • the total amount when these elements are combined and contained is 3.6% or less. It is preferable to set it as 1.8% or less.
  • Mg and Ca have the effect
  • Mg is contained, if the content exceeds 0.1%, the weldability is lowered, so the content is made 0.1% or less.
  • Ca is contained, if its content exceeds 0.1%, weldability is lowered, so its content is made 0.1% or less.
  • the content is preferably 0.0005% or more.
  • the above Mg and Ca can be contained alone or in combination of any two of them.
  • the total amount when these elements are combined and contained is 0.2% or less. It is preferable to make it 0.1% or less.
  • Y, La, Ce, and Nd have the effect of improving oxidation resistance, one or more of them may be contained as necessary. However, when these elements are contained, if the content exceeds 0.15%, the workability is lowered, so the content is made 0.15% or less. Preferably it is 0.07% or less. In addition, when obtaining the effect of containing Y, La, Ce or Nd, it is preferable to contain 0.0005% or more.
  • the above Y, La, Ce and Nd can be contained alone or in combination of two or more thereof.
  • the total amount when these elements are combined and contained is 0.6% or less. It is preferable to make it 0.1% or less.
  • the crystal grain size of the metal material is preferably a fine grain having an austenite grain size number of 6 or more.
  • the preferred crystal grain size is 7 or more.
  • a more preferable grain size is 7.5 or more. This is because the smaller the crystal grain size of the austenite structure as the base material, the better the creep ductility and the lower the HAZ crack sensitivity.
  • the austenite grain size number is based on the provisions of ASTM (American Society for Testing and Material).
  • the heat treatment conditions during the intermediate heat treatment and the final heat treatment are appropriately adjusted, or the degree of work during hot or cold work is increased to give strain and heat treatment. do it.
  • the intermediate heat treatment temperature is raised above the final heat treatment temperature to dissolve the precipitate, and then processing strain is introduced hot or cold, so that the number of recrystallization nucleation sites increases during the final heat treatment.
  • the compound that has been dissolved further precipitates finely, the growth of recrystallized grains is suppressed, so that a desired fine grain structure can be formed.
  • the metal material according to the present invention is formed into a required shape such as a thick plate, a thin plate, a seamless pipe, a welded pipe, a forged product, a wire rod, or the like by means of melting, casting, hot working, cold working, welding or the like. be able to. Moreover, it can also shape
  • the metal material according to the present invention can be formed into a required shape in combination with various carbon steels, stainless steels, Ni-base alloys, Co-base alloys, Cu alloys and the like.
  • various steels or alloys for example, a shape that has been subjected to mechanical joining such as pressure welding or “caulking” or thermal joining such as welding or diffusion treatment. It is also possible.
  • a metal material having a chemical composition shown in Table 1 was melted using a high-frequency heating vacuum furnace, and hot forging and hot rolling were performed to produce a metal plate having a thickness of 6 mm.
  • the metal plate was subjected to solution heat treatment under conditions of a heat treatment temperature of 1140 to 1230 ° C. and a heat treatment time of 4 minutes, and a part of the metal plate was cut to produce a test piece.
  • the ASTM grain size number was changed variously by adjusting the heat treatment conditions (child numbers a to e).
  • a test piece having a thickness of 3 mm, a width of 15 mm, and a length of 20 mm was cut out from the metal material shown in Table 1.
  • This test piece was kept isothermally at 650 ° C. in a 45% CO-42.5% H 2 -6.5% CO 2 -6% H 2 O gas atmosphere in a volume ratio, and taken out after 200 hours, and the test piece The presence or absence of pits generated on the surface was judged from both visual and optical microscope observations. The case where no pit was generated was judged to satisfy the performance of the present invention. The results are summarized in Table 2.
  • a metal material having a chemical composition shown in Table 1 was melted using a high-frequency heating vacuum furnace, and hot forging and cold rolling were performed to produce a metal plate having a thickness of 12 mm.
  • the metal plate was subjected to a solution heat treatment under conditions of a heat treatment temperature of 1140 to 1230 ° C. and a heat treatment time of 5 minutes, and a part of the metal plate was cut to produce a test piece.
  • a round bar test piece having a diameter of 6 mm in parallel part and a length of 70 mm (30 mm in parallel part) was cut out from the metal material shown in Table 1.
  • a test piece having a thickness of 12 mm, a width of 15 mm, and a length of 15 mm was cut from the metal plate.
  • the test piece was embedded in resin, the crystal grain size of the base material was measured with respect to the cross-sectional structure perpendicular to the sheet thickness rolling direction, and the austenite crystal grain size defined by ASTM was determined.
  • the crystal grain size is summarized in Table 1.
  • the test piece was held at a holding temperature of 800 ° C. under a stress of 40 MPa, and the time until fracture (creep rupture time) was determined. Further, the elongation of the test piece until the break (creep rupture elongation) was measured. It was judged that the breaking time of 1320 hours or more satisfied the performance of the present invention. Further, it was determined that the elongation at break of 15% or more satisfied the performance of the present invention. These results are summarized in Table 2.
  • the metal material No. 34 that deviates from the conditions specified in (3) has a short creep rupture time and is inferior in creep rupture strength.
  • the number 27 deviates from the conditions defined in the present invention
  • the C content is deviated from the conditions defined in the present invention
  • the Al content is the number 30, the Ti content deviates from the conditions defined in the present invention, the 31 Si content No. 35 deviates from the conditions specified in the present invention, and the metal material No.
  • a metal material having a chemical composition shown in Table 1 was melted using a high-frequency heating vacuum furnace, and hot forging and cold rolling were performed to produce a metal plate having a thickness of 14 mm.
  • the metal plate was subjected to solution heat treatment under conditions of a heat treatment temperature of 1140 to 1230 ° C. and a heat treatment time of 5 minutes, and a part of the metal plate was cut to produce a test piece.
  • Two test pieces each having a plate thickness of 12 mm, a width of 50 mm, and a length of 100 mm were produced from the metal materials shown in Table 1.
  • V groove processing with an angle of 30 ° and a root thickness of 1.0 mm was performed on one side in the longitudinal direction of the above test piece, and then “DNiCrMo-3” defined in JIS Z3224 (1999) was used as a coated arc welding rod.
  • the four rounds were restrained and welded onto a commercially available metal plate of “SM400C” defined in JIS G-3106 (2004) having a thickness of 25 mm, a width of 150 mm and a length of 150 mm.
  • multilayer welding was carried out in the groove using the “YNiCrMo-3” TIG welding wire defined in JIS Z3334 (1999) under the condition of a heat input of 6 kJ / cm by TIG welding.
  • a metal material having a chemical composition shown in Table 1 was melted using a high-frequency heating vacuum furnace and subjected to hot forging and hot rolling to produce a metal plate having a thickness of 6 mm.
  • the metal plate was subjected to solution heat treatment under conditions of a heat treatment temperature of 1140 to 1230 ° C. and a heat treatment time of 4 minutes, and a part of the metal plate was cut to produce a test piece. From the metal material shown in Table 1, a specimen for transbalance train having a thickness of 4 mm, a width of 100 mm, and a length of 100 mm was produced.
  • a metal material that has an effect of suppressing the surface reaction between a carburizing gas and a metal, is excellent in metal dusting resistance, carburization resistance and caulking resistance, and has improved weldability and creep characteristics. It can be used for welding structural members such as cracking furnaces, reforming furnaces, heating furnaces, and heat exchangers in oil refining and petrochemical plants, and the durability and operational efficiency of the apparatus can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

石油・ガス精製や化学プラントなどにおける分解炉や改質炉、加熱炉もしくは熱交換器などの素材として好適な耐浸炭性金属材料であり、質量%で、C:0.03~0.075%、Si:0.6~2.0%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:16.0%を超えて20.0%%未満、Ni:20.0%以上30.0%未満、Cu:0.5~10.0%、Al:0.15%以下、Ti:0.15%以下、N:0.005~0.20%、O(酸素):0.02%以下を含有し、残部はFe及び不純物からなる。さらに、Co、Mo、W、Ta、B、V、Zr、Nb、Hf、Mg、Ca、Y、La、Ce及びNdのうちの1種又は2種以上を含有してもよい。

Description

耐浸炭性金属材料
 本発明は、高温強度が高く、耐食性に優れ、特に炭化水素ガスやCOガスなどを含有する浸炭性ガス雰囲気で使用される金属材料、特に、石油・ガス精製や化学プラントなどにおける分解炉や改質炉、加熱炉もしくは熱交換器などの素材として好適な溶接性及び耐メタルダスティング性に優れた金属材料に関する。
 水素、メタノール、液体燃料(GTL:Gas to Liquids)やジメチルエーテル(DME)といったクリーンエネルギーの燃料は、今後の大幅な需要増が予想される。したがって、このような合成ガスを製造するための改質装置は大型化し、より一層熱効率が高く量産に適した装置が要求される。また、従来の石油精製や石油化学プラントなどにおける改質装置、あるいは石油などを原料とするアンモニア製造装置、水素製造装置などにおいても、よりエネルギー効率を高めるために、排熱回収のための熱交換が多用されるようになってきている。
 このような高温ガスの熱を有効活用するためには、従来対象とされてきたよりも低い、400~800℃の温度域における熱交換が重要となってきており、この温度域において反応管や熱交換器等に使用する高Cr-高Ni-Fe合金系金属材料の浸炭現象に伴う腐食が問題となっている。
 通常、上述のような反応装置にて製造される合成ガス、すなわちH、CO、CO、HO及びメタンなどの炭化水素を含むガスは、反応管などの金属材料と1000℃前後ないしはそれ以上の温度で接している。この温度域において金属材料の表面では、FeやNiなどよりも酸化傾向の大きいCrやSiなどの元素が選択的に酸化され、酸化Crや酸化Siなどの緻密な皮膜が形成されることによって、腐食が抑止される。ところが、熱交換部分など相対的に温度の低い部分においては、金属材料の内部から表面への元素の拡散が不十分となるために腐食抑止効果のある酸化皮膜の形成が遅れることに加え、このような炭化水素を含む組成のガスは浸炭性へと変化するために金属材料表面からCが浸入して浸炭が生じてくる。
 エチレン分解炉管等においては、浸炭が進みCrやFeなどの炭化物からなる浸炭層が形成されるとその部分の体積が膨張する。その結果、微細な割れが生じやすくなり、最悪の場合には使用中の管が破断する。また、金属表面が露出すると、表面で金属を触媒とした炭素析出(コーキング)が発生し、管内流路面積の減少や伝熱特性の低下を伴う。
 原油の蒸留より得られたナフサのオクタン価を高める接触分解炉の加熱炉管等においても炭化水素と水素からなる浸炭性の厳しい環境となり、浸炭やメタルダスティングが発生する。
 一方、改質炉管や熱交換器等におけるガスの浸炭性がより厳しい環境下では、炭化物が過飽和となり、その後グラファイトが直接析出するために、母材金属が剥離脱落し、母材が減肉する、すなわちメタルダスティングといわれる腐食消耗が進行する。さらに、剥離した金属粉末が触媒となり、コーキングを発生させる。
 このような亀裂、損耗や管内閉塞が拡大すると、装置故障等が発生して、その結果、操業中断に至る恐れがあり、装置部材としての材料選定に十分な配慮が必要である。
 このような浸炭やメタルダスティングによる腐食を防止するために、従来から、種々の対策が検討されてきた。
 たとえば、特許文献1には、H、CO、CO、HOを含む400~700℃の雰囲気ガス中での耐メタルダスティング性に関して、Crを11~60%(質量%、以下同じ。)含むFe基合金またはNi基合金が提案されている。具体的には、Crを24%以上かつNiを35%以上含むFe基合金、Crを20%以上かつNiを60%以上含むNi基合金、及びこれらの合金にさらにNbを添加した合金材料の発明が優れていることが示されている。しかし、Fe基合金又はNi基合金のCrやNiの含有量を増しただけでは、十分な浸炭抑制効果が得られず、より一層の耐メタルダスティング性を有する金属材料が求められている。
 また、特許文献2に開示されている方法は、鉄、ニッケル及びクロムを含む高温合金のメタルダスティングによる腐食に対し、元素周期表の第VIII族、第IB族、第IV族及び第V族のうちの一種以上の金属及びそれらの混合物を、通常の物理的あるいは化学的手段で表面に付着させ、不活性雰囲気中でアニーリングして、0.01~10μmの厚さの薄層を形成させることで合金表面を保護しようとするものである。この場合、Sn、Pb、Bi等がとくに有効であるとしている。しかしこの方法は、初期には効果があっても長期にわたる使用により薄層が剥離して効果がなくなるおそれがある。
 特許文献3には、H、CO、CO、HOを含む400~700℃の雰囲気ガス中での金属材料の耐メタルダスティング性に関して、鉄中の溶質元素の観点からCとの相互作用について調査がされた結果、酸化皮膜の保護性を高めることに加えて、Ti、Nb、V、Moなど金属材料中で安定な炭化物を作る元素の添加又はSi、Al、Ni、Cu、Coなどの相互作用助係数Ωが正の値を示す合金元素がメタルダスティング抑制に有効であることが開示されている。ただし、Si、Al等を高めることは熱間加工性や溶接性の低下につながる場合があり、製造安定性やプラント施工面を考えると改善の余地がある。
 次に、金属表面への浸炭性ガスの接触を遮断するために、金属材料に予め酸化処理を施す方法や表面処理を行う方法が開示されている。
 例えば、特許文献4及び特許文献5には、低Si系25Cr-20Ni(HK40)耐熱鋼や低Si系25Cr-35Ni耐熱鋼を1000℃の近傍の温度で100時間以上の条件で大気中予酸化を行う方法が開示されており、そして、特許文献6には20~35%Crを含有するオーステナイト系耐熱鋼に大気中予備酸化を行う方法が開示されている。さらに、特許文献7には高Ni-Cr合金を真空中で加熱しスケールの皮膜を生成させて耐浸炭性を向上させる方法が提案されている。
 特許文献8には、Si、Cr及びNiの含有量が、Si<(Cr+0.15Ni-18)/10を満足させることによって、加熱・冷却サイクルを受ける環境下でも密着性の高いCr系酸化皮膜を形成させて、高温下で腐食性のガスに曝される環境であっても耐浸炭性に優れるオーステナイト系合金が提案されている。特許文献9には、Cuや希土類元素(Y及びLn族)を含有させることによって、皮膜中のCr濃度が高い均一な酸化皮膜を形成させて、加熱・冷却サイクルを受ける環境下であってもスケールの耐剥離性に優れたオーステナイト系ステンレス鋼が提案されている。しかしながら、Cu添加による溶接性もしくはクリープ延性について検討されていない。特許文献10には、表面処理によリSiやCrの濃化層を形成させることによって耐浸炭性を向上させる方法が提案されている。しかしながら、これらの従来技術は、いずれも特殊な熱処理や表面処理を必要とするものであって、経済性に劣る。また、予酸化スケールや表面処理層が剥離した後のスケールの修復 (スケール再生) を考慮していないため、一度損傷が発生するとその後の効果は期待できない。
 特許文献11には、Cr濃度が10%以上で母材のCr濃度よりも低濃度のCr欠乏層を鋼管表面に形成してなる、Cr含有量が20~55%の耐浸炭性に優れたステンレス鋼管が提案されている。しかし、Cr含有やSi添加による溶接性の低下について何ら改善が図られていない。また、特許文献12には、Si及びCu含有鋼に対し、Cを高めることで溶接性のひとつHAZ割れ感受性低減を図った金属材料が提案されている。しかしながら、高C添加は溶接凝固割れ感受性を高めるほか、クリープ延性の低下も招くため、抜本的解決には至っていない。
 その他、雰囲気ガス中にHSを添加する方法も考えられているが、HSは改質に用いられる触媒の活性を著しく低下させる恐れがあるので、その適用は限定される。
 特許文献13及び特許文献14には、P、S、Sb及びBiの1種もしくは2種以上を適正量含有させることによって、ガス解離性吸着(ガス/金属表面反応)を抑制することが提案されている。これらの元素は金属表面に偏析するので、過剰に添加しなくても、浸炭やメタルダスティング腐食を大幅に抑制することができる。しかしながら、これらの元素は金属表面のみならず金属結晶粒の粒界にも偏析するため、熱間加工性や溶接性に課題が残る。
 Cuを添加することによって、耐食性や耐すきま腐食性を高めることも提案されている。特許文献15には、Cuを含有させることによって耐食性を高める一方で、S及びOを極力低減して、Bによる熱間加工性改善効果を高めることが記載され、特許文献16には、「-Cr+3.6Ni+4.7Mo+11.5Cu」で示されるG.I.値(General Corrosion Index:耐全面腐食性指数)を60~90とするとともに、「Cr+0.4Ni+2.7Mo+Cu+18.7N」で示されるC.I.値(Crevice Corrosion Index;耐隙間腐食性指数)を35~50とすることによって、硫酸及び硫酸塩環境で優れた耐食性と耐隙間腐食性を向上させることが記載されている。特許文献17には、Cu含有量を高める一方で、Bを0.0015%を超えて添加し、酸素含有量を低く抑えることによって熱間加工性を改善している。これらはいずれも、耐食性の低下を避けるためにC含有量の上限を低く制限している。そのため、Cの固溶強化が期待できず、十分な高温強度が得られない。そのため、高温に使用する金属材料として不適である。
特開平9―78204号公報 特開平11-172473号公報 特開2003-73763号公報 特開昭53-66832号公報 特開昭53-66835号公報 特開昭57-43989号公報 特開平11-29776号公報 特開2002-256398号公報 特開2006-291290号公報 特表2000-509105号公報 特開2005-48284号公報 WO2009/107585 特開2007-186727号公報 特開2007-186728号公報 特開平1-21038号公報 特開平2-170946号公報 特開平4-346638号公報
 このように、金属材料の耐メタルダスティング性、耐浸炭性及び耐コーキング性を高める技術が、従来から種々提案されているが、いずれも特殊な熱処理や表面処理を必要とするものであって、コストと手間を必要とする。また、予酸化スケールや表面処理層が剥離した後のスケールの修復(スケール再生)機能がないため、一度損傷が発生するとその後のメタルダスティングを抑制することはできない。また、金属材料の溶接性、クリープ強度及びクリープ延性にも問題がある。
 また、金属材料自体の改善ではなく、前述のように、合成ガスの改質装置や製造装置の管内の雰囲気ガス中にHSを添加してメタルダスティングを抑制する方法もあるが、HSは炭化水素の改質に用いられる触媒の活性を著しく低下させる恐れがあるので、雰囲気ガスの成分調整によるメタルダスティング抑制技術は、限定的に適用されているだけである。
 本発明は、上記現状に鑑みてなされたもので、その目的は、エチレンプラント用分解炉管、接触改質炉の加熱炉管や合成ガスの改質炉管等において、浸炭性ガスと金属の表面反応を抑制することで、耐メタルダスティング性、耐浸炭性及び耐コーキング性を有し、さらに溶接性、クリープ特性を改善した金属材料を提供することである。
 本発明者らは、Cが金属中に侵入する現象を分子状態で解析した結果、次の(a)~(c)からなる素過程において進展することが判明した。
 (a)炭化水素やCOなど、C化合物からなるガス分子が金属表面に近づく。
 (b)近づいたガス分子が金属表面に解離吸着する。
 (c)解離した原子状Cが金属中に侵入し、拡散する。
 そして、上記の現象を抑制する手法を種々検討した結果、次の手法(d)と(e)が有効であることを見出した。
 (d)金属材料の使用中に金属表面に積極的に酸化スケールを形成することによって、C化合物からなるガス分子と金属の接触を遮断する。
 (e)金属表面において、C化合物からなるガス分子の解離性吸着を抑制する。
 そして、(d)の遮断効果を有する酸化スケールについて検討を進めた結果、CrとSiからなる酸化スケールが有効に働くことが明らかになった。特に、エチレンプラント用分解炉管、接触改質炉の加熱炉管や合成ガスの改質炉管等のような浸炭性のガス環境では、ガス中の酸素分圧が低いため、CrとSiを適正量含有させることで、ガス側にはCrを主体とした酸化スケールを形成させ、そして、金属側にはSiを主体とした酸化スケールを形成させることができることがわかった。
 一方、(e)の解離性吸着の観点からも検討を進めた結果、Cu、Ag及びPt等の貴金属元素や周期律表の第VA族及びVIA族の元素を適量添加すると、C化合物からなるガス分子の解離性吸着を抑制する効果を発揮することが明らかになった。特に、Cuは貴金属元素の中で安価であることに加えて、Fe-Ni-Cr系の金属材料に含有させる際に溶製上あるいは凝固上の問題点も低い。したがって、Cuを用いるのが好ましい。
 そして、これらの手法(d)及び(e)によれば、それぞれが、上記素過程(a)~(c)においてCが金属中に侵入することを効果的に抑制することができるが、これらの手法(d)及び(e)を同時に適用することで、飛躍的な耐メタルダスティング性、耐浸炭性及び耐コーキング性の向上が発現し得ることがわかった。
 ただし、SiやCuなどの元素を添加すると、上記耐食性を向上させることができるが、反面、溶接性を劣化させる。特に、溶接による急熱・急冷の熱サイクルの影響を受けた領域、すなわち、溶接熱影響部(以下、「HAZ」という。)での粒界溶融による割れの発生が生じやすくなる。というのは、母材結晶粒界にSiやCu等が偏析すると、粒界が低融点化し延性が弱化する結果、溶接時の熱応力によって引き裂かれて割れが生じる。これがHAZ割れである。したがって、溶接構造体として使用する場合には、この種の溶接割れを抑制する必要がある。特許文献12で本発明者らは、Cを多く含有して高融点のCr炭化物を析出させた。その結果、結晶粒粗大化を抑制することによって、粒界表面積を増加させ、もってSiやCu等が粒界に偏析することを減少させることでHAZ割れを低減することに成功した。しかしながら、一方でCを多く含有することにより溶接金属中の凝固組織デンドライト樹間にCが偏析し、凝固割れ感受性を高めることが判明した。さらに、Cr炭化物が母材粒内及び粒界に析出することでクリープ強度が高くなりすぎ、クリープ延性に乏しくなることが判明した。
 そこで、本発明者らは、SiやCuを相当量添加して耐食性を向上させても、溶接時のHAZ割れを抑制することができる手法を改めて種々検討した。その結果、次の(f)~(h)の手法によって、凝固割れやクリープ延性を損なうことなく、HAZ割れを抑制できるとの知見に至った。
 (f)Cの多量含有は凝固割れ感受性及びクリープ延性を著しく損なうことから、含有量を制限する。
 (g)HAZ割れ感受性は、母材粒内と粒界の強度不均衡に起因するものである。そこで、粒内の強度を下げることで、相対的に粒内との強度不均衡が解消され、HAZ割れ感受性が改善する。
 (h)粒内は、AlやTiの金属間化合物、もしくはTiCが析出することで強化されることが判明し、これら元素を可能な範囲で制限することが有効となる。
 これらの知見に基づき、Crを15.0~30.0%含有する金属材料において、C、Si、Cu、Ti及びAlの含有量を種々に変化させて、溶接性(HAZ割れ感受性、凝固割れ感受性)ならびにクリープ特性を検討した結果、C含有量を0.075%以下に制限し、Ti及びAlをそれぞれ0.15%以下に制限することで、溶接性ならびにクリープ延性ともに改善するに至った。さらに、C、Ti及びAlを、それぞれ0.07%以下、0.05%以下および0.12%以下まで制限すれば、溶接性ならびにクリープ延性が格段に改善するに至った。
 しかしながら、粒内強度を下げた結果、クリープ強度も低下することが新たに判明した。そこで、上述の性能改善を維持したまま、クリープ強度をあげることを目指した結果、次の(i)の手法によって解決するとの知見を得た。
 (i)Crは耐メタルダスティング性に有効である一方、含有に伴いクリープ強度を低下させる。そのため、クリープ強度を高めるために、Crを制限することが有効である。Cr制限は母材のオーステナイト組織自体を強化するため、析出強化のようにクリープ延性を低下させることがない。
 Crの含有量を種々に変化させて、耐メタルダスティング性及びクリープ特性を調べた結果、Crを16.0%を超え22.0%未満の範囲に制限すれば所望の特性を確保できるとの知見を得た。
 (j)さらにクリープ延性やHAZ割れ感受性を高めるには、オーステナイト組織の結晶粒径を細かくすることが有効であると判明した。すなわち、結晶粒の粗大化を抑制することによって、粒界表面積を増加させ、もってSi、P及びCu等が粒界に偏析することを減少させることができる。
 本発明は、これらの知見に基づいて完成されたものであり、その要旨は、次の(1)~(4)に示す通りである。
 (1) 質量%で、C:0.03~0.075%、Si:0.6~2.0%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:16.0%超え20.0%未満、Ni:20.0%以上30.0%未満、Cu:0.5~10.0%、Al:0.15%以下、Ti:0.15%以下、N:0.005~0.20%、O(酸素):0.02%以下を含有し、残部はFe及び不純物からなることを特徴とする耐浸炭性金属材料。
 (2)質量%で、C:0.04~0.07%、Si:0.8~1.5%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:18.0%以上20.0%未満、Ni:22.0~28.0%、Cu:1.5~6.0%、Al:0.12%以下、Ti:0.05%以下、N:0.005~0.20%、O(酸素):0.02%以下を含有し、残部はFe及び不純物からなることを特徴とする耐浸炭性金属材料。
 (3)次に示す第1グループから第5グループまでのうちの少なくとも1つのグループの中から選択される成分のうちの少なくとも1種をさらに含有することを特徴とする、上記(1)または(2)の耐浸炭性金属材料。
第1グループ:質量%で、Co:10%以下、
第2グループ:質量%で、Mo:2.5%以下、W:5%以下及びTa:5%以下、
第3グループ:質量%で、B:0.1%以下、V:0.5%以下、Zr:0.5%以下、Nb:2%以下及びHf:0.5%以下、
第4グループ:質量%で、Mg:0.1%以下及びCa:0.1%以下、
第5グループ:質量%で、Y:0.15%以下、La:0.15%以下、Ce:0.15%以下及びNd:0.15%以下。
 (4)オーステナイト結晶粒度番号が6以上の細粒組織であることを特徴とする、上記(1)~(3)のいずれかの耐浸炭性金属材料。
 本発明の金属材料は浸炭性ガスと金属の表面反応を抑制する効果を有しており、耐メタルダスティング性、耐浸炭性及び耐コーキング性に優れている。さらに、溶接性及びクリープ延性を改善しているので、石油精製や石油化学プラントなどにおける分解炉、改質炉、加熱炉、熱交換器などの溶接構造部材に利用することができ、装置の耐久性や操業効率を大幅に向上させることができる。
 特に、従来対象とされてきたよりも低い温度域(400~800℃)における熱交換で使用される反応管や熱交換器に使用される金属材料として好適であるので、この温度域で問題となるメタルダスティングを効果的に抑制することが可能となる。
 (A)金属材料の化学組成について
 本発明において、金属材料の組成範囲を限定する理由は次のとおりである。なお、以下の説明において、各元素の含有量の「%」表示は「質量%」を意味する。
 C:0.03~0.075%
 Cは、本発明においてもっとも重要な元素のひとつである。CはCrなどと結合して炭化物を形成することによって、高温での強度を高める。このため、Cの0.03%以上の含有が必要である。一方、Cを含有することで溶接時の凝固割れ感受性を高めるとともに、高温でのクリープ延性低下を招く。そのため、上限を0.075%に制限する。好ましくは、0.03%~0.07%であり、より好ましい範囲は0.04%~0.07%である。
 Si:0.6~2.0%
 Siは、本発明において重要な元素のひとつである。酸素との親和力が強いため、Cr等の保護性酸化スケ-ル層の下層にSi系酸化スケールを形成し、浸炭性ガスを遮断する。この作用は、0.6%以上含有することで発揮される。ただし、2.0%を超えると溶接性が著しく低下するので、上限を2.0%とする。好ましい範囲は、0.8~1.5%であり、より好ましい範囲は、0.9~1.3%である。
 Mn:0.05~2.5%
 Mnは脱酸能力を有するほか、加工性や溶接性を改善するので、0.05%以上添加する。また、Mnはオーステナイト生成元素であることから。Niの一部をMnで置換することも可能である。ただし、過剰の添加は保護性酸化スケール層の浸炭性ガス遮断性能を阻害することから、Mnの含有量上限を2.5%とする。好ましい範囲は、0.1~2.0%である。より好ましい範囲は、0.6~1.5%である。
 P:0.04%以下
 Pは熱間加工性や溶接性を低下させるので、Pの上限を0.04%とする。特にSiやCuの含有量が高い場合にその効果が重要となる。Pの好ましい上限は0.03%であり、より好ましい上限は0.025%である。ただし、浸炭性ガスの金属表面における解離性吸着反応を抑制する働きを有するため、溶接性の低下を許容できる場合にはPを含有させてもよい。
 S:0.015%以下
 Sは、Pと同様に、熱間加工性や溶接性を低下させるので、Sの上限を0.015%とする。特にSiやCuの含有量が高い場合にその効果が重要となる。Sの好ましい上限は0.005%であり、より好ましい上限は0.002%である。ただし、Pと同様に、浸炭性ガスの金属表面における解離性吸着反応を抑制する働きを有するため、溶接性の低下を許容できる場合にはSを含有させてもよい。
 Cr:16.0%を超えて20.0%未満
 Crは本発明においてもっとも重要な元素のひとつである。Cr等の酸化スケ-ルを安定に形成し、浸炭性ガスを遮断する効果があるので、特に苛酷な浸炭性ガス環境においても十分な耐浸炭性、耐メタルダスティング性及び耐コーキング性を付与する。この効果を十分に発揮するには、16.0%を超えて含有することが必要である。一方、CrはCと結合し炭化物を形成することでクリープ延性を低下させる。また、Crを含有することでオーステナイト組織のクリープ強度を低下させる。特に、SiやCuの含有量が高い場合にその影響が大きい。この悪影響を抑制するためには、Cr含有量を20.0%未満に制限する必要がある。Cr含有量の好ましい範囲は、18.0%以上20.0%未満である。より好ましい範囲は、18.0%以上19.5%未満である。
 Ni:20.0%以上30.0%未満
 Niは、Cr含有量に応じて安定したオーステナイト組織を得るために必要な元素であり、20.0%以上の含有量が必要である。また、Cが鋼中に浸入した場合、浸入速度を低下する機能を有する。さらに、金属組織の高温強度を確保する働きがある。しかしながら、必要以上の含有は、コスト高と製造難を招くほか、特に炭化水素を含有するガス環境ではコーキングやメタルダスティングを促進する場合もあるため、Niの含有量を30.0%未満に制限する。Niの含有量の好ましい範囲は22.0~28.0%であり、より好ましい範囲は23.0~27.0%である。
 Cu:0.5~10.0%
 Cuは本発明において重要な元素のひとつである。Cuは浸炭性ガスと金属の表面反応を抑制し、耐メタルダスティング性等を大きく向上させる。また、オーステナイト生成元素であるためNiの一部をCuで置換することも可能である。耐メタルダスティング性の向上効果を発揮するためには、Cuを0.5%以上含有させる必要がある。ただし、10.0%を超えて含有させると溶接性を低下させるので、含有量の上限を10.0%とする。Cuの好ましい含有量は1.5~6.0%である。より好ましい含有量は2.1~4.0%である。
 Al:0.15%以下
 Alは析出強化によるクリープ強度向上に有効な元素であるが、共存するSiやCuの含有量が高い場合にHAZ割れ感受性を高め、さらにクリープ延性も低下させる。また、HAZ割れ感受性を低下するには、前述のようにAlの含有量を可能な範囲で制限して粒内への金属化合物の析出を少なくすることが有効である。そのため、本発明では、その含有量を0.15%以下に制限する。好ましくは0.12%以下、より好ましくは0.10%以下である。なお、Alは溶製時の脱酸元素として有効に働くため、その効果を得たい場合は0.005%以上含有させるのが好ましい。
 Ti:0.15%以下
 Tiは析出強化によるクリープ強度向上に有効な元素であるが、共存するSiやCuの含有量が高い場合にHAZ割れ感受性を高め、さらにクリープ延性も低下させる。また、HAZ割れ感受性を低下するには、前述のようにAlの含有量を可能な範囲で制限して粒内への金属化合物や炭化物の析出を少なくすることが有効である。そのため、本発明では、Ti含有量を0.15%以下に制限する。好ましくは0.08%以下、より好ましくは0.05%以下である。なお、Tiによるクリープ強度向上効果を得たい場合は0.005%以上含有させるのが好ましい。
 N:0.005~0.20%
 Nは金属材料の高温強度を高める作用を有する。さらに、Nb及びTa等の元素と結合しZ相を形成することで、HAZ割れ感受性を低減する。これらの効果は0.005%以上含有させることで発揮される。しかしながら、Nの含有量が0.20%を超えると加工性を阻害する。したがって、Nの含有量は0.20%を上限とする。Nの好ましい含有量の範囲は、0.015~0.15%である。AlおよびTiを制限することによるクリープ破断強度の低下を改善したい場合は、窒素の固溶強化もしくは析出強化を活用してもよい。その場合の好ましい含有量の範囲は、0.05~0.12%であり、さらに好ましい含有量の範囲は0.07~0.12%である。
 O(酸素):0.02%以下
 O(酸素)は、金属材料を溶製する際に原料などから混入してくる不純物元素である。O(酸素)の含有量が0.02%を超えると、鋼中に酸化物系介在物が多量存在し、加工性が低下するほか、金属材料表面の疵の原因になる。したがって、O(酸素)の上限を0.02%とする。
 本発明に係る金属材料は、上記の元素あるいはさらに後述する任意含有元素を含有し、残部がFeおよび不純物からなるものである。
 ここで、「不純物」とは、金属材料を工業的に製造する際に、鉱石あるいはスクラップ等のような原料を始めとして、製造過程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを指す。
 本発明に係る金属材料は、必要に応じて、さらにその強度や延性、靱性を改善するために、上記の合金元素に加えて、次に示す第1グループから第5グループまでのうちの少なくとも1つのグレープの中から選択される成分のうちの少なくとも1種を含有させてもよい。
第1グループ:質量%で、Co:10%以下、
第2グループ:質量%で、Mo:2.5%以下、W:5%以下及びTa:5%以下
第3グループ:質量%で、B:0.1%以下、V:0.5%以下、Zr:0.5%以下、Nb:2%以下及びHf:0.5%以下、
第4グループ:質量%で、Mg:0.1%以下及びCa:0.1%以下、
第5グループ:質量%で、Y:0.15%以下、La:0.15%以下、Ce:0.15%以下及びNd:0.15%以下。
 以下、これらの任意含有元素に関して、順に説明する。
 第1グループ(質量%で、Co:10%以下)
 Coは、オーステナイト相を安定にする作用を有するため、Ni成分の一部を置換することができるので、必要に応じて含有させてもよい。ただし、含有量が10%を超えると熱間加工性を低下させるので、Coを含有させる場合は、その含有量は10%以下とする。熱間加工性の観点から、Co含有量は好ましくは5%以下であり、より好ましくは3%以下である。なお、Coの含有効果を得たい場合には0.01%以上含有させるのが好ましい。
 第2グループ(質量%で、Mo:5%以下、W:5%以下、Ta:5%以下)
 Mo、W及びTaは、いずれも固溶強化元素であるため、その1種または2種以上を、必要に応じて含有させてもよい。但し、これらの含有量がそれぞれ5%を超えると加工性を低下させるとともに組織安定性を阻害するので、その含有量は5%以下とする。好ましい含有量は、それぞれ3.5%以下である。これらの元素のうちの2種以上を含有させる場合には、合計で10%以下の含有量とするのが好ましい。なお、Mo、WまたはTaの含有効果を得たい場合には、0.01%以上含有させるのが好ましい。
 上記のMo、WおよびTaは、そのうちのいずれか1種のみの単独で、または、2種以上を複合して含有させることができる。これらの元素を複合して含有させる場合の合計量は、15%以下とする。10%以下とすることが好ましい。
 第3グループ(質量%で、B:0.1%以下、V:0.5%以下、Zr:0.5%以下、Nb:2%以下、Hf:0.5%以下)
  B、V、Zr、Nb及びHfは、いずれも高温強度特性を改善するのに有効な元素であるため、これらのうちの1種又は2種以上を必要に応じて含有させてもよい。ただし、Bを含有させる場合には、その含有量が0.1%を超えると溶接性を低下させるので、その含有量は0.1%以下とする。好ましくは0.05%以下である。Vを含有させる場合は、その含有量が0.5%を超えると溶接性を低下させるので、その含有量は0.5%以下とする。好ましくは0.1%以下である。Zrを含有させる場合には、その含有量が0.5%を超えると溶接性を著しく低下させるので、その含有量は0.5%以下とする。好ましくは0.1%以下である。Nbを含有させる場合には、その含有量が2%を超えると溶接性を低下させるので、その含有量は2%以下とする。好ましくは0.8%以下である。また、Hfを含有させる場合には、その含有量が0.5%を超えると溶接性を低下させるので、その含有量は0.5%以下とする。好ましくは0.1%である。なお、B、V、Zr、NbまたはHfの含有効果を得たい場合には、BまたはHfは0.0005%以上、V、ZrまたはNbは0.005%以上含有させるのが好ましい。
 上記のB、V、Zr、NbおよびHfは、そのうちのいずれか1種のみの単独で、または、2種以上を複合して含有させることができる。これらの元素を複合して含有させる場合の合計量は、3.6%以下とする。1.8%以下とすることが好ましい。
 第4グループ(質量%で、Mg:0.1%以下、Ca:0.1%以下)
 Mg及びCaは、いずれも熱間加工性を向上させる作用を有するため、これらのうちの1種又は2種を必要に応じて含有させてもよい。ただし、Mgを含有させる場合には、その含有量が0.1%を超えると溶接性を低下させるので、その含有量は0.1%以下とする。また、Caを含有させる場合には、その含有量が0.1%を超えると溶接性を低下させるので、その含有量は0.1%以下とする。なお、MgまたはCaの含有効果を得たい場合には、0.0005%以上含有させるのが好ましい。
 上記のMgおよびCaは、そのうちのいずれか1種のみの単独で、または、2種を複合して含有させることができる。これらの元素を複合して含有させる場合の合計量は、0.2%以下とする。0.1%以下とすることが好ましい。
 第5グループ(質量%で、Y:0.15%以下、La:0.15%以下、Ce:0.15%以下及びNd:0.15%以下)
 Y、La、Ce及びNdは、いずれも耐酸化性を向上させる作用を有するため、これらのうちの1種又は2種以上を必要に応じて含有させてもよい。ただし、これらの元素を含有させる場合には、それぞれ、その含有量が0.15%を超えると加工性を低下させるので、その含有量は0.15%以下とする。好ましくは0.07%以下である。なお、Y、La、CeまたはNdの含有効果を得たい場合には、0.0005%以上含有させるのが好ましい。
 上記のY、La、CeおよびNdは、そのうちのいずれか1種のみの単独で、または、2種以上を複合して含有させることができる。これらの元素を複合して含有させる場合の合計量は、0.6%以下とする。0.1%以下とすることが好ましい。
 (B)金属材料の結晶粒度について
 金属材料の結晶粒度としては、オーステナイト結晶粒度番号が6以上の細粒とするのが好ましい。好ましい結晶粒度は、7以上である。より好ましい結晶粒度は、7.5以上である。母材であるオーステナイト組織の結晶粒径が小さいほど、クリープ延性に優れ、またHAZ割れ感受性を低減することができるからである。なお、オーステナイト結晶粒度番号はASTM (American Society for Testing and Material:アメリカ材料試験協会)の規定に基づく。
 結晶粒径を小さくするには、たとえば、中間熱処理時と最終熱処理時の熱処理条件を適切に調整したり、熱間や冷間加工時の加工度を大きくしたりしてひずみを付与して熱処理すればよい。この場合、中間熱処理温度を最終熱処理温度より高めて析出物を固溶させた後、次いで熱間もしくは冷間にて加工ひずみを導入することで、最終熱処理時に再結晶の核生成サイトが増大し、さらに固溶していた化合物が微細に析出するため再結晶粒の成長を抑制する結果、所望の細粒組織を形成することができる。
 この発明に係る金属材料は、溶解、鋳造、熱間加工、冷間加工、溶接等の手段によって、厚板、薄板、継目無管、溶接管、鍛工品、線材等の所要の形状に成形することができる。また、粉末冶金や遠心鋳造等の手法によって所要の形状に成形することもできる。最終熱処理を施した後の金属材料表面に対しては、酸洗、ショットブラスト、ショットピーニング、機械切削、グラインダ研磨及び電解研磨等の表面加工処理を施すことができる。また、本発明に係る金属材料は表面にひとつないし2つ以上の突起形状等の不規則形状に成形することができる。また、本発明に係る金属材料は、各種炭素鋼、ステンレス鋼、Ni基合金、Co基合金、Cu合金等と組み合わせて、所要の形状に成形することができる。この場合、本発明に係る金属材料と各種鋼もしくは合金との接合法に制約はなく、たとえば圧接や“かしめ”などの機械的接合や、溶接、拡散処理などの熱的接合等を施した形状とすることも可能である。
 次に実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成の金属材料を、高周波加熱真空炉を用いて溶製し、熱間鍛造及び熱間圧延を行って、板厚6mmの金属板を作製した。金属板は、熱処理温度1140~1230℃、熱処理時間4分の条件で固溶化熱処理を行い、金属板の一部を切断して試験片を製作した。表1に記載の金属材料の番号1については、熱処理条件を調整してASTM粒度番号を種々に変化させた(子番号a~e)。表1に記載の金属材料から、板厚3mm×幅15mm×長さ20mmの試験片を切り出した。この試験片を、体積比で45%CO-42.5%H-6.5%CO-6%HOガス雰囲気中、650℃で等温保持し、200時間経過後に取り出して試験片表面に発生するピット(pit)の有無を、目視及び光学顕微鏡観察の両面から判断した。pit発生が無い場合を、本発明の性能を満足すると判断した。この結果を表2にまとめて示す。
 表2から、化学組成が本発明で規定する条件から外れる番号25~36の金属材料のうち、Si含有量が本発明で規定する条件から外れる番号28、Cr含有量が本発明で規定する条件から外れる番号29及びCu含有量が本発明で規定する条件から外れる番号33の金属材料は、200時間経過後にpitが発生した。したがって、COを含む合成ガス環境において耐メタルダスティング性に劣っている。一方、本発明で規定する金属材料(番号1~24)は、いずれもpitは発生しておらず、耐メタルダスティング性に優れる。なお、Cu含有量が本発明で規定する条件から外れる番号24および25の金属材料については、後述する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示す化学組成の金属材料を、高周波加熱真空炉を用いて溶製し、熱間鍛造及び冷間圧延を行って、板厚12mmの金属板を作製した。金属板は、熱処理温度1140~1230℃、熱処理時間5分の条件で固溶化熱処理を行い、金属板の一部を切断して試験片を製作した。表1に記載の金属材料から、平行部6mm径、長さ70mm(平行部30mm)の丸棒試験片を切り出した。また、金属板から、板厚12mm×幅15mm×長さ15mmの試験片を切断した。試験片を樹脂に埋め込み、板厚圧延方向と垂直の断面組織に対して母材の結晶粒径を測定し、ASTMに規定されるオーステナイト結晶粒度を求めた。結晶粒度を表1にまとめて示す。この試験片を、保持温度800℃において40MPaの応力下で保持し、破断までの時間(クリープ破断時間)を求めた。さらに、破断までの試験片伸び(クリープ破断伸び)を測定した。破断時間が1320h以上を本発明の性能を満足すると判断した。また、破断伸びが15%以上を本発明の性能を満足すると判断した。これらの結果を表2にまとめて示す。
 
 表2から、化学組成が本発明で規定する条件から外れる番号25~36の金属材料のうち、Cr含有量が本発明で規定する条件から外れる番号25、26、32及びC含有量が本発明で規定する条件から外れる番号34の金属材料は、クリープ破断時間が短く、クリープ破断強度に劣ることがわかる。さらに、C含有量が本発明で規定する条件から外れる番号27、Al含有量が本発明で規定する条件から外れる番号30、Ti含有量が本発明で規定する条件から外れる番号31、Si含有量が本発明で規定する条件から外れる番号35、及びC、Al、Tiのいずれの含有量も本発明で規定する条件から外れる番号36の金属材料は、クリープ破断伸びが低く、クリープ延性に劣ることがわかる。一方、本発明の金属材料(番号1~24)は、いずれもクリープ破断強度およびクリープ延性ともに規定を満足しており、クリープ特性に優れる。
 表1に示す化学組成の金属材料を、高周波加熱真空炉を用いて溶製し、熱間鍛造及び冷間圧延を行って、板厚14mmの金属板を作製した。金属板は、熱処理温度1140~1230℃、熱処理時間5分の条件で固溶化熱処理を行い、金属板の一部を切断して試験片を製作した。表1に記載の金属材料から、板厚12mm、幅50mm、長さ100mmの試験片を各2個ずつ作製した。次いで、上記試験片の長手方向の片側に角度30゜、ルート厚さ1.0mmのV開先加工を施した後、被覆アーク溶接棒としてJIS Z3224(1999)に規定の「DNiCrMo-3」を用いて、厚さ25mm、幅150mmで長さ150mmのJIS G 3106(2004)に規定の「SM400C」の市販金属板上に四周を拘束溶接した。その後、JIS Z3334(1999)に規定の「YNiCrMo-3」TIG溶接ワイヤを用いて、TIG溶接により入熱量を6kJ/cmの条件にて開先内に多層溶接を実施した。上記の溶接施工後、各試験体から継手の断面ミクロ組織観察用試験片を10個ずつ採取し、断面を鏡面研磨した後に腐食し、HAZ部における割れの発生有無を、光学顕微鏡を用いて倍率を500倍として観察した。HAZ部の割れ発生数が10個の観察断面数のうち1個以下の場合を本発明の性能を満足すると判断した。この結果を表2にまとめて示す。
 表2から、化学組成が本発明で規定する条件から外れる番号25~36の金属材料のうち、Al含有量が本発明で規定する条件から外れる番号30、Ti含有量が本発明で規定する条件から外れる番号31、及びSi含有量が本発明で既定する条件から外れる番号35の金属材料は、HAZ割れが認められ、HAZ割れ感受性が高いことがわかる。一方、本発明の金属材料(番号1~26)のうち、Si含有量が高い番号7、Ti含有量が高い番号14、及びAl含有量が高い番号17の金属材料については、それぞれ観察断面10箇所のうち1個でHAZ割れが発生したものの、本発明の規定の性能を満足している。そして、これらを除く本発明の金属材料は、いずれもHAZ割れは発生しておらず、HAZ割れ感受性に関する溶接性に優れる。
 表1に示す化学組成の金属材料を、高周波加熱真空炉を用いて溶製し、熱間鍛造および熱間圧延を行って、板厚6mmの金属板を作製した。金属板は、熱処理温度1140~1230℃、熱処理時間4分の条件で固溶化熱処理を行い、金属板の一部を切断して試験片を製作した。表1に記載の金属材料から、厚さ4mm、幅100mm、長さ100mmのトランスバレストレイン用試験片を作製した。その後、溶接電流100A、アーク長2mm、溶接速度15cm/minの条件にてGTAWによりビードオンプレート溶接を行い、溶融池が試験片長手方向の中央部に到達したとき、試験片に曲げ変形を加え、溶接金属に付加歪みを与えて割れを発生させた。付加歪みは、最大割れ長さが飽和する2%とした。評価は、溶接金属内に生じた最大割れ長さを測定し、溶接材料が有する凝固割れ感受性評価指標とした。最大割れ長さが1mm以下を本発明の性能を満足すると判断した。この結果を表2にまとめて示す。
 表2から、化学組成が本発明で規定する条件から外れる番号25~36の金属材料のうち、C含有量が本発明で規定する条件から外れる番号27、Al含有量が本発明で規定する条件から外れる番号30、Ti含有量が本発明で規定する条件から外れる番号31、Si含有量が本発明で既定する条件から外れる番号35、及びC、Al、Tiのいずれの含有量も本発明で規定する条件から外れる番号36の金属材料は、溶接金属内の最大割れ長さが1mmを超えており、溶接凝固割れ感受性が高いことがわかる。一方、本発明の金属材料(番号1~24)は、いずれも最大割れ長さが1mm以下であり、溶接凝固割れ感受性に関する溶接性に優れることがわかる。
 浸炭性ガスと金属の表面反応を抑制する効果を有し、耐メタルダスティング性、耐浸炭性及び耐コーキング性に優れ、溶接性とクリープ特性を改善してなる金属材料を提供する。石油精製や石油化学プラントなどにおける分解炉、改質炉、加熱炉、熱交換器などの溶接構造部材に利用することができ、装置の耐久性や操業効率を大幅に向上させることができる。

Claims (4)

  1.  質量%で、C:0.03~0.075%、Si:0.6~2.0%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:16.0%を超えて20.0%未満、Ni:20.0%以上30.0%未満、Cu:0.5~10.0%、Al:0.15%以下、Ti:0.15%以下、N:0.005~0.20%、O(酸素):0.02%以下を含有し、残部はFe及び不純物からなることを特徴とする耐浸炭性金属材料。
  2.  質量%で、C:0.04~0.07%、Si:0.8~1.5%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:18.0%以上20.0%未満、Ni:22.0~28.0%、Cu:1.5~6.0%、Al:0.12%以下、Ti:0.05%以下、N:0.005~0.20%、O(酸素):0.02%以下を含有し、残部はFe及び不純物からなることを特徴とする耐浸炭性金属材料。
  3.  次に示す第1グループから第5グループまでのうちの少なくとも1つのグループの中から選択される成分のうちの少なくとも1種をさらに含有することを特徴とする、請求項1または2に記載の耐浸炭性金属材料。
    第1グループ:質量%で、Co:10%以下、
    第2グループ:質量%で、Mo:5%以下、W:5%以下及びTa:5%以下
    第3グループ:質量%で、B:0.1%以下、V:0.5%以下、Zr:0.5%以下、Nb:2%以下及びHf:0.5%以下、
    第4グループ:質量%で、Mg:0.1%以下及びCa:0.1%以下、
    第5グループ:質量%で、Y:0.15%以下、La:0.15%以下、Ce:0.15%以下及びNd:0.15%以下。
  4.  オーステナイト結晶粒度番号が6以上の細粒組織であることを特徴とする、請求項1から3までのいずれかに記載の耐浸炭性金属材料。
PCT/JP2012/063696 2011-06-24 2012-05-29 耐浸炭性金属材料 WO2012176586A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020137032064A KR101567183B1 (ko) 2011-06-24 2012-05-29 내침탄성 금속 재료
BR112013025511-0A BR112013025511B1 (pt) 2011-06-24 2012-05-29 Material metálico resistente à carburação
CN201280031282.0A CN103620077B (zh) 2011-06-24 2012-05-29 耐渗碳性金属材料
DK12802133.4T DK2725112T3 (en) 2011-06-24 2012-05-29 COATING RESISTANT METAL MATERIALS AND USES OF THE COATING RESISTANT METAL MATERIAL
JP2012524983A JP5177330B1 (ja) 2011-06-24 2012-05-29 耐浸炭性金属材料
ES12802133.4T ES2688672T3 (es) 2011-06-24 2012-05-29 Material metálico resistente a la carburación y usos del material metálico resistente a la carburación
EP12802133.4A EP2725112B1 (en) 2011-06-24 2012-05-29 Carburization-resistant metal material and uses of the carburization-resistant metal material
RU2014102241/02A RU2553136C1 (ru) 2011-06-24 2012-05-29 Металлический материал, устойчивый к карбюризации
CA2830155A CA2830155C (en) 2011-06-24 2012-05-29 Carburization resistant metal material
US14/129,137 US10233523B2 (en) 2011-06-24 2012-05-29 Carburization resistant metal material
ZA2013/07153A ZA201307153B (en) 2011-06-24 2013-09-23 Carburization-resistant metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-139994 2011-06-24
JP2011139994 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176586A1 true WO2012176586A1 (ja) 2012-12-27

Family

ID=47422428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063696 WO2012176586A1 (ja) 2011-06-24 2012-05-29 耐浸炭性金属材料

Country Status (12)

Country Link
US (1) US10233523B2 (ja)
EP (1) EP2725112B1 (ja)
JP (1) JP5177330B1 (ja)
KR (1) KR101567183B1 (ja)
CN (1) CN103620077B (ja)
BR (1) BR112013025511B1 (ja)
CA (1) CA2830155C (ja)
DK (1) DK2725112T3 (ja)
ES (1) ES2688672T3 (ja)
RU (1) RU2553136C1 (ja)
WO (1) WO2012176586A1 (ja)
ZA (1) ZA201307153B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129631A1 (ja) * 2014-02-26 2015-09-03 新日鐵住金株式会社 溶接継手
WO2015133460A1 (ja) * 2014-03-05 2015-09-11 国立大学法人北海道大学 高耐熱オーステナイト系ステンレス鋼
CN105271228A (zh) * 2014-06-19 2016-01-27 上海梅山钢铁股份有限公司 一种防止co发生炉结渣的方法及装置
WO2017002523A1 (ja) * 2015-07-01 2017-01-05 新日鐵住金株式会社 オーステナイト系耐熱合金及び溶接構造物
WO2018066579A1 (ja) * 2016-10-05 2018-04-12 新日鐵住金株式会社 NiCrFe合金
JP2019509396A (ja) * 2016-02-02 2019-04-04 ヴァルレック チューブ フランス 改善された耐コークス化性を有する鋼組成物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027032B1 (fr) * 2014-10-08 2021-06-18 Air Liquide Microstructure d'un alliage pour tube de reformage
JP6250895B2 (ja) * 2015-06-04 2017-12-20 トヨタ自動車株式会社 オーステナイト系耐熱鋳鋼
KR102048810B1 (ko) * 2015-09-29 2019-11-26 히타치 긴조쿠 가부시키가이샤 저열팽창 초내열 합금 및 그의 제조 방법
CN105401055A (zh) * 2015-11-13 2016-03-16 太仓旺美模具有限公司 一种抗渗透金属材料
RU2609155C1 (ru) * 2015-12-07 2017-01-30 Юлия Алексеевна Щепочкина Сталь
RU2651074C1 (ru) * 2017-09-18 2018-04-18 Юлия Алексеевна Щепочкина Сталь
CN107761013A (zh) * 2017-09-28 2018-03-06 江苏晶王新材料科技有限公司 一种抗渗碳性金属材料
CN107699824B (zh) * 2017-11-22 2019-10-01 安徽恒利增材制造科技有限公司 一种高强度锰铁合金及其制备方法
US10622509B2 (en) * 2017-12-18 2020-04-14 Ingentec Corporation Vertical type light emitting diode die and method for fabricating the same
RU2669256C1 (ru) * 2018-03-30 2018-10-09 Юлия Алексеевна Щепочкина Сталь
CN109943773B (zh) * 2019-02-22 2020-06-05 刘沁昱 耐高温合金,冷渣器风帽及制备方法和循环流化床锅炉
RU2718842C1 (ru) * 2020-02-04 2020-04-14 Общество с ограниченной ответственностью Научно-производственный центр «ЛИНВАР» Литейный инварный сплав на основе железа
CN112024870A (zh) * 2020-07-30 2020-12-04 西安欧中材料科技有限公司 一种3d打印用smtgh3230球形粉末及其制备方法和应用

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242417A (en) * 1976-10-25 1977-04-02 Sumitomo Metal Ind Ltd Corrosion resistant austenitic stainless steel
JPS5366832A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing by preeoxidation of hk40 low si material
JPS5366835A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing of 25crr35ni low si material
JPS5693860A (en) * 1979-12-26 1981-07-29 Hitachi Zosen Corp Alloy with sulfuric acid corrosion resistance
JPS5743989A (en) 1980-08-28 1982-03-12 Sumitomo Metal Ind Ltd Carburizing preventing method for heat resistant steel
JPS6421038A (en) 1987-07-15 1989-01-24 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel having superior hot workability and high corrosion resistance and manufacture thereof
JPH02170946A (ja) 1988-12-23 1990-07-02 Nippon Steel Corp 耐食性の優れた煙突・煙道および脱硫装置用高合金ステンレス鋼
JPH04346638A (ja) 1991-05-22 1992-12-02 Nippon Yakin Kogyo Co Ltd 熱間加工性に優れた耐硫酸露点腐食ステンレス鋼
JPH0978204A (ja) 1995-09-18 1997-03-25 Chiyoda Corp 金属材料
JPH1129776A (ja) 1997-07-11 1999-02-02 Kubota Corp エチレン製造用熱分解反応管
JPH11172473A (ja) 1997-09-19 1999-06-29 Haldor Topsoee As 高温合金の耐食性
JP2000509105A (ja) 1996-04-30 2000-07-18 ウエスタイン・テクノロジーズ・インコーポレイテッド 表面合金化高温合金
JP2002256398A (ja) 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd 改質器用オーステナイト系合金ならびに耐熱用鋼材およびそれを用いた改質器
JP2003073763A (ja) 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd 耐メタルダスティング性を有する金属材料
JP2005048284A (ja) 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管
JP2006291290A (ja) 2005-04-11 2006-10-26 Sumitomo Metal Ind Ltd オーステナイト系ステンレス鋼
JP2007186727A (ja) 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd 耐メタルダスティング性に優れた金属材料
JP2007186728A (ja) 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd 加工性及び耐メタルダスティング性に優れた金属材料
WO2009107585A1 (ja) 2008-02-27 2009-09-03 住友金属工業株式会社 耐浸炭性金属材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171651A (en) * 1981-04-15 1982-10-22 Nisshin Steel Co Ltd Perfect austenite stainless steel with superior corrosion resistance at weld zone
JPH0121038Y2 (ja) 1984-12-18 1989-06-23
DE68927391T2 (de) * 1988-07-26 1997-02-20 Kawasaki Steel Co Hochstrahlungsintensiver und hochkorrosionsfester Strahler im fernen Infrarotbereich und Verfahren zu seiner Herstellung
JP3239763B2 (ja) * 1996-07-08 2001-12-17 住友金属工業株式会社 耐硫酸腐食性に優れたオーステナイト系ステンレス鋼
RU2125110C1 (ru) 1996-12-17 1999-01-20 Байдуганов Александр Меркурьевич Жаропрочный сплав
KR100386767B1 (ko) 1997-07-28 2003-06-09 닛폰 스틸 가부시키가이샤 인성이 우수한 초고강도 용접성 강의 제조방법
RU2149210C1 (ru) * 1998-05-08 2000-05-20 Байдуганов Александр Меркурьевич Жаропрочный сплав
US6352670B1 (en) * 2000-08-18 2002-03-05 Ati Properties, Inc. Oxidation and corrosion resistant austenitic stainless steel including molybdenum
US7258752B2 (en) 2003-03-26 2007-08-21 Ut-Battelle Llc Wrought stainless steel compositions having engineered microstructures for improved heat resistance
CN1280445C (zh) 2003-07-17 2006-10-18 住友金属工业株式会社 具有耐渗碳性和耐焦化性的不锈钢和不锈钢管
DK1637785T3 (da) * 2004-09-15 2010-08-16 Sumitomo Metal Ind Stålrør med fremragende eksfolieringsmodstandsdygtighed mod afskalning på den indvendige overflade
DE102006029790A1 (de) * 2006-06-27 2008-01-03 Basf Ag Verfahren der kontinuierlichen heterogen katalysierten partiellen Dehydrierung wenigstens eines zu dehydrierenden Kohlenwasserstoffs

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242417A (en) * 1976-10-25 1977-04-02 Sumitomo Metal Ind Ltd Corrosion resistant austenitic stainless steel
JPS5366832A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing by preeoxidation of hk40 low si material
JPS5366835A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing of 25crr35ni low si material
JPS5693860A (en) * 1979-12-26 1981-07-29 Hitachi Zosen Corp Alloy with sulfuric acid corrosion resistance
JPS5743989A (en) 1980-08-28 1982-03-12 Sumitomo Metal Ind Ltd Carburizing preventing method for heat resistant steel
JPS6421038A (en) 1987-07-15 1989-01-24 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel having superior hot workability and high corrosion resistance and manufacture thereof
JPH02170946A (ja) 1988-12-23 1990-07-02 Nippon Steel Corp 耐食性の優れた煙突・煙道および脱硫装置用高合金ステンレス鋼
JPH04346638A (ja) 1991-05-22 1992-12-02 Nippon Yakin Kogyo Co Ltd 熱間加工性に優れた耐硫酸露点腐食ステンレス鋼
JPH0978204A (ja) 1995-09-18 1997-03-25 Chiyoda Corp 金属材料
JP2000509105A (ja) 1996-04-30 2000-07-18 ウエスタイン・テクノロジーズ・インコーポレイテッド 表面合金化高温合金
JPH1129776A (ja) 1997-07-11 1999-02-02 Kubota Corp エチレン製造用熱分解反応管
JPH11172473A (ja) 1997-09-19 1999-06-29 Haldor Topsoee As 高温合金の耐食性
JP2002256398A (ja) 2001-03-02 2002-09-11 Sumitomo Metal Ind Ltd 改質器用オーステナイト系合金ならびに耐熱用鋼材およびそれを用いた改質器
JP2003073763A (ja) 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd 耐メタルダスティング性を有する金属材料
JP2005048284A (ja) 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管
JP2006291290A (ja) 2005-04-11 2006-10-26 Sumitomo Metal Ind Ltd オーステナイト系ステンレス鋼
JP2007186727A (ja) 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd 耐メタルダスティング性に優れた金属材料
JP2007186728A (ja) 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd 加工性及び耐メタルダスティング性に優れた金属材料
WO2009107585A1 (ja) 2008-02-27 2009-09-03 住友金属工業株式会社 耐浸炭性金属材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIS G3106, 2004
JIS Z3224, 1999
JIS Z3334, 1999
See also references of EP2725112A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112081A4 (en) * 2014-02-26 2017-08-23 Nippon Steel & Sumitomo Metal Corporation Welded joint
CN106061671A (zh) * 2014-02-26 2016-10-26 新日铁住金株式会社 焊接接头
JPWO2015129631A1 (ja) * 2014-02-26 2017-03-30 新日鐵住金株式会社 溶接継手
US10378091B2 (en) 2014-02-26 2019-08-13 Nippon Steel Corporation Welded joint
WO2015129631A1 (ja) * 2014-02-26 2015-09-03 新日鐵住金株式会社 溶接継手
RU2659523C2 (ru) * 2014-02-26 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Сварное соединение
KR101874218B1 (ko) * 2014-02-26 2018-07-03 신닛테츠스미킨 카부시키카이샤 용접 조인트
WO2015133460A1 (ja) * 2014-03-05 2015-09-11 国立大学法人北海道大学 高耐熱オーステナイト系ステンレス鋼
CN105271228A (zh) * 2014-06-19 2016-01-27 上海梅山钢铁股份有限公司 一种防止co发生炉结渣的方法及装置
WO2017002523A1 (ja) * 2015-07-01 2017-01-05 新日鐵住金株式会社 オーステナイト系耐熱合金及び溶接構造物
JPWO2017002523A1 (ja) * 2015-07-01 2018-03-29 新日鐵住金株式会社 オーステナイト系耐熱合金及び溶接構造物
JP2019509396A (ja) * 2016-02-02 2019-04-04 ヴァルレック チューブ フランス 改善された耐コークス化性を有する鋼組成物
JP7175193B2 (ja) 2016-02-02 2022-11-18 ヴァルレック チューブ フランス 改善された炭素質堆積防止特性を有する鋼組成物およびそれを用いた管状部品
WO2018066579A1 (ja) * 2016-10-05 2018-04-12 新日鐵住金株式会社 NiCrFe合金
EP3524705A4 (en) * 2016-10-05 2020-04-08 Nippon Steel Corporation NiCrFe-BASED ALLOY
JPWO2018066579A1 (ja) * 2016-10-05 2019-07-11 日本製鉄株式会社 NiCrFe合金

Also Published As

Publication number Publication date
ES2688672T3 (es) 2018-11-06
CA2830155C (en) 2015-12-29
JP5177330B1 (ja) 2013-04-03
EP2725112B1 (en) 2018-08-08
KR101567183B1 (ko) 2015-11-06
EP2725112A1 (en) 2014-04-30
ZA201307153B (en) 2014-06-25
KR20140005357A (ko) 2014-01-14
CA2830155A1 (en) 2012-12-27
BR112013025511B1 (pt) 2019-05-07
DK2725112T3 (en) 2018-11-26
BR112013025511A2 (pt) 2017-11-14
US20140127073A1 (en) 2014-05-08
EP2725112A4 (en) 2016-03-09
JPWO2012176586A1 (ja) 2015-02-23
CN103620077A (zh) 2014-03-05
CN103620077B (zh) 2016-02-03
RU2553136C1 (ru) 2015-06-10
US10233523B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
JP5177330B1 (ja) 耐浸炭性金属材料
JP4329883B1 (ja) 耐浸炭性金属材料
JP6274303B2 (ja) 溶接継手
JP3952861B2 (ja) 耐メタルダスティング性を有する金属材料
JP4258679B1 (ja) オーステナイト系ステンレス鋼
US20080279716A1 (en) Metal material having excellent metal dusting resistance
JP4692289B2 (ja) 耐メタルダスティング性に優れた金属材料
JPWO2005078148A1 (ja) 浸炭性ガス雰囲気下で使用するための金属管
JP4280898B2 (ja) 高温強度に優れた耐メタルダスティング金属材料
JP4687467B2 (ja) 加工性及び耐メタルダスティング性に優れた金属材料
JP2008214734A (ja) 耐メタルダスティング性に優れた金属材料
JP4415544B2 (ja) 高温強度に優れた耐メタルダスティング金属材料
JP4513466B2 (ja) 溶接継手および溶接材料
JP2021080510A (ja) オーステナイト系耐熱鋼溶接継手

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524983

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2830155

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137032064

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14129137

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013025511

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014102241

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012802133

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013025511

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013025511

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131002