WO2015129631A1 - 溶接継手 - Google Patents

溶接継手 Download PDF

Info

Publication number
WO2015129631A1
WO2015129631A1 PCT/JP2015/055061 JP2015055061W WO2015129631A1 WO 2015129631 A1 WO2015129631 A1 WO 2015129631A1 JP 2015055061 W JP2015055061 W JP 2015055061W WO 2015129631 A1 WO2015129631 A1 WO 2015129631A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
metal
base material
layer
Prior art date
Application number
PCT/JP2015/055061
Other languages
English (en)
French (fr)
Inventor
佳奈 浄徳
平田 弘征
西山 佳孝
岡田 浩一
伸之佑 栗原
悠平 鈴木
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201580011019.9A priority Critical patent/CN106061671B/zh
Priority to EP15754821.5A priority patent/EP3112081B1/en
Priority to SG11201605977TA priority patent/SG11201605977TA/en
Priority to US15/117,462 priority patent/US10378091B2/en
Priority to ES15754821T priority patent/ES2700871T3/es
Priority to KR1020167023159A priority patent/KR101874218B1/ko
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016505205A priority patent/JP6274303B2/ja
Priority to CA2938190A priority patent/CA2938190C/en
Priority to DK15754821.5T priority patent/DK3112081T3/en
Priority to RU2016134730A priority patent/RU2659523C2/ru
Publication of WO2015129631A1 publication Critical patent/WO2015129631A1/ja
Priority to ZA2016/05031A priority patent/ZA201605031B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0272Rods, electrodes, wires with more than one layer of coating or sheathing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a welded joint, and more particularly, to a welded joint having excellent metal dusting resistance.
  • a synthesis gas produced in a reactor as described above that is, a gas containing hydrocarbons such as H 2 , CO, CO 2 , H 2 O and methane
  • a metal material such as a reaction tube and 1000 ° C. or higher. It is in contact at the above temperature.
  • elements such as Cr and Si, which have a greater tendency to oxidize than Fe and Ni, are selectively oxidized, and a dense film such as Cr oxide and Si oxide is formed. Corrosion is suppressed.
  • the heating furnace tube of a catalytic cracking furnace that increases the octane number of naphtha obtained by distillation of crude oil also becomes a severe carburizing environment consisting of hydrocarbons and hydrogen, and carburizing and metal dusting occur.
  • Japanese Patent Laid-Open No. 2001-107196 defines the chemical composition, and the relationship between the content of Si, Cu or S and the content of Nb, Ta, Ti and Zr, and the content of Ni, Co and Cu
  • a welded joint in which the quantity relationship is defined within a certain range is disclosed.
  • this welded joint is said to be excellent in corrosion resistance and weld crack resistance in a sulfuric acid environment.
  • this welded joint has a low Si content, it is difficult to use it in an environment where metal dusting occurs.
  • Japanese Patent Laid-Open No. 2002-235136 discloses a Ni-base heat-resistant alloy welded joint that positively contains Al and defines the relationship between the grain boundary melting amount and the grain boundary fixing force. According to this document, this welded joint is excellent in carburization resistance and high-temperature strength. However, this welded joint is susceptible to weld solidification cracking when the Si content is increased to ensure metal dusting resistance, making it difficult to achieve both metal dusting resistance and weld solidification crack resistance. It is.
  • HAZ weld heat affected zone
  • Japanese Patent Application Laid-Open Nos. 2007-186727 and 2007-186728 disclose gas dissociative adsorption (gas / metal surface reaction) by containing an appropriate amount of one or more of P, S, Sb and Bi. ) Has been proposed. Since these elements segregate on the metal surface, carburization and metal dusting corrosion can be significantly suppressed without adding excessive amounts. However, since these elements segregate not only at the metal surface but also at the grain boundaries of the metal crystal grains, problems remain in hot workability and weldability.
  • JP-A-2006-45597 proposes a welding material in which the adverse effects of Si are reduced by appropriately adding Ti, and a welded joint using the same.
  • the metal dusting resistance of each of the base material and the welding material can be ensured, the metal dusting resistance of the weld metal may not be ensured depending on the welding conditions when the welded joint is manufactured.
  • An object of the present invention is to provide a welded joint having excellent metal dusting resistance.
  • the welded joint according to the present invention is a welded joint welded using a welding material having a chemical composition including, by mass%, Cr: 15.0 to 35.0% and Ni: 40.0 to 70.0%.
  • the chemical composition is mass%, C: 0.03-0.075%, Si: 0.6-2.0%, Mn: 0.05-2.5%, P: 0.04%
  • S 0.015% or less
  • Cr more than 16.0% and less than 23.0%
  • Cu 0.5 to 10.0%
  • V 0% or more and less than 0.5%
  • Nb 0 to 2%
  • balance Fe and impurities as a base material, and a chemical composition in which the Fe content is 10% to 40% by mass.
  • a layer weld metal balance: Fe and impurities as
  • a welded joint having excellent metal dusting resistance can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a welded joint.
  • the present inventors examined a method for improving the metal dusting resistance of the welded joint.
  • Resistance to metal dusting is improved by adding elements such as Si, Cu and P.
  • these elements significantly increase the susceptibility to weld solidification cracking.
  • Weld solidification cracking occurs when the strain applied by solidification shrinkage or heat shrinkage exceeds the deformability of the weld metal at the stage where the film-like liquid phase exists mainly at the grain boundary, near the end of the weld solidification process. Arise.
  • As a method for reducing the weld solidification cracking sensitivity it is conceivable to improve the deformability of the weld metal.
  • it is necessary to change the base material component which is contrary to the purpose of securing the metal dusting resistance. For this reason, the present inventors have studied a method that can ensure metal dusting resistance and weld solidification cracking resistance without changing the base material component.
  • the metal dusting resistance of each of the base material and the welding material can be ensured, when the welded joint is produced, the metal dusting resistance of the weld metal cannot be ensured depending on the welding conditions. There is. Although the detailed mechanism is not clear, it has been found that in a region where the balance between the Fe content and the Ni content in the weld metal is poor, the solidification structure affects the metal dusting. The first layer of the weld metal is easily affected by the base material dilution rate, and the balance between the Fe content and the Ni content is likely to deteriorate. Therefore, when the first layer becomes a gas contact surface, metal dusting is likely to occur.
  • the welded joint according to the present embodiment is a welding material having a chemical composition including Cr: 15.0 to 35.0% and Ni: 40.0 to 70.0%, and is obtained by welding a base material.
  • the welded joint is obtained by welding steel pipes or steel plates to each other at their ends.
  • the weld joint includes a base material and a weld metal.
  • the weld metal is formed by melting and solidifying a part of the base material and the welding material.
  • the first layer weld metal has a chemical composition with an Fe content of 10 to 40%.
  • the base material has the following chemical composition.
  • C 0.03-0.075%
  • Carbon (C) combines with Cr or the like to form a carbide and increases the strength of the base material.
  • the C content of the base material is 0.03 to 0.075%.
  • the minimum with preferable C content of a base material is 0.035%, and a more preferable minimum is 0.04%.
  • the upper limit with preferable C content of a base material is 0.07%.
  • Si 0.6-2.0%
  • Silicon (Si) has a strong affinity for oxygen, and forms a Si-based oxide scale below the protective oxide scale layer such as Cr 2 O 3 to block the carburizing gas.
  • the Si content of the base material is 0.6 to 2.0%.
  • the minimum with preferable Si content of a base material is 0.8%.
  • the upper limit with preferable Si content of a base material is 1.5%.
  • Mn 0.05 to 2.5%
  • Manganese (Mn) deoxidizes steel. Mn also stabilizes the austenite phase. Mn further improves the workability and weldability of the steel.
  • Mn content of the base material is 0.05 to 2.5%.
  • the minimum with preferable Mn content of a base material is 0.1%.
  • the upper limit with preferable Mn content of a base material is 2.0%.
  • Phosphorus (P) is an impurity mixed in from raw materials and the like when melting steel. P decreases the hot workability and weldability of steel. Therefore, the P content of the base material is 0.04% or less. It is preferable to reduce the P content of the base material as much as possible.
  • the upper limit with preferable P content of a base material is 0.03%, and a more preferable upper limit is 0.025%.
  • S 0.015% or less Sulfur (S) is an impurity mixed from raw materials and the like when melting steel. S decreases the hot workability and weldability of steel. In particular, the effect is important when the Si content and the Cu content of the steel are high. Therefore, the S content of the base material is 0.015% or less. It is preferable to reduce the S content of the base material as much as possible.
  • the upper limit with preferable S content of a base material is 0.005%, and a more preferable upper limit is 0.002%.
  • Chromium (Cr) forms a protective oxide scale layer such as Cr 2 O 3 and blocks carburizing gas. Thereby, Cr imparts carburization resistance, metal dusting resistance, and coking resistance to steel.
  • Cr combines with C to form carbides and reduce creep ductility. Cr also decreases the creep strength of the austenite phase. In particular, when the contents of Si and Cu are high, the influence is great. Therefore, the Cr content of the base material is more than 16.0% and less than 23.0%.
  • the minimum with preferable Cr content of a base material is 18.0%. From the viewpoint of the upper limit, the Cr content of the base material is preferably less than 20.0%.
  • Ni 20.0% or more and less than 30.0%
  • Nickel (Ni) stabilizes the austenite phase. Ni also reduces the penetration rate of C that has penetrated into the steel. Ni further increases the high temperature strength of the steel.
  • the Ni content of the base material is 20.0% or more and less than 30.0%.
  • the minimum with preferable Ni content of a base material is 22.0%.
  • the upper limit with preferable Ni content of a base material is 28.0%.
  • Cu 0.5 to 10.0% Copper (Cu) suppresses the surface reaction between the carburizing gas and the metal, and improves the metal dusting resistance of the metal. Cu also stabilizes the austenite phase. On the other hand, when Cu is contained excessively, the weldability of steel is lowered. Therefore, the Cu content of the base material is 0.5 to 10.0%. The minimum with preferable Cu content of a base material is 1.5%. The upper limit with preferable Cu content of a base material is 6.0%.
  • Mo less than 1% Molybdenum (Mo) is an impurity.
  • Mo is contained in an amount of 1% or more, formation of intermetallic compounds such as ⁇ phase is induced, and the structural stability and hot workability are lowered. Therefore, the Mo content of the base material is less than 1%.
  • the minimum with preferable Mo content of a base material is 0.05%.
  • Al less than 0.15%
  • Aluminum (Al) deoxidizes steel.
  • Al when Al is contained excessively, a large amount of nitride is formed and the toughness of the steel is lowered. Therefore, the Al content of the base material is less than 0.15%. The lower the Al content, the better.
  • Al is extremely reduced, the deoxidation effect cannot be obtained sufficiently.
  • Al is reduced extremely, the cleanliness of steel will increase. Further, when Al is extremely reduced, the cost increases. Therefore, a preferable lower limit of the Al content of the base material is 0.003%.
  • N 0.005 to 0.20% Nitrogen (N) increases the high temperature strength of the steel. N further increases the activity of C in the base material and improves the metal dusting resistance of the base material. On the other hand, when N is contained excessively, the hot workability of the steel is lowered. Therefore, the N content of the base material is 0.005 to 0.20%. The minimum with preferable N content of a base material is 0.010%. The upper limit with preferable N content of a base material is 0.15%.
  • Oxygen (O) is an impurity.
  • O oxygen
  • the hot workability at the time of manufacturing the base material is lowered.
  • the toughness and ductility of a weld metal will fall. Therefore, the O content of the base material is 0.02% or less.
  • the upper limit with preferable O content of a base material is 0.01%.
  • the balance of the chemical composition of the base material is Fe and impurities.
  • Impurity means an element mixed from ore and scrap used as a raw material for steel, or an element mixed due to various factors in the manufacturing process.
  • the chemical composition of the base material according to the present embodiment contains one or two selected from at least one of the following first group and second group, instead of a part of the Fe described above. Also good.
  • First group Ca: 0.1% or less
  • REM 0.15% or less
  • Second group V: less than 0.5%
  • Nb 2% or less
  • Ca and REM are optional elements. That is, Ca and REM may not be contained in the base material. Both Ca and REM improve the hot workability of steel. Therefore, you may make the base material contain 1 type or 2 types of Ca and REM as needed. When it is desired to obtain a Ca and / REM content effect in the base material, it is preferable to contain at least one of 0.005% or more.
  • REM is a general term for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM refers to the total content of one or more elements in REM.
  • REM is generally contained in misch metal. Therefore, for example, it may be added in the form of misch metal so that the content of REM is in the above range.
  • the upper limit of the Ca content of the base material is 0.15.
  • the upper limit of the REM content of the base material is 0.15%.
  • Said Ca and REM can be made to contain only any 1 type individually or in combination of 2 types. When 2 types are contained in combination, the preferable upper limit of the total content is 0.2%.
  • V less than 0.5%
  • Nb 2% or less
  • V and Nb may not be contained in the base material.
  • V and Nb both improve the high temperature strength of the steel. Therefore, you may make the base material contain 1 type or 2 types of V and Nb as needed.
  • the V content of the base material is less than 0.5% from the viewpoint of the upper limit.
  • the upper limit of the Nb content of the base material is 2%. Said V and Nb can be made to contain only any 1 type individually or in combination of 2 types. When 2 types are contained in combination, the preferable upper limit of the total content is 2.2%.
  • the weld metal of the welded joint according to the present embodiment includes an initial layer having a chemical composition with an Fe content of 10 to 40%. Solidification segregation occurs in the weld metal. Although the detailed mechanism is not clear, in a region where the balance between the Fe content and the Ni content in the weld metal is poor, the solidification structure affects the metal dusting. The first layer of the weld metal is easily affected by the base material dilution rate, and the balance between the Fe content and the Ni content is poor. By setting the Fe content in the first layer to 10 to 40%, metal dusting resistance equivalent to that of the base material can be obtained.
  • the first layer of weld metal refers to the first layer defined in JIS B 0190. More specifically, the first layer weld metal refers to a weld metal created when welding in the first pass during welding.
  • the weld metal is formed by melting and strengthening the base material and the weld material. As the number of passes is increased, the weld metal is less affected by the base material component (base material dilution), and the weld material component becomes dominant. Therefore, it is necessary to manage the component range and ensure the performance only for the first layer weld metal which is easily affected by the dilution of the base material.
  • FIG. 1 is a schematic cross-sectional view of a welded joint 1 which is an example of a welded joint.
  • the welded joint 1 includes a base material 10 and a weld metal 20.
  • the weld metal 20 includes a first layer weld metal 21 and a second and subsequent layers 22.
  • the first layer of weld metal preferably has the following chemical composition.
  • C 0.01 to 0.15% Carbon (C) increases the strength of the weld metal.
  • C carbon
  • the toughness of the weld metal decreases. Therefore, the C content of the first layer of the weld metal is 0.01 to 0.15%.
  • the minimum with preferable C content of the first layer of a weld metal is 0.05%, More preferably, it is 0.03%.
  • the upper limit with preferable C content of the first layer of a weld metal is 0.12%, More preferably, it is 0.10%.
  • Si 0.01 to 4.0%
  • Silicon (Si) has a strong affinity for oxygen, and forms a Si-based oxide scale below the protective oxide scale layer such as Cr 2 O 3 to block the carburizing gas.
  • the Si content in the first layer of the weld metal is 0.01 to 4.0%.
  • the minimum with preferable Si content of the first layer of a weld metal is 0.08%, More preferably, it is 0.3%.
  • the upper limit with preferable Si content of the first layer of a weld metal is 3.5%, More preferably, it is 2.0%.
  • Mn 0.05 to 3.0%
  • Manganese (Mn) deoxidizes steel. Mn also stabilizes the austenite phase. Mn further improves the workability and weldability of the steel.
  • Mn is contained excessively, it inhibits the carburizing gas barrier performance of the protective oxide scale layer. Therefore, the Mn content in the first layer of the weld metal is 0.05 to 3.0%.
  • the minimum with preferable Mn content of the first layer of a weld metal is 0.1%.
  • the upper limit with preferable Mn content of the first layer of a weld metal is 2.5%.
  • Phosphorus (P) is an impurity mixed from raw materials and the like when melting steel. P decreases the hot workability and weldability of steel. P further increases the sensitivity to weld solidification cracking in weld metals. Therefore, the P content in the first layer of the weld metal is 0.03% or less. It is preferable to reduce the P content of the first layer of the weld metal as much as possible. The upper limit with preferable P content of the first layer of a weld metal is 0.025.
  • S 0.015% or less Sulfur (S) is an impurity mixed from raw materials and the like when melting steel. S decreases the hot workability and weldability of steel. Therefore, the S content in the first layer of the weld metal is 0.015% or less. It is preferable to reduce the S content of the first layer of the weld metal as much as possible.
  • the upper limit with preferable S content of the first layer of a weld metal is 0.005%, and a more preferable upper limit is 0.002%.
  • Chromium (Cr) combines with C that penetrates into the welded joint in a high-temperature use environment, delays the growth of the carburized layer, and improves metal dusting resistance. Increase.
  • Cr Chromium
  • the Cr content of the first layer of the weld metal is more than 16.0% and less than 32.0%.
  • the minimum with preferable Cr content of the first layer of a weld metal is 18.0%. From the viewpoint of the upper limit, the Cr content in the first layer of the weld metal is preferably less than 23.0%, and more preferably less than 20.0%.
  • Ni 20.0% or more Nickel (Ni) enhances high temperature strength and structural stability. Ni further improves corrosion resistance by coexisting with Cr. Ni also suppresses the occurrence of metal dusting. Therefore, the Ni content in the first layer of the weld metal is 20.0% or more. The upper limit with preferable Ni content of the first layer of a weld metal is 80%.
  • Cu 0.03 to 5.0% Copper (Cu) suppresses the surface reaction between the carburizing gas and the metal, and improves the metal dusting resistance of the metal. Cu also stabilizes the austenite phase.
  • Cu when Cu is contained excessively, the weld solidification cracking sensitivity is increased. Therefore, the Cu content of the first layer of the weld metal is 0.03 to 5.0%.
  • the minimum with preferable Cu content of the first layer of a weld metal is 0.04%.
  • the upper limit with preferable Cu content of the first layer of a weld metal is 4.5%.
  • Al 1.0% or less
  • Aluminum (Al) deoxidizes steel.
  • Al when Al is contained excessively, a large amount of nitride is formed and the toughness of the steel is lowered.
  • the Al content in the first layer of the weld metal is 1.0% or less. The lower the Al content, the better.
  • Al is extremely reduced, the deoxidation effect cannot be obtained sufficiently.
  • the cleanliness of steel will increase. Further, when Al is extremely reduced, the cost increases. Therefore, the minimum with preferable Al content of the first layer of a weld metal is 0.003%.
  • N 0.005 to 0.20% Nitrogen (N) increases the high temperature strength of the steel. N further increases the activity of C in the weld metal and improves the metal dusting resistance of the weld metal. On the other hand, when N is contained excessively, the ductility of the weld metal is lowered. Therefore, the N content of the first layer of the weld metal is 0.005 to 0.20%. The minimum with preferable N content of the first layer of a weld metal is 0.010%. The upper limit with preferable N content of the first layer of a weld metal is 0.15%.
  • Oxygen (O) is an impurity.
  • O is contained excessively, the toughness and ductility of the weld metal are lowered. Therefore, the O content in the first layer of the weld metal is 0.02% or less.
  • the upper limit with preferable O content of the first layer of a weld metal is 0.01%.
  • Titanium (Ti) is an optional element. That is, Ti may not be contained in the first layer of the weld metal. Ti is an element that binds to Ni, precipitates finely as an intermetallic compound, and is effective in ensuring creep strength at high temperatures. Therefore, Ti may be included as necessary. A preferable lower limit in the case of containing Ti is 0.005%. However, when the Ti content increases, especially exceeding 0.5%, the intermetallic phase rapidly coarsens during use at high temperatures, resulting in an extreme decrease in creep strength and toughness. This causes a decrease in cleanliness and deteriorates weldability. Therefore, the upper limit of the Ti content of the first layer of the weld metal is 0.5%.
  • Mo 0-8% Molybdenum (Mo) is an optional element. That is, Mo may not be contained in the first layer of the weld metal. Mo dissolves in the matrix and contributes to the improvement of creep strength at high temperatures. Therefore, you may contain Mo as needed. A preferable lower limit in the case of containing Mo is 0.05%. However, if the Mo content increases and exceeds 8% in particular, the stability of austenite is lowered, and the creep strength is lowered. Therefore, the upper limit of the Mo content in the first layer of the weld metal is 8%.
  • Niobium (Nb) is an optional element. That is, Nb may not be contained in the initial layer of the weld metal. Nb is dissolved in the matrix or precipitated as carbonitride, and contributes to the improvement of the creep strength at high temperatures. Therefore, you may contain Nb as needed. A preferable lower limit in the case of containing Nb is 0.05%. However, if the Nb content is increased, especially exceeding 3%, a large amount of carbonitride is precipitated, and the ductility of the steel is lowered. Therefore, the upper limit of the Nb content of the first layer of the weld metal is 3%.
  • Co is an optional element. That is, Co may not be contained in the first layer of the weld metal. Co stabilizes the austenite phase and increases the creep strength. Therefore, you may contain Co as needed. A preferable lower limit when Co is contained in the initial layer of the weld metal is 0.01%. On the other hand, when Co is contained excessively, the cost increases. Therefore, the upper limit of the Co content of the first layer of the weld metal is 15.0%. A preferable upper limit of the Co content in the first layer of the weld metal is 14.5%.
  • the balance of the chemical composition of the first layer of the weld metal is Fe and impurities.
  • the first layer of the weld metal has an Fe content of 10 to 40% as described above.
  • the welded joint according to the present embodiment is welded with a welding material having a chemical composition including Cr: 15.0 to 35.0% and Ni: 40.0 to 70.0%.
  • the welding material forms a weld metal together with a part of the base material.
  • Chromium (Cr) forms a protective oxide scale layer such as Cr 2 O 3 and blocks carburizing gas. Thereby, Cr imparts carburization resistance, metal dusting resistance, and coking resistance to steel. On the other hand, Cr combines with C to form carbides and reduce the creep strength. In particular, when the contents of Si and Cu are high, the influence is great.
  • the Cr content of the welding material is 15.0% to 35.0%.
  • a preferable lower limit of the Cr content of the welding material is 16.0%.
  • the upper limit with preferable Cr content of a welding material is 33.0%, More preferably, it is 30.0%, More preferably, it is 28.0%.
  • Ni 40.0-70.0%
  • Nickel (Ni) stabilizes the austenite phase.
  • Ni also reduces the penetration rate of C that has penetrated into the steel.
  • Ni further increases the high temperature strength of the steel.
  • the effect is saturated even if Ni is contained excessively. Therefore, the Ni content of the welding material is 40.0-70.0%.
  • the preferable lower limit of the Ni content of the welding material is 45.0%.
  • the welding material preferably has the following chemical composition in addition to Cr and Ni.
  • Carbon (C) increases the strength of the weld metal.
  • the C content of the welding material is 0.01 to 0.15%.
  • the minimum with preferable C content of a welding material is 0.03%, More preferably, it is 0.05%.
  • the upper limit with preferable C content of a welding material is 0.12%, More preferably, it is 0.10%.
  • Si 4.0% or less Silicon (Si) decreases hot workability and weldability. Therefore, the Si content of the welding material is 4.0% or less.
  • the upper limit with preferable Si content of a welding material is 3.5%, More preferably, it is 2.0%, More preferably, it is 1.5%.
  • the lower limit of the Si content of the welding material is preferably 0.5%.
  • Mn 0.01 to 3.5%
  • Manganese (Mn) deoxidizes steel. Mn also stabilizes the austenite phase. Mn further improves the workability and weldability of the steel.
  • Mn content of the welding material is 0.05 to 3.5%.
  • the minimum with preferable Mn content of a welding material is 0.05%, More preferably, it is 0.10%.
  • the upper limit with preferable Mn content of a welding material is 3.0%.
  • Phosphorus (P) is an impurity mixed from raw materials and the like when melting steel. P decreases the hot workability and weldability of steel. P further increases the weld solidification cracking susceptibility of the weld metal. Therefore, the P content of the welding material is 0.03% or less. It is preferable to reduce the P content of the welding material as much as possible. The upper limit with preferable P content of a welding material is 0.025.
  • S 0.015% or less Sulfur (S) is an impurity mixed from raw materials and the like when melting steel. S decreases the hot workability and weldability of steel. Therefore, the S content of the welding material is 0.015% or less. It is preferable to reduce the S content of the welding material as much as possible.
  • the upper limit with preferable S content of a welding material is 0.005%, and a more preferable upper limit is 0.002%.
  • Cu 0.01 to 4.0% Copper (Cu) suppresses the surface reaction between the carburizing gas and the metal, and improves the metal dusting resistance of the metal. Cu also stabilizes the austenite phase. On the other hand, when Cu is contained excessively, the weld solidification cracking sensitivity is increased. Therefore, the Cu content of the welding material is 0.01 to 4.0%. A preferable lower limit of the Cu content of the welding material is 0.03%. The upper limit with preferable Cu content of a welding material is 3.5%.
  • Al is an optional element. That is, Al may not be contained in the welding material. Al deoxidizes steel. On the other hand, when Al is contained excessively, a large amount of nitride is formed and the toughness of the steel is lowered. Moreover, when Al is contained excessively, welding workability will deteriorate. Therefore, the Al content of the welding material is 1.5% or less, preferably 1.0% or less. However, if Al is extremely reduced, the deoxidation effect cannot be obtained sufficiently. Moreover, when Al is reduced extremely, the cleanliness of steel will increase. Further, when Al is extremely reduced, the cost increases. Therefore, a preferable lower limit of the Al content of the welding material is 0.003%. In a welded joint, when high high-temperature strength is required, the lower limit of the Al content of the welding material is preferably 0.15%.
  • N 0.005 to 0.1%
  • Nitrogen (N) increases the high temperature strength of the steel. N further increases the activity of C in the welding material and improves the metal dusting resistance of the welding material.
  • N content of the welding material is 0.005 to 0.1%.
  • a preferable lower limit of the N content of the welding material is 0.010%.
  • the upper limit with preferable N content of a welding material is 0.05%.
  • Oxygen (O) is an impurity.
  • O is contained excessively, hot workability at the time of manufacture of a welding material will fall. Moreover, the toughness and ductility of the weld metal are also reduced. Therefore, the O content of the welding material is 0.03% or less.
  • the upper limit with preferable O content of a welding material is 0.02%.
  • Titanium (Ti) is an optional element. That is, Ti may not be contained in the welding material. Ti is an element that binds to Ni, precipitates finely as an intermetallic compound, and is effective in ensuring creep strength at high temperatures. Therefore, Ti may be included as necessary. A preferable lower limit in the case of containing Ti is 0.15%. However, when the Ti content increases, particularly exceeding 1.0%, the intermetallic phase rapidly coarsens during use at high temperatures, resulting in an extreme decrease in creep strength and toughness. It reduces the cleanliness and deteriorates the productivity. Therefore, the upper limit of the Ti content of the welding material is 1.0%.
  • Mo 0-15%
  • Molybdenum (Mo) is an optional element. That is, Mo may not be contained in the welding material. Mo dissolves in the matrix and contributes to the improvement of creep strength at high temperatures. Therefore, you may contain Mo as needed.
  • the preferable lower limit in the case of containing Mo is 0.01%, more preferably 7%. However, if the Mo content increases and exceeds 15% in particular, the stability of austenite decreases and the creep strength decreases. Therefore, the upper limit of the Mo content of the welding material is 15%.
  • Niobium (Nb) is an optional element. That is, Nb may not be contained in the welding material. Nb is dissolved in the matrix or precipitated as carbonitride, and contributes to the improvement of the creep strength at high temperatures. Therefore, you may contain Nb as needed. A preferable lower limit in the case of containing Nb is 0.005%. However, when the Nb content is increased, especially when it exceeds 5%, a large amount of carbonitride precipitates and the ductility of the steel decreases. Therefore, the upper limit of the Nb content of the welding material is 5%.
  • Co 0-15%
  • Cobalt (Co) is an optional element. That is, Co may not be contained in the welding material. Co stabilizes the austenite phase and increases the creep strength. Therefore, you may contain Co as needed.
  • a preferable lower limit when Co is contained in the welding material is 0.01%.
  • the upper limit of the Co content of the welding material is 15.0%.
  • the upper limit with preferable Co content of a welding material is 14.5%.
  • the chemical composition of the welding material includes Al: 0.15-1.5%, Ti: 0.15-1.0%, and Mo: 7-15%, Nb: 0.1 to 5% and Co: 0.1 to 15% are preferably included.
  • the chemical composition of the welding material preferably includes Si: 0.5 to 4.0%.
  • Base material is manufactured using ingots or slabs.
  • the base material is, for example, a steel plate or a steel pipe.
  • the steel plate is manufactured by performing hot working such as hot forging or hot rolling on an ingot or slab.
  • a steel pipe is manufactured by forming a round billet by hot working an ingot or cast slab, and subjecting the round billet to hot working such as piercing and rolling, hot extrusion, or hot forging.
  • the steel pipe is manufactured by bending a steel plate to form an open pipe, and welding both end faces in the longitudinal direction of the open pipe.
  • the steel having the chemical composition of the welding material described above is melted. Cast the molten steel into an ingot. The ingot is hot-worked to produce a welding material.
  • the welding material may be rod-shaped or block-shaped.
  • the welding method is, for example, TIG welding, MIG welding, MAG welding, and submerged welding. During welding, a part of the base material and the welding material are melted and solidified to form a weld metal.
  • the base material dilution rate is adjusted so that the Fe content of the first layer of the weld metal is 10 to 40%. More specifically, the heat input during the first layer welding and the welding material supply rate are adjusted according to the chemical composition of the base metal and the chemical composition of the welding material. If the heat input during the first layer welding is increased, the base material dilution rate increases, and the Fe content of the first layer of the weld metal increases. Further, if the welding material supply speed is increased, the base material dilution rate is decreased, and the Fe content in the first layer of the weld metal is decreased.
  • Ingots were prepared by melting the steels of symbols A and B having the chemical composition shown in Table 1 in a laboratory. The produced ingot was subjected to hot forging, cold rolling, heat treatment, and machining to produce a steel pipe (base material) having an outer diameter of 25.4 mm, a plate thickness of 3.3 mm, and a length of 60 mm.
  • An ingot was prepared by melting in the laboratory steels having the chemical composition shown in Table 2 and having symbols T to Z. The ingot was subjected to hot forging, hot rolling, heat treatment and machining to produce a welding wire (welding material) having an outer diameter of 1.2 mm.
  • the base metal and the welding material were welded under the combinations and conditions shown in Table 3 to produce a welded joint.
  • weld solidification crack resistance of each welded joint was evaluated. Specifically, a penetration flaw detection test was performed on each weld bead of the produced welded joint, and a defect (weld solidification crack) generated on the bead surface was detected. When no defect was detected, it was judged that the performance of the present invention was satisfied.
  • the metal dusting resistance of each welded joint was evaluated. Specifically, a test piece having a plate thickness of 3.3 mm, a width of 20 mm, and a length of 30 mm was cut out from each of the produced welded joints with the weld metal at the center. This test piece was isothermally held at 650 ° C. for 500 hours in a 45% CO-42.5% H 2 -6.5% CO 2 -6% H 2 O gas atmosphere in a volume ratio. Thereafter, the presence or absence of pits generated on the surface of the test piece was judged by visual observation and an optical microscope. When no pit was generated, it was judged that the performance of the present invention was satisfied.
  • Test welds J1 to J32, J34, J35, J37 and J38 were within the scope of the present invention.
  • the chemical composition of the base metal is within the scope of the present invention, and the welding material contains Cr: 15.0 to 30.0% and Ni: 40.0 to 70.0%, The Fe content in the first layer was 10 to 40%.
  • the weld joint of test number J18 has a base metal chemical composition within the scope of the present invention, and the welding material contains Cr: 15.0 to 30.0% and Ni: 40.0 to 70.0%. It was. However, the weld joint of test number J33 had a low Fe content in the first layer of the weld metal. Therefore, it is considered that a sufficient carburization suppressing effect was not obtained in the weld metal that is a solidified structure.
  • the weld joint of test number J36 has the chemical composition of the base material within the range of the present invention, and the welding material contains Cr: 15.0 to 30.0% and Ni: 40.0 to 70.0%. It was. However, the weld joint of test number J21 had a high Fe content in the first layer of the weld metal. Therefore, it is considered that a sufficient carburization suppressing effect was not obtained in the weld metal that is a solidified structure.
  • the present invention can be suitably used as a welded joint for members used in high-temperature corrosive environments.
  • the present invention can be suitably used, for example, as a welded joint for containers, reaction tubes, parts, and the like used in heat exchange type hydrocarbon reformers, waste heat recovery devices, etc. in oil / gas refining and petrochemical plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

 優れた耐メタルダスティング性を有する溶接継手を提供する。溶接継手は、質量%で、Cr:15.0~30.0%、及びNi:40.0~70.0%を含む化学組成を有する溶接材料を用いて溶接された溶接継手であって、化学組成が、質量%で、C:0.03~0.075%、Si:0.6~2.0%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:16.0%を超えて23.0%未満、Ni:20.0%以上30.0%未満、Cu:0.5~10.0%、Mo:1%未満、Al:0.15%以下、N:0.005~0.20%、O:0.02%以下、Ca:0~0.1%、REM:0~0.15%、V:0%以上0.5%未満、Nb:0~2%、残部:Fe及び不純物である母材と、質量%で、Fe含有量が10~40%である化学組成を有する初層溶接金属とを備える。

Description

溶接継手
 本発明は、溶接継手に関し、より詳しくは、優れた耐メタルダスティング性を有する溶接継手に関する。
 水素、メタノール、液体燃料(GTL:Gas to Liquids)やジメチルエーテル(DME)といったクリーンエネルギーの燃料は、今後の大幅な需要増加が予想される。これらの合成ガス製造に欠かせない改質装置には大型で熱効率が高い、量産に適したものが好まれる。また、従来の石油精製や石油化学プラント等における改質装置や石油等を原料とするアンモニア製造装置、水素製造装置等においては、エネルギー効率を高めるために廃熱回収のための熱交換が多用されるようになってきている。
 このような高温ガスの熱を有効活用するためには、従来対象とされてきたよりも低い、400~800℃の温度域における熱交換が重要となってきている。この温度域において反応管や熱交換器等に使用する高Cr-高Ni-Fe合金系金属材料の浸炭現象に伴う腐食が問題となってきている。
 通常、上述のような反応装置にて製造される合成ガス、すなわちH、CO、CO、HO及びメタン等の炭化水素を含むガスは、反応管等の金属材料と1000℃又はそれ以上の温度で接している。この温度域において金属材料の表面では、FeやNi等よりも酸化傾向の大きいCrやSi等の元素が選択的に酸化され、酸化Crや酸化Si等の緻密な被膜が形成されることによって、腐食が抑制される。ところが、熱交換部分等、相対的に温度の低い部分においては、金属材料の内部から表面への元素の拡散が不十分となるため、腐食抑止効果のある酸化被膜の形成が遅れる。さらに、炭化水素を含む組成のガスは浸炭性へと変化するために金属材料表面からCが侵入して浸炭が生じてくる。
 エチレン分解炉管等においては、浸炭が進み、CrやFe等の炭化物からなる浸炭相が形成されるとその部分の体積が膨張する。その結果、微細な割れが生じやすくなり、最悪の場合には使用中の管が破断する。また、金属表面が露出すると、表面で金属を触媒とした炭素析出(コーキング)が発生し、管内流路面積の減少や伝熱特性の低下を伴う。
 原油の蒸留より得られたナフサのオクタン価を高める接触分解炉の加熱炉管等においても炭化水素と水素からなる浸炭性の厳しい環境となり、浸炭やメタルダスティングが発生する。
 このような亀裂、損耗や管内閉塞が拡大すると、装置故障等が発生して、操業中断に至る恐れがあり、装置部材としての材料選定に十分な配慮が必要である。
 このような浸炭やメタルダスティングによる腐食を防止するために、従来から、種々の対策が検討されてきた。
 従来、このような装置部材として、高Cr-高Ni-Fe合金が用いられている。例えば、特開2001-107196号公報には、化学組成を規定するとともに、Si、Cu又はSの含有量とNb、Ta、Ti及びZrの含有量との関係、並びにNi、Co及びCuの含有量の関係を一定範囲に規定した溶接継手が開示されている。この文献では、この溶接継手は硫酸環境下での耐食性及び耐溶接割れ性に優れているとしている。しかし、この溶接継手は、Si含有量が少ないため、メタルダスティングが生じる環境下での使用は困難である。
 特開2002-235136号公報には、Alを積極的に含有させるとともに、粒界溶融量と粒界固着力との関係を規定したNi基耐熱合金溶接継手が開示されている。この文献では、この溶接継手は耐浸炭性及び高温強度に優れているとしている。しかし、この溶接継手は、耐メタルダスティング性を確保するためにSi含有量を増やすと、溶接凝固割れが生じやすくなり、耐メタルダスティング性と耐溶接凝固割れ性とを両立することが困難である。
 国際公開第2009/107585号には、Si及びCu含有鋼に対し、Cを高めることで溶接熱影響部(以下、HAZ)に発生する割れ感受性の低減を図った金属材料が提案されている。しかし、高C添加は溶接時に発生する凝固割れ感受性を高めるほか、クリープ延性の低下も招く。
 特開2007-186727号公報及び特開2007-186728号公報には、P、S、Sb及びBiの1種若しくは2種以上を適正量含有させることによって、ガス解離性吸着(ガス/金属表面反応)を抑制することが提案されている。これらの元素は金属表面に偏析するので、過剰に添加しなくても、浸炭やメタルダスティング腐食を大幅に抑制することができる。しかし、これらの元素は金属表面のみならず金属結晶粒の粒界にも偏析するため、熱間加工性や溶接性に課題が残る。
 国際公開第2012/524983号には、Si及びCu含有鋼に対し、C含有量を制限することで凝固割れ感受性を低減し、かつTi及びAl含有量を制限することでHAZ割れ感受性を低減した金属材料が提案されている。しかし、この文献では、金属材料を溶接して構造物として組み上げるために必要な溶接材料について開示されていない。
 特開2006-45597号公報には、Tiを適正添加することによって、Siの悪影響を低減した溶接材料及びそれを用いた溶接継手が提案されている。
 しかしながら、母材及び溶接材料のそれぞれの耐メタルダスティング性を確保できていたとしても、溶接継手を作製した際、溶接の条件によっては溶接金属の耐メタルダスティング性を確保できない場合があることが、本発明者らの検討によって明らかとなった。
 本発明の目的は、優れた耐メタルダスティング性を有する溶接継手を提供することである。
 本発明による溶接継手は、質量%で、Cr:15.0~35.0%、及びNi:40.0~70.0%を含む化学組成を有する溶接材料を用いて溶接された溶接継手であって、化学組成が、質量%で、C:0.03~0.075%、Si:0.6~2.0%、Mn:0.05~2.5%、P:0.04%以下、S:0.015%以下、Cr:16.0%を超えて23.0%未満、Ni:20.0%以上30.0%未満、Cu:0.5~10.0%、Mo:1%未満、Al:0.15%以下、N:0.005~0.20%、O:0.02%以下、Ca:0~0.1%、REM:0~0.15%、V:0%以上0.5%未満、Nb:0~2%、残部:Fe及び不純物である母材と、質量%で、Fe含有量が10~40%である化学組成を有する初層溶接金属とを備える。
 本発明によれば、優れた耐メタルダスティング性を有する溶接継手が得られる。
図1は、溶接継手の模式的断面図である。
 本発明者らは、溶接継手の耐メタルダスティング性を向上させる方法を検討した。
 耐メタルダスティング性はSi、Cu及びP等の元素を含有させることで向上する。しかし、これらの元素は、溶接凝固割れ感受性を著しく増大させる。溶接凝固割れは、溶接凝固過程の終了期に近い、主として結晶粒界に膜状の液相が存在する段階において、凝固収縮又は熱収縮により加わる歪が溶接金属の変形能以上になった場合に生ずる。溶接凝固割れ感受性を低減する方法としては、溶接金属の変形能を向上させることも考えられる。しかし、母材成分を変更する必要が生じて、耐メタルダスティング性を確保するという目的に反することになる。このため、本発明者らは、母材成分を変更することなく、耐メタルダスティング性及び耐溶接凝固割れ性を確保し得る方法を検討した。
 上述のように、母材及び溶接材料のそれぞれの耐メタルダスティング性を確保できていたとしても、溶接継手を作製した際、溶接の条件によっては溶接金属の耐メタルダスティング性を確保できない場合がある。詳細なメカニズムは定かではないが、溶接金属中のFe含有量とNi含有量とのバランスが悪い領域において、凝固組織が影響してメタルダスティングが発生しやすくなることが分かった。溶接金属の初層は、母材希釈率の影響を受けやすく、Fe含有量とNi含有量とのバランスが悪くなりやすい。そのため、初層が接ガス面になると、メタルダスティングが発生しやすくなる。
 母材と同等の耐メタルダスティング性を有する溶接継手を得るためには、溶接金属のFe含有量を制限する必要がある。より具体的には、溶接金属の初層のFe含有量が、質量%で、40%以下になるように調整すれば、母材と同等の耐メタルダスティング性を有する溶接継手が得られる。一方、溶接金属の初層のFe含有量が少なすぎても、メタルダスティングが発生しやすくなる。そのため、溶接金属の初層のFe含有量が、質量%で10%以上になるように調整する必要がある。
 以上の知見に基づいて、本発明による溶接継手は完成された。以下、本発明の一実施形態による溶接継手を詳細に説明する。なお、以下の説明において、元素の含有量の「%」は、質量%を意味する。
 本実施形態による溶接継手は、Cr:15.0~35.0%、及びNi:40.0~70.0%を含む化学組成を有する溶接材料で、母材を溶接したものである。溶接継手は例えば、鋼管同士又は鋼板同士を互いの端部で溶接したものである。溶接継手は、母材と、溶接金属とを備える。溶接金属は、母材の一部と溶接材料とが溶融及び凝固して形成される。初層溶接金属は、Fe含有量が10~40%である化学組成を有する。
 [母材の化学組成]
 母材は、以下の化学組成を有する。
 C:0.03~0.075%
 炭素(C)は、Cr等と結合して炭化物を形成し、母材の強度を高める。一方、Cが過剰に含有されると、高温でのクリープ延性が低下する。したがって、母材のC含有量は0.03~0.075%である。母材のC含有量の好ましい下限は0.035%であり、より好ましい下限は0.04%である。母材のC含有量の好ましい上限は、0.07%である。
 Si:0.6~2.0%
 珪素(Si)は、酸素との親和力が強く、Cr等の保護性酸化スケール層の下層にSi系酸化スケールを形成し、浸炭性ガスを遮断する。一方、Siが過剰に含有されると、熱間加工性及び溶接性が著しく低下する。したがって、母材のSi含有量は0.6~2.0%である。母材のSi含有量の好ましい下限は、0.8%である。母材のSi含有量の好ましい上限は、1.5%である。
 Mn:0.05~2.5%
 マンガン(Mn)は、鋼を脱酸する。Mnはまた、オーステナイト相を安定化させる。Mnはさらに、鋼の加工性及び溶接性を改善する。一方、Mnが過剰に含有されると、保護性酸化スケール層の浸炭性ガス遮断性能が阻害される。したがって、母材のMn含有量は、0.05~2.5%である。母材のMn含有量の好ましい下限は、0.1%である。母材のMn含有量の好ましい上限は、2.0%である。
 P:0.04%以下
 燐(P)は、鋼を溶製する際に原料等から混入する不純物である。Pは、鋼の熱間加工性及び溶接性を低下させる。したがって、母材のP含有量は0.04%以下である。母材のP含有量は、可能な限り低減することが好ましい。母材のP含有量の好ましい上限は0.03%であり、より好ましい上限は0.025%である。
 S:0.015%以下
 硫黄(S)は、鋼を溶製する際に原料等から混入する不純物である。Sは、鋼の熱間加工性及び溶接性を低下させる。特に、鋼のSi含有量やCu含有量が高いときに、その効果が重要になる。したがって、母材のS含有量は0.015%以下である。母材のS含有量は、可能な限り低減することが好ましい。母材のS含有量の好ましい上限は0.005%であり、より好ましい上限は0.002%である。
 Cr:16.0%を超えて23.0%未満
 クロム(Cr)は、Cr等の保護性酸化スケール層を形成し、浸炭性ガスを遮断する。これによって、Crは、耐浸炭性、耐メタルダスティング性、及び耐コーキング性を鋼に付与する。一方、CrはCと結合し、炭化物を形成してクリープ延性を低下させる。また、Crはオーステナイト相のクリープ強度を低下させる。特に、Si及びCuの含有量が高い場合にはその影響が大きい。したがって、母材のCr含有量は、16.0%を超えて23.0%未満である。母材のCr含有量の好ましい下限は、18.0%である。母材のCr含有量は、上限の観点では、好ましくは20.0%未満である。
 Ni:20.0%以上30.0%未満
 ニッケル(Ni)は、オーステナイト相を安定化させる。Niはまた、鋼中に侵入したCの侵入速度を低下させる。Niはさらに、鋼の高温強度を高める。一方、Niが過剰に含有されると、コストが増大する。また、Niが過剰に含有されると、コーキングやメタルダスティングが促進される場合がある。したがって、母材のNi含有量は20.0%以上30.0%未満である。母材のNi含有量の好ましい下限は、22.0%である。母材のNi含有量の好ましい上限は、28.0%である。
 Cu:0.5~10.0%
 銅(Cu)は、浸炭性ガスと金属との表面反応を抑制し、金属の耐メタルダスティング性を向上させる。Cuはまた、オーステナイト相を安定化させる。一方、Cuが過剰に含有されると、鋼の溶接性が低下する。したがって、母材のCu含有量は0.5~10.0%である。母材のCu含有量の好ましい下限は、1.5%である。母材のCu含有量の好ましい上限は、6.0%である。
 Mo:1%未満
 モリブデン(Mo)は、不純物である。Moを1%以上含有すると、σ相等の金属間化合物の生成を誘発し、組織安定性及び熱間加工性が低下する。したがって、母材のMo含有量は、1%未満である。一方、Moを極端に低減すると、コストが増大する。そのため、母材のMo含有量の好ましい下限は、0.05%である。
 Al:0.15%未満
 アルミニウム(Al)は、鋼を脱酸する。一方、Alが過剰に含有されると、多量の窒化物が形成され、鋼の靱性が低下する。したがって、母材のAl含有量は、0.15%未満である。Al含有量は少ないほど良い。ただし、Alを極端に低減すると脱酸効果が十分に得られない。また、Alを極端に低減すると、鋼の清浄度が大きくなる。また、Alを極端に低減すると、コストが増大する。そのため、母材のAl含有量の好ましい下限は、0.003%である。
 N:0.005~0.20%
 窒素(N)は、鋼の高温強度を高める。Nはさらに、母材中のCの活量を高めて、母材の耐メタルダスティング性を向上させる。一方、Nが過剰に含有されると、鋼の熱間加工性が低下する。したがって、母材のN含有量は、0.005~0.20%である。母材のN含有量の好ましい下限は、0.010%である。母材のN含有量の好ましい上限は、0.15%である。
 O:0.02%以下
 酸素(O)は、不純物である。Oが過剰に含有されると、母材の製造時の熱間加工性が低下する。また、Oが過剰に含有されると、溶接金属の靱性及び延性が低下する。したがって、母材のO含有量は0.02%以下である。母材のO含有量の好ましい上限は、0.01%である。
 母材の化学組成の残部は、Fe及び不純物である。不純物は、鋼の原料として利用される鉱石やスクラップから混入する元素、又は、製造工程の種々の要因によって混入する元素を意味する。
 本実施形態による母材の化学組成は、上記のFeの一部に代えて、次に示す第1群及び第2群のうち少なくとも1つの群から選択される1種又は2種を含有しても良い。
 第1群: Ca:0.1%以下、 REM:0.15%以下
 第2群: V :0.5%未満、 Nb:2%以下
 第1群(Ca:0.1%以下、REM:0.15%以下)
 カルシウム(Ca)及び希土類元素(REM)は、任意元素である。すなわち、Ca及びREMは、母材に含有されていなくても良い。Ca及びREMは、いずれも鋼の熱間加工性を向上させる。そのため、Ca及びREMの1種又は2種を、必要に応じて母材に含有させても良い。母材にCa及び/REMの含有効果を得たい場合は、少なくとも一方を0.005%以上含有させるのが好ましい。
 なお、「REM」とは、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量はREMのうち1種又は2種以上の元素の合計含有量を指す。また、REMは一般的にミッシュメタルに含有される。このため例えば、ミッシュメタルの形で添加して、REMの含有量が上記の範囲となるように含有させてもよい。
 一方、Caが過剰に含有されると、鋼の溶接性が低下する。したがって、母材のCa含有量の上限は、0.15である。また、REMが過剰に含有されると、鋼の溶接性が低下する。したがって、母材のREM含有量の上限は、0.15%である。上記のCa及びREMは、いずれか1種のみを単独で、又は、2種を複合して含有させることができる。2種を複合して含有させる場合、合計の含有量の好ましい上限は、0.2%である。
 第2群(V:0.5%未満、Nb:2%以下)
 バナジウム(V)及びニオブ(Nb)は、任意元素である。すなわち、V及びNbは、母材に含有されていなくても良い。V及びNbは、いずれも鋼の高温強度を向上させる。そのため、V及びNbの1種又は2種を、必要に応じて母材に含有させても良い。なお、Vの含有効果を得たい場合には0.002%以上、Nbの含有効果を得たい場合には0.005%以上含有させるのが好ましい。
 一方、Vが過剰に含有されると、鋼の溶接性が低下する。したがって、母材のV含有量は、上限の観点では0.5%未満である。また、Nbが過剰に含有されると、鋼の溶接性が低下する。したがって、母材のNb含有量の上限は、2%である。上記のV及びNbは、いずれか1種のみを単独で、又は、2種を複合して含有させることができる。2種を複合して含有させる場合、合計の含有量の好ましい上限は、2.2%である。
 [溶接金属の初層の化学組成]
 本実施形態による溶接継手の溶接金属は、Fe含有量が10~40%である化学組成を有する初層を含む。溶接金属では、凝固偏析が生じる。詳細なメカニズムは定かではないが、溶接金属中のFe含有量とNi含有量とのバランスが悪い領域において、凝固組織が影響してメタルダスティングが発生しやすくなる。溶接金属の初層は、母材希釈率の影響を受けやすく、Fe含有量とNi含有量とのバランスが悪くなりすい。初層のFe含有量を10~40%にすることで、母材と同等の耐メタルダスティング性が得られる。
 溶接金属の初層(初層溶接金属)とは、JIS B 0190で規定される初層を指す。初層溶接金属とは、より具体的には、溶接時に第1パス目に溶接した際に作成される溶接金属のことを指す。溶接金属は、母材と溶接材料とが溶融、強固して形成される。溶接金属は、パス数を重ねるほど、母材の成分の影響(母材希釈)を受けなくなり、溶接材料の成分が支配的になる。そのため、母材の希釈の影響を受けやすい初層溶接金属についてのみ、成分範囲を管理し、性能を確保する必要がある。
 図1は、溶接継手の一例である溶接継手1の模式的断面図である。溶接継手1は、母材10と、溶接金属20とを備えている。この例では、溶接金属20は、初層溶接金属21と、2層目以降の層22とを含んでいる。
 溶接金属の初層は、好ましくは、以下の化学組成を有する。
 C:0.01~0.15%
 炭素(C)は、溶接金属の強度を高める。一方、Cが過剰に含有されると、溶接金属の靱性が低下する。したがって、溶接金属の初層のC含有量は、0.01~0.15%である。溶接金属の初層のC含有量の好ましい下限は、0.05%であり、より好ましくは0.03%である。溶接金属の初層のC含有量の好ましい上限は、0.12%であり、より好ましくは0.10%である。
 Si:0.01~4.0%
 珪素(Si)は、酸素との親和力が強く、Cr等の保護性酸化スケール層の下層にSi系酸化スケールを形成し、浸炭性ガスを遮断する。一方、Siが過剰に含有されると、熱間加工性及び溶接性が著しく低下する。したがって、溶接金属の初層のSi含有量は、0.01~4.0%である。溶接金属の初層のSi含有量の好ましい下限は、0.08%であり、さらに好ましくは0.3%である。溶接金属の初層のSi含有量の好ましい上限は、3.5%であり、さらに好ましくは2.0%である。
 Mn:0.05~3.0%
 マンガン(Mn)は、鋼を脱酸する。Mnはまた、オーステナイト相を安定化させる。Mnはさらに、鋼の加工性及び溶接性を改善する。一方、Mnが過剰に含有されると、保護性酸化スケール層の浸炭性ガス遮断性能を阻害する。したがって、溶接金属の初層のMn含有量は、0.05~3.0%である。溶接金属の初層のMn含有量の好ましい下限は、0.1%である。溶接金属の初層のMn含有量の好ましい上限は、2.5%である。
 P:0.03%以下
 燐(P)は、鋼を溶製する際に原料等から混入する不純物である。Pは、鋼の熱間加工性及び溶接性を低下させる。Pはさらに、溶接金属においては、溶接凝固割れ感受性を高める。したがって、溶接金属の初層のP含有量は0.03%以下である。溶接金属の初層のP含有量は、可能な限り低減することが好ましい。溶接金属の初層のP含有量の好ましい上限は0.025である。
 S:0.015%以下
 硫黄(S)は、鋼を溶製する際に原料等から混入する不純物である。Sは、鋼の熱間加工性及び溶接性を低下させる。したがって、溶接金属の初層のS含有量は0.015%以下である。溶接金属の初層のS含有量は、可能な限り低減することが好ましい。溶接金属の初層のS含有量の好ましい上限は0.005%であり、より好ましい上限は0.002%である。
 Cr:16.0%を超えて32.0%未満
 クロム(Cr)は、高温の使用環境において、溶接継手中に侵入したCと結合して浸炭層の成長を遅らせ、耐メタルダスティング性を高める。一方、Crが過剰に含有されると、溶接金属の靱性が低下する。したがって、溶接金属の初層のCr含有量は、16.0%を超えて32.0%未満である。溶接金属の初層のCr含有量の好ましい下限は、18.0%である。溶接金属の初層のCr含有量は、上限の観点では、好ましくは23.0%未満であり、より好ましくは20.0%未満である。
 Ni:20.0%以上
 ニッケル(Ni)は、高温強度及び組織安定性を高める。Niはさらに、Crと共存することで耐食性を高める。Niはまた、メタルダスティングの発生を抑制する。したがって、溶接金属の初層のNi含有量は20.0%以上である。溶接金属の初層のNi含有量の好ましい上限は、80%である。
 Cu:0.03~5.0%
 銅(Cu)は、浸炭性ガスと金属との表面反応を抑制し、金属の耐メタルダスティング性を向上させる。Cuはまた、オーステナイト相を安定化させる。一方、Cuが過剰に含有されると、溶接凝固割れ感受性が高まる。したがって、溶接金属の初層のCu含有量は0.03~5.0%である。溶接金属の初層のCu含有量の好ましい下限は、0.04%である。溶接金属の初層のCu含有量の好ましい上限は、4.5%である。
 Al:1.0%以下
 アルミニウム(Al)は、鋼を脱酸する。一方、Alが過剰に含有されると、多量の窒化物が形成され、鋼の靱性が低下する。また、Alが過剰に含有されると、溶接施工性が悪化する。したがって、溶接金属の初層のAl含有量は、1.0%以下である。Al含有量は少ないほど良い。ただし、Alを極端に低減すると脱酸効果が十分に得られない。また、Alを極端に低減すると、鋼の清浄度が大きくなる。また、Alを極端に低減するとコストが増大する。そのため、溶接金属の初層のAl含有量の好ましい下限は、0.003%である。
 N:0.005~0.20%
 窒素(N)は、鋼の高温強度を高める。Nはさらに、溶接金属中のCの活量を高めて、溶接金属の耐メタルダスティング性を向上させる。一方、Nが過剰に含有されると、溶接金属の延性が低下する。したがって、溶接金属の初層のN含有量は、0.005~0.20%である。溶接金属の初層のN含有量の好ましい下限は、0.010%である。溶接金属の初層のN含有量の好ましい上限は、0.15%である。
 O:0.02%以下
 酸素(O)は、不純物である。Oが過剰に含有されると、溶接金属の靱性及び延性が低下する。したがって、溶接金属の初層のO含有量は0.02%以下である。溶接金属の初層のO含有量の好ましい上限は、0.01%である。
 Ti:0~0.5%
 チタン(Ti)は、任意元素である。すなわち、Tiは、溶接金属の初層に含有されていなくても良い。Tiは、Niと結合し、金属間化合物として微細に粒内析出し、高温でのクリープ強度を確保するのに有効な元素である。そのため、Tiを、必要に応じて含有させても良い。Tiを含有させる場合の好ましい下限は、0.005%である。しかしながら、Ti含有量が多くなって、特に0.5%を超えると、高温での使用中に金属間化合物相が急速に粗大化してクリープ強度及び靱性の極端な低下をきたし、溶接時には溶接金属の清浄性の低下を招いて溶接性を悪化させる。したがって、溶接金属の初層のTi含有量の上限は、0.5%である。
 Mo:0~8%
 モリブデン(Mo)は、任意元素である。すなわち、Moは、溶接金属の初層に含有されていなくても良い。Moは、マトリックスに固溶して高温でのクリープ強度の向上に寄与する。そのため、Moを、必要に応じて含有させても良い。Moを含有させる場合の好ましい下限は、0.05%である。しかしながら、Mo含有量が多くなって、特に8%を超えると、オーステナイトの安定性が低下してクリープ強度の低下を招く。したがって、溶接金属の初層のMo含有量の上限は、8%である。
 Nb:0~3%
 ニオブ(Nb)は、任意元素である。すなわち、Nbは、溶接金属の初層に含有されていなくても良い。Nbは、マトリックスに固溶して、又は炭窒化物として析出して、高温でのクリープ強度の向上に寄与する。そのため、Nbを、必要に応じて含有させても良い。Nbを含有させる場合の好ましい下限は、0.05%である。しかしながら、Nb含有量が多くなって、特に3%を超えると、炭窒化物が多量に析出し、鋼の延性が低下する。したがって、溶接金属の初層のNb含有量の上限は、3%である。
 Co:0~15%
 コバルト(Co)は、任意元素である。すなわち、Coは、溶接金属の初層に含有されていなくても良い。Coは、オーステナイト相を安定化し、クリープ強度を高める。そのため、Coを、必要に応じて含有させても良い。溶接金属の初層にCoを含有させる場合の好ましい下限は、0.01%である。一方、Coが過剰に含有されると、コストが増大する。したがって、溶接金属の初層のCo含有量の上限は、15.0%である。溶接金属の初層のCo含有量の好ましい上限は、14.5%である。
 溶接金属の初層の化学組成の残部は、Fe及び不純物である。ただし、溶接金属の初層は上述のように、Fe含有量が10~40%である。
 [溶接材料の化学組成]
 本実施形態による溶接継手は、上述のように、Cr:15.0~35.0%、及びNi:40.0~70.0%を含む化学組成を有する溶接材料で溶接されたものある。溶接材料は、母材の一部とともに、溶接金属を形成する。
 Cr:15.0~35.0%
 クロム(Cr)は、Cr等の保護性酸化スケール層を形成し、浸炭性ガスを遮断する。これによって、Crは、耐浸炭性、耐メタルダスティング性、及び耐コーキング性を鋼に付与する。一方、CrはCと結合し、炭化物を形成してクリープ強度を低下させる。特に、Si及びCuの含有量が高い場合にはその影響が大きい。溶接材料のCr含有量は、15.0%~35.0%である。溶接材料のCr含有量の好ましい下限は、16.0%である。溶接材料のCr含有量の好ましい上限は、33.0%であり、より好ましくは30.0%であり、さらに好ましくは28.0%である。
 Ni:40.0~70.0%
 ニッケル(Ni)は、オーステナイト相を安定化させる。Niはまた、鋼中に侵入したCの侵入速度を低下させる。Niはさらに、鋼の高温強度を高める。溶接材料においてこれらの効果を発揮するためには、Niを40%以上含有させる必要がある。一方、Niを過剰に含有してもその効果は飽和する。したがって、溶接材料のNi含有量は40.0~70.0%である。溶接材料のNi含有量の好ましい下限は、45.0%である。
 溶接材料は、好ましくは、Cr及びNiに加えて、以下の化学組成を有する。
 C:0.01~0.15%
 炭素(C)は、溶接金属の強度を高める。一方、Cが過剰に含有されると、溶接凝固割れ感受性が高まる。したがって、溶接材料のC含有量は、0.01~0.15%である。溶接材料のC含有量の好ましい下限は、0.03%であり、さらに好ましくは0.05%である。溶接材料のC含有量の好ましい上限は、0.12%であり、さらに好ましくは0.10%である。
 Si:4.0%以下
 珪素(Si)は、熱間加工性及び溶接性を低下させる。したがって、溶接材料のSi含有量は、4.0%以下である。溶接材料のSi含有量の好ましい上限は、3.5%であり、より好ましくは2.0%であり、さらに好ましくは1.5%である。溶接継手において高い耐食性が必要な場合、溶接材料のSi含有量の下限は、0.5%とすることが好ましい。
 Mn:0.01~3.5%
 マンガン(Mn)は、鋼を脱酸する。Mnはまた、オーステナイト相を安定化させる。Mnはさらに、鋼の加工性及び溶接性を改善する。一方、Mnが過剰に含有されると、溶接材料製造時の熱間加工性が悪くなる。したがって、溶接材料のMn含有量は、0.05~3.5%である。溶接材料のMn含有量の好ましい下限は、0.05%であり、さらに好ましくは0.10%である。溶接材料のMn含有量の好ましい上限は、3.0%である。
 P:0.03%以下
 燐(P)は、鋼を溶製する際に原料等から混入する不純物である。Pは、鋼の熱間加工性及び溶接性を低下させる。Pはさらに、溶接金属の溶接凝固割れ感受性を高める。したがって、溶接材料のP含有量は0.03%以下である。溶接材料のP含有量は、可能な限り低減することが好ましい。溶接材料のP含有量の好ましい上限は0.025である。
 S:0.015%以下
 硫黄(S)は、鋼を溶製する際に原料等から混入する不純物である。Sは、鋼の熱間加工性及び溶接性を低下させる。したがって、溶接材料のS含有量は0.015%以下である。溶接材料のS含有量は、可能な限り低減することが好ましい。溶接材料のS含有量の好ましい上限は0.005%であり、より好ましい上限は0.002%である。
 Cu:0.01~4.0%
 銅(Cu)は、浸炭性ガスと金属との表面反応を抑制し、金属の耐メタルダスティング性を向上させる。Cuはまた、オーステナイト相を安定化させる。一方、Cuが過剰に含有されると、溶接凝固割れ感受性が高まる。したがって、溶接材料のCu含有量は0.01~4.0%である。溶接材料のCu含有量の好ましい下限は、0.03%である。溶接材料のCu含有量の好ましい上限は、3.5%である。
 Al:0~1.5%
 アルミニウム(Al)は、任意元素である。すなわち、Alは、溶接材料に含有されていなくても良い。Alは、鋼を脱酸する。一方、Alが過剰に含有されると、多量の窒化物が形成され、鋼の靱性が低下する。また、Alが過剰に含有されると、溶接施工性が悪化する。したがって、溶接材料のAl含有量は、1.5%以下であり、好ましくは1.0%以下である。ただし、Alを極端に低減すると脱酸効果が十分に得られない。また、Alを極端に低減すると、鋼の清浄度が大きくなる。また、Alを極端に低減するとコストが増大する。そのため、溶接材料のAl含有量の好ましい下限は、0.003%である。溶接継手において、高い高温強度が必要な場合、溶接材料のAl含有量の下限は0.15%とすることが好ましい。
 N:0.005~0.1%
 窒素(N)は、鋼の高温強度を高める。Nはさらに、溶接材料中のCの活量を高めて、溶接材料の耐メタルダスティング性を向上させる。一方、Nが過剰に含有されると、溶接材料の製造時の熱間加工性が低下する。したがって、溶接材料のN含有量は、0.005~0.1%である。溶接材料のN含有量の好ましい下限は、0.010%である。溶接材料のN含有量の好ましい上限は、0.05%である。
 O:0.03%以下
 酸素(O)は、不純物である。Oが過剰に含有されると、溶接材料の製造時の熱間加工性が低下する。また、溶接金属の靱性及び延性も低下する。したがって、溶接材料のO含有量は0.03%以下である。溶接材料のO含有量の好ましい上限は、0.02%である。
 Ti:0~1.0%
 チタン(Ti)は、任意元素である。すなわち、Tiは、溶接材料に含有されていなくても良い。Tiは、Niと結合し、金属間化合物として微細に粒内析出し、高温でのクリープ強度を確保するのに有効な元素である。そのため、Tiを、必要に応じて含有させても良い。Tiを含有させる場合の好ましい下限は、0.15%である。しかしながら、Ti含有量が多くなって、特に1.0%を超えると、高温での使用中に金属間化合物相が急速に粗大化してクリープ強度及び靱性の極端な低下をきたし、合金の製造時には清浄性の低下を招いて製造性を悪化させる。したがって、溶接材料のTi含有量の上限は、1.0%である。
 Mo:0~15%
 モリブデン(Mo)は、任意元素である。すなわち、Moは、溶接材料に含有されていなくても良い。Moは、マトリックスに固溶して高温でのクリープ強度の向上に寄与する。そのため、Moを、必要に応じて含有させても良い。Moを含有させる場合の好ましい下限は、0.01%であり、さらに好ましくは7%である。しかしながら、Mo含有量が多くなって、特に15%を超えると、オーステナイトの安定性が低下してクリープ強度の低下を招く。したがって、溶接材料のMo含有量の上限は、15%である。
 Nb:0~5%
 ニオブ(Nb)は、任意元素である。すなわち、Nbは、溶接材料に含有されていなくても良い。Nbは、マトリックスに固溶して、又は炭窒化物として析出して、高温でのクリープ強度の向上に寄与する。そのため、Nbを、必要に応じて含有させても良い。Nbを含有させる場合の好ましい下限は、0.005%である。しかしながら、Nb含有量が多くなって、特に5%を超えると、炭窒化物が多量に析出し、鋼の延性が低下する。したがって、溶接材料のNb含有量の上限は、5%である。
 Co:0~15%
 コバルト(Co)は、任意元素である。すなわち、Coは、溶接材料に含有されていなくても良い。Coは、オーステナイト相を安定化し、クリープ強度を高める。そのため、Coを、必要に応じて含有させても良い。溶接材料にCoを含有させる場合の好ましい下限は、0.01%である。一方、Coが過剰に含有されると、コストが増大する。したがって、溶接材料のCo含有量の上限は、15.0%である。溶接材料のCo含有量の好ましい上限は、14.5%である。
 なお、高温強度を特に確保したい場合、溶接材料の化学組成が、Al:0.15~1.5%、Ti:0.15~1.0%、及びMo:7~15%を含み、さらに、Nb:0.1~5%、及びCo:0.1~15%の少なくとも一方を含むことが好ましい。
 また、耐食性を特に確保したい場合、溶接材料の化学組成が、Si:0.5~4.0%を含むことが好ましい。
 [製造方法]
 まず、母材の製造方法の一例を説明する。上述した母材の化学組成を有する鋼を溶製する。溶製は、電気炉で行っても良いし、Ar-O混合ガス底吹き脱炭炉(AOD炉)で行っても良いし、真空脱炭炉(VOD炉)で行っても良い。溶製された鋼を、造塊法によってインゴットにする。あるいは、溶製された鋼を、連続鋳造法によって鋳片にする。
 インゴット又は鋳片を用いて母材を製造する。母材は例えば、鋼板又は鋼管である。鋼板は例えば、インゴット又は鋳片に、熱間鍛造、又は熱間圧延等の熱間加工を実施して製造される。鋼管は例えば、インゴット又は鋳片を熱間加工によって丸ビレットを形成し、丸ビレットに穿孔圧延、熱間押出、又は熱間鍛造等の熱間加工を実施して製造される。鋼管はあるいは、鋼板を曲げ加工してオープンパイプを形成し、オープンパイプの長手方向の両端面を溶接して製造される。
 母材に対して、必要に応じて周知の熱処理を実施する。
 次に、溶接材料の製造方法の一例を説明する。上述した溶接材料の化学組成を有する鋼を溶製する。溶製された鋼を鋳造してインゴットにする。インゴットを熱間加工して溶接材料を製造する。溶接材料は棒状であっても良いし、ブロック状であっても良い。
 溶接材料に対しても、必要に応じて周知の熱処理を実施する。
 上記の溶接材料を用いて上記の母材を溶接する。これによって、溶接継手が得られる。溶接方法は例えば、TIG溶接、MIG溶接、MAG溶接、及びサブマージ溶接である。溶接時に、母材の一部と溶接材料とが溶融及び凝固して溶接金属が形成される。
 このとき、溶接金属の初層のFe含有量が、10~40%になるように、母材希釈率を調整する。より具体的には、母材の化学組成及び溶接材料の化学組成に応じて、初層溶接時の入熱及び溶接材料供給速度を調整する。初層溶接時の入熱を大きくすれば、母材希釈率が大きくなり、溶接金属の初層のFe含有量が大きくなる。また、溶接材料供給速度を速くすれば、母材希釈率が小さくなり、溶接金属の初層のFe含有量が小さくなる。
 以下、実施例によって本発明をより具体的に説明する。本発明は、これらの実施例に限定されない。
 表1に示す化学組成を有する符号A及び符号Bの鋼を実験室溶解してインゴットを作製した。作製したインゴットに、熱間鍛造、冷間圧延、熱処理及び機械加工を実施して、外径25.4mm、板厚3.3mm、長さ60mmの鋼管(母材)を作製した。
Figure JPOXMLDOC01-appb-T000001
 表2に示す化学組成を有する符号T~Zの鋼を実験室溶解してインゴットを作製した。インゴットに、熱間鍛造、熱間圧延、熱処理及び機械加工を実施して、外径1.2mmの溶接ワイヤ(溶接材料)を作製した。
Figure JPOXMLDOC01-appb-T000002
 上記の鋼管の周方向に、開先加工を実施した後、母材及び溶接材料を表3に示す組み合わせ及び条件で溶接して溶接継手を作製した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、初層の溶接入熱(初層入熱)を4~8kJ/cmの範囲で、溶接材料供給速度を490~770mm/minの範囲で変化させることによって、母材希釈率を変化させた。その後、積層時は8~15kJ/cmの範囲で溶接し、溶接継手を作製した。
 まず、初層のみを溶接した継手において、溶接金属の初層の化学組成を分析した。
 次いで、各溶接継手の耐溶接凝固割れ性を評価した。具体的には、作製した溶接継手の各々の溶接ビードに対して浸透探傷試験を実施し、ビード表面に生じる欠陥(溶接凝固割れ)を検出した。欠陥が検出されない場合、本発明の性能を満足すると判断した。
 さらに、各溶接継手の耐メタルダスティング性を評価した。具体的には、作製した溶接継手の各々から、溶接金属を中央にして、板厚3.3mm、幅20mm、長さ30mmの試験片を切出した。この試験片を、体積比で45%CO‐42.5%H‐6.5%CO‐6%HOガス雰囲気中、650℃で500時間等温保持した。その後、試験片表面に発生するピットの有無を、目視及び光学顕微鏡によって判断した。ピット発生がない場合、本発明の性能を満足すると判断した。
 結果を表3に示す。表3の「化学組成」の欄には、各溶接継手の溶接金属の初層の化学組成が記載されている。表3の「溶接金属の耐MD性」の欄には、耐メタルダスティング性の評価結果が記載されている。「○」は、同評価においてピットが発生しなかったことを示す。「×」は、同評価においてピットが発生したことを示す。なお、作製したすべての溶接継手において、溶接凝固割れは検出されなかった。
 試験記号J1~J32、J34、J35、J37、及びJ38の溶接継手は、本発明の範囲内であった。具体的には、母材の化学組成が本発明の範囲内であり、溶接材料がCr:15.0~30.0%、及びNi:40.0~70.0%を含み、溶接金属の初層のFe含有量が10~40%であった。これらの溶接継手は、耐溶接凝固割れ性と、優れた耐メタルダスティング性とを同時に備えていた。
 試験記号J33の溶接継手は、耐メタルダスティング性の評価において、メタルダスティングが発生した。試験番号J18の溶接継手は、母材の化学組成が本発明の範囲内であり、溶接材料がCr:15.0~30.0%、及びNi:40.0~70.0%を含んでいた。しかし、試験番号J33の溶接継手は、溶接金属の初層のFe含有量が少なかった。そのため、凝固組織である溶接金属において十分な浸炭抑制効果が得られなかったと考えられる。
 試験記号J36の溶接継手は、耐メタルダスティング性の評価において、メタルダスティングが発生した。試験番号J36の溶接継手は、母材の化学組成が本発明の範囲内であり、溶接材料がCr:15.0~30.0%、及びNi:40.0~70.0%を含んでいた。しかし、試験番号J21の溶接継手は、溶接金属の初層のFe含有量が多かった。そのため、凝固組織である溶接金属において十分な浸炭抑制効果が得られなかったと考えられる。
 試験記号J39~41の溶接継手は、耐メタルダスティング性の評価において、メタルダスティングが発生した。試験記号J39~41の溶接継手は、溶接材料のNi含有量が少なかった。その結果、溶接金属中のFe含有量の比率が大きくなり、初層のFe含有量も多かった。そのため、凝固組織である溶接金属において十分な浸炭抑制効果が得られなかったと考えられる。
 本発明は、高温の腐食環境で使用される部材の溶接継手として好適に使用できる。本発明は例えば、石油・ガス精製や石油化学プラント等における熱交換型炭化水素改質装置、廃熱回収装置等に使用される容器、反応管、部品等の溶接継手として好適に使用できる。

Claims (7)

  1.  質量%で、Cr:15.0~35.0%、及びNi:40.0~70.0%を含む化学組成を有する溶接材料を用いて溶接された溶接継手であって、
     化学組成が、質量%で、
     C :0.03~0.075%、
     Si:0.6~2.0%、
     Mn:0.05~2.5%、
     P :0.04%以下、
     S :0.015%以下、
     Cr:16.0%を超えて23.0%未満、
     Ni:20.0%以上30.0%未満、
     Cu:0.5~10.0%、
     Mo:1%未満、
     Al:0.15%以下、
     N :0.005~0.20%、
     O :0.02%以下、
     Ca:0~0.1%、
     REM:0~0.15%、
     V :0%以上0.5%未満、
     Nb:0~2%、
     残部:Fe及び不純物である母材と、
     質量%で、Fe含有量が10~40%である化学組成を有する初層溶接金属とを備える、溶接継手。
  2.  請求項1に記載の溶接継手であって、
     前記母材の化学組成が、質量%で、
     Ca:0.005~0.1%、及び
     REM:0.005~0.15%、
     からなる群から選択された1種又は2種を含有する、溶接継手。
  3.  請求項1又は2に記載の溶接継手であって、
     前記母材の化学組成が、質量%で、
     V :0.002%以上0.5%未満、及び
     Nb:0.005~0.15%、
     からなる群から選択された1種又は2種を含有する、溶接継手。
  4.  請求項1~3のいずれか一項に記載の溶接継手であって、
     前記初層溶接金属の化学組成が、質量%で、
     C :0.01~0.15%、
     Si:0.01~4.0%、
     Mn:0.05~3.0%、
     P :0.03%以下、
     S :0.015%以下、
     Cr:16.0%を超えて32.0%未満、
     Ni:20.0%以上、
     Cu:0.03~5.0%、
     Al:1.0%以下、
     N :0.005~0.2%、
     O :0.02%以下、
     Ti:0~0.5%、
     Mo:0~8%、
     Nb:0~3%、
     Co:0~15%、
     Fe:10~40%、
     残部:不純物である、溶接継手。
  5.  請求項1~4のいずれか一項に記載の溶接継手であって、
     前記溶接材料の化学組成が、質量%で、
     C :0.01~0.15%、
     Si:4.0%以下、
     Mn:0.01~3.5%、
     P :0.03%以下、
     S :0.015%以下、
     Cr:15.0~35.0%、
     Ni:40.0~70.0%、
     Cu:0.01~4.0%、
     Al:0~1.5%、
     N :0.005~0.1%、
     O :0.03%以下、
     Ti:0~1.0%、
     Mo:0~15%、
     Nb:0~5%、
     Co:0~15%、
     残部:Fe及び不純物である、溶接継手。
  6.  請求項5に記載の溶接継手であって、
     前記溶接材料の化学組成が、質量%で、
     Al:0.15~1.5%、
     Ti:0.15~1.0%、及び
     Mo:7~15%、
     を含み、さらに、
     Nb:0.1~5%、及びCo:0.1~15%の少なくとも一方を含む、溶接継手。
  7.  請求項5に記載の溶接継手であって、
     前記溶接材料の化学組成が、質量%で、
     Si:0.5~4.0%、
     を含む、溶接継手。
PCT/JP2015/055061 2014-02-26 2015-02-23 溶接継手 WO2015129631A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP15754821.5A EP3112081B1 (en) 2014-02-26 2015-02-23 Welded joint
SG11201605977TA SG11201605977TA (en) 2014-02-26 2015-02-23 Welded joint
US15/117,462 US10378091B2 (en) 2014-02-26 2015-02-23 Welded joint
ES15754821T ES2700871T3 (es) 2014-02-26 2015-02-23 Junta soldada
KR1020167023159A KR101874218B1 (ko) 2014-02-26 2015-02-23 용접 조인트
CN201580011019.9A CN106061671B (zh) 2014-02-26 2015-02-23 焊接接头
JP2016505205A JP6274303B2 (ja) 2014-02-26 2015-02-23 溶接継手
CA2938190A CA2938190C (en) 2014-02-26 2015-02-23 Welded joint
DK15754821.5T DK3112081T3 (en) 2014-02-26 2015-02-23 Welding Assembly
RU2016134730A RU2659523C2 (ru) 2014-02-26 2015-02-23 Сварное соединение
ZA2016/05031A ZA201605031B (en) 2014-02-26 2016-07-19 Welded joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014035385 2014-02-26
JP2014-035385 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129631A1 true WO2015129631A1 (ja) 2015-09-03

Family

ID=54008949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055061 WO2015129631A1 (ja) 2014-02-26 2015-02-23 溶接継手

Country Status (12)

Country Link
US (1) US10378091B2 (ja)
EP (1) EP3112081B1 (ja)
JP (1) JP6274303B2 (ja)
KR (1) KR101874218B1 (ja)
CN (1) CN106061671B (ja)
CA (1) CA2938190C (ja)
DK (1) DK3112081T3 (ja)
ES (1) ES2700871T3 (ja)
RU (1) RU2659523C2 (ja)
SG (1) SG11201605977TA (ja)
WO (1) WO2015129631A1 (ja)
ZA (1) ZA201605031B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752359B1 (ko) * 2016-02-12 2017-06-29 대우조선해양 주식회사 저온 균열 방지용 고강도 구조물 용접방법
EP3437791A4 (en) * 2016-03-31 2019-08-21 Nippon Steel Corporation WELDED STRUCTURAL ELEMENT
EP3437790A4 (en) * 2016-03-31 2019-08-21 Nippon Steel Corporation STRUCTURAL ELEMENT WELDED
JP2021080510A (ja) * 2019-11-15 2021-05-27 日本製鉄株式会社 オーステナイト系耐熱鋼溶接継手

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210292876A1 (en) * 2016-10-03 2021-09-23 Nippon Steel Corporation Austenitic Heat Resistant Alloy and Welded Joint Including the Same
JP2018176217A (ja) * 2017-04-12 2018-11-15 株式会社Uacj 溶接継手
JP7140207B2 (ja) * 2018-12-05 2022-09-21 日本製鉄株式会社 フェライト系耐熱鋼溶接継手の製造方法
CN109909643B (zh) * 2019-04-30 2020-11-10 上海交通大学 一种用于焊接的中熵合金材料及焊接方法
CN109955004A (zh) * 2019-04-30 2019-07-02 上海交通大学 一种用于焊接的高熵合金材料及应用
CN110306080A (zh) * 2019-08-06 2019-10-08 北方工业大学 一种新型耐蚀镍基合金及其生产工艺
CN111299906B (zh) * 2020-03-26 2021-08-24 江苏博航合金科技有限公司 一种裂解炉用NiCrNb-Zr焊丝及其制备方法
CN111590204B (zh) * 2020-06-04 2022-06-03 华东交通大学 一种激光高熵化填粉焊接抑制焊缝脆性金属间化合物生成的方法
KR102365671B1 (ko) * 2020-12-21 2022-02-23 주식회사 포스코 용접성이 향상된 극저온용 용접이음부
CN112846566B (zh) * 2020-12-31 2022-03-29 钢铁研究总院 固溶强化型耐热合金c-hra-2氩弧焊用焊丝
CN112846565B (zh) * 2020-12-31 2022-03-29 钢铁研究总院 纯固溶强化型耐热合金c-hra-2埋弧焊用实芯焊丝
CN113478118A (zh) * 2021-05-25 2021-10-08 江苏新恒基特种装备股份有限公司 一种增材制造用的镍-铬-铁耐热合金氩弧焊焊丝及制备方法
CN113492280B (zh) * 2021-05-25 2023-03-28 江苏新恒基特种装备股份有限公司 一种增材制造用的铬-钨-钴-镍-铁合金氩弧焊焊丝及其制备方法
CN113547252B (zh) * 2021-06-29 2022-02-22 广东省科学院中乌焊接研究所 一种高韧高耐磨性的热作模具增材制造用丝材及其制备方法
CN115922148A (zh) * 2022-12-27 2023-04-07 西安智能再制造研究院有限公司 一种激光熔覆用金属药芯焊丝及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214374A (ja) * 1994-02-03 1995-08-15 Nippon Steel Corp 高Ni合金溶接ワイヤ
JP2000158184A (ja) * 1998-12-01 2000-06-13 Ugine Savoie Imphy ニッケル基合金で作られた溶接電極およびその合金
JP2004148347A (ja) * 2002-10-30 2004-05-27 Nippon Yakin Kogyo Co Ltd オーステナイト系ステンレス鋼を溶接するための溶接材料およびこの溶接材料を使用した溶接方法
WO2007080856A1 (ja) * 2006-01-11 2007-07-19 Sumitomo Metal Industries, Ltd. 耐メタルダスティング性に優れた金属材料
WO2009107585A1 (ja) * 2008-02-27 2009-09-03 住友金属工業株式会社 耐浸炭性金属材料
WO2012176586A1 (ja) * 2011-06-24 2012-12-27 新日鐵住金株式会社 耐浸炭性金属材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004148A (en) * 1935-06-11 Platen feinting press
US2001107A (en) * 1933-08-24 1935-05-14 Western Electric Co Phase modulating system
CA1099539A (en) * 1978-02-09 1981-04-21 Keizo Ohnishi Method of welding for exfoliation prevention of stainless steel weld-overlay
SU872130A1 (ru) * 1979-12-17 1981-10-15 Предприятие П/Я А-3700 Состав сварочной проволоки
JP2001107196A (ja) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料
JP4154885B2 (ja) 2000-11-16 2008-09-24 住友金属工業株式会社 Ni基耐熱合金からなる溶接継手
JP4506958B2 (ja) 2004-08-02 2010-07-21 住友金属工業株式会社 溶接継手およびその溶接材料
JP4687467B2 (ja) 2006-01-11 2011-05-25 住友金属工業株式会社 加工性及び耐メタルダスティング性に優れた金属材料
JP4692289B2 (ja) 2006-01-11 2011-06-01 住友金属工業株式会社 耐メタルダスティング性に優れた金属材料
JP5463527B2 (ja) * 2008-12-18 2014-04-09 独立行政法人日本原子力研究開発機構 オーステナイト系ステンレス鋼からなる溶接材料およびそれを用いた応力腐食割れ予防保全方法ならびに粒界腐食予防保全方法
JP5310655B2 (ja) 2010-06-17 2013-10-09 新日鐵住金株式会社 溶接材料ならびに溶接継手およびその製造方法
KR101281263B1 (ko) * 2011-12-28 2013-07-03 주식회사 포스코 스테인리스강 용접이음부의 내공식성 향상을 위한 용접 재료

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214374A (ja) * 1994-02-03 1995-08-15 Nippon Steel Corp 高Ni合金溶接ワイヤ
JP2000158184A (ja) * 1998-12-01 2000-06-13 Ugine Savoie Imphy ニッケル基合金で作られた溶接電極およびその合金
JP2004148347A (ja) * 2002-10-30 2004-05-27 Nippon Yakin Kogyo Co Ltd オーステナイト系ステンレス鋼を溶接するための溶接材料およびこの溶接材料を使用した溶接方法
WO2007080856A1 (ja) * 2006-01-11 2007-07-19 Sumitomo Metal Industries, Ltd. 耐メタルダスティング性に優れた金属材料
WO2009107585A1 (ja) * 2008-02-27 2009-09-03 住友金属工業株式会社 耐浸炭性金属材料
WO2012176586A1 (ja) * 2011-06-24 2012-12-27 新日鐵住金株式会社 耐浸炭性金属材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752359B1 (ko) * 2016-02-12 2017-06-29 대우조선해양 주식회사 저온 균열 방지용 고강도 구조물 용접방법
EP3437791A4 (en) * 2016-03-31 2019-08-21 Nippon Steel Corporation WELDED STRUCTURAL ELEMENT
EP3437790A4 (en) * 2016-03-31 2019-08-21 Nippon Steel Corporation STRUCTURAL ELEMENT WELDED
JP2021080510A (ja) * 2019-11-15 2021-05-27 日本製鉄株式会社 オーステナイト系耐熱鋼溶接継手
JP7360032B2 (ja) 2019-11-15 2023-10-12 日本製鉄株式会社 オーステナイト系耐熱鋼溶接継手

Also Published As

Publication number Publication date
CN106061671A (zh) 2016-10-26
US20160355911A1 (en) 2016-12-08
RU2016134730A (ru) 2018-03-29
JP6274303B2 (ja) 2018-02-07
JPWO2015129631A1 (ja) 2017-03-30
KR20160107342A (ko) 2016-09-13
EP3112081B1 (en) 2018-10-17
DK3112081T3 (en) 2018-12-17
RU2659523C2 (ru) 2018-07-02
CN106061671B (zh) 2020-08-25
SG11201605977TA (en) 2016-08-30
CA2938190C (en) 2018-08-21
RU2016134730A3 (ja) 2018-03-29
ZA201605031B (en) 2018-01-31
ES2700871T3 (es) 2019-02-19
EP3112081A1 (en) 2017-01-04
KR101874218B1 (ko) 2018-07-03
CA2938190A1 (en) 2015-09-03
EP3112081A4 (en) 2017-08-23
US10378091B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
JP6274303B2 (ja) 溶接継手
CA2711415C (en) Carburization resistant metal material
JP5177330B1 (ja) 耐浸炭性金属材料
JP6969666B2 (ja) オーステナイト系ステンレス鋼溶接継手
JP4506958B2 (ja) 溶接継手およびその溶接材料
JP6870749B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
AU2007289709B2 (en) Martensitic stainless steel for welded structure
JP4513466B2 (ja) 溶接継手および溶接材料
KR20200058515A (ko) 오스테나이트계 스테인리스강
JP5310655B2 (ja) 溶接材料ならびに溶接継手およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505205

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2938190

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15117462

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015754821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754821

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167023159

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016134730

Country of ref document: RU

Kind code of ref document: A