WO2012172862A1 - パワー半導体モジュールおよびその製造方法 - Google Patents

パワー半導体モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2012172862A1
WO2012172862A1 PCT/JP2012/060278 JP2012060278W WO2012172862A1 WO 2012172862 A1 WO2012172862 A1 WO 2012172862A1 JP 2012060278 W JP2012060278 W JP 2012060278W WO 2012172862 A1 WO2012172862 A1 WO 2012172862A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
sealing material
semiconductor module
semiconductor element
copper
Prior art date
Application number
PCT/JP2012/060278
Other languages
English (en)
French (fr)
Inventor
柳川 克彦
池田 良成
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112012002165.7T priority Critical patent/DE112012002165T5/de
Priority to US14/125,019 priority patent/US9287187B2/en
Priority to CN201280028969.9A priority patent/CN103620763A/zh
Publication of WO2012172862A1 publication Critical patent/WO2012172862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power semiconductor module sealing structure, and more particularly to a power semiconductor module using silicon carbide and a method for manufacturing the same.
  • FIG. 2 shows a cross-sectional structure diagram of a conventional power semiconductor module.
  • a silicon power semiconductor element 25 is soldered to a copper base substrate 23 having an insulating layer 21 and a circuit pattern 22 by a solder layer 24a. Further, the lead frame 27 is soldered by the solder layer 26b, and the external connection terminals 28 are attached.
  • the number of silicon power semiconductor elements 25 mounted on the power semiconductor module 200 is determined by the volume of the power semiconductor module 200, and is attached to the copper base substrate 23 having a size matching this volume.
  • the sealing material layer 30 is a silicone gel material, which is a two-component mixed reaction material. A predetermined amount of this silicone gel material is weighed, mixed and stirred, defoamed for 10 minutes in a vacuum state of 13.33 Pa (0.1 Torr), and then poured into the case 29. Then, after secondary defoaming for 10 minutes in a vacuum state of 13.33 Pa, heat curing is performed at 120 ° C. for 2 hours, the lid 31 is attached, and the power semiconductor module 200 is completed.
  • the power semiconductor module 200 is used by being attached to a cooling fin coated with a heat conductive paste.
  • a large current flows through the power semiconductor element 25 and the circuit pattern 22. Therefore, heat generated in the power semiconductor element 25 is transferred from the copper base substrate 23 to the cooling fins via the heat conductive paste 12. It is important to heat and cool.
  • silicon carbide Since silicon carbide has superior electrical characteristics compared to silicon, it is assumed that the material of the power semiconductor element will be replaced from silicon to silicon carbide in the future.
  • a power semiconductor element made of silicon carbide has superior operating characteristics at high temperatures as compared with silicon. Therefore, when silicon carbide is used for the power semiconductor element, the current density flowing through the power semiconductor element can be increased.
  • the amount of heat generation increases, and the temperature near the element of the sealing material for sealing the power semiconductor element becomes high.
  • the element temperature is used at about 200 ° C.
  • the outer peripheral temperature of the power semiconductor module tends to be lower than the temperature near the element.
  • the heat resistance performance of the sealing material in the vicinity of the element is important, and it is important to apply a sealing material having stable performance even in an operating region at a high temperature.
  • a sealing material to which aluminum hydroxide or the like is added as a flame retardant is used as a sealing material for a power semiconductor module equipped with a silicon carbide element.
  • the sealing material is likely to be thermally deteriorated due to the influence of the flame retardant, and a decrease in heat resistance has been a problem.
  • An object of the present invention is to provide a power semiconductor module using a sealing material suitable for the temperature in the vicinity of the element of the power semiconductor module using the silicon carbide element and the temperature of the outer periphery in order to solve the above-described problems. There is to do.
  • the above object is An insulating layer; A copper base substrate comprising a first copper block and a second copper block, each fixed to one side and the other side of the insulating layer; A plurality of power semiconductor elements using silicon carbide, one surface of which is fixed onto the first copper block by a conductive bonding layer; A plurality of implant pins fixed to each other surface of the power semiconductor element by a conductive bonding layer; A printed circuit board fixed to the implant pin and disposed opposite the power semiconductor element; A first sealing material which is disposed at least between the power semiconductor element and the printed circuit board and does not add a flame retardant; A second encapsulant added with a flame retardant, disposed to cover the first encapsulant; Is achieved.
  • the thermal deformation temperature of the first sealing material is preferably 175 ° C. to 225 ° C. Further, it is preferable that the thermal expansion coefficient of the first sealing member is 1.5 ⁇ 10 -5 /°C ⁇ 1.8 ⁇ 10 -5 / °C . Furthermore, the adhesion strength of the first sealing material to the copper base substrate is preferably 10 MPa to 30 MPa. Further, the heat deformation temperature of the second sealing material is preferably 100 ° C. to 175 ° C. It is preferred thermal expansion coefficient of the second sealing member is 1.5 ⁇ 10 -5 /°C ⁇ 1.8 ⁇ 10 -5 / °C .
  • the adhesion strength of the second sealing material to the copper base substrate is preferably 10 MPa to 30 MPa. It is preferable to use a liquid epoxy resin for the first sealing material and the second sealing material.
  • a step of preparing an insulating layer Preparing a copper base substrate comprising a first copper block and a second copper block on one surface and the other surface of the insulating layer, respectively; Fixing one surface of the plurality of power semiconductor elements using silicon carbide on the first copper block with a conductive bonding layer; Fixing a plurality of implant pins to the other surface of each of the power semiconductor elements with a conductive bonding layer; Arranging the printed circuit board so as to be fixed to the implant pin and facing the power semiconductor element; Filling a first encapsulant not adding a flame retardant between at least the power semiconductor element and the printed circuit board; Disposing a second sealing material added with a flame retardant so as to cover the first sealing material; It shall have.
  • the sealing material which does not add a flame retardant as a 1st sealing material, heat resistance can be improved, By using the sealing material which added the flame retardant as a 2nd sealing material Although the heat resistance is inferior to that in the case where no flame retardant is added, the temperature is lower than that around the element, so that a power semiconductor module free from problems can be provided.
  • FIG. 1 is a cross-sectional structure diagram of a molded structure of a silicon carbide power semiconductor module according to an embodiment of the present invention.
  • a method for manufacturing a molded structure of a silicon carbide power semiconductor module will be described with reference to FIG.
  • a plurality of silicon carbide power semiconductor elements 6 are mounted on and attached to the upper surface of a copper base substrate 4 in which the copper block 2 and the copper block 3 are disposed on both surfaces of the insulating layer 1, and further, silicon carbide.
  • An implant type printed circuit board 9 having an implant pin 8 is attached to the upper surface of the power semiconductor element 6 by a conductive bonding layer 7b.
  • the size of the implant pin 8 is, for example, a diameter of 120 ⁇ m and a length of 300 ⁇ m, and about 11 pieces at the maximum are arranged for each power semiconductor element 6.
  • the implant pin 8 is fixed to a conductive pattern (not shown) of the printed board 9.
  • the distance between the printed circuit board 9 and the copper block 3 is about 1 mm, and is about 200 ⁇ m at the narrowest place.
  • the printed circuit board 9 is made of, for example, an epoxy resin or a polyimide resin.
  • an external connection terminal 10 is attached, and a first sealing material 11 is injected and formed by a dispenser in the vicinity of the silicon carbide power semiconductor element 6 between the copper base substrate 4 and the implant-type printed circuit board 9. And the silicon carbide power semiconductor module molded structure 100 is completed.
  • the sealing material injection method of the first sealing material 11 is a position near the silicon carbide power semiconductor element 6 between the copper base substrate 4 and the implant type printed circuit board 9. In addition, it is formed by injection using a dispenser.
  • the first sealing material 11 is a mixed composition of a cycloaliphatic epoxy resin and an acid anhydride curing agent, and is a one-liquid type molded seal containing 85 wt% of silica filler. It is a liquid sealing material in a state where a flame retardant is not added.
  • the curing condition of the first sealing material 11 is 100 ° C. and 1 hour. Regarding the physical properties of the cured material, the thermal deformation temperature of the first sealing material 11 is 225 ° C., the thermal expansion coefficient is 1.5 ⁇ 10 ⁇ 5 / ° C., and the adhesive strength to the copper base substrate 4 is 23 MPa.
  • the material properties of the first sealing material 11 will be described.
  • the thermal deformation temperature of the sealing material 11 is 175 ° C. to 225 ° C.
  • the inflection point with respect to the thermal characteristics of the sealing material 11 increases, Since an increase in thermal resistance due to fatigue can be prevented, a power semiconductor module with high heat resistance and high reliability can be obtained.
  • the temperature of the power semiconductor element is about 200 ° C.
  • the thermal deformation temperature of the encapsulant 11 needs to be at least 175 ° C.
  • the upper limit of the heat distortion temperature is 225 ° C. with a margin.
  • the thermal expansion coefficient of the sealing material 11 is equivalent to the thermal expansion coefficient of copper, the warp of the copper base substrate 4 including the insulating layer 1 and the copper blocks 2 and 3, and the upper and lower sides of the power semiconductor element 6.
  • the increase in thermal resistance due to thermal fatigue of the conductive bonding layers 5a and 7b can be prevented, and a highly reliable power semiconductor module can be provided.
  • the power semiconductor element 6 can be firmly bonded to the copper base substrate 4 because the adhesion strength of the sealing material 11 to the copper blocks 2 and 3 is 10 MPa to 30 MPa, An increase in the thermal resistance of the bonding layers 5a and 7b can be prevented, and a highly reliable power semiconductor module can be provided. Therefore, it is confirmed that the power semiconductor device of the present invention has high reliability in load tests such as a power cycle and a heat shock test. In the heat shock test, the tendency of the warp of the copper base substrate 4 and the thermal resistance of the power semiconductor module to increase with an increase in the number of cycles is small.
  • the method of sealing the silicon carbide power semiconductor unit 100 with the second sealing material 12 is housed in a cavity formed by an upper and lower mold (not shown) for liquid transfer molding, and the molding temperature is raised to 160 ° C. Wait in the warm state.
  • the upper and lower molds for transfer molding are provided with a pot portion and a runner portion of the second sealing material 12.
  • the cavity, the pot portion, and the runner portion are provided in the upper and lower molds, the pot for storing the resin, the cavity for storing the power semiconductor element 6 to be sealed with the resin, and the pot. It is a runner that is a path for the resin to guide the resin to the cavity.
  • the second sealing material 12 is a mixed composition of a cycloaliphatic epoxy resin and an acid anhydride curing agent, with a silica filler of 85 wt% and aluminum hydroxide as a flame retardant. 1 liquid type molding sealing material.
  • the thermal deformation temperature of the encapsulant is 175 ° C.
  • the thermal expansion coefficient is 1.5 ⁇ 10 ⁇ 5 / ° C.
  • the adhesive strength to the first encapsulant is 20 MPa.
  • the material properties of the second sealing material 12 are basically the same as those of the first sealing material 11.
  • the heat deformation temperature since the temperature of the power semiconductor element 6 is about 200 ° C., the temperature in the vicinity of the element is high. Therefore, the heat deformation temperature of about the first sealing material 11 is required, but the outside of the element is Since the temperature is not so high, not much heat resistance is required, and a relatively inexpensive sealing material can be used. Therefore, the upper limit of the thermal deformation temperature of the sealing material 12 is set to 175 ° C., which is the lower limit of the thermal deformation temperature of the sealing material 11, because the temperature of the power semiconductor element 6 is about 200 ° C. The lower limit of the heat deformation temperature of 12 is set to 100 ° C. because heat is not transmitted so much to the sealing material 12.
  • the thermal expansion coefficient is matched to the thermal expansion coefficient of copper. In this way, the thermal expansion coefficients of the first sealing material 11 and the second sealing material 12 are equal, so that the module as a whole is not subjected to non-uniform stress and moves in the same way.
  • the adhesive strength is also about the same as the first sealing material. If it is 30 MPa or more, the strength of the sealing material itself is the limit, and if it is 10 MPa or less, the adhesion between the sealing material and copper is weakened, and the device does not have the power to peel off and guard the element.
  • one liquid type molding sealing material comprising a cycloaliphatic epoxy resin and an acid anhydride curing agent is preliminarily removed for 10 minutes in a vacuum state of 13.33 Pa in advance. After foaming, inject into the cylinder container. After that, the required amount is injected from the cylinder container into the pot part in the mold, and then the upper and lower molds are clamped, and the molding sealing material is pressed into the mold cavity from the pot part via the runner part. Then, the molding of the silicon carbide power semiconductor module is completed.
  • the molding conditions are such that the clamping pressure of the upper and lower molds is 150 kg / cm 2 (14.7 MPa), the gelation time at 160 ° C. is 1 minute, and the curing time is 3 minutes.
  • the second sealing material 12 can be filled, and at the same time, molding can be performed in a short time, and a power semiconductor module with high productivity and reliability can be provided.
  • the first sealing material 11 disposed in the vicinity of the element since it is not in direct contact with air, the heat resistance performance is improved by using a sealing material to which no flame retardant is added from the situation where oxidation degradation is small. Can do.
  • the second sealing material 12 since it is in direct contact with air at the outer periphery of the power semiconductor module, a structure resistant to oxidative degradation is provided by using a sealing material to which a flame retardant is added. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【目的】炭化シリコン素子を用いたパワー半導体モジュールの素子近傍の温度と、外周部の温度に適した封止材を使用したパワー半導体モジュールを提供する。 【解決手段】絶縁層と、前記絶縁層の一方の面と他方の面にそれぞれ固着された、第1銅ブロックと第2銅ブロックとを備える銅ベース基板と、前記第1銅ブロックの上にその一方の面が導電接合層により固着された、炭化シリコンを用いた複数のパワー半導体素子と、前記パワー半導体素子のそれぞれの他方の面に導電接合層により固着された複数のインプラントピンと、前記インプラントピンに固着され、パワー半導体素子に対向して配置されたプリント基板と、少なくともパワー半導体素子とプリント基板との間に配置された、難燃剤を添加しない第1の封止材と、前記第1の封止材を覆うように配置された、難燃剤を添加した第2の封止材と、を備えるパワー半導体モジュール。

Description

パワー半導体モジュールおよびその製造方法
 本発明は、パワー半導体モジュールの封止構造に関するもので、特に、炭化シリコンを用いたパワー半導体モジュールとその製造方法に関する。
 図2に、従来のパワー半導体モジュールの断面構造図を示す。パワー半導体モジュール200は、絶縁層21と回路パターン22を有する銅ベース基板23に、半田層24aによってシリコンパワー半導体素子25が半田付けされる。そして、さらに半田層26bによりリードフレーム27が半田付けされ、外部接続端子28が取り付けられる。
 パワー半導体モジュール200に搭載されるシリコンパワー半導体素子25の数は、パワー半導体モジュール200の容積で決まり、この容積に合わせた大きさの銅ベース基板23に取り付けられる。
 この状態で、ケース29が取り付けられ、銅ベース基板23との接合部を接着剤(図示せず)でシールし、封止材層30が充填される。封止材層30として使用されるのはシリコーンゲル材料で、2液混合型の反応材料である。このシリコーンゲル材料を所定量計量したのち、混合攪拌し、13.33Pa(0.1Torr)の真空状態で10分間一次脱泡したのちに、ケース29内に注型される。その後、13.33Paの真空状態で10分間2次脱泡したのちに、120℃で2時間加熱硬化し、フタ31が取り付けられ、パワー半導体モジュール200が完成する。
 その後、熱伝導ペーストが塗布された冷却フィンに取り付けられて、パワー半導体モジュール200は使用される。
 パワー半導体モジュール200の動作時は、パワー半導体素子25や回路パターン22に大電流が流れるため、パワー半導体素子25で発生した熱を、銅ベース基板23から熱伝導ペースト12を介して冷却フィンに伝熱し冷却することが大切となる。
特開2007-116172号公報
 炭化シリコンはシリコンに比べて優れた電気的特性を有しているため、パワー半導体素子の材料は、将来的に、シリコンから炭化シリコンに置き換わることが想定されている。炭化シリコンからなるパワー半導体素子は、シリコンに比べて高温での動作特性が優れているため、パワー半導体素子に炭化シリコンを用いた場合、パワー半導体素子に流れる電流密度を高めることができる。
 しかし、パワー半導体素子に高電流密度の電流を流すと、発熱量が増大し、パワー半導体素子を封止する封止材の素子近傍の温度が高温になる。パワー半導体素子をシリコンから炭化シリコンに変更した場合、素子温度は200℃程度で使用される。一方、パワー半導体モジュールの外周温度は、素子近傍の温度に比べて、低い温度となる傾向を示す。
 このため、素子近傍の封止材の耐熱性能が重要となり、高温での動作領域においても安定な性能を有する封止材を適用することが重要となる。
 炭化シリコン素子を搭載したパワー半導体モジュールの封止材には、ノンハロゲン化に対応するため、難燃剤として、水酸化アルミニウム等を添加した封止材が使用される。しかしこの場合、封止材は、難燃剤の影響で熱劣化し易くなり、耐熱性の低下が問題であった。
 本発明の目的は、上述の問題点を解決するため、炭化シリコン素子を用いたパワー半導体モジュールの素子近傍の温度と、外周部の温度とに適した封止材を使用したパワー半導体モジュールを提供することにある。
本発明によれば、上記の目的は、
絶縁層と、
 前記絶縁層の一方の面と他方の面にそれぞれ固着された、第1銅ブロックと第2銅ブロックとを備える銅ベース基板と、
 前記第1銅ブロックの上にその一方の面が導電接合層により固着された、炭化シリコンを用いた複数のパワー半導体素子と、
 前記パワー半導体素子のそれぞれの他方の面に導電接合層により固着された複数のインプラントピンと、
 前記インプラントピンに固着され、パワー半導体素子に対向して配置されたプリント基板と、
 少なくともパワー半導体素子とプリント基板との間に配置された、難燃剤を添加しない第1の封止材と、
 前記第1の封止材を覆うように配置された、難燃剤を添加した第2の封止材と、
を備えることにより達成される。
 パワー半導体素子と銅ベース基板、ならびにパワー半導体素子と複数のインプラントピンとの固着は、導電接合層で行なう。
ここで、第1の封止材の熱変形温度が、175℃~225℃であることが好ましい。
 また、第1の封止材の熱膨張係数が1.5×10-5/℃~1.8×10-5/℃であることが好ましい。
 さらに、第1の封止材の銅ベース基板に対する接着強さが10MPa~30MPaであることが好ましい。
 また、第2の封止材の熱変形温度が100℃~175℃であることが好ましい。
 第2の封止材の熱膨張係数が1.5×10-5/℃~1.8×10-5/℃であることが好ましい。
 第2の封止材の銅ベース基板に対する接着強さが、10MPa~30MPaであることが好ましい。
 第1の封止材ならびに第2の封止材に液状エポキシ樹脂を用いることが好ましい。
 さらに、本発明の半導体装置の製造方法によれば、
絶縁層を用意する工程と、
 前記絶縁層の一方の面と他方の面にそれぞれ第1銅ブロックと第2銅ブロックを備える銅ベース基板を用意する工程と、
 前記第1の銅ブロックの上に炭化シリコンを用いた複数のパワー半導体素子の一方の面を導電接合層により固着する工程と、
 前記パワー半導体素子のそれぞれの他方の面に複数のインプラントピンを導電接合層により固着する工程と、
 前記インプラントピンに固着されパワー半導体素子に対向するようにプリント基板を配置する工程と、
少なくともパワー半導体素子とプリント基板との間に難燃剤を添加しない第1の封止材を充填する工程と、
 前記第1の封止材を覆うように難燃剤を添加した第2の封止材を配置する工程と、
を有することとする。
 本発明によれば、上記の構成を採用した結果、パワー半導体素子の上下の導電接合層の熱疲労による熱抵抗の増大が防止され、信頼性の高いパワー半導体モジュールを提供することが可能となる。
 また、第1の封止材として、難燃剤を添加しない封止材を用いることにより、耐熱性能を高めることができ、第2の封止材として難燃剤を添加した封止材を用いることにより、耐熱性は難燃剤を添加しない場合に比べ劣るものの、温度が素子周囲よりは低いため、問題の無いパワー半導体モジュールを提供することができる。
本発明の実施例の、炭化シリコンパワー半導体モジュールの成形構造体の断面構造図である。 従来のシリコンパワー半導体モジュールの断面構造図である。
 発明の実施の形態を、以下に、図1に記載した実施例を用いて詳細に説明する。
[実施例]
 図1は、本発明の実施例である炭化シリコンパワー半導体モジュールの成形構造体の断面構造図である。
 図1により、炭化シリコンパワー半導体モジュールの成形構造体の製造方法について説明する。
 絶縁層1の両面に銅ブロック2と銅ブロック3とを配置した銅ベース基板4の上面に、導電接合層5aにより炭化シリコンパワー半導体素子6が複数個、搭載されて取り付けられ、さらに、炭化シリコンパワー半導体素子6の上面に導電接合層7bにより、インプラントピン8を有するインプラント方式のプリント基板9が取り付けられる。
 ここで、インプラントピン8について説明すると、インプラントピン8の大きさは例えば直径120μm、長さ300μmであり、各パワー半導体素子6に対して、最大で11個程度が配置される。
 インプラントピン8はプリント基板9の図示しない導電パターンに固着されている。プリント基板9と銅ブロック3との間隔は1mm程度であり、最も狭いところでは200μm程度である。プリント基板9は、例えばエポキシ樹脂やポリイミド樹脂からなる。
さらに外部接続端子10を取り付け、銅ベース基板4とインプラント方式のプリント基板9の間の炭化シリコンパワー半導体素子6の近傍に第1の封止材11をディスペンサーにより注入形成し、図示しない金型内に載置して、第2の封止材12により封止され、炭化シリコンパワー半導体モジュール成形構造体100が完成する。
 炭化シリコンパワー半導体モジュール成形構造体100における、第1の封止材11の封止材注入方法は、銅ベース基板4とインプラント方式プリント基板9の間の、炭化シリコンパワー半導体素子6の近傍の位置に、ディスペンサーにより注入形成するものである。
 第1の封止材11として使用されるのは、環状脂肪族系のエポキシ樹脂と酸無水物硬化剤との混合組成物で、シリカ充填材が85wt%配合された、1液状型の成形封止材料で、難燃剤を添加しない状態の液状封止材である。
 第1の封止材11の硬化条件は、100℃、1時間である。
 硬化後の材料物性は、第1の封止材11の熱変形温度が225℃で、熱膨張係数が1.5×10-5/℃、銅ベース基板4に対する接着強さが23MPaである。
 ここで、第1の封止材11の材料物性について述べる。
 封止材11の熱変形温度が、175℃から225℃であると、封止材11の熱特性に対する変曲点が高くなり、パワー半導体素子6の上下の導電接合層5a、7bの、熱疲労による熱抵抗の増大を防止できるので、耐熱性能が高く、信頼性の高い、パワー半導体モジュールを得ることができる。パワー半導体素子の温度は、200℃程度になるので、封止材11の熱変形温度は最低でも175℃が必要である。熱変形温度の上限は、余裕を持って225℃としている。
 さらに、封止材11の上記した熱膨張係数は、銅の熱膨張係数と同等であるので、絶縁層1、銅ブロック2、3を備える銅ベース基板4の反りと、パワー半導体素子6の上下の導電接合層5a、7bの熱疲労とによる熱抵抗の増大を防止し、信頼性の高いパワー半導体モジュールを提供することができる。
 加えて、封止材11の銅ブロック2、3に対する接着強さが10MPaから30MPaであることにより、パワー半導体素子6を銅ベース基板4に強固に接着できるので、パワー半導体素子6の上下の導電接合層5a、7bの熱抵抗の増大を防止し、信頼性の高いパワー半導体モジュールを提供することができる。したがって、本発明のパワー半導体装置は、パワーサイクルやヒートショック試験などの負荷試験において、高い信頼性を備えることが確認される。ヒートショック試験において、サイクル数の増加とともに銅ベース基板4の反りとパワー半導体モジュールの熱抵抗が増加する傾向が小さい。
 さて、炭化シリコンパワー半導体ユニット100の第2の封止材12による封止方法は、液状トランスファー成形用の上下型(図示せず)によって作られるキャビティに収納され成形温度160℃に昇温させて、保温状態で待機する。トランスファー成形用の上下型には、第2の封止材12のポット部とランナー部とが設けられている。なお、ここで、キャビティ、ポット部、ランナー部とは、上下型に設けられている、樹脂を収容するポット、樹脂封止すべきパワー半導体素子6が収容されるキャビティ、及びポットに収容された樹脂をキャビティに導くための樹脂の通り道であるランナーのことである。
 第2の封止材12として使用されるのは、環状脂肪族系のエポキシ樹脂と酸無水物硬化剤との混合組成物で、シリカ充填材が85wt%に、難燃剤として水酸化アルミニウムが配合された1液状型の成形封止材料である。
 硬化後の材料物性としては、封止材の熱変形温度が175℃で、熱膨張係数が1.5×10-5/℃で、第1の封止材に対する接着強さが20MPaである。
 第2の封止材12の材料物性は基本的には第1の封止材11と同様である。
 熱変形温度としては、パワー半導体素子6の温度が200℃程度であるので、素子近傍の温度は高いので、第1の封止材11程度の熱変形温度が必要となるが、素子の外側はそれほど高温にはならないので、それほどの耐熱性能は要求されず、比較的安価な封止材を用いることができる。そこで、封止材12の熱変形温度の上限は、パワー半導体素子6の温度が200℃程度になることから、封止材11の熱変形温度の下限である、175℃としており、封止材12の熱変形温度の下限は、封止材12まではそれほど熱が伝わらないことから、100℃としている。
 熱膨張係数については、銅の熱膨張係数に合わせている。このようにすれば、第1の封止材11と第2の封止材12の熱膨張係数が同等であるので、モジュール全体として、不均一な応力がかからず、同じ動きをする。
 接着強さも、第1の封止材と同程度である。30MPa以上では、封止材料自体の強度が限界であり、10MPa以下であると、封止材と銅との接着が弱くなり、剥離し、素子をガードする力が無くなってしまう。
 液状封止材によるトランスファー成形方法としては、環状脂肪族系のエポキシ樹脂と酸無水物硬化剤とからなる1液状型の成形封止材を、予め13.33Paの真空状態で10分間1次脱泡したのちにシリンダー容器に注入する。その後、シリンダー容器から金型内のポット部に必要量注入し、その後、上下金型の型締めを行い、成形封止材料は、ポット部からランナー部を経由して金型キャビティに圧入されて、炭化シリコンパワー半導体モジュールの成形が完了する。成形条件は上下金型の型締め圧は150kg/cm(14.7MPa)で、160℃でのゲル化時間は1分で、硬化時間は3分である。
 このように、液状封止材において液状エポキシ樹脂を使用することにより、銅ベース基板4とインプラント方式のプリント基板9との間に、予め注入硬化してある第1の封止材11の外周部に、第2の封止材12の充填が行なえると同時に、短時間での成形が可能となり、生産性と信頼性の高いパワー半導体モジュールを提供することができる。
 また、素子近傍に配置する第1の封止材11としては、直接空気に接していないため、酸化劣化が少ない状況から、難燃剤を添加しない封止材を使用して、耐熱性能を高めることができる。また、第2の封止材12としては、パワー半導体モジュールの外周で直接空気に接することから、難燃剤を添加した封止材を使用することにより、酸化劣化に対して強い構造を提供することができる。
1   絶縁層
2   銅ブロック
3   銅ブロック
4   銅ベース基板
5a  導電接合層
6   炭化シリコン半導体素子
7b  導電接合層
8   インプラントピン
9   インプラント方式プリント基板
10  外部端子
11  第1の封止材
12  第2の封止材
13  取付け金具
100 炭化シリコン半導体パワーモジュール成形構造体
21  絶縁層
22  回路パターン
23  銅ベース基板
24a 半田層
25  シリコンパワー半導体素子
26b 半田層
27  リードフレーム
28  外部接続端子
29  ケース
30  封止材
31  フタ
200 シリコンパワー半導体モジュール構造体

Claims (9)

  1. 絶縁層と、
    前記絶縁層の一方の面と他方の面にそれぞれ固着された、第1銅ブロックと第2銅ブロックとを備える銅ベース基板と、
    前記第1銅ブロックの上にその一方の面が導電接合層により固着された、炭化シリコンを用いた複数のパワー半導体素子と、
    前記パワー半導体素子のそれぞれの他方の面に導電接合層により固着された複数のインプラントピンと、
    前記インプラントピンに固着され、パワー半導体素子に対向して配置されたプリント基板と、
    少なくともパワー半導体素子とプリント基板との間に配置された、難燃剤を添加しない第1の封止材と、
    前記第1の封止材を覆うように配置された、難燃剤を添加した第2の封止材と、
    を備えることを特徴とするパワー半導体モジュール。
  2. 第1の封止材の熱変形温度が、175℃~225℃であることを特徴とする請求項1に記載のパワー半導体モジュール。
  3. 第1の封止材の熱膨張係数が1.5×10-5/℃~1.8×10-5/℃であることを特徴とする請求項1に記載のパワー半導体モジュール。
  4. 第1の封止材の銅ベース基板に対する接着強さが10MPa~30MPaであることを特徴とする請求項1に記載のパワー半導体モジュール。
  5. 第2の封止材の熱変形温度が100℃~175℃であることを特徴とする請求項1に記載のパワー半導体モジュール。
  6. 第2の封止材の熱膨張係数が1.5×10-5/℃~1.8×10-5/℃であることを特徴とする請求項1に記載のパワー半導体モジュール。
  7. 第2の封止材の銅ベース基板に対する接着強さが、10MPa~30MPaであることを特徴とする請求項1に記載のパワー半導体モジュール。
  8. 第1の封止材ならびに第2の封止材に液状エポキシ樹脂を用いることを特徴とする請求項1に記載のパワー半導体モジュール。
  9. 絶縁層を用意する工程と、
    前記絶縁層の一方の面と他方の面にそれぞれ第1銅ブロックと第2銅ブロックを備える銅ベース基板を用意する工程と、
    前記第1の銅ブロックの上に炭化シリコンを用いた複数のパワー半導体素子の一方の面を導電接合層により固着する工程と、
    前記パワー半導体素子のそれぞれの他方の面に複数のインプラントピンを導電接合層により固着する工程と、
    前記インプラントピンに固着されパワー半導体素子に対向するようにプリント基板を配置する工程と、
    少なくともパワー半導体素子とプリント基板との間に難燃剤を添加しない第1の封止材を充填する工程と、
    前記第1の封止材を覆うように難燃剤を添加した第2の封止材を配置する工程と、
    を有することを特徴とするパワー半導体モジュールの製造方法。
PCT/JP2012/060278 2011-06-16 2012-04-16 パワー半導体モジュールおよびその製造方法 WO2012172862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012002165.7T DE112012002165T5 (de) 2011-06-16 2012-04-16 Leistungshalbleitermodul und Verfahren zu dessen Herstellung
US14/125,019 US9287187B2 (en) 2011-06-16 2012-04-16 Power semiconductor module
CN201280028969.9A CN103620763A (zh) 2011-06-16 2012-04-16 功率半导体模块以及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-134211 2011-06-16
JP2011134211A JP5857464B2 (ja) 2011-06-16 2011-06-16 パワー半導体モジュールおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2012172862A1 true WO2012172862A1 (ja) 2012-12-20

Family

ID=47356860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060278 WO2012172862A1 (ja) 2011-06-16 2012-04-16 パワー半導体モジュールおよびその製造方法

Country Status (5)

Country Link
US (1) US9287187B2 (ja)
JP (1) JP5857464B2 (ja)
CN (1) CN103620763A (ja)
DE (1) DE112012002165T5 (ja)
WO (1) WO2012172862A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037349A1 (ja) * 2013-09-13 2015-03-19 富士電機株式会社 半導体装置
JP2015207632A (ja) * 2014-04-18 2015-11-19 富士電機株式会社 半導体装置およびその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167535B2 (ja) * 2013-01-30 2017-07-26 富士電機株式会社 半導体装置および半導体装置の製造方法
KR101720450B1 (ko) * 2013-03-21 2017-03-27 미쓰비시덴키 가부시키가이샤 반도체 장치
EP2980843B1 (en) * 2013-03-29 2019-04-24 Mitsubishi Materials Corporation Power module
JP6171586B2 (ja) * 2013-06-04 2017-08-02 富士電機株式会社 半導体装置
JP6284031B2 (ja) * 2014-08-05 2018-02-28 富士電機株式会社 耐熱樹脂組成物
US10014237B2 (en) * 2014-12-16 2018-07-03 Kyocera Corporation Circuit board having a heat dissipating sheet with varying metal grain size
WO2016174697A1 (ja) * 2015-04-28 2016-11-03 新電元工業株式会社 半導体モジュール及び半導体モジュールの製造方法
JP6575220B2 (ja) * 2015-08-18 2019-09-18 富士電機株式会社 半導体装置
JP6750263B2 (ja) 2016-03-18 2020-09-02 富士電機株式会社 電力用半導体モジュール
JP2018170362A (ja) * 2017-03-29 2018-11-01 株式会社東芝 半導体モジュール
US11482462B2 (en) 2017-08-25 2022-10-25 Mitsubishi Electric Corporation Power semiconductor device with first and second sealing resins of different coefficient of thermal expansion
JP6860453B2 (ja) * 2017-09-11 2021-04-14 株式会社東芝 パワー半導体モジュール
CN109727925A (zh) * 2017-10-31 2019-05-07 华润微电子(重庆)有限公司 一种提高塑封模块可靠性的封装结构及方法
JP6827404B2 (ja) 2017-11-30 2021-02-10 三菱電機株式会社 半導体装置および電力変換装置
JP7308791B2 (ja) * 2020-05-13 2023-07-14 三菱電機株式会社 電力半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206651A (ja) * 1990-11-30 1992-07-28 Toshiba Corp 半導体装置
JP2003082241A (ja) * 2001-09-17 2003-03-19 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP2009064852A (ja) * 2007-09-05 2009-03-26 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2010219420A (ja) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050534B4 (de) 2005-10-21 2008-08-07 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206651A (ja) * 1990-11-30 1992-07-28 Toshiba Corp 半導体装置
JP2003082241A (ja) * 2001-09-17 2003-03-19 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP2009064852A (ja) * 2007-09-05 2009-03-26 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2010219420A (ja) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd 半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037349A1 (ja) * 2013-09-13 2015-03-19 富士電機株式会社 半導体装置
CN105190872A (zh) * 2013-09-13 2015-12-23 富士电机株式会社 半导体装置
US9443779B2 (en) 2013-09-13 2016-09-13 Fuji Electric Co., Ltd. Semiconductor device
JPWO2015037349A1 (ja) * 2013-09-13 2017-03-02 富士電機株式会社 半導体装置
JP2015207632A (ja) * 2014-04-18 2015-11-19 富士電機株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20140124936A1 (en) 2014-05-08
JP2013004729A (ja) 2013-01-07
CN103620763A (zh) 2014-03-05
JP5857464B2 (ja) 2016-02-10
DE112012002165T5 (de) 2014-02-27
US9287187B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5857464B2 (ja) パワー半導体モジュールおよびその製造方法
JP5807348B2 (ja) 半導体装置およびその製造方法
JP5638623B2 (ja) 半導体装置および半導体装置の製造方法
JP6168153B2 (ja) 半導体装置
JP5847165B2 (ja) 半導体装置
JP5228519B2 (ja) 半導体装置
JP2010219420A (ja) 半導体装置
JP2013219267A (ja) パワーモジュール
JP2013016684A (ja) 半導体装置および半導体装置の製造方法
JP6057927B2 (ja) 半導体装置
JP2009252838A (ja) 半導体装置
JP2014183302A (ja) 半導体モジュール及びその製造方法
JP2015130456A (ja) 半導体装置
JP5328740B2 (ja) 半導体装置および半導体装置の製造方法
JP6360035B2 (ja) 半導体装置
JP6167535B2 (ja) 半導体装置および半導体装置の製造方法
JP4760876B2 (ja) 電子装置およびその製造方法
JP2009070934A (ja) パワー半導体モジュール及びその製法
JP5966414B2 (ja) パワー半導体モジュール
JP2011187819A (ja) 樹脂封止型パワーモジュールおよびその製造方法
JP2010108955A (ja) 半導体装置およびその製造方法
US20160071777A1 (en) Semiconductor package and semiconductor device
JP6299372B2 (ja) 半導体装置およびその製造方法
KR101216932B1 (ko) 램프형 발광소자
JP4688647B2 (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012002165

Country of ref document: DE

Ref document number: 1120120021657

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14125019

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12800490

Country of ref document: EP

Kind code of ref document: A1