WO2015037349A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2015037349A1
WO2015037349A1 PCT/JP2014/069813 JP2014069813W WO2015037349A1 WO 2015037349 A1 WO2015037349 A1 WO 2015037349A1 JP 2014069813 W JP2014069813 W JP 2014069813W WO 2015037349 A1 WO2015037349 A1 WO 2015037349A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
semiconductor element
resin
sealing layer
sealing material
Prior art date
Application number
PCT/JP2014/069813
Other languages
English (en)
French (fr)
Inventor
裕司 竹松
柳川 克彦
岡本 健次
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201480013059.2A priority Critical patent/CN105190872B/zh
Priority to JP2015536483A priority patent/JP6168153B2/ja
Priority to DE112014000851.6T priority patent/DE112014000851T5/de
Publication of WO2015037349A1 publication Critical patent/WO2015037349A1/ja
Priority to US14/848,171 priority patent/US9443779B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a sealing material for a semiconductor element, and specifically relates to a semiconductor device using SiC (silicon carbide) or GaN (gallium nitride).
  • Si silicon
  • SiC silicon
  • GaN GaN
  • a semiconductor element made of SiC or GaN is superior in operating characteristics at high temperatures as compared to a Si semiconductor element.
  • SiC is said to be operable up to 300 ° C.
  • Patent Document 1 In the sealing of semiconductor elements, from the viewpoint of moisture resistance, a technique is known in which a semiconductor element is covered twice using a first resin and a second resin (see Patent Document 1). In the manufacture of power semiconductor modules, a technique for covering a semiconductor element with a first sealing material layer and a second sealing material layer is known from the viewpoint of preventing thermal fatigue of a solder layer adjacent to the semiconductor element ( (See Patent Document 2).
  • none of the technologies can maintain the sealing characteristics even at a high temperature of, for example, 175 ° C. or higher in a semiconductor element intended to operate at a high temperature such as SiC or GaN.
  • An object of the present invention is to solve the above-described problems, and in response to a semiconductor device using SiC or a GaN element, even if the operating temperature of the semiconductor element is as high as 175 ° C. or higher, the sealing resin is used.
  • An object of the present invention is to provide a highly reliable and durable semiconductor device that is less susceptible to thermal oxidative degradation, can prevent the occurrence of cracks.
  • a semiconductor device is a connection between an insulating substrate bonded to one surface of the semiconductor element and an external circuit bonded to the other surface of the semiconductor element.
  • a molded body formed by sealing a member including a printed circuit board with a sealing material, the sealing material including an epoxy resin main agent, a curing agent, and an inorganic filler having an average particle size of 1 to 100 nm.
  • a first encapsulant that is a nanocomposite resin comprising, and a second encapsulant made of a thermosetting resin, a thermoplastic resin, or a mixture thereof.
  • the first sealing material forms a first sealing layer that covers the semiconductor element and is provided in a region close to the semiconductor element
  • the second sealing material includes It is preferable to constitute a second sealing layer that covers the first sealing layer and forms the outer surface of the molded body.
  • the first sealing layer seals at least a region within 25 ° C. from the maximum operating temperature of the semiconductor element during the operation of the semiconductor element.
  • the second sealing material forms a first sealing layer that covers the semiconductor element, the insulating substrate, and the printed circuit board, and the first sealing material is the first sealing material. It is preferable to constitute a second sealing layer that covers the sealing layer and faces at least a part of the outer surface of the molded body and is provided with a thickness of at least 300 ⁇ m. In particular, it is preferable that the second sealing layer has a thickness of 3 mm or less.
  • the first sealing material forms a first sealing layer that covers the semiconductor element and is provided in a region close to the semiconductor element
  • the second sealing material includes A second sealing layer that covers the first sealing material is configured, and the first sealing material further covers the second sealing layer, and at least a part of the outer surface of the molded body
  • the third sealing layer provided with a thickness of at least 300 ⁇ m.
  • the first sealing layer seals at least a region within 25 ° C. from the maximum operating temperature of the semiconductor element during operation of the semiconductor element, and the third sealing layer is 3 mm or less. It is preferable that it is thickness.
  • the inorganic filler preferably includes at least one of fused silica or crushed silica.
  • the inorganic filler is contained in the nanocomposite resin in an amount of 0.1% by mass to 25% by mass.
  • the semiconductor element is preferably a SiC semiconductor element.
  • the semiconductor device by using the nanocomposite resin as one of the sealing materials, it is possible to protect a semiconductor element or the like that is an internal structure of the semiconductor device. In particular, it is possible to suppress long-term progress of thermal oxidation degradation in the sealing portion of the semiconductor device, suppress cracks, and improve the reliability of the semiconductor device. As a result, it can be suitably used in a semiconductor device using a wide gap semiconductor element such as SiC or GaN.
  • FIG. 1 is a conceptual diagram showing a cross-sectional structure of a semiconductor module molding structure according to the first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a cross-sectional structure of a semiconductor module molding structure according to the second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing a cross-sectional structure of a semiconductor module molding structure according to a third embodiment of the present invention.
  • the present invention is a semiconductor device according to the first embodiment, which is a semiconductor element, an insulating substrate bonded to one surface of the semiconductor element, and an external circuit bonded to the other surface of the semiconductor element.
  • a molded body formed by sealing a member including a printed circuit board for connection with a sealing material, including an epoxy resin main component, a curing agent, and an inorganic filler having an average particle size of 1 to 100 nm.
  • a first encapsulant that is a nanocomposite resin covers the semiconductor element to form a first encapsulating layer provided in a region adjacent to the semiconductor element, and is formed of a thermosetting resin, a thermoplastic resin, or the like
  • FIG. 1 is a diagram showing a cross-sectional structure of a semiconductor module molded structure 100, which is an example of a semiconductor device according to the first embodiment.
  • a substantially rectangular parallelepiped first copper block 2 is disposed on the lower surface, which is one surface of the insulating layer 1
  • a substantially rectangular parallelepiped second copper block 3 is disposed on the upper surface, which is the other surface.
  • An insulating substrate 4 is configured.
  • a plurality of SiC power semiconductor elements 6 are mounted on and attached to the upper surface of the insulating substrate 4 on the second copper block 3 side via a conductive bonding layer a5.
  • an implant type printed circuit board 9 provided with implant pins 8 is attached by a conductive bonding layer b 7.
  • External connection terminals 10 are attached to the upper surface of the implant-type printed circuit board 9 and the upper surface of the second copper block 3, respectively, so that electrical connection with the outside of the semiconductor module molding structure 100 is possible.
  • the periphery of SiC power semiconductor element 6 is sealed with a first sealing layer made of nanocomposite resin 13. Further, the periphery is sealed with a second sealing layer made of resin 11 to form a molded body, and the semiconductor module molded structure 100 is configured.
  • an attachment fitting 12 that is a bolt insertion hole for attaching the semiconductor module molded structure 100 to a cooler (not shown) is embedded.
  • the upper surface and the lower surface are relative terms indicating the upper and lower sides in the drawing for the purpose of explanation, and the upper and lower sides are not limited in relation to the usage mode or the like of the semiconductor device.
  • the resin sealing portion includes a nanocomposite resin 13 that is a first sealing material, and a thermosetting resin or a thermoplastic resin 11 that is a second sealing material. These are sealed with two types of resins.
  • the nanocomposite resin 13 directly covers the semiconductor element 6 and constitutes a first sealing layer provided in the vicinity of the semiconductor element 6.
  • the nanocomposite resin 13 includes at least an epoxy resin main component, a curing agent, and a nano-sized inorganic filler, and the glass transition temperature after curing is equal to or higher than the maximum operating temperature of the semiconductor element 6, preferably after curing.
  • the resin has a glass transition temperature of 200 ° C. or higher.
  • epoxy resin main agent it is preferable to use a cycloaliphatic epoxy resin, but it is not limited to this.
  • an acid anhydride curing agent is used as the curing agent.
  • the acid anhydride curing agent include methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and isomers and modified products thereof.
  • curing agent can be used individually by 1 type among these, or can mix and use 2 or more types.
  • the inorganic filler a so-called nanofiller having an average particle diameter of 1 to 100 nm, preferably 5 to 50 nm is used. This is to increase the heat resistance of the resin.
  • the average particle diameter means a value measured by a laser diffraction scattering method.
  • the compound constituting the inorganic filler may be one or more selected from the group consisting of SiO 2 , BN, Al 2 O 3 , AlN and Si 3 N 4 , but is not limited thereto.
  • the inorganic filler is preferably at least partially composed of SiO 2 , and more preferably entirely composed of SiO 2 . Further, among SiO 2 , fused silica or crushed silica can be used, and both of them can be used. Fused silica is particularly advantageous in that it can be added in relatively large amounts while suppressing excessive thickening.
  • the addition amount of the inorganic filler in the nanocomposite resin is preferably 0.1 to 25% by mass, more preferably 1 to 15% by mass, when the mass of the entire nanocomposite resin is 100%. . This is from the viewpoint of heat resistance and viscosity characteristics.
  • a curing aid may be added as an optional component. This is to control the curing reaction.
  • curing aids include imidazoles such as 2-ethyl-4-methylimidazole, tertiary amines such as benzyldimethylamine, aromatic phosphine such as triphenylphosphine, boron trifluoride monoethylamine, etc.
  • Lewis acids, boric acid esters, organic metal compounds, organic acid metal salts, and the like are not limited thereto.
  • the nanocomposite resin 13 may include an optional component that is usually added to a semiconductor sealing resin.
  • the optional component include, but are not limited to, a flame retardant, a pigment for coloring a resin, a plasticizer for improving crack resistance, and a silicone elastomer.
  • the amount of these optional components added can be determined as appropriate by those skilled in the art according to the specifications of the semiconductor device.
  • the first sealing layer made of the nanocomposite resin 13 preferably completely covers the entire surface around the semiconductor element 6, and the maximum operating temperature from the maximum operating temperature of the semiconductor element 6 in the resin sealing portion. Is provided in a region where the temperature is lower by 25 ° C. to 30 ° C. This is because the resin sealing portion around the semiconductor element 6 is exposed to a high temperature during operation. If the specifications of the semiconductor element are determined, the temperature of the resin sealing portion during operation can be calculated using general-purpose simulation software. Therefore, the resin sealing part temperature calculated by simulation is at least sealed from the maximum operating temperature of the semiconductor element 6 to a region 25 ° C. lower than the maximum operating temperature, preferably 30 ° C. lower. A first sealing layer is provided.
  • the region having the above temperature can be sealed with the first sealing layer by disposing the nanocomposite resin 13 in a region of about 1 mm around the semiconductor element 6.
  • the nanocomposite resin 13 in a region between the semiconductor element 6 and the printed circuit board and a region around 1 mm in the thickness direction of the semiconductor element 6, a region where the temperature is reached can be formed by the first sealing layer. It can be sealed.
  • thermosetting resin or the thermoplastic resin 11 as the second sealing material covers the first sealing layer made of the first sealing material and constitutes the most part of the resin sealing portion.
  • regulates the outer surface of the said molded object is comprised.
  • the first sealing layer does not need to be completely covered with the second sealing layer, and the first sealing layer made of the nanocomposite resin 13 is partially exposed on the outer surface of the molded body. good.
  • Resin 11 may be a thermosetting resin, a thermoplastic resin, or a mixture thereof that may or may not contain an inorganic filler. Such a resin 11 can be determined in relation to the nanocomposite resin 13 described in detail above. That is, the resin 11 preferably has a difference in thermal expansion coefficient from that of the nanocomposite resin 13 within ⁇ 10 ppm / ° C. This is to reduce the thermal stress after sealing.
  • the resin 11 preferably has an adhesive strength with the nanocomposite resin 13 of 10 MPa or more. This is to prevent cracks from entering the interface between the resin 11 and the nanocomposite resin 13 after sealing.
  • the type of the resin 11 is not limited and may be an epoxy resin, a polyamide resin, or the like that is usually used for resin sealing of a semiconductor device.
  • the resin 11 as the second sealing material may also be a nanocomposite resin as in the case of the first sealing material as long as it satisfies the above-described thermal expansion coefficient characteristics and adhesion characteristics.
  • the second sealing layer is a portion that covers the outer surface of the molded body and constitutes the outer peripheral portion and is in contact with the external atmosphere, use a thermosetting resin that is not easily deteriorated by oxidation. Is more preferable.
  • the surface of the first copper block 2 opposite to the insulating layer 1, that is, the lower surface in the figure is in contact with the resin 11, although it is a form which is covered and does not contact the outside, the present invention is not limited to such a form.
  • a part or the whole of the lower surface of the first copper block 2 may be exposed and connected to a cooling member or the like (not shown).
  • FIG. 1 is a conceptual diagram, and the positional relationship between the first sealing layer made of the illustrated nanocomposite resin 13 and other members is not necessarily as shown in the drawing.
  • the configuration of the insulating substrate 4, the printed circuit board 9, and the implant pin 8 is not limited to the illustrated form.
  • the manufacturing method of the SiC power semiconductor module molded structure 100 mainly includes a process of assembling a member to which the insulating substrate 4, the semiconductor element 6, and the printed circuit board 9 are joined, and a process of resin-sealing the member. .
  • the process of assembling the member to which the insulating substrate 4, the semiconductor element 6, and the printed circuit board 9 are joined is performed by forming the insulating substrate 4 by thermocompression bonding the first copper block 2 and the second copper block 3 on both surfaces of the insulating layer 1.
  • a step of attaching an implant type printed circuit board 9 having an implant pin 8 by the bonding layer b7 and a step of connecting an external connection terminal 10 to the second copper block 3 and the printed circuit board 9 are included.
  • Such an assembly process and specifications of members to be used may be in accordance with ordinary methods disclosed in the prior art.
  • each process other than the resin sealing described in Japanese Patent Application Laid-Open No. 2013-004729 and Japanese Patent Application Laid-Open No. 2012-191010 by the applicant can be applied.
  • the resin sealing step uses the nanocomposite resin 13 to form the first sealing layer, and then uses the resin 11 to form the second sealing layer. Sealing step.
  • the uncured nanocomposite resin 13 is degassed under reduced pressure under normal conditions, and then injected around the semiconductor element 6 with a dispenser or the like, or applied by any means, so that the semiconductor element 6 And the first sealing layer is formed.
  • the thickness of the sealing portion made of the nanocomposite resin can be adjusted to a predetermined thickness.
  • the thickness of the first sealing layer can be a value obtained by the above-described simulation.
  • the nanocomposite resin 13 is thermally cured at a predetermined temperature and time condition, for example, at 100 to 200 ° C. for 1 to 3 hours to complete the first sealing step.
  • the resin 11 depressurized under normal conditions is applied around the first sealing layer obtained in the first sealing step, and transfer molding, liquid transfer molding, potting,
  • the second sealing layer is formed by molding into a predetermined shape that is the outer shape of the molded body by a molding method such as injection molding.
  • the resin 11 is heat-cured under predetermined temperature and time conditions, for example, at 100 to 200 ° C. for 1 to 3 hours in the case of potting, thereby completing the second sealing step.
  • the resin 11 is a thermoplastic resin, the process of thermosetting shall not be included.
  • a molded object provided with a sealing part can be obtained.
  • the semiconductor module molded structure 100 can be obtained.
  • the second sealing step by liquid transfer molding which is an example of the molding method, will be described more specifically.
  • a specific sealing method for the SiC power semiconductor module 200 is as follows.
  • the insulating substrate 4 and the semiconductor element 6 are coated with a first sealing layer in a cavity formed by an upper and lower mold (not shown) for liquid transfer molding.
  • the member which joined the printed circuit board 9 is accommodated, and it waits in the heat retention state heated up to the molding temperature of about 160 degreeC.
  • the upper and lower molds for transfer molding are provided with a pot portion and a runner portion of a sealing material.
  • a first sealing material composed of one liquid type nanocomposite resin 13 composed of a cycloaliphatic epoxy resin, an acid anhydride curing agent and an inorganic filler is prepared, and a vacuum of 0.1 Torr (13.33 Pa) is prepared in advance. Primary defoaming for 10 minutes in the state, then pour into the cylinder container. A necessary amount of the first sealing material is injected from the cylinder container into the pot portion in the mold, and then the upper and lower molds are clamped. Finally, the first sealing material is press-fitted into the mold cavity from the pot part via the runner part, and the molding is completed.
  • the molding conditions are that the upper and lower mold clamping pressures are 150 kg / cm 2 , the gelation time at 160 ° C. is 1 minute, the curing time is 3 minutes, and the viscosity of the first sealing material made of the nanocomposite resin 13 is: The pressure can be about 1 to 10 Pa ⁇ s.
  • the semiconductor module molded structure 100 and the manufacturing method thereof according to the first embodiment even when a semiconductor element whose maximum operating temperature can be as high as about 200 ° C. is used, it is difficult to be thermally deteriorated and durable.
  • the high semiconductor module molding structure 100 can be provided.
  • the resin sealing portion in the vicinity of a semiconductor element that can be at a high temperature can be intensively heated with a nanocomposite resin. It is advantageous.
  • the present invention is a semiconductor device according to the second embodiment, which is a semiconductor element, an insulating substrate bonded to one surface of the semiconductor element, and an external circuit bonded to the other surface of the semiconductor element. And a second sealing material that is a thermosetting resin or a thermoplastic resin covers the semiconductor element.
  • a first sealing material constituting the first sealing layer and being a nanocomposite resin covers the first sealing layer and faces at least a part of the outer surface of the molded body, and is at least 300 ⁇ m.
  • the second sealing layer provided with a thickness of is configured.
  • FIG. 2 is a diagram showing a cross-sectional structure of a semiconductor module molded structure 200, which is an example of a semiconductor device according to the second embodiment.
  • the configurations of the insulating substrate 4, the semiconductor element 6, the implant type printed circuit board 9 having the implant pins 8, and the external connection terminals 10 are the same as those in FIG. 1 described in the first embodiment.
  • the same reference numerals designate the same members, and the description thereof is omitted.
  • the resin sealing portion includes the nanocomposite resin 13 that is the first sealing material, and the thermosetting resin or the thermoplastic resin 11 that is the second sealing material. These are sealed with two types of resins.
  • the resin 11 directly covers the insulating substrate 4, the semiconductor element 6, the printed circuit board 9, and the bonding interface thereof, and constitutes a first sealing layer that occupies most of the sealing portion.
  • the nanocomposite resin 13 covers the first sealing layer to form a second sealing layer that defines the outer shape of the molded body. It is preferable that the second sealing layer is on the outer peripheral portion of the molded body and has a thickness of at least 300 ⁇ m and is formed substantially uniformly.
  • the thickness of the second sealing layer can be, for example, 300 ⁇ m to 3 mm or less, more preferably 300 ⁇ m to 1 mm or less.
  • compositions of the nanocomposite resin 13 and the resin 11 and the preferred combinations of the nanocomposite resin 13 and the resin 11 are as described in the first embodiment.
  • the semiconductor module molding structure 200 in the semiconductor module molding structure 200 according to the second embodiment shown in the figure, a part or the whole of the lower surface of the first copper block 2 is exposed and can be connected to a cooling member (not shown). Also good.
  • the nanocomposite resin 13 may not cover the entire outer periphery of the semiconductor module molded structure 200.
  • the outer periphery may be provided only on the surface where the high temperature atmosphere is provided.
  • the configuration of the insulating substrate 4, the implantable printed circuit board 9, and the implant pin 8 is not limited to the illustrated form, and can be modified.
  • the manufacturing method of the SiC power semiconductor module molded structure mainly includes a step of assembling a member to which the insulating substrate 4, the semiconductor element 6, and the printed board 9 are joined, and a step of resin-sealing the member.
  • the process of assembling the members is the same as in the first embodiment, and can be performed in the same manner.
  • the step of resin sealing includes a first sealing step of forming a first sealing layer using the resin 11, and a second sealing step of forming a second sealing layer using the nanocomposite resin 13. including.
  • the member to which the insulating substrate 4, the semiconductor element 6, and the printed board 9 are bonded is sealed with a resin 11 that has been degassed under reduced pressure by a conventional method in advance. Sealing is performed by molding into a predetermined shape by a molding method such as transfer molding, liquid transfer molding, or injection molding. Thereafter, the resin 11 is thermally cured at a predetermined temperature and time condition, for example, at 100 to 180 ° C. for 1 to 10 minutes to form a first sealing layer, and the first sealing process is completed.
  • the 1st sealing process by this embodiment can be performed by the process and procedure of the liquid transfer molding method explained concretely about the 2nd sealing process of 1st Embodiment, for example.
  • the resin 11 is a thermoplastic resin
  • the 1st sealing process can be implemented similarly except the process of thermosetting.
  • the nanocomposite resin 13 that has been degassed under reduced pressure by a normal method in advance is applied, molded, potted, or the like to at least a part of the outer periphery of the molded body obtained in the first sealing step. It coat
  • the nanocomposite resin 13 is heat-cured at a predetermined temperature and time condition, for example, at 100 to 200 ° C. for 1 to 3 hours in the case of potting to form a second sealing layer, and the second sealing layer is formed. Complete the stopping process.
  • a molded object provided with a sealing part can be obtained.
  • a hole for inserting the mounting bracket 12 is formed in the first sealing layer, and is attached to the hole after the first sealing layer and the second sealing layer are cured.
  • the semiconductor module molding structure 200 can be obtained by the step of inserting the metal fitting 12.
  • the semiconductor device can be protected from oxidative degradation for a long time, particularly in a semiconductor device in which the use atmosphere is high.
  • the module structure can be miniaturized, and the reliability of the semiconductor device can be improved and the cost can be reduced.
  • a semiconductor device including a semiconductor element, an insulating substrate bonded to one surface of the semiconductor element, and an external circuit bonded to the other surface of the semiconductor element.
  • the first sealing material which is a nanocomposite resin, covers the semiconductor element to cover the semiconductor element.
  • a first sealing layer provided in an adjacent region is configured, and a second sealing material that is a thermosetting resin or a thermoplastic resin configures a second sealing layer that covers the first sealing layer.
  • the first sealing material which is a nanocomposite resin, further covers the second sealing material and faces at least a part of the outer surface of the molded body, and is provided with a thickness of at least 300 ⁇ m.
  • the third sealing layer is formed.
  • FIG. 3 is a diagram showing a cross-sectional structure of a semiconductor module molded structure 300, which is an example of a semiconductor device according to the third embodiment.
  • the configurations of the insulating substrate 4, the semiconductor element 6, the implant type printed circuit board 9 having the implant pins 8, and the external connection terminals 10 are the same as those in FIG. 1 described in the first embodiment.
  • the same reference numerals designate the same members, and the description thereof is omitted.
  • the resin sealing portion includes the nanocomposite resin 13 that is the first sealing material, the thermosetting resin or the thermoplastic resin that is the second sealing material, or those. It has a three-layer sealing structure that is triple-sealed by two types of resins with the mixture 11.
  • the first sealing layer made of the nanocomposite resin 13 covers the semiconductor element 6 and is provided in the vicinity of the semiconductor element 6.
  • the aspect of the first sealing layer is the same as the first sealing layer in the first embodiment.
  • the second sealing material that covers the first sealing layer and is made of the resin 11 constitutes the second sealing layer.
  • the nanocomposite resin 13 covers the second sealing layer, and a substantially uniform third sealing layer having a thickness of at least 300 ⁇ m is formed on the outer periphery of the molded body.
  • the thickness of the third sealing layer can be, for example, 300 ⁇ m to 3 mm or less, more preferably 300 ⁇ m to 1 mm or less.
  • compositions of the nanocomposite resin 13 and the resin 11 and the preferred combinations of the nanocomposite resin 13 and the resin 11 are as described in the first embodiment.
  • the nanocomposite resin constituting the first sealing layer and the nanocomposite resin constituting the third sealing layer may be the same or different.
  • the surface of the first copper block 2 opposite to the insulating layer 1, that is, the lower surface in the drawing is exposed over the entire surface. It may be in a state where it can be connected to a cooling member that does not.
  • the third sealing layer may not cover the entire outer periphery of the semiconductor module molded structure 300.
  • the third sealing layer may be provided only on the surface where the outer periphery becomes a high temperature atmosphere.
  • the configurations of the insulating substrate 4, the implant-type printed circuit board 9, and the implant pin 8 are not limited to the illustrated form, and can be modified.
  • the manufacturing method of the SiC power semiconductor module molding structure 300 mainly includes a process of assembling a member to which the insulating substrate 4, the semiconductor element 6, and the printed circuit board 9 are joined, and a process of resin-sealing the member. .
  • the process of assembling the members is the same as in the first embodiment, and can be performed in the same manner.
  • the step of resin sealing includes the first sealing step of forming the first sealing layer using the nanocomposite resin 13 and then the second sealing of forming the second sealing layer using the resin 11. And a third sealing step of forming a third sealing layer using the nanocomposite resin 13.
  • the first sealing step according to the present embodiment can be performed in the same manner as the first sealing step according to the first embodiment.
  • a resin 11 is applied around the first sealing layer obtained in the first sealing step, and a predetermined method is applied by a molding method such as transfer molding, liquid transfer molding, or potting. Mold into shape.
  • the resin 11 is thermally cured at a predetermined temperature and time condition, for example, at 100 to 200 ° C. for 1 to 3 hours in the case of potting to form a second sealing layer, and the second sealing process is completed.
  • the second sealing step according to the present embodiment can be performed, for example, by the liquid transfer molding method and procedure detailed about the second sealing step of the first embodiment. Even when the resin 11 is a thermoplastic resin, the second sealing step can be performed in the same manner except for the step of thermosetting.
  • the nanocomposite resin 13 is coated on the outer periphery of the second sealing layer obtained in the second sealing step so as to have a predetermined thickness by a method such as coating, molding, or potting. .
  • the nanocomposite resin 13 is thermally cured at a predetermined temperature and time, for example, at 100 to 200 ° C. for 1 to 3 hours to form a third sealing layer, and the third sealing process is completed. To do.
  • nanocomposite resin 13 and resin 11 were provided alternately, and the resin sealing part of the three-layer sealing structure sealed three times Can be obtained.
  • the semiconductor module molded structure 300 can be obtained by the process of inserting the mounting bracket 12 into the hole.
  • both the periphery of the semiconductor element 6 that is likely to become high temperature during operation and the outer periphery of the semiconductor module molded structure 300 that is likely to be oxidatively deteriorated By intensively sealing with the nanocomposite resin 13 with excellent heat resistance, the periphery of the semiconductor element where the operating temperature is high is not easily deteriorated, and the outer surface of the semiconductor module where the operating atmosphere is high is oxidized and deteriorated. It is difficult to provide a highly durable semiconductor module molding structure.
  • the SiC power semiconductor module molded structure 200 shown in FIG. 2 was assembled.
  • Table 1 shows the composition of the epoxy resin used as the sealing material.
  • a cyclic aliphatic epoxy resin was used as the main agent, and an acid anhydride curing agent was used as the curing agent. Curing aids and other optional ingredients were not included.
  • the inorganic filler Sample No. 3 had a composition containing 2 wt% silica having an average particle diameter of 10 nm, and Sample No. 4 had a composition containing 15 wt% silica having an average particle diameter of 10 nm.
  • the resin of sample number 1 did not use an inorganic filler, and sample number 2 had a composition containing 83 wt% of silica having an average particle diameter of 20 ⁇ m, that is, micro-sized silica.
  • Bending test pieces were prepared using the sealing materials of sample numbers 1 to 4, and the bending strength retention after the thermal degradation test was measured.
  • the bending test piece was produced in a shape of 4 mm ⁇ 6 mm ⁇ 70 mm.
  • the test conditions were 200 ° C., 100 hours, 1000 hours, and 10,000 hours in the atmosphere, and then a bending test was performed to determine the retention rate.
  • the retention rate of the bending strength was a value obtained by multiplying the initial bending strength by 100 and multiplying the numerator by the bending strength after the thermal degradation test.
  • Table 2 shows the results of the bending test.
  • the sealing materials of Sample No. 1 and Sample No. 2 had bending strength retentions of 28% and 34% after 10,000 hours.
  • the decrease in the retention rate after 10,000 hours was reduced to 47%.
  • the decrease in the retention rate can be further suppressed, and the retention rate is 61 %.
  • Table 2 shows the result of discoloration from the resin surface after the thermal degradation test of the sealing material.
  • the discoloration from the surface spreads from the surface to the inside with the time of thermal deterioration, and the discoloration length after 10,000 hours in the atmosphere at 200 ° C. is 850 ⁇ m for sample number 1, 700 ⁇ m for sample number 2, Number 3 was 420 ⁇ m, and sample number 4 was 320 ⁇ m. It was also found that discoloration can be suppressed by adding a nanofiller.
  • a thermal deterioration test was conducted on the sealing materials of sample numbers 1 to 4 to investigate the presence of cracks.
  • the test conditions were as follows. After leaving at 200 ° C. for 1000 hours, the presence of cracks was visually confirmed. Cracks were generated in the sealing materials of sample numbers 1 and 2 by a thermal deterioration test. On the other hand, no crack was generated in the surface layer of the sealing materials of sample numbers 3 and 4.
  • the semiconductor device according to the present invention is useful in a semiconductor power module that operates at a high temperature and is configured using a semiconductor element such as SiC or GaN.
  • Insulating layer 2 1st copper block 3 Second copper block 4 Insulating substrate 5 Conductive bonding layer a 6 SiC semiconductor element 7 Conductive bonding layer b 8 Implant Pin 9 Implant Type Printed Circuit Board 11 ⁇ BR> M Curable Resin 12 Mounting Bracket 13 Nano Composite Resin 100 Semiconductor Module Molded Structure 200 Semiconductor Module Molded Structure 300 Semiconductor Module Molded Structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 SiCやGaN素子を用いた半導体装置に対応して、半導体素子の動作温度が例えば175℃以上と高温であっても、封止樹脂が熱酸化劣化しにくく、クラックの発生を防ぐことができ、信頼性及び耐久性の高い半導体装置を提供する。 半導体素子6と、前記半導体素子の一方の面に接合された絶縁基板4と、前記半導体素子の他方の面に接合された外部回路との接続用プリント基板9とを含む部材を、封止材で封止してなる成形体を備えた半導体装置100であって、前記封止材が、エポキシ樹脂主剤と、硬化剤と、平均粒経が1~100nmの無機充填材とを含んでなるナノコンポジット樹脂である第1の封止材13と、無機充填材を含まない熱硬化性樹脂もしくは熱可塑性樹脂あるいはそれらの混合物からなる第2の封止材11とを含んでなる、半導体装置100。

Description

半導体装置
 本発明は、半導体素子の封止材料に関するもので、特定的には、SiC(炭化シリコン)やGaN(チッ化ガリウム)を用いた半導体装置に関する。
 従来、一般的に用いられているSi(シリコン)半導体素子を用いた半導体装置では、エポキシ樹脂やシリコーンゲルにより、封止を行い、絶縁性を確保していた。一方、SiCやGaNはSiに比べて優れた電気的特性を有しているため、近年、実用化に向けて研究開発が進められており、将来的には、半導体素子が、SiからSiCやGaNに置き換わることが想定されている。SiCやGaNにより構成される半導体素子は、Si半導体素子に比べて、高温での動作特性が優れている。特にSiCは、300℃まで動作可能とも言われている。
 半導体素子にSiCを用いた場合、半導体素子の電流密度を高めることができるが、半導体素子を高電流密度にすると発熱量が増大し、半導体素子の温度が高温になる。このため、使用される封止材の耐熱性能を高める必要性が出てくる。従来技術による一般的なシリコーンゲルを封止材として用いた場合、175℃以上の高温、酸素雰囲気下ではシリコーンゲルが酸化劣化することによりクラックが生じる場合がある。また、一般的なエポキシ樹脂を封止材として用いた場合も同様に、樹脂が酸化劣化し、クラックなどが発生する問題が生じる場合がある。なお、上述のような高温、酸素雰囲気下で進行する劣化を、以下では、酸素の存在下での熱劣化という意味で「熱酸化劣化」とも称する。
 半導体素子の封止において、耐湿性の観点から、第1の樹脂と第2の樹脂とを用いて、半導体素子を二重に被覆する技術が知られている(特許文献1を参照)。また、パワー半導体モジュールの製造において、半導体素子に隣接する半田層の熱疲労防止の観点から、第1封止材層と、第2封止材層で半導体素子を覆う技術が知られている(特許文献2を参照)。
 しかし、いずれの技術も、SiCやGaNといった高温動作が意図される半導体素子において、例えば、175℃以上といった高温においても封止特性を保持することができるものではない。
特開平5-13623号公報 特開2010-219420号公報
 本発明の目的は、上述の問題点を解決するため、SiCやGaN素子を用いた半導体装置に対応して、半導体素子の動作温度が例えば175℃以上と高温であっても、封止樹脂が熱酸化劣化しにくく、クラックの発生を防ぐことができ、信頼性及び耐久性の高い半導体装置を提供することにある。
 本発明は、上記課題を解決するためになされたものである。すなわち、本発明は、一実施形態によれば、半導体装置であって、前記半導体素子の一方の面に接合された絶縁基板と、前記半導体素子の他方の面に接合された外部回路との接続用プリント基板とを含む部材を、封止材で封止してなる成形体を備え、前記封止材が、エポキシ樹脂主剤と、硬化剤と、平均粒経が1~100nmの無機充填材とを含んでなるナノコンポジット樹脂である第1の封止材と、熱硬化性樹脂もしくは熱可塑性樹脂あるいはそれらの混合物からなる第2の封止材とを含んでなる。
 前記半導体装置において、前記第1の封止材が、前記半導体素子を被覆して前記半導体素子に近接する領域に設けられる第1封止層を構成し、前記第2の封止材が、前記第1封止層を被覆し、かつ前記成形体の外表面を形成する第2封止層を構成することが好ましい。
 また、特には、前記第1封止層が、前記半導体素子の動作時に、前記半導体素子の最大動作温度から25℃以内となる領域を少なくとも封止することが好ましい。
 前記半導体装置において、前記第2の封止材が、前記半導体素子と前記絶縁基板と前記プリント基板とを被覆する第1封止層を構成し、前記第1の封止材が、前記第1封止層を被覆し、かつ前記成形体の外表面の少なくとも一部に面して、少なくとも300μmの厚みで設けられる第2封止層を構成することが好ましい。
 また、特には、前記第2封止層が、3mm以下の厚みであることが好ましい。
 前記半導体装置において、前記第1の封止材が、前記半導体素子を被覆して前記半導体素子に近接する領域に設けられる第1封止層を構成し、前記第2の封止材が、前記第1の封止材を被覆する第2封止層を構成し、前記第1の封止材が、前記第2封止層をさらに被覆し、かつ前記成形体の外表面の少なくとも一部に面して、少なくとも300μmの厚みで設けられる第3封止層を構成することが好ましい。
 また、特には、前記第1封止層が、前記半導体素子の動作時に、前記半導体素子の最大動作温度から25℃以内となる領域を少なくとも封止し、前記第3封止層が、3mm以下の厚みであることが好ましい。
 前記半導体装置において、前記無機充填材が、溶融シリカもしくは破砕シリカの少なくとも一方を含むことが好ましい。
 前記半導体装置において、前記ナノコンポジット樹脂中、前記無機充填材が、0.1質量%~25質量%の量で含まれることが好ましい。
 前記半導体装置において、前記半導体素子が、SiC半導体素子であることが好ましい。
 本発明に係る半導体装置によれば、ナノコンポジット樹脂を封止材の一つとして使用することで、半導体装置の内部構造体である半導体素子等を保護することができる。特には、半導体装置の封止部における長期における熱酸化劣化の進展を抑制し、クラックを抑制し、半導体装置の信頼性を向上することができる。その結果、SiCやGaNといったワイドギャップ半導体素子を用いた半導体装置においても好適に用いることができる。
図1は、本発明の第1実施形態に係る半導体モジュール成形構造体の断面構造を示す概念図である。 図2は、本発明の第2実施形態に係る半導体モジュール成形構造体の断面構造を示す概念図である。 図3は、本発明の第3実施形態に係る半導体モジュール成形構造体の断面構造を示す概念図である。
 以下に、図面を参照して、本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。
[第1実施形態]
 本発明は、第1実施形態によれば、半導体装置であって、半導体素子と、前記半導体素子の一方の面に接合された絶縁基板と、前記半導体素子の他方の面に接合された外部回路との接続用プリント基板とを含む部材を、封止材で封止してなる成形体を備え、エポキシ樹脂主剤と、硬化剤と、平均粒経が1~100nmの無機充填材とを含んでなるナノコンポジット樹脂である第1の封止材が前記半導体素子を被覆して、前記半導体素子に近接する領域に設けられる第1封止層を構成し、熱硬化性樹脂もしくは熱可塑性樹脂あるいはそれらの混合物からなる第2の封止材が、前記第1封止層を被覆し、かつ前記成形体の外表面を形成する第2封止層を構成する、二層封止構造の封止部を備える。
 図1は、第1実施形態に係る半導体装置の一例である、半導体モジュール成形構造体100の断面構造を示す図である。半導体モジュール成形構造体100においては、絶縁層1の一方の面である下面に略直方体状の第1銅ブロック2、他方の面である上面に略直方体状の第2銅ブロック3が配置されて絶縁基板4を構成する。絶縁基板4の第2銅ブロック3側の面である上面には、導電接合層a5を介して、SiCパワー半導体素子6が複数個搭載され取り付けられている。さらにSiCパワー半導体素子6の上面には、導電接合層b7によりインプラントピン8を備えたインプラント方式プリント基板9が取り付けられている。インプラント方式プリント基板9の上面と、第2銅ブロック3の上面には、それぞれ、外部接続端子10が取り付けられ、半導体モジュール成形構造体100の外部との電気的接続が可能に構成されている。SiCパワー半導体素子6の周囲は、ナノコンポジット樹脂13からなる第1封止層で封止される。さらにその周囲が樹脂11からなる第2封止層で封止されて成形体となっており、半導体モジュール成形構造体100を構成している。また、樹脂11からなる第2封止層には、半導体モジュール成形構造体100を図示しない冷却器に取り付けるためのボルトの挿入孔である取り付け金具12が埋め込まれている。なお、本明細書において、上面、下面とは、説明の目的で、図中の上下を指す相対的な用語であって、半導体装置の使用態様等との関係で上下を限定するものではない。
 本実施形態による半導体モジュール成形構造体100において、樹脂封止部が、第1の封止材であるナノコンポジット樹脂13と、第2の封止材である熱硬化性樹脂または熱可塑性樹脂11との二種類の樹脂により封止される。そして、ナノコンポジット樹脂13が、半導体素子6を直接被覆して、前記半導体素子6の近傍に設けられる第1封止層を構成する。
 ナノコンポジット樹脂13は、エポキシ樹脂主剤と、硬化剤と、ナノサイズの無機充填剤とを少なくとも含んで構成され、硬化後のガラス転移温度が半導体素子6の最大動作温度以上、好ましくは、硬化後のガラス転移温度が200℃以上の樹脂である。
 エポキシ樹脂主剤としては、環状脂肪族系エポキシ樹脂を用いることが好ましいが、これには限定されない。
 硬化剤は、酸無水物系硬化剤を用いる。酸無水物系硬化剤の具体例としては、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびそれらの異性体、変成体が挙げられるが、これらには限定されない。また、酸無水物系硬化剤は、これらのうち1種を単独で用いることができ、あるいは、2種以上を混合して用いることができる。
 無機充填剤は、平均粒径が、1~100nm、好ましくは、5~50nmの、いわゆる、ナノフィラーを用いる。樹脂の耐熱性を高めるためである。本明細書において、平均粒径とはレーザー回折散乱法で測定した値をいうものとする。無機充填剤を構成する化合物は、SiO、BN、Al、AlN及びSiからなる群から選択される1つ以上であってよいが、これらには限定されない。
 無機充填剤は、好ましくは、少なくとも一部がSiOから構成され、さらに好ましくは、全部がSiOから構成される。また、SiOの中でも、溶融シリカ、あるいは破砕シリカを用いることができ、これらの両方を用いることもできる。溶融シリカは、特には、過度の増粘を抑えながら、比較的多くの量を添加することができる点で有利である。
 ナノコンポジット樹脂における無機充填剤の添加量は、ナノコンポジット樹脂全体の質量を100%としたときに、0.1~25質量%とすることが好ましく、1~15質量%とすることがさらに好ましい。耐熱特性と粘度特性の観点からである。
 硬化剤に加えて、任意成分として、硬化助剤を添加してもよい。硬化反応を制御するためである。硬化助剤の具体例としては、2-エチル-4-メチルイミダゾール等のイミダゾール類、ベンジルジメチルアミン等の3級アミン類、トリフェニルフォスフィン等の芳香族フォスフィン類、三フッ化ホウ素モノエチルアミン等のルイス酸、ホウ酸エステル、有機金属化合物、有機酸金属塩等が挙げられるが、これらには限定されない。
 ナノコンポジット樹脂13には、その他に、半導体封止用樹脂に通常添加される任意成分を含んでも良い。任意成分としては、例えば、難燃剤、樹脂を着色するための顔料、耐クラック性を向上するための可塑剤やシリコンエラストマーが挙げられるが、これらには限定されない。これらの任意成分の添加量は、半導体装置の仕様に応じて、当業者が適宜決定することができる。
 ナノコンポジット樹脂13からなる第1封止層は、好ましくは、半導体素子6の周囲の全面を完全に被覆し、かつ、樹脂封止部のうち、半導体素子6の最大動作温度から、最大動作温度よりも、25℃~30℃低くなる領域に設けられる。半導体素子6周囲の樹脂封止部が、動作時、高温に曝されるためである。半導体素子の仕様が決定されれば、汎用のシミュレーションソフトウエアを用いて、動作時の樹脂封止部の温度を算出することができる。したがって、シミュレーションにより計算される樹脂封止部温度が、半導体素子6の最大動作温度から、最大動作温度よりも、25℃低い領域まで、好ましくは30℃低い領域までを少なくとも封止するように、第1封止層を設ける。例えば、半導体素子6の最大動作温度が、200℃の場合には、シミュレーションによる樹脂封止部温度が、175~200℃となる領域が第1封止層で封止される。一般的な仕様の半導体モジュール成形構造体においては、半導体素子6の周囲の1mm程度の領域にナノコンポジット樹脂13を配置することで上記温度となる領域を第1封止層で封止することができ、あるいは、半導体素子6とプリント基板との間の領域並びに半導体素子6の厚み方向の周囲1mm程度の領域にナノコンポジット樹脂13を配置することで上記温度となる領域を第1封止層で封止することができる。
 次に、第2の封止材である熱硬化性樹脂または熱可塑性樹脂11は、前記第1の封止材からなる第1封止層を被覆して樹脂封止部の大部分を構成し、かつ前記成形体の外面を規定する第2封止層を構成する。なお、第1封止層が第2封止層に完全に被覆されている必要はなく、ナノコンポジット樹脂13からなる第1封止層が、成形体の外面に部分的に露出していても良い。
 樹脂11は、無機充填材を含んでもよく、含まなくてもよい熱硬化性樹脂もしくは熱可塑性樹脂あるいはそれらの混合物である。このような樹脂11は、先に詳述したナノコンポジット樹脂13との関係で決定することができる。すなわち、樹脂11は、ナノコンポジット樹脂13との熱膨張率の差が、±10ppm/℃以内のものであることが好ましい。封止後の熱応力を少なくするためである。また、樹脂11は、ナノコンポジット樹脂13との接着強さが、10MPa以上であることが好ましい。封止後に、樹脂11とナノコンポジット樹脂13との界面に、クラックが入ることを防止するためである。これらの条件を満たすものであれば、樹脂11の種類は問わず、半導体装置の樹脂封止に通常用いられる、エポキシ樹脂、ポリアミド樹脂等であってよい。第2の封止材である樹脂11はまた、前述の熱膨張率特性や接着特性の条件を満たすものであれば、第1の封止材と同様にナノコンポジット樹脂であってもよい。本実施形態においては、特に、第2封止層が、成形体の外表面を覆って外周部を構成し、外部雰囲気と接する部分であるため、酸化により劣化しにくい熱硬化性樹脂を用いることがより好ましい。
 なお、図示する第1実施形態による半導体モジュール成形構造体100は、第1銅ブロック2の絶縁層1とは反対側の面、すなわち、図中の下面が、樹脂11と接して、樹脂11に被覆され、外部と接触しない形態であるが、本発明はこのような形態には限定されない。第1銅ブロック2の下面の一部あるいは全体が露出していて、図示しない冷却部材等との接続が可能な状態であっても良い。また、図1は概念図であって、図示するナノコンポジット樹脂13からなる第1封止層と、他の部材との位置関係は必ずしも図面の通りである必要はない。さらに、絶縁基板4やプリント基板9、インプラントピン8の構成は、図示する形態には限定されない。
 次に、第1実施形態による半導体モジュール成形構造体100を、その製造方法の観点から説明する。SiCパワー半導体モジュール成形構造体100の製造方法は、主として、絶縁基板4、半導体素子6、並びにプリント基板9が接合された部材を組み立てる工程と、前記部材を樹脂封止する工程とから構成される。
 絶縁基板4、半導体素子6、並びにプリント基板9が接合された部材を組み立てる工程は、絶縁層1の両面に第1銅ブロック2と第2銅ブロック3を熱圧着してなる絶縁基板4を形成する工程と、絶縁基板4の一方の面に、導電接合層a5により1以上のSiCパワー半導体素子6を搭載する工程と、SiCパワー半導体素子6の絶縁基板4とは反対側の面に、導電接合層b7により、インプラントピン8を有するインプラント方式のプリント基板9を取り付ける工程と、前記第2銅ブロック3及び前記プリント基板9に外部接続端子10を接続する工程とを含む。
 このような組み立て工程及び使用する部材の仕様等については、従来技術に開示される、通常の方法に従ってよい。例えば、出願人による、特開2013-004729号公報や、特開2012-191010号公報において説明した、樹脂封止以外の各工程を適用することができる。
 樹脂封止する工程は、ナノコンポジット樹脂13を用いて、第1封止層を形成する第1の封止工程と、次いで、樹脂11を用いて、第2封止層を形成する第2の封止工程とを含む。
 第1の封止工程では、未硬化のナノコンポジット樹脂13を通常の条件で減圧脱泡した後、半導体素子6の周囲にディスペンサー等で注入し、あるいは任意の手段で塗布して、半導体素子6の周囲を覆い、第1封止層を形成する。この際、ナノコンポジット樹脂の粘度を所定の値、例えば、1~10Pa・s程度に調整することにより、ナノコンポジット樹脂による封止部の厚みを、所定の厚みに調整することができる。また、例えば、ナノコンポジット樹脂を載置することを所望する箇所を、テフロン(登録商標)ジグで囲むことにより、第1封止層の厚みは、前述のシミュレーションで得た値とすることができる。次いで、ナノコンポジット樹脂13を所定の温度及び時間条件で、例えば、100~200℃で、1~3時間、熱硬化させて、第1の封止工程を完了する。
 第2の封止工程では、第1の封止工程で得られた第1封止層の周囲に、通常の条件で減圧脱泡した樹脂11を適用し、トランスファー成形、液状トランスファー成形、ポッティング、射出成型等の成形法により、成形体の外形となる所定の形状に成形し、第2封止層を形成する。次いで、樹脂11を所定の温度及び時間条件で、例えば、ポッティングならば、100~200℃で1~3時間、熱硬化させて、第2の封止工程を完了する。なお、樹脂11が熱可塑性樹脂の場合には、熱硬化させる工程を含まないものとする。このように、第1の封止工程と、次いで、第2の封止工程とを経ることにより、ナノコンポジット樹脂13と樹脂11とで二重に封止された、二層封止構造の樹脂封止部を備える成形体を得ることができる。さらに、成形体の第2封止層の成形時に、取り付け金具12を挿入するための孔を第2封止層に形成し、第2封止層の硬化後に孔に取り付け金具12を挿入する工程により、半導体モジュール成形構造体100を得ることができる。
 成形法の一例である液状トランスファー成形による第2の封止工程をさらに具体的に説明する。SiCパワー半導体モジュール200への具体的な封止方法は、液状トランスファー成形用の上下型(図示しない)によって作られるキャビティーに、第1封止層で被覆された、絶縁基板4と半導体素子6とプリント基板9とを接合した部材を収納し、成形温度約160℃に昇温させた保温状態で待機する。トランスファー成形用の上下型には、封止材のポット部とランナー部を設ける。
 環状脂肪族系のエポキシ樹脂と酸無水物硬化剤と無機充填材とからなる1液状型のナノコンポジット樹脂13からなる第1封止材を調製し、予め0.1Torr(13.33Pa)の真空状態で10分間1次脱泡し、次いで、シリンダー容器に注入する。シリンダー容器から金型内のポット部に、第1封止材を必要量注入し、その後、上下金型の型締めを行う。最後に、第1封止材を、ポット部からランナー部を経由して金型キャビティーに圧入し、成形を完了する。成形条件は、上下金型の型締め圧が150kg/cmで、160℃でのゲル化時間は1分、硬化時間は3分、ナノコンポジット樹脂13からなる第1封止材の粘度は、約1~10Pa・s程度とすることができる。
 第1実施形態による半導体モジュール成形構造体100及びその製造方法によれば、最高動作温度が約200℃と高温になりうる半導体素子を用いた場合であっても、熱劣化しにくく、耐久性の高い半導体モジュール成形構造体100を提供することができる。特に、SiCやGaNといったワイドバンドギャップ半導体を用いた場合に、高温となりうる半導体素子近傍の樹脂封止部を、ナノコンポジット樹脂で集中的に高耐熱化することができる点で、本実施形態は有利である。
[第2実施形態]
 本発明は、第2実施形態によれば、半導体装置であって、半導体素子と、前記半導体素子の一方の面に接合された絶縁基板と、前記半導体素子の他方の面に接合された外部回路との接続用プリント基板とを含む部材を、封止材で封止してなる成形体を備え、熱硬化性樹脂または熱可塑性樹脂である第2の封止材が、前記半導体素子を被覆する第1封止層を構成し、ナノコンポジット樹脂である第1の封止材が、前記第1封止層を被覆し、かつ前記成形体の外表面の少なくとも一部に面して、少なくとも300μmの厚みで設けられる第2封止層を構成することを特徴とする。
 図2は、第2実施形態に係る半導体装置の一例である、半導体モジュール成形構造体200の断面構造を示す図である。半導体モジュール成形構造体200において、絶縁基板4、半導体素子6、インプラントピン8を有するインプラント方式プリント基板9、並びに外部接続端子10の構成は、第1実施形態において説明した図1と同様であり、同一の符号は同一の部材を指称するものとして説明を省略する。
 本実施形態による半導体モジュール成形構造体200において、樹脂封止部は、第1の封止材であるナノコンポジット樹脂13と、第2の封止材である熱硬化性樹脂または熱可塑性樹脂11との二種類の樹脂により封止される。そして、樹脂11が、絶縁基板4、半導体素子6、プリント基板9とその接合界面を直接に被覆して、封止部の大部分を占める第1封止層を構成する。ナノコンポジット樹脂13は、第1封止層を被覆して、成形体の外形を規定する第2封止層を形成する。第2封止層は、成形体の外周部にあって、少なくとも300μmの厚みで、略均一に形成されていることが好ましい。半導体装置の外部雰囲気による、樹脂封止部の酸化劣化を防止するためである。第2封止層の厚みは、例えば、300μmから3mm以下、さらに好ましくは300μmから1mm以下とすることができる。
 ナノコンポジット樹脂13及び樹脂11のそれぞれの組成、およびナノコンポジット樹脂13及び樹脂11の好ましい組み合わせについては、第1実施形態において説明したとおりである。
 なお、図示する第2実施形態による半導体モジュール成形構造体200において、第1銅ブロック2の下面の一部もしくは全体が露出して、図示しない冷却部材等との接続が可能な状態になっていても良い。また、ナノコンポジット樹脂13が、半導体モジュール成形構造体200の外周全体を覆っていなくてもよい。例えば、半導体モジュール成形構造体200が使用される目的に応じて、特に外周が高温雰囲気となる面のみに設けられても良い。さらに、絶縁基板4やインプラント式プリント基板9、インプラントピン8の構成は、図示する形態には限定されず、変形が可能である。
 次に、第2実施形態による半導体モジュール成形構造体200を、その製造方法の観点から説明する。SiCパワー半導体モジュール成形構造体の製造方法は、主として、絶縁基板4、半導体素子6、並びにプリント基板9が接合された部材を組み立てる工程と、前記部材を樹脂封止する工程とから構成される。前記部材を組み立てる工程は、第1実施形態と同様であり、同様にして行うことができる。
 樹脂封止する工程は、樹脂11を用いて第1封止層を形成する第1の封止工程と、ナノコンポジット樹脂13を用いて第2封止層を形成する第2の封止工程とを含む。
 第1の封止工程では、予め通常の方法で減圧脱泡した樹脂11で、絶縁基板4、半導体素子6、並びにプリント基板9が接合された部材を封止する。封止は、トランスファー成形、液状トランスファー成形、射出成型等の成形法により、所定の形状に成形することにより実施する。その後、樹脂11を所定の温度及び時間条件で、例えば、100~180℃で、1~10分、熱硬化させて第1封止層を形成し、第1の封止工程を完了する。本実施形態による第1の封止工程は、例えば、第1実施形態の第2の封止工程について具体的に説明した液状トランスファー成形法の工程及び手順により行うことができる。なお、樹脂11が熱可塑性樹脂の場合も、第1の封止工程は、熱硬化させる工程を除いて同様に実施することができる。
 第2の封止工程では、予め通常の方法で減圧脱泡したナノコンポジット樹脂13を、第1の封止工程で得られた成形体の外周の少なくとも一部に、塗布、成形、あるいはポッティング等の方法により所定の厚みとなるように被覆する。その後、ナノコンポジット樹脂13を所定の温度及び時間条件で、例えば、ポッティングならば、100~200℃で、1~3時間、熱硬化させて、第2封止層を形成し、第2の封止工程を完了する。このように、第1の封止工程と、次いで、第2の封止工程とを経ることにより、樹脂11とナノコンポジット樹脂13とで二重に封止された、二層封止構造の樹脂封止部を備える成形体を得ることができる。さらに、成形体の第1封止層の成形時に、取り付け金具12を挿入するための孔を第1封止層に形成し、第1封止層及び第2封止層の硬化後に孔に取り付け金具12を挿入する工程により、半導体モジュール成形構造体200を得ることができる。
 第2実施形態による半導体モジュール成形構造体200及びその製造方法によれば、特には、使用雰囲気が高温となる半導体装置において、半導体装置を長期において酸化劣化から保護することができる。また従来と比べて使用されている材料の酸化劣化を防ぐことができることから、モジュール構造の小型化が可能となり、半導体装置の信頼性を高めると共に、コストを低減することができる。
[第3実施形態]
 本発明は、第3実施形態によれば、半導体装置であって、半導体素子と、前記半導体素子の一方の面に接合された絶縁基板と、前記半導体素子の他方の面に接合された外部回路との接続用プリント基板とを含む部材を、封止材で封止してなる成形体を備え、ナノコンポジット樹脂である第1の封止材が、前記半導体素子を被覆して前記半導体素子に近接する領域に設けられる第1封止層を構成し、熱硬化性樹脂または熱可塑性樹脂である第2の封止材が、前記第1封止層を被覆する第2封止層を構成し、ナノコンポジット樹脂である第1の封止材が、前記第2の封止材をさらに被覆して、かつ、前記成形体の外表面の少なくとも一部に面して、少なくとも300μmの厚みで設けられる第3封止層を構成することを特徴とする。
 図3は、第3実施形態に係る半導体装置の一例である、半導体モジュール成形構造体300の断面構造を示す図である。半導体モジュール成形構造体300において、絶縁基板4、半導体素子6、インプラントピン8を有するインプラント方式プリント基板9、並びに外部接続端子10の構成は、第1実施形態において説明した図1と同様であり、同一の符号は同一の部材を指称するものとして説明を省略する。
 本実施形態による半導体モジュール成形構造体300において、樹脂封止部は、第1の封止材であるナノコンポジット樹脂13と、第2の封止材である熱硬化性樹脂または熱可塑性樹脂あるいはそれらの混合物11との二種類の樹脂により、三重に封止される三層封止構造を有する。図3中、ナノコンポジット樹脂13からなる第1封止層は半導体素子6を被覆して、半導体素子6の近傍に設けられる。第1封止層の態様は、第1実施形態における第1封止層と同様である。第1封止層の周囲には、第1封止層を被覆して、樹脂11からなる第2の封止材が、第2封止層を構成する。さらに、第2封止層の周囲には、ナノコンポジット樹脂13が第2封止層を被覆して、成形体の外周部に、少なくとも300μmの厚みに、略均一な第3封止層を形成する。第3封止層の厚みは、例えば、300μmから3mm以下、さらに好ましくは300μmから1mm以下とすることができる。
 ナノコンポジット樹脂13及び樹脂11のそれぞれの組成、およびナノコンポジット樹脂13及び樹脂11の好ましい組み合わせについては、第1実施形態において説明したとおりである。なお、本実施形態においては、第1封止層を構成するナノコンポジット樹脂と、第3封止層を構成するナノコンポジット樹脂とが同一であってもよく、異なっていても良い。
 なお、図示する第3実施形態による半導体モジュール成形構造体300において、第1銅ブロック2の絶縁層1とは反対側の面、すなわち、図中の下面が、面全体にわたって露出していて、図示しない冷却部材等との接続が可能な状態になっていても良い。また、第3封止層が、半導体モジュール成形構造体300の外周全体を覆っていなくてもよく、例えば、特に外周が高温雰囲気となる面のみに、第3封止層が設けられても良い。また、絶縁基板4やインプラント式プリント基板9、インプラントピン8の構成は、図示する形態には限定されず、変形が可能である。
 次に、第3実施形態による半導体モジュール成形構造体300を、その製造方法の観点から説明する。SiCパワー半導体モジュール成形構造体300の製造方法は、主として、絶縁基板4、半導体素子6、並びにプリント基板9が接合された部材を組み立てる工程と、前記部材を樹脂封止する工程とから構成される。前記部材を組み立てる工程は、第1実施形態と同様であり、同様にして行うことができる。
 樹脂封止する工程は、ナノコンポジット樹脂13を用いて、第1封止層を形成する第1の封止工程と、次いで、樹脂11を用いて第2封止層を形成する第2の封止工程と、ナノコンポジット樹脂13を用いて、第3封止層を形成する第3の封止工程と含む。
 本実施形態による第1の封止工程は、第1実施形態による第1の封止工程と同様に実施することができる。
 第2の封止工程では、第1の封止工程で得られた第1封止層の周囲に、樹脂11を適用し、トランスファー成形、液状トランスファー成形、ポッティング、等の成形法により、所定の形状に成形する。次いで、樹脂11を所定の温度及び時間条件で、例えば、ポッティングならば100~200℃で1~3時間、熱硬化させて、第2封止層を形成し、第2の封止工程を完了する。本実施形態による第2の封止工程は、例えば、第1実施形態の第2の封止工程について詳述した液状トランスファー成形法の工程及び手順により行うことができる。なお、樹脂11が熱可塑性樹脂の場合も、第2の封止工程は、熱硬化させる工程を除いて同様に実施することができる。
 第3の封止工程では、第2封止工程で得られた第2封止層の外周に、塗布、成形、あるいはポッティング等の方法により所定の厚みとなるようにナノコンポジット樹脂13を被覆する。次いで、ナノコンポジット樹脂13を所定の温度及び時間条件で、例えば、100~200℃で、1~3時間、熱硬化させて、第3封止層を形成し、第3の封止工程を完了する。このように、第1封止工程から第3封止工程を経ることにより、ナノコンポジット樹脂13と樹脂11とを交互に設け、三重に封止された、三層封止構造の樹脂封止部を備える成形体を得ることができる。さらに、成形体の第2封止層の成形時に、取り付け金具12を挿入するための孔を第2封止層に形成し、第1封止層から第3封止層を全て硬化させた後に孔に取り付け金具12を挿入する工程により、半導体モジュール成形構造体300を得ることができる。
 第3実施形態による半導体モジュール成形構造体300及びその製造方法によれば、特には、動作時に高温となり易い半導体素子6の周囲、及び酸化劣化しやすい半導体モジュール成形構造体300の外周の両方を、耐熱性に優れたナノコンポジット樹脂13で集中的に封止することで、動作温度が高くなる半導体素子の周辺が熱劣化しにくいとともに、使用雰囲気が高温となる半導体モジュールの外表面が酸化劣化しにくく、耐久性の高い半導体モジュール成形構造体を提供することができる。
 以下に、実施例により、本発明をより詳細に説明する。以下の実施例は、本発明の例示であって、本発明を限定するものではない。
 第2実施形態において説明したとおりに、図2に示すSiCパワー半導体モジュール成形構造体200を組み立てた。封止材として用いたエポキシ樹脂の組成を表1に示す。試料番号1~4で共通して、主剤は環状脂肪族エポキシ樹脂、硬化剤は酸無水物系硬化剤を用いた。硬化助剤や、そのほかの任意成分は含めなかった。無機充填剤としては、試料番号3では、平均粒径10nmのシリカが2wt%含まれている組成、試料番号4では、平均粒径10nmのシリカが15wt%含まれている組成とした。一方、試料番号1の樹脂では、無機充填剤を使用せず、試料番号2では、平均粒径20μmのシリカ、すなわちマイクロサイズのシリカが83wt%含まれている組成とした。
 試料番号1~4の封止材を用いて曲げ試験片を作製し、熱劣化試験後の曲げ強度保持率を測定した。曲げ試験片は、4mm×6mm×70mmの形状に作製した。試験条件は、200℃、大気下で100時間、1000時間、10000時間放置した後、曲げ試験をして保持率を求めた。曲げ強度の保持率は、初期の曲げ強度を分母、熱劣化試験後の曲げ強度を分子にとり100乗算した値とした。
 曲げ試験の結果を、表2に示す。試料番号1と試料番号2の封止材は、10000時間後の曲げ強度の保持率は28%と34%であった。一方、試料番号3の封止材を用いた試験片では、10000時間後の保持率の低下は小さくなり47%となった。試料番号3の封止材よりも、ナノサイズの無機充填剤の含有量が多い試料番号4の封止材を用いた試験片では、保持率の低下をさらに抑えることができ、保持率は61%となった。
 次に、封止材の熱劣化試験後の樹脂表面からの変色の結果を表2に示す。表面からの変色は、熱劣化の時間と共に表面から内部に広がっていき、200℃の大気下にて10000時間後の変色の長さはそれぞれ、試料番号1は850μm、試料番号2は700μm、試料番号3は420μm、試料番号4は320μmであった。変色に関しても、ナノフィラーを添加することで抑制することができることがわかった。
 試料番号1~4の封止材で、熱劣化試験を行いクラック発生の有無を調査した。試験条件は200℃で1000時間放置した後に目視でクラック発生の有無を確認した。試料番号1、2の封止材には熱劣化試験によりクラックが発生した。一方、試料番号3、4の封止材による表面層にはクラックの発生は無かった。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 
 本発明に係る半導体装置は、SiCやGaNといった半導体素子を用いて構成された高温動作となる半導体パワーモジュールにおいて有用である。
 1   絶縁層
 2   第1銅ブロック        
 3   第2銅ブロック
 4   絶縁基板
 5   導電接合層a
 6   SiC半導体素子
 7   導電接合層b
 8   インプラントピン
 9   インプラント方式プリント基板
 11  ・BR>M硬化性樹脂
 12  取り付け金具
 13  ナノコンポジット樹脂
 100 半導体モジュール成形構造体
 200 半導体モジュール成形構造体
 300 半導体モジュール成形構造体

Claims (10)

  1.  半導体素子と、前記半導体素子の一方の面に接合された絶縁基板と、前記半導体素子の他方の面に接合された外部回路との接続用プリント基板とを含む部材を、封止材で封止してなる成形体を備える半導体装置であって、
     前記封止材が、
     エポキシ樹脂主剤と、硬化剤と、平均粒経が1~100nmの無機充填材とを含んでなるナノコンポジット樹脂である第1の封止材と、
     熱硬化性樹脂もしくは熱可塑性樹脂あるいはそれらの混合物からなる第2の封止材とを含んでなる、半導体装置。
  2.  前記第1の封止材が、前記半導体素子を被覆して前記半導体素子に近接する領域に設けられる第1封止層を構成し、
     前記第2の封止材が、前記第1封止層を被覆し、かつ前記成形体の外表面を形成する第2封止層を構成する、請求項1に記載の半導体装置。
  3.  前記第1封止層が、前記半導体素子の動作時に、前記半導体素子の最大動作温度から25℃以内となる領域を少なくとも封止する、請求項2に記載の半導体装置。
  4.  前記第2の封止材が、前記半導体素子と前記絶縁基板と前記プリント基板とを被覆する第1封止層を構成し、
     前記第1の封止材が、前記第1封止層を被覆し、かつ前記成形体の外表面の少なくとも一部に面して、少なくとも300μmの厚みで設けられる第2封止層を構成する、請求項1に記載の半導体装置。
  5.  前記第2封止層が、3mm以下の厚みである、請求項4に記載の半導体装置。
  6.  前記第1の封止材が、前記半導体素子を被覆して前記半導体素子に近接する領域に設けられる第1封止層を構成し、
     前記第2の封止材が、前記第1の封止材を被覆する第2封止層を構成し、
     前記第1の封止材が、前記第2封止層をさらに被覆し、かつ前記成形体の外表面の少なくとも一部に面して、少なくとも300μmの厚みで設けられる第3封止層を構成する、請求項1に記載の半導体装置。
  7.  前記第1封止層が、前記半導体素子の動作時に、前記半導体素子の最大動作温度から25℃以内となる領域を少なくとも封止し、
     前記第3封止層が、3mm以下の厚みである、請求項6に記載の半導体装置。
  8.  前記無機充填材が、溶融シリカもしくは破砕シリカの少なくとも一方を含む、請求項1に記載の半導体装置。
  9.  前記ナノコンポジット樹脂中、前記無機充填材が、0.1質量%~25質量%の量で含まれる、請求項1に記載の半導体装置。
  10.  前記半導体素子が、SiC半導体素子である、請求項1に記載の半導体装置。 
PCT/JP2014/069813 2013-09-13 2014-07-28 半導体装置 WO2015037349A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480013059.2A CN105190872B (zh) 2013-09-13 2014-07-28 半导体装置
JP2015536483A JP6168153B2 (ja) 2013-09-13 2014-07-28 半導体装置
DE112014000851.6T DE112014000851T5 (de) 2013-09-13 2014-07-28 Halbleitervorrichtung
US14/848,171 US9443779B2 (en) 2013-09-13 2015-09-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190787 2013-09-13
JP2013190787 2013-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/848,171 Continuation US9443779B2 (en) 2013-09-13 2015-09-08 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2015037349A1 true WO2015037349A1 (ja) 2015-03-19

Family

ID=52665471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069813 WO2015037349A1 (ja) 2013-09-13 2014-07-28 半導体装置

Country Status (5)

Country Link
US (1) US9443779B2 (ja)
JP (1) JP6168153B2 (ja)
CN (1) CN105190872B (ja)
DE (1) DE112014000851T5 (ja)
WO (1) WO2015037349A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140619A (zh) * 2015-11-16 2018-06-08 惠普发展公司,有限责任合伙企业 电路封装
US11437311B2 (en) * 2017-12-15 2022-09-06 Infineon Technologies Ag Semiconductor module and method for producing the same
WO2023080090A1 (ja) * 2021-11-05 2023-05-11 ローム株式会社 半導体パッケージ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369228B2 (ja) 2014-08-29 2018-08-08 富士電機株式会社 半導体装置
WO2017110373A1 (ja) * 2015-12-25 2017-06-29 住友ベークライト株式会社 封止用樹脂組成物、および半導体装置
JP6827404B2 (ja) * 2017-11-30 2021-02-10 三菱電機株式会社 半導体装置および電力変換装置
US11133268B2 (en) 2019-05-24 2021-09-28 International Business Machines Corporation Crack bifurcation in back-end-of-line
JP7247053B2 (ja) * 2019-08-02 2023-03-28 株式会社東芝 半導体装置
US11715679B2 (en) * 2019-10-09 2023-08-01 Texas Instruments Incorporated Power stage package including flexible circuit and stacked die
DE102019216723A1 (de) * 2019-10-30 2021-05-06 Robert Bosch Gmbh Mold-Modul
US11404336B2 (en) * 2020-06-29 2022-08-02 Infineon Technologies Austria Ag Power module with metal substrate
JP2022046369A (ja) * 2020-09-10 2022-03-23 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014863A (ja) * 2009-06-03 2011-01-20 Mitsubishi Electric Corp 半導体装置
WO2012043751A1 (ja) * 2010-10-01 2012-04-05 富士電機株式会社 樹脂組成物
WO2012172862A1 (ja) * 2011-06-16 2012-12-20 富士電機株式会社 パワー半導体モジュールおよびその製造方法
JP2013087191A (ja) * 2011-10-18 2013-05-13 Fuji Electric Co Ltd ポリマーナノコンポジット樹脂組成物
JP2013171852A (ja) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd パワー半導体モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513623A (ja) 1991-07-05 1993-01-22 Fuji Electric Co Ltd 半導体装置の製造方法
US8642682B2 (en) * 2004-04-30 2014-02-04 Kureha Corporation Resin composition for encapsulation and semiconductor unit encapsulated with resin
SG119379A1 (en) * 2004-08-06 2006-02-28 Nippon Catalytic Chem Ind Resin composition method of its composition and cured formulation
JP2010219420A (ja) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd 半導体装置
JP5250524B2 (ja) * 2009-10-14 2013-07-31 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US9173299B2 (en) * 2010-09-30 2015-10-27 KYOCERA Circuit Solutions, Inc. Collective printed circuit board
JP5598343B2 (ja) * 2011-01-17 2014-10-01 信越化学工業株式会社 半導体封止用液状エポキシ樹脂組成物及び半導体装置
JP5807348B2 (ja) * 2011-03-10 2015-11-10 富士電機株式会社 半導体装置およびその製造方法
JP6167535B2 (ja) 2013-01-30 2017-07-26 富士電機株式会社 半導体装置および半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014863A (ja) * 2009-06-03 2011-01-20 Mitsubishi Electric Corp 半導体装置
WO2012043751A1 (ja) * 2010-10-01 2012-04-05 富士電機株式会社 樹脂組成物
WO2012172862A1 (ja) * 2011-06-16 2012-12-20 富士電機株式会社 パワー半導体モジュールおよびその製造方法
JP2013087191A (ja) * 2011-10-18 2013-05-13 Fuji Electric Co Ltd ポリマーナノコンポジット樹脂組成物
JP2013171852A (ja) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd パワー半導体モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140619A (zh) * 2015-11-16 2018-06-08 惠普发展公司,有限责任合伙企业 电路封装
CN108140619B (zh) * 2015-11-16 2021-08-06 惠普发展公司,有限责任合伙企业 电路封装
US11183437B2 (en) 2015-11-16 2021-11-23 Hewlett-Packard Development Company, L.P. Circuit package
US11437311B2 (en) * 2017-12-15 2022-09-06 Infineon Technologies Ag Semiconductor module and method for producing the same
US20220359365A1 (en) * 2017-12-15 2022-11-10 Infineon Technologies Ag Power semiconductor module arrangement
US11978700B2 (en) 2017-12-15 2024-05-07 Infineon Technologies Ag Power semiconductor module arrangement
WO2023080090A1 (ja) * 2021-11-05 2023-05-11 ローム株式会社 半導体パッケージ

Also Published As

Publication number Publication date
US9443779B2 (en) 2016-09-13
CN105190872A (zh) 2015-12-23
CN105190872B (zh) 2018-06-12
JP6168153B2 (ja) 2017-07-26
DE112014000851T5 (de) 2015-12-10
JPWO2015037349A1 (ja) 2017-03-02
US20150380335A1 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
JP6168153B2 (ja) 半導体装置
US11984545B2 (en) Method of manufacturing a light emitting device
US9287187B2 (en) Power semiconductor module
US10597526B2 (en) Resin composition
US20120286405A1 (en) Semiconductor device and method for manufacturing the same
KR20160083031A (ko) 반도체 부품을 덮어 봉지하는 시멘트 물질이 구비된 반도체 모듈
JP6575220B2 (ja) 半導体装置
JP2009252838A (ja) 半導体装置
JPH10242333A (ja) 半導体装置及び半導体装置の製造方法
JP6167535B2 (ja) 半導体装置および半導体装置の製造方法
CN113130422A (zh) 功率模块及其制备方法
JP5966414B2 (ja) パワー半導体モジュール
JP6299372B2 (ja) 半導体装置およびその製造方法
US20220310548A1 (en) Semiconductor element bonding portion and semiconductor device
JP6284031B2 (ja) 耐熱樹脂組成物
JP2024000325A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013059.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536483

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014000851

Country of ref document: DE

Ref document number: 1120140008516

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844257

Country of ref document: EP

Kind code of ref document: A1