WO2012164834A1 - リチウムイオン二次電池用負極活物質、それを用いた負極および二次電池 - Google Patents

リチウムイオン二次電池用負極活物質、それを用いた負極および二次電池 Download PDF

Info

Publication number
WO2012164834A1
WO2012164834A1 PCT/JP2012/003054 JP2012003054W WO2012164834A1 WO 2012164834 A1 WO2012164834 A1 WO 2012164834A1 JP 2012003054 W JP2012003054 W JP 2012003054W WO 2012164834 A1 WO2012164834 A1 WO 2012164834A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium ion
electrode active
negative electrode
ion secondary
Prior art date
Application number
PCT/JP2012/003054
Other languages
English (en)
French (fr)
Inventor
林 圭一
三好 学
貴之 弘瀬
村瀬 仁俊
森本 英行
真一 鳶島
Original Assignee
株式会社豊田自動織機
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 国立大学法人群馬大学 filed Critical 株式会社豊田自動織機
Priority to EP12792077.5A priority Critical patent/EP2717359B1/en
Priority to US14/122,973 priority patent/US9735422B2/en
Priority to KR1020137031732A priority patent/KR101914517B1/ko
Priority to CN201280026201.8A priority patent/CN103650217B/zh
Priority to JP2013517836A priority patent/JP5749339B2/ja
Publication of WO2012164834A1 publication Critical patent/WO2012164834A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a material used for a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery using the material.
  • Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, so they are used in a wide range of fields such as mobile phones and notebook computers.
  • the performance of the lithium ion secondary battery depends on the materials of the positive electrode, the negative electrode, and the electrolyte constituting the secondary battery.
  • active material materials contained in electrodes are being actively conducted.
  • a carbon-based material such as graphite as a negative electrode active material that is generally used.
  • a carbon negative electrode using graphite or the like as a negative electrode active material has an intercalation reaction, and thus has high cycle characteristics but is difficult to increase in capacity. Therefore, silicon-based materials such as silicon and silicon oxide having a higher capacity than carbon have been studied as negative electrode active material materials.
  • a silicon-based material has a high capacity of 1000 mAh / g or more by being alloyed with lithium.
  • a silicon-based material such as silicon or silicon oxide
  • the negative electrode active material expands and contracts due to a charge / discharge cycle, thereby changing the volume.
  • the negative electrode active material expands or contracts, a load is applied to the binder that holds the negative electrode active material on the current collector, and the adhesion between the negative electrode active material and the current collector decreases.
  • the conductive path in the electrode is broken and the capacity is remarkably reduced, or the negative electrode active material is distorted due to repeated expansion and contraction to be refined and detached from the electrode. Because of these various problems, there is a problem that the cycle characteristics are poor.
  • SiO x silicon oxide
  • SiO 2 silicon oxide
  • SiO x decomposes into Si and SiO 2 when heat-treated. This is called a disproportionation reaction, and if it is a homogeneous solid silicon monoxide SiO having a ratio of Si to O of approximately 1: 1, it is separated into two phases of Si phase and SiO 2 phase by solid internal reaction. .
  • the Si phase obtained by separation is very fine.
  • the SiO 2 phase covering the Si phase has a function of suppressing decomposition of the electrolytic solution. Therefore, although the problem of volume change still remains, the secondary battery using the negative electrode active material composed of SiO x decomposed into the Si phase and the SiO 2 phase has excellent cycle characteristics.
  • iron oxide which is low in toxicity and abundant in resources and inexpensive, has been proposed as a negative electrode active material.
  • iron oxide Fe 2 O 3
  • the reaction proceeds to the conversion region by insertion of Li.
  • the theoretical capacity at that time is 1007 mAh / g, but the actual charge / discharge efficiency of the first cycle is 70%, and sufficient electrode performance cannot be exhibited.
  • Iron oxide also has a problem that the reaction rate of the battery reaction is slow.
  • Patent Document 1 discloses an electrode including a current collector and a metal oxide-containing layer provided on the current collector, and the metal oxide-containing layer includes a metal oxide containing a metal oxide. Contains particles and SiO x (0 ⁇ x ⁇ 2).
  • Patent Document 1 excellent cycle characteristics are obtained by mixing metal oxide particles and SiO x .
  • the reason why such an effect can be obtained is that the stress caused by the volume expansion of SiO x accompanying the insertion / extraction of lithium ions is relieved by the inclusion of metal oxide particles, and the deformation of the metal oxide-containing layer And the exfoliation from the current collector is suppressed, and excellent cycle characteristics can be obtained. Further, it is stated that not only SiO x but also a metal oxide can contribute to the insertion / extraction of lithium ions, thereby improving the electric capacity.
  • the electrode of Patent Document 1 is not an electrode having a general active material layer including a positive electrode active material, a conductive additive, and a binder that binds the positive electrode active material and the conductive additive.
  • a metal oxide-containing layer containing SiO 2 , FeO, Fe 2 O 3, etc. is formed on the surface of a copper foil as a current collector using an arc ion plating apparatus including a Fe target and a Si target. is doing.
  • fine metal oxide particles (average particle diameter of 1 to 50 nm) are formed on the surface of the current collector.
  • PVD methods such as arc ion plating are used, a large-scale apparatus for controlling the vacuum system is required, leading to an increase in cost.
  • fine metal oxide particles are very densely present on the surface of the current collector, and the conductivity decreases due to the contact resistance between the particles, which is disadvantageous as an electrode.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel negative electrode active material capable of constituting a lithium ion secondary battery exhibiting excellent battery characteristics.
  • the inventors have reduced the volume change of the negative electrode active material layer that occurs during charging and discharging by using a mixture of silicon oxide that has been conventionally used as the negative electrode active material and iron oxide having a specific shape. Focused on the ease. Further development of this result has led to the invention described below.
  • the negative electrode active material for a lithium ion secondary battery of the present invention is characterized by containing a mixture of silicon oxide particles made of silicon oxide and rod-like iron oxide particles made of iron oxide.
  • the negative electrode active material for a lithium ion secondary battery according to the present invention includes iron oxide particles made of iron oxide and having a specific shape together with silicon oxide particles made of silicon oxide, so that the effects described below can be obtained. Demonstrated.
  • the iron oxide particles that are essentially included in the negative electrode active material for a lithium ion secondary battery of the present invention have a rod shape.
  • the rod-shaped particles When rod-shaped particles and spherical particles are compared in the same volume, the rod-shaped particles have a flat central portion and a small thickness. Furthermore, the rod-shaped particles tend to be arranged in parallel to the surface of the current collector. Therefore, by adopting rod-shaped iron oxide particles, volume change in the thickness direction of the electrode is alleviated.
  • the silicon oxide particles easily move on the surface of the rod-shaped iron oxide particles that come into contact, these powders are rearranged along with the volume change of the silicon oxide particles generated during charge and discharge, and the volume change is Alleviated. Since the powder is in a dense state after rearrangement, not only relaxation of the volume change but also improvement of conductivity can be expected.
  • the iron oxide particles are rod-shaped, a better contact state than contact between spherical particles is obtained, and the internal resistance is reduced.
  • the iron oxide particles may further have a plurality of pores on the surface.
  • the presence of a plurality of pores increases the specific surface area and increases the surface area contributing to the electrode reaction.
  • the plurality of pores are impregnated with the electrolytic solution and diffused from the surface of the pores.
  • the iron oxide particles are rod-shaped particles, the interval between the pores positioned backward in the thickness direction is shorter than that of the spherical particles. That is, the rod-shaped iron oxide particles having a plurality of pores on the surface have a short diffusion distance. Therefore, the negative electrode active material for a lithium ion secondary battery of the present invention using iron oxide particles having a plurality of pores on the surface can efficiently perform an electrode reaction.
  • iron oxide was said to have a slow cell reaction rate.
  • a reaction rate comparable to silicon oxide can be obtained by using iron oxide particles that are rod-shaped and have a plurality of pores on the surface. Guessed.
  • the negative electrode active material for lithium ion secondary batteries of the present invention is effective for improving battery characteristics such as charge / discharge capacity or cycle characteristics of lithium ion secondary batteries.
  • the X-ray-diffraction pattern of the iron oxide powder used for the negative electrode active material for lithium ion secondary batteries of this invention and its precursor is shown.
  • the result of having observed the iron oxide powder used for the negative electrode active material for lithium ion secondary batteries of this invention and its precursor with the scanning electron microscope (SEM) is shown. It is a graph which shows the specific surface area and pore volume of the iron oxide powder obtained by heat-processing a precursor at various temperatures. It is a graph which shows the initial stage charge / discharge capacity
  • the result of having observed the iron oxide powder used for the negative electrode active material for lithium ion secondary batteries of this invention by SEM is shown.
  • the result of having observed the spherical iron oxide powder used for the conventional negative electrode active material for lithium ion secondary batteries by SEM is shown.
  • the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • the negative electrode active material for a lithium ion secondary battery of the present invention mainly contains a mixture of silicon oxide particles made of silicon oxide and iron oxide particles made of iron oxide.
  • silicon oxide particles and iron oxide particles will be described.
  • the term “silicon oxide powder” and “iron oxide powder” may be used, but both are names as aggregates of particles.
  • the iron oxide particles are preferably made of iron oxide, specifically, ferric oxide (Fe 2 O 3 ) capable of occluding and releasing lithium.
  • Ferric oxide has different crystal structures such as an ⁇ phase, a ⁇ phase, and a ⁇ phase, but it is more common than other crystal structures, and is easily available and inexpensive. Therefore, ⁇ -Fe 2 O 3 It is preferable to use iron oxide particles ( ⁇ -Fe 2 O 3 particles) made of Needless to say, it is also possible to use iron oxide powder containing two or more types of ferric oxide having different structures.
  • Iron oxide particles are rod-shaped. If the rod shape is specifically defined, the aspect ratio (that is, the average length / average diameter) defined by the ratio of the length and width of the circumscribed rectangle of the particle in plan view is 2 or more, 3 or more, or 4 or more Is preferred. Although the upper limit of the aspect ratio is not particularly specified, it is preferably 10 or less, 8.5 or less, and more preferably 5 or less. Specifically, the average length in the long direction of the particles is preferably 0.4 to 0.7 ⁇ m, and the average diameter in the short direction of the particles is preferably 0.085 to 0.17 ⁇ m. In addition, in this specification, the measurement of the dimension of particle
  • the iron oxide particles may have a plurality of pores on the surface. Such pores are presumed to open at the surface of the particle and open substantially perpendicular to the surface of the particle. It can be confirmed that the iron oxide particles have a plurality of pores, for example, by measuring the specific surface area.
  • the specific surface area is not particularly limited, but if it is 30 m 2 / g or more, it may be considered that pores are present in rod-shaped iron oxide particles having a size suitable for use as a negative electrode active material.
  • the specific surface area of the iron oxide particles is preferably 80 m 2 / g or more, more preferably 100 m 2 / g or more. The larger the specific surface area value, the larger the reaction area, further improving the efficiency of the battery reaction.
  • the specific surface area is preferably 1000 m 2 / g or less, more preferably 600 m 2 / g or less.
  • the pore volume 0.08 cm 3 / g or more and more preferably 0.10 cm 3 / g or more.
  • the pore volume of the iron oxide particles is preferably 1.0 cm 3 / g or less, more preferably 0.5 cm 3 / g or less.
  • Fe 2 O 3 can be produced by heat-treating FeOOH (iron oxyhydroxide).
  • FeOOH iron oxyhydroxide
  • a precursor may be prepared such as ⁇ -FeOOH, and in the case of obtaining ⁇ -Fe 2 O 3 , ⁇ -FeOOH.
  • a rod-like Fe 2 O 3 powder can be obtained by preparing a rod-like FeOOH powder.
  • rod-like FeOOH is commercially available, it can be easily synthesized as a precipitate obtained by aging an aqueous solution such as iron chloride.
  • the heat treatment is preferably performed at 150 to 500 ° C., more preferably 250 to 400 ° C. for 1 hour or more, and further preferably 1.5 to 10 hours, and may be about 2 to 5 hours.
  • heat treatment causes FeOOH to undergo a dehydration reaction due to thermal decomposition, pores are formed as a result of dehydration from the surface.
  • rod-like Fe 2 O 3 particles having a plurality of pores can be easily obtained from rod-like FeOOH particles.
  • the higher the heat treatment temperature the more the dehydration reaction proceeds and pores are more easily formed, resulting in a larger specific surface area. However, if the heat treatment temperature is too high, the specific surface area tends to decrease. This is because pore blockage occurs.
  • the treatment may be performed in an oxygen-containing atmosphere, for example, air.
  • silicon oxide particles silicon oxide powders conventionally used as a negative electrode active material may be used.
  • the structure of the silicon oxide particle (powder) optimal for the negative electrode active material for lithium ion secondary batteries of this invention is demonstrated.
  • the silicon oxide particles may include a SiO 2 phase and a Si phase.
  • the effect of each phase is as already described. Therefore, the silicon oxide particles may be made of silicon oxide represented by SiO n (0.3 ⁇ n ⁇ 1.6). If n is less than 0.3, the proportion of the Si phase increases, so that the volume change during charge / discharge becomes too large, and the cycle characteristics deteriorate. On the other hand, when n exceeds 1.6, the ratio of the Si phase decreases and the energy density decreases. Further preferable ranges of n are 0.5 ⁇ n ⁇ 1.5 and 0.7 ⁇ n ⁇ 1.2.
  • the raw material silicon oxide powder containing amorphous SiO powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as vacuum or in an inert gas.
  • a powder composed of SiO particles containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.
  • SiO is disproportionated and separated into two phases.
  • a part of the mechanical energy of milling is considered to contribute to chemical atomic diffusion at the solid phase interface of the particles, and to generate SiO 2 phase and Si phase.
  • the silicon oxide powder may be milled using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas. Further heat treatment may be performed after milling to further promote disproportionation of the silicon oxide.
  • the silicon oxide powder is preferably composed of substantially spherical particles. From the viewpoint of charge / discharge characteristics of the lithium ion secondary battery, the smaller the average particle size of the silicon oxide powder, the better. However, if the average particle size is too small, the particles are agglomerated and formed into coarse particles when the negative electrode is formed, and the charge / discharge characteristics of the lithium ion secondary battery may deteriorate. Therefore, the average particle diameter of the silicon oxide powder is preferably in the range of 5 to 20 ⁇ m.
  • the silicon oxide particles may have a coating layer made of a carbon material on the surface.
  • the coating layer made of a carbon material not only imparts conductivity to the silicon oxide particles, but can also prevent reaction between the silicon oxide particles and hydrofluoric acid generated by decomposition of the components of the electrolytic solution, The battery characteristics of the lithium ion secondary battery are improved.
  • the carbon material for the coating layer natural graphite, artificial graphite, coke, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, or the like can be used.
  • silicon oxide and a carbon material precursor are mixed and fired.
  • the carbon material precursor an organic compound that can be converted into a carbon material by firing, such as saccharides, glycols, polymers such as polypyrrole, and acetylene black, can be used.
  • the coating layer can be formed by using a mechanical surface fusion treatment method such as mechano-fusion or a vapor deposition method such as CVD.
  • the negative electrode active material for a lithium ion secondary battery of the present invention contains a mixture of the above silicon oxide particles and iron oxide particles.
  • the mixing ratio between the silicon oxide particles and the iron oxide particles may be appropriately determined according to the required characteristics of the lithium ion secondary battery. For example, if it is desired to improve the cycle characteristics, when the total mixture is 100% by mass, iron oxide particles are contained in an amount of 5% by mass or more, 10% by mass or more, 30% by mass or more, and further 40% by mass or more. Good.
  • the iron oxide particles when it is desired to obtain a high-capacity lithium ion secondary battery, when the total mixture is 100% by mass, the iron oxide particles are 1% by mass or more, 3% by mass or more, 5% by mass or more, and further 10%. It is good to contain more than mass%. However, if the amount of iron oxide particles added is excessive, the charge / discharge capacity decreases, so when the total mixture is 100 mass%, the iron oxide particles are 25 mass% or less, 23 mass% or less, 20 mass% or less. Furthermore, it is good to contain 15 mass% or less.
  • the iron oxide particles when it is desired to obtain a lithium ion secondary battery having sufficient capacity and cycle characteristics, when the total mixture is 100% by mass, the iron oxide particles are 5% by mass or more, further 10% by mass or more, and 25% by mass. Further, it is preferable to contain 15% by mass or less. In any case, it is desirable that the balance substantially consists of silicon oxide particles. As described above, the silicon oxide particles may include a coating layer.
  • a negative electrode of the lithium ion secondary battery of the present invention includes a mixture of the above silicon oxide particles and iron oxide particles as a negative electrode active material, a current collector, and an active material layer bound on the current collector, Have.
  • the active material layer is composed of a negative electrode active material, a conductive additive, a binder resin, and an appropriate amount of an organic solvent as necessary, mixed into a slurry, and then a roll coating method, a dip coating method, a doctor blade method, a spray It can be produced by coating on a current collector by a method such as a coating method or a curtain coating method and curing the binder resin.
  • the current collector can adopt a shape such as a metal mesh, foil or plate, but is not particularly limited as long as it has a shape suitable for the purpose.
  • a copper foil or an aluminum foil can be suitably used as the current collector.
  • the negative electrode active material includes a mixture of the above silicon oxide particles and iron oxide particles as an essential component, and may include other negative electrode active materials.
  • examples of other negative electrode active materials include carbon-based negative electrode active materials.
  • Conductive aid is added to increase the conductivity of the electrode.
  • Carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF), etc. which are carbonaceous fine particles, are added alone or in combination as a conductive aid. be able to.
  • the amount of the conductive auxiliary agent used is not particularly limited, but can be, for example, about 20 to 100 parts by mass with respect to 100 parts by mass of the active material. If the amount of the conductive auxiliary is less than 20 parts by mass, an efficient conductive path cannot be formed, and if it exceeds 100 parts by mass, the moldability of the electrode deteriorates and the energy density decreases.
  • silicon oxide particles having a coating layer made of a carbon material are used, the addition amount of the conductive auxiliary agent can be reduced or not added.
  • the binder resin is used as a binder for binding the active material and the conductive assistant to the current collector.
  • the binder resin is required to bind the active material or the like in as small an amount as possible, and the amount is 0.5 to 50 mass when the total amount of the negative electrode active material, the conductive additive and the binder resin is 100 mass%. % Is desirable.
  • the amount of the binder resin is less than 0.5% by mass, the moldability of the electrode is deteriorated.
  • binder resin fluoropolymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), imide polymers such as polyimide, polyamideimide, alkoxylsilyl groups
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • imide polymers such as polyimide, polyamideimide, alkoxylsilyl groups
  • the resin include polyacrylic acid, polymethacrylic acid, and polyitaconic acid.
  • a copolymer of acrylic acid and an acid monomer such as methacrylic acid, itaconic acid, fumaric acid or maleic acid can also be used.
  • a resin containing a carboxyl group such as polyacrylic acid is particularly desirable, and a resin having a higher carboxyl group content is more preferable.
  • the negative electrode in the lithium ion secondary battery of the present invention is pre-doped with lithium.
  • an electrode formation method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically doped with lithium can be used.
  • the doping amount of lithium there is no particular limitation on the doping amount of lithium, and it may be pre-doped beyond the theoretical capacity.
  • Li x Si y O z (0 ⁇ x ⁇ 4, 0.3 is added to the SiO 2 phase contained in the negative electrode active material.
  • Li 4 SiO 4 produced by the above reaction is an inert substance which does not participate in the electrode reaction during charging and discharging and relieve a volume change of the active material during charging and discharging. Therefore, when the oxide compound represented by Li x Si y O z is contained in the SiO 2 phase, the cycle characteristics of the lithium ion secondary battery of the present invention are further improved.
  • the negative electrode for a lithium ion secondary battery of the present invention can improve the above-mentioned Coulomb efficiency to 77% or more by charging and discharging the iron oxide particles to the conversion region.
  • the inventors of the present invention have earnestly found out that the capacity increases in a charge / discharge test in which charging / discharging is performed at a low current density and the coulomb efficiency is about 93%. The reason for this is not clear, but it is presumed that zero-valent Fe generated in the conversion region plays a role of a catalyst for the cell reaction of silicon oxide particles.
  • the end voltage is 0.005 V at the lithium reference potential if specifically defined up to the conversion region of the iron oxide particles. Furthermore, charging / discharging is preferably performed at 0V.
  • the positive electrode, electrolyte, and separator which are not specifically limited can be used for the lithium ion secondary battery of this invention using the above-mentioned negative electrode.
  • the positive electrode may be anything that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer includes a positive electrode active material and a binder, and may further include a conductive additive.
  • the positive electrode active material, the conductive additive, and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.
  • the positive electrode active material examples include LiCoO 2 , LiNi p Co q Mn r O 2 (0 ⁇ p ⁇ 1, 0 + p ⁇ q ⁇ 1-p, 0+ (p + q) ⁇ r ⁇ 1- (p + q)), Li 2 MnO 2 , Li 2 MnO 3 , LiNi s Mn t O 2 (0 ⁇ s ⁇ 1, 0 + s ⁇ t ⁇ 1-s), LiFePO 4 , Li 2 FeSO 4 based lithium-containing metal oxide or one of each Or the solid solution material containing 2 or more types is mentioned. Desirably, such LiCoO 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2, Li 2 MnO 2, S and the like.
  • the positive electrode active material containing S a sulfur-modified compound obtained by introducing sulfur into an organic compound such as sulfur alone (S) or polyacrylonitrile can also be used. However, since these materials do not contain lithium as an electrolyte ion, it is necessary to dope lithium (pre-dope) in advance to the negative electrode active material or the positive electrode active material.
  • the current collector is not particularly limited as long as it is generally used for the positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel.
  • the conductive auxiliary agent the same ones as described in the above negative electrode can be used.
  • an electrolytic solution in which a lithium metal salt that is an electrolyte is dissolved in an organic solvent may be used.
  • the electrolytic solution is not particularly limited.
  • the organic solvent from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), fluoroethylene carbonate (FEC), etc.
  • the electrolytes dissolved it can be used LiPF 6, LiBF 4, LiAsF 6 , LiI, NaPF 6, NaBF 4, NaAsF 6, LiBOB, soluble lithium metal salt in an organic solvent and the like.
  • a solution dissolved in can be used.
  • the separator is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be adopted. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • the secondary battery using the above-described lithium manganese composite oxide of the present invention as an active material can be suitably used in the field of automobiles in addition to the fields of communication devices such as mobile phones and personal computers, information-related devices.
  • this secondary battery is mounted on a vehicle, it can be used as a power source for an electric vehicle.
  • ⁇ -Fe 2 O 3 was produced using ⁇ -FeOOH powder composed of rod-like particles having an average length of 0.65 ⁇ m and an average diameter of 0.15 ⁇ m as a precursor.
  • the heat treatment was performed at a predetermined temperature in the atmosphere for 10 hours.
  • the heat treatment temperature was 270 ° C., 360 ° C., 500 ° C. or 750 ° C.
  • the ⁇ -FeOOH powder before and after the heat treatment was subjected to X-ray diffraction (XRD) measurement using CuK ⁇ rays. Moreover, those shapes were observed with a scanning electron microscope (SEM). The results are shown in FIG. 1 and FIG.
  • the XRD pattern shown in FIG. 1 and the SEM image shown in FIG. 2 are the results at a heat treatment temperature of 360 ° C.
  • FIG. 1 also shows diffraction data of powder diffraction files (PDF) of FeOOH and ⁇ -Fe 2 O 3 .
  • PDF powder diffraction files
  • the heat treatment of the ⁇ -FeOOH powder resulted in a higher specific surface area and pore volume than before the heat treatment. Therefore, the ⁇ -Fe 2 O 3 powder (particles) after the heat treatment was separated from the particle surface. It was found that there were multiple pores formed by dehydration.
  • the specific surface area and pore volume of ⁇ -Fe 2 O 3 powder obtained by heat treatment at 270 to 360 ° C. were very high at 80 m 2 / g or more and 0.1 cm 3 / g or more.
  • the heat treatment temperature is 500 ° C.
  • ⁇ -Fe 2 O 3 powder having a high specific surface area and a high pore volume can be obtained by selecting appropriate heat treatment conditions.
  • a negative electrode was produced using ⁇ -Fe 2 O 3 powder obtained by heat-treating ⁇ -FeOOH powder at 360 ° C. as iron oxide powder.
  • the silicon oxide powder As the silicon oxide powder, a commercially available SiO n powder (manufactured by Sigma-Aldrich Japan, average particle size 5 ⁇ m) having a carbon-coated powder surface was used. Carbon coating was performed by adding SiO n powder to a glucose aqueous solution and mixing uniformly, then drying and heat-treating at 900 ° C. for 2 hours. The SiO n is separated into two phases of Si phase and SiO 2 phase by solid internal reaction by this heat treatment. The Si phase obtained by separation is very fine. 4 and 5, this silicon oxide powder is abbreviated as SiO powder.
  • Silicon oxide powder and iron oxide powder were mixed at a predetermined blending ratio to obtain a mixed powder as a negative electrode active material.
  • a slurry was prepared by mixing 85 parts by mass of the mixed powder and 15 parts by mass of a binder (solid content).
  • NMP N-methylpyrrolidone
  • the solid content of the binder solution was 18% by mass.
  • This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 10 ⁇ m using a doctor blade, and a negative electrode active material layer was formed on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely joined by a roll press. This was vacuum dried to form a negative electrode having an active material layer thickness of about 30 ⁇ m.
  • the counter electrode was cut to ⁇ 15.5 mm, the evaluation electrode was cut to ⁇ 15.0 mm, and a separator (polyethylene porous film, thickness 25 ⁇ m) was sandwiched between them to form an electrode body battery.
  • This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.).
  • a constant current charge / discharge test was performed at a charge / discharge current density of 0.2 mA / cm 2 at the first cycle and at a charge / discharge current density of 0.5 mA / cm 2 after the second cycle.
  • the potential range was 0 to 3.0 V at the lithium reference potential.
  • the initial capacity tended to increase as the blending ratio of the silicon oxide powder increased.
  • the capacity became maximum when the blending ratio of the silicon oxide powder was 80% by mass.
  • the initial capacity is increased as compared with the case where the iron oxide powder is not included. I found out that I could do it.
  • FIG. 5 shows that the use of iron oxide powder suppresses a decrease in discharge capacity accompanying an increase in the number of cycles.
  • the addition amount of the iron oxide powder 40% by mass or more, the cycle transition of the discharge capacity was very stable.
  • the amount of iron oxide powder added is 10% by mass, both the initial capacity and cycle characteristics are superior compared to a secondary battery in which the negative electrode active material is 100% by mass of silicon oxide powder.
  • the iron oxide powder in an amount of 5 to 15% by mass (85 to 95% by mass in the case of silicon oxide powder), lithium ions that achieve both high initial capacity and cycle characteristics. It was found that a secondary battery can be obtained.
  • Two types of negative electrodes were produced using rod-shaped iron oxide powder or spherical iron oxide powder.
  • ⁇ -Fe 2 O 3 powder obtained by heat-treating the above ⁇ -FeOOH powder at 360 ° C. (average length: 0.65 ⁇ m, average diameter: 0.15 ⁇ m (aspect ratio: 4.3)) was used.
  • the spherical iron oxide powder commercially available ⁇ -Fe 2 O 3 powder (average particle size: 0.7 ⁇ m (aspect ratio is about 1) was used.
  • Slurries were prepared by mixing so as to be 85 parts by mass of rod-like ⁇ -Fe 2 O 3 powder or spherical ⁇ -Fe 2 O 3 powder, 5 parts by mass of acetylene black (AB), and 10 parts by mass of binder.
  • NMP N-methylpyrrolidone
  • the solid content of the binder solution was 30% by mass.
  • This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 10 ⁇ m using a doctor blade, and a negative electrode active material layer was formed on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely joined by a roll press. This was vacuum dried to form a negative electrode having an active material layer thickness of about 30 ⁇ m.
  • FIGS. 6 The results of observation of the negative electrode active material layer by SEM are shown in FIGS.
  • the granular material (an example is shown by an arrow) seen in FIG. 6 was acetylene black.
  • the surface of the negative electrode active material layer was observed in a direction perpendicular to the surface of the current collector.
  • FIG. 6 many rod-like particles parallel to the surface of the current collector were observed.
  • Two types of lithium ion secondary batteries (half cells) were prepared according to the above-described procedure using the two types of electrodes prepared by the above procedure as evaluation electrodes. A charge / discharge test was performed at room temperature on each of the produced lithium ion secondary batteries.
  • a constant current charge / discharge test was performed at a charge / discharge current density of 0.2 mA / cm 2 at the first cycle and at a charge / discharge current density of 0.5 mA / cm 2 after the second cycle.
  • the potential range was 0.005 to 3.0 V at the lithium reference potential.
  • FIG. 8 shows the transition of discharge capacity from the first cycle to the 18th cycle (20th cycle when spherical ⁇ -Fe 2 O 3 powder is used).
  • the secondary battery using the rod-like ⁇ -Fe 2 O 3 powder maintained 85% or more of the initial discharge capacity until the 18th cycle. Further, the discharge capacity of the secondary battery using the rod-like ⁇ -Fe 2 O 3 powder was as high as 700 mAh / g even after the second cycle.
  • the secondary battery using the spherical ⁇ -Fe 2 O 3 powder has a low initial discharge capacity and decreases to about half of the initial discharge capacity in the second cycle, and further decreases to about half of the capacity in the 20th cycle. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Silicon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

 優れた電池特性を示すリチウムイオン二次電池を構成可能な負極活物質を提供する。 本発明のリチウムイオン二次電池用負極活物質は、珪素酸化物からなる珪素酸化物粒子と、鉄酸化物からなる棒状の鉄酸化物粒子と、の混合物を含むことを特徴とする。表面に複数の細孔を備える鉄酸化物粒子を用いるのが好ましく、電極反応が効率よく行われる。

Description

リチウムイオン二次電池用負極活物質、それを用いた負極および二次電池
 本発明は、リチウムイオン二次電池の負極に用いられる材料およびそれを用いたリチウムイオン二次電池に関するものである。
 リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。リチウムイオン二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。なかでも電極に含まれる活物質材料の研究開発が活発に行われている。現在、一般的に用いられている負極活物質として黒鉛などの炭素系材料がある。黒鉛などを負極活物質とする炭素負極は、インターカレーション反応を有することから、サイクル特性は良いものの、高容量化が困難とされている。そこで負極活物質材料として、炭素よりも高容量な珪素や珪素酸化物などの珪素系材料が検討されている。
 珪素系材料は、リチウムと合金化することで、1000mAh/g以上の高容量をもつ。しかし、珪素や酸化珪素のような珪素系材料を負極活物質として用いると、充放電サイクルにより負極活物質が膨張および収縮することで体積変化することが知られている。負極活物質が膨張したり収縮したりすることで、負極活物質を集電体に保持する役割を果たす結着剤に負荷がかかり、負極活物質と集電体との密着性が低下したり、電極内の導電パスが破壊されて容量が著しく低下したり、膨張と収縮の繰り返しにより負極活物質に歪が生じて微細化して電極から脱離したり、といった問題がある。こういった種々の問題点があるため、サイクル特性に乏しいという問題がある。
 そこで、珪素系材料として、酸化珪素(SiO:xは0.5≦x≦1.5程度)の使用が検討されている。SiOは、熱処理されると、SiとSiOとに分解することが知られている。これは不均化反応といい、SiとOとの比が概ね1:1の均質な固体の一酸化珪素SiOであれば、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。したがって、体積変化の問題は依然として残るものの、Si相とSiO相とに分解したSiOからなる負極活物質を用いた二次電池は、サイクル特性に優れる。
 また、負極活物質として、毒性が低く資源的に豊富で低廉な鉄酸化物の使用も提案されている。酸化鉄(Fe)については、Liの挿入によりコンバージョン領域まで反応が進むと言われている。そのときの理論容量は、1007mAh/gであるが、実際の1サイクル目の充放電効率が70%であり十分な電極性能を発揮できない。また、酸化鉄には、電池反応の反応速度が遅いという問題点もある。
 これらのような負極活物質を組み合わせて用いた電極が、特許文献1に開示されている。特許文献1には、集電体と該集電体に設けられた金属酸化物含有層とを備えた電極が開示されており、金属酸化物含有層は、金属の酸化物を含む金属酸化物粒子とSiO(0≦x≦2)とを含有する。
 特許文献1では、金属酸化物粒子およびSiOを混在させることにより、優れたサイクル特性を得ている。このような効果が得られる理由として、リチウムイオンの挿入・脱離に伴うSiOの体積膨張により生じる応力が、金属酸化物粒子が含有されていることにより緩和され、金属酸化物含有層の変形や集電体からの剥離が抑制され、優れたサイクル特性を得られることが記載されている。また、SiOだけでなく金属酸化物もリチウムイオンの挿入・脱離に寄与することで、電気容量を向上させることができると述べている。
特開2010-3642号公報
 特許文献1の電極は、正極活物質と導電助材と正極活物質および導電助材を結着する結着剤とを含む一般的な活物質層を有する電極ではない。たとえば、実施例では、FeターゲットおよびSiターゲットを備えるアークイオンプレーティング装置を用い、集電体である銅箔の表面にSiO、FeO、Feなどを含む金属酸化物含有層を形成している。この方法によれば、集電体の表面に微細な金属酸化物粒子(平均粒径で1~50nm)が形成される。しかしながら、アークイオンプレーティングなどのPVD法を用いると、真空系を制御する大がかりな装置が必要となり、コストの上昇にも繋がる。また、集電体の表面には微細な金属酸化物粒子が非常に密に存在すると考えられ、粒子同士の接触抵抗で導電性が低下し、電極としては不利になると考えられる。
 本発明は、上記した事情に鑑みてなされたものであり、優れた電池特性を示すリチウムイオン二次電池を構成可能な新規の負極活物質を提供することを目的とする。
 本発明者等は、従来から負極活物質として用いられている酸化珪素と、特定の形状を有する酸化鉄とを混合して用いることにより、充放電時に生じる負極活物質層の体積変化が緩和されやすくなることに着目した。この成果をさらに発展させることで、以下に述べる発明に至った。
 すなわち、本発明のリチウムイオン二次電池用負極活物質は、珪素酸化物からなる珪素酸化物粒子と、鉄酸化物からなる棒状の鉄酸化物粒子と、の混合物を含むことを特徴とする。
 従来のリチウムイオン二次電池用負極活物質において、珪素酸化物粉末の一部を鉄酸化物粉末にするだけでも、珪素酸化物粒子の体積変化により生じる悪影響を低減する効果はある。しかし、それだけでは、顕著な効果は得られない。また、鉄酸化物粒子も、充放電に伴い多少の体積変化を生じる材料である。本発明のリチウムイオン二次電池用負極活物質は、珪素酸化物からなる珪素酸化物粒子とともに、鉄酸化物からなり特定の形状を有する鉄酸化物粒子を含むことで、以下に説明する効果が発揮される。
 鉄酸化物には球状の粒子も存在するが、本発明のリチウムイオン二次電池用負極活物質に必須に含まれる鉄酸化物粒子は、その粒子形状が棒状である。棒状の粒子と球状の粒子とを同じ体積で比較した場合、棒状の粒子は、中央部が偏平で厚みが小さい。さらに、棒状の粒子は、集電体の表面に対して平行に配置する傾向にある。そのため、棒状の鉄酸化物粒子を採用することで、電極の厚み方向への体積変化が緩和される。また、珪素酸化物粒子は、接触する棒状の鉄酸化物粒子の表面で移動しやすいため、これらの粉末は、充放電中に生じる珪素酸化物粒子の体積変化に伴い再配置され、体積変化は緩和される。再配置後には粉末が密な状態になるため、体積変化の緩和のみならず、導電性の向上も期待できる。
 また、鉄酸化物粒子が棒状であれば、球状の粒子同士の接触よりも良好な接触状態が得られ、内部抵抗が低減される。
 鉄酸化物粒子は、さらに、その表面に複数の細孔を備えるとよい。細孔が複数存在することで、比表面積が増加し、電極反応に寄与する表面積が増大する。また、複数の細孔には電解液が含浸し、細孔表面から拡散する。このとき、鉄酸化物粒子は棒状の粒子であるため、厚さ方向に背向して位置する細孔の間隔は、球状の粒子よりも短くなる。つまり、表面に複数の細孔を備える棒状の鉄酸化物粒子は、拡散距離が短い。したがって、表面に複数の細孔を備える鉄酸化物粒子を用いた本発明のリチウムイオン二次電池用負極活物質は、電極反応を効率よく行うことができる。
 既に説明したように、鉄酸化物は電池反応の反応速度が遅いと言われていた。しかし、本発明の二次電池用負極活物質では、棒状であり、かつ表面に複数の細孔を備える鉄酸化物粒子を使用することで、珪素酸化物に匹敵する反応速度が得られるものと推測される。
 本発明のリチウムイオン二次電池用負極活物質は、リチウムイオン二次電池の充放電容量またはサイクル特性などの電池特性の向上に有効である。
本発明のリチウムイオン二次電池用負極活物質に用いられる鉄酸化物粉末およびその前駆体のX線回折パターンを示す。 本発明のリチウムイオン二次電池用負極活物質に用いられる鉄酸化物粉末およびその前駆体を走査電子顕微鏡(SEM)で観察した結果を示す。 種々の温度で前駆体を熱処理して得た鉄酸化物粉末の比表面積および細孔容積を示すグラフである。 成分組成の異なる種々のリチウムイオン二次電池用負極活物質を用いたリチウムイオン二次電池の初期充放電容量を示すグラフである。 成分組成の異なる種々のリチウムイオン二次電池用負極活物質を用いたリチウムイオン二次電池のサイクル特性を示すグラフである。 本発明のリチウムイオン二次電池用負極活物質に用いられる鉄酸化物粉末をSEMで観察した結果を示す。 従来のリチウムイオン二次電池用負極活物質に用いられる球状の鉄酸化物粉末をSEMで観察した結果を示す。 形状の異なる鉄酸化物粉末を含むリチウムイオン二次電池用負極活物質を用いたリチウムイオン二次電池のサイクル特性を示すグラフである。
 以下に、本発明のリチウムイオン二次電池用負極活物質を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。
 <リチウムイオン二次電池用負極活物質>
 本発明のリチウムイオン二次電池用負極活物質は、主として、珪素酸化物からなる珪素酸化物粒子と鉄酸化物からなる鉄酸化物粒子との混合物を含む。以下に、珪素酸化物粒子および鉄酸化物粒子について説明する。なお、本明細書では、珪素酸化物粉末および鉄酸化物粉末と記載することもあるが、いずれも、粒子の集合体としての呼称である。
 鉄酸化物粒子は、鉄酸化物、具体的には、リチウムの吸蔵および放出が可能な酸化第二鉄(Fe)からなるのが好ましい。酸化第二鉄には、α相、β相、γ相、といった異なる結晶構造が存在するが、他の結晶構造よりも一般的で、入手しやすく安価であることから、α-Feからなる鉄酸化物粒子(α-Fe粒子)を用いるのが好ましい。なお、言うまでもなく、構造の異なる酸化第二鉄を二種以上含む鉄酸化物粉末を使用することも可能である。
 鉄酸化物粒子は、棒状である。棒状を具体的に規定するのであれば、平面視した粒子の外接長方形の長さと幅の比で規定されるアスペクト比(つまり、平均長さ/平均径)で2以上、3以上さらには4以上であるのが好ましい。アスペクト比の上限に特に規定はないが、10以下、8.5以下さらには5以下が好ましい。具体的には、粒子の長い方向の平均長さが0.4~0.7μm、粒子の短い方向の平均径が0.085~0.17μmであるとよい。なお、本明細書において、粒子の寸法の測定は、各種顕微鏡を用いて観察して得られる顕微鏡写真からの実測値である。平均値は、複数の実測値を平均して算出する。
 また、鉄酸化物粒子は、表面に複数の細孔を備えるとよい。このような細孔は、粒子の表面で開口し、粒子の表面に対して略垂直に開口していると推測される。鉄酸化物粒子が複数の細孔を備えていることは、たとえば、比表面積を測定することにより確認できる。比表面積に特に限定はないが、30m/g以上であれば、負極活物質としての使用に適切な寸法である棒状の鉄酸化物粒子に細孔が存在すると考えて差し支えない。好ましい鉄酸化物粒子の比表面積は、80m/g以上さらには100m/g以上である。比表面積の値が大きいほど、反応面積が大きくなり、電池反応の効率はさらに向上する。一方、電解液との過剰な反応を抑制するために、比表面積を1000m/g以下さらには600m/g以下とするとよい。また、細孔容積にも特に限定はないが、0.08cm/g以上さらには0.10cm/g以上が好ましい。活物質充填率(活物質層における鉄系酸化物の密度)を上げる観点から、鉄酸化物粒子の細孔容積は、1.0cm/g以下さらには0.5cm/g以下が好ましい。
 なお、本明細書において上記の比表面積および細孔容積は、鉄酸化物粉末をBET法により測定した値を採用する。
 次に、複数の細孔を備える鉄酸化物粒子の製造方法の一例を説明する。ただし、上記の鉄酸化物粒子が得られるのであれば、この方法に限定されるものではない。また、市販品を用いることも可能である。
 たとえば、Feは、FeOOH(オキシ水酸化鉄)を熱処理することで製造可能である。α-Feを得たい場合にはα-FeOOH、γ-Feを得たい場合にはγ-FeOOH、というように前駆体を準備すればよい。このとき、FeOOHの外形は熱処理前後で変化しないため、棒状のFeOOH粉末を準備することで、棒状のFe粉末が得られる。棒状のFeOOHは市販されているが、塩化鉄などの水溶液をエージングして得られる沈殿物として合成することも容易である。熱処理は、150~500℃さらには250~400℃で1時間以上さらには1.5~10時間が好ましく、2~5時間程度であってもよい。熱処理することでFeOOHは熱分解による脱水反応が生じるが、表面からの脱水の結果として細孔が形成される。上記の温度範囲で熱処理を行うことにより、棒状のFeOOH粒子から、複数の細孔を備える棒状のFe粒子が容易に得られる。熱処理温度が高いほど、脱水反応が十分に進行して細孔が形成されやすく比表面積が大きくなる。しかし、熱処理温度が高すぎると、かえって比表面積が低下する傾向にある。これは、細孔閉塞が生じるためである。また、熱処理雰囲気に特に限定はないため、酸素含有雰囲気、たとえば大気中で行えばよい。
 珪素酸化物粒子は、従来から負極活物質として用いられている珪素酸化物粉末を使用すればよい。以下に、本発明のリチウムイオン二次電池用負極活物質に最適な珪素酸化物粒子(粉末)の構成を説明する。
 珪素酸化物粒子は、SiO相とSi相とを含むとよい。それぞれの相の効果は、既に述べた通りである。したがって、珪素酸化物粒子は、SiO(0.3≦n≦1.6)で表される酸化珪素からなるとよい。nが0.3未満であると、Si相の占める比率が高くなるため充放電時の体積変化が大きくなりすぎてサイクル特性が低下する。またnが1.6を超えると、Si相の比率が低下してエネルギー密度が低下するようになる。さらに好ましいnの範囲は、0.5≦n≦1.5、0.7≦n≦1.2である。
 一般に、酸素を断った状態であれば800℃以上で、ほぼすべてのSiOが不均化して二相に分離すると言われている。具体的には、非結晶性のSiO粉末を含む原料酸化珪素粉末に対して、真空中または不活性ガス中などの不活性雰囲気中で800~1200℃、1~5時間の熱処理を行うことで、非結晶性のSiO相および結晶性のSi相の二相を含むSiO粒子からなる粉末が得られる。
 非結晶性のSiO粉末を含む酸化珪素粉末をミリングすることでも、SiOが不均化して二相に分離する。ミリングの機械的エネルギーの一部が、粒子の固相界面における化学的な原子拡散に寄与し、SiO相とSi相などを生成すると考えられる。酸化珪素粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用してミリングするとよい。ミリング後にさらに熱処理を施すことで、珪素酸化物の不均化をさらに促進させてもよい。
 珪素酸化物粉末は、略球状の粒子からなるのが好ましい。リチウムイオン二次電池の充放電特性の観点からは、珪素酸化物粉末の平均粒径が小さいほど好ましい。しかし、平均粒径が小さすぎると、負極の形成時に凝集して粗大な粒子となるため、リチウムイオン二次電池の充放電特性が低下する場合がある。そのため、珪素酸化物粉末の平均粒径は、5~20μmの範囲にあるとよい。
 また、珪素酸化物粒子は、表面に炭素材料からなる被覆層を備えるとよい。炭素材料からなる被覆層は、珪素酸化物粒子に導電性を付与するだけでなく、珪素酸化物粒子と電解液の成分が分解されて発生するフッ酸などとの反応を防止することができ、リチウムイオン二次電池の電池特性が向上する。被覆層の炭素材料としては、天然黒鉛、人造黒鉛、コークス、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維などを用いることができる。また被覆層を形成するには、珪素酸化物と炭素材料前駆体とを混合して焼成するとよい。炭素材料前駆体としては、糖類、グリコール類、ポリピロール等のポリマー、アセチレンブラックなど、焼成により炭素材料に転化しうる有機化合物が使用可能である。その他、メカノフュージョンなどの機械的表面融合処理法、CVDなどの蒸着法を用いても、被覆層を形成することができる。
 本発明のリチウムイオン二次電池用負極活物質は、上記の珪素酸化物粒子と鉄酸化物粒子との混合物を含む。鉄酸化物粒子の配合量の増加に伴い、サイクル特性の安定度は向上するが、容量は低下する傾向にある。そのため、珪素酸化物粒子と鉄酸化物粒子との混合比率は、リチウムイオン二次電池の要求特性により適宜決定すればよい。たとえば、サイクル特性を向上させたいのであれば、混合物全体を100質量%としたとき、鉄酸化物粒子を5質量%以上、10質量%以上、30質量%以上、さらには40質量%以上含むとよい。一方、高容量のリチウムイオン二次電池を得たい場合には、混合物全体を100質量%としたとき、鉄酸化物粒子を1質量%以上、3質量%以上、5質量%以上、さらには10質量%以上含むとよい。しかし、鉄酸化物粒子の添加量が過剰では、充放電容量が低下するため、混合物全体を100質量%としたとき、鉄酸化物粒子を25質量%以下、23質量%以下、20質量%以下、さらには15質量%以下含むとよい。特に、容量もサイクル特性も十分なリチウムイオン二次電池が得たい場合には、混合物全体を100質量%としたとき、鉄酸化物粒子を5質量%以上さらには10質量%以上、25質量%以下さらには15質量%以下含むとよい。いずれの場合も、残部は、実質的に珪素酸化物粒子のみからなるのが望ましい。この珪素酸化物粒子は、前述の通り、被覆層を備えてもよい。
 <リチウムイオン二次電池用負極>
 本発明のリチウムイオン二次電池の負極は、上記の珪素酸化物粒子および鉄酸化物粒子の混合物を負極活物質として含み、集電体と、集電体上に結着された活物質層と、を有する。活物質層は、負極活物質と、導電助剤と、バインダー樹脂と、必要に応じ適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダー樹脂を硬化させることによって作製することができる。
 集電体は、金属製のメッシュ、箔または板などの形状を採用することができるが、目的に応じた形状であれば特に限定されない。集電体として、たとえば銅箔やアルミニウム箔を好適に用いることができる。
 なお、負極活物質は、上記の珪素酸化物粒子および鉄酸化物粒子の混合物を必須として含み、他の負極活物質を含んでもよい。他の負極活物質としては、たとえば、炭素系負極活物質が挙げられる。
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(VaporGrownCarbonFiber:VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、たとえば、活物質100質量部に対して、20~100質量部程度とすることができる。導電助剤の量が20質量部未満では効率のよい導電パスを形成できず、100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。なお、炭素材料からなる被覆層をもつ珪素酸化物粒子を用いる場合には、導電助剤の添加量を低減することができ、あるいは添加しないでもよい。
 バインダー樹脂は、活物質および導電助剤を集電体に結着するための結着剤として用いられる。バインダー樹脂はなるべく少ない量で活物質等を結着させることが求められ、その量は、負極活物質、導電助材およびバインダー樹脂を合計で100質量%としたときに、0.5~50質量%が望ましい。バインダー樹脂量が0.5質量%未満では電極の成形性が低下し、50質量%を超えると電極のエネルギー密度が低くなる。なお、バインダー樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド等のイミド系ポリマー、ポリアミドイミド、アルコキシルシリル基含有樹脂、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸などが例示される。またアクリル酸と、メタクリル酸、イタコン酸、フマル酸、マレイン酸などの酸モノマーとの共重合物を用いることもできる。中でもポリアクリル酸など、カルボキシル基を含有する樹脂が特に望ましく、カルボキシル基の含有量が多い樹脂ほど好ましい。
 本発明のリチウムイオン二次電池における負極には、リチウムがプリドーピングされていることが望ましい。負極にリチウムをドープするには、たとえば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電極化成法などを利用することができる。リチウムのドープ量に特に限定はなく、理論容量以上にプリドープされてもよい。
 なお、リチウムをドープすることにより、あるいは本発明のリチウムイオン二次電池の初回充電後には、負極活物質に含まれるSiO相にLiSi(0≦x≦4、0.3≦y≦1.6、2≦z≦4)で表される酸化物系化合物が含まれているとよい。LiSiとしては、たとえばx=0,y=1,z=2のSiO、x=2,y=1,z=3のLiSiO、x=4,y=1,z=4のLiSiOなどが例示される。たとえばx=4,y=1,z=4のLiSiOは下記の反応により生成し、クーロン効率は約77%と計算される。
  2SiO+8.6Li+8.6e→1.5Li4.4Si+1/2LiSiO
 また上記反応が途中で停止した場合には、下記の反応のようにx=2,y=1,Z=3のLiSiOとx=4,y=1,z=4のLiSiOの両者が生成し、この場合のクーロン効率も約77%と計算される。
  2SiO+7.35Li+7.35e→1.42LiSi+1/3LiSiO+1/4LiSiO
 上記反応によって生成するLiSiOは、充放電時の電極反応に関与しない不活性な物質であり、充放電時の活物質の体積変化を緩和する働きをする。したがってSiO相にLiSiで表される酸化物系化合物が含まれる場合には、本発明のリチウムイオン二次電池はサイクル特性がさらに向上する。
 さらに、本発明のリチウムイオン二次電池用負極は、鉄酸化物粒子をコンバージョン領域まで充放電させることで、上記のクーロン効率を77%以上に向上させることができる。本発明者等は、低い電流密度で充放電を行った充放電試験において容量が増加し、クーロン効率であれば約93%となることを、鋭意研究により突き止めた。この理由は明確ではないが、コンバージョン領域において生成された0価のFeが、珪素酸化物粒子の電池反応に対して触媒の役割を果たすと推測される。したがって、本発明のリチウムイオン二次電池用負極を用いたリチウムイオン二次電池は、鉄酸化物粒子のコンバージョン領域まで、具体的に規定するのであれば、終止電圧をリチウム基準電位で0.005Vさらには0Vにして充放電を行うとよい。
 <リチウムイオン二次電池>
 上記した負極を用いる本発明のリチウムイオン二次電池は、特に限定されない公知の正極、電解質、セパレータを用いることができる。正極は、リチウムイオン二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでもよい。正極活物質、導電助材およびバインダーは、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。
 正極活物質としては、LiCoO、LiNiCoMn(0<p<1、0+p<q<1-p、0+(p+q)<r<1-(p+q))、LiMnO、LiMnO、LiNiMn(0<s<1、0+s<t<1-s)、LiFePO、LiFeSOを基本組成とするリチウム含有金属酸化物あるいはそれぞれを1種または2種以上含む固溶体材料などが挙げられる。望ましくは、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、Sなどが挙げられる。Sを含む正極活物質としては、硫黄単体(S)、ポリアクリロニトリルなどの有機化合物に硫黄を導入した硫黄変性化合物などを用いることもできる。ただし、これらの材料は、電解質イオンとなるリチウムを含まないため、負極活物質または正極活物質に予めリチウムをドープ(プレドープ)する必要がある。
 集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。導電助剤は上記の負極で記載したものと同様のものが使用できる。
 電解質は、有機溶媒に電解質であるリチウム金属塩を溶解させた電解液を用いるとよい。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、フルオロエチレンカーボネート(FEC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、NaPF、NaBF、NaAsF、LiBOB、等の有機溶媒に可溶なリチウム金属塩を用いることができる。
 たとえば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO、LiPF、LiBF、LiCFSO等のリチウム金属塩を0.5~1.7モル/L程度の濃度で溶解させた溶液を使用することができる。
 セパレータは、リチウムイオン二次電池に使用されることができるものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
 本発明のリチウムイオン二次電池は、形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。
 以上説明した本発明のリチウムマンガン系複合酸化物を活物質として用いた二次電池は、携帯電話、パソコン等の通信機器、情報関連機器の分野の他、自動車の分野においても好適に利用できる。たとえば、この二次電池を車両に搭載すれば、電気自動車用の電源として使用できる。
 以上、本発明のリチウムイオン二次電池用負極活物質の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下、実施例を挙げて本発明を更に詳しく説明する。
 <鉄酸化物粉末の製造>
 平均長さが0.65μm、平均径が0.15μmの棒状粒子からなるα-FeOOH粉末を前駆体として用い、α-Feを製造した。熱処理は、所定の温度で大気中10時間行った。熱処理温度は、270℃、360℃、500℃または750℃とした。
 熱処理前後のα-FeOOH粉末について、CuKα線を用いたX線回折(XRD)測定を行った。また、走査電子顕微鏡(SEM)により、それらの形状を観察した。結果を図1および図2に示した。なお、図1に示したXRDパターンおよび図2に示したSEM像は、熱処理温度360℃での結果である。また、図1には、FeOOHおよびα-Feの粉末回折ファイル(PDF)の回折データを併記した。
 図1より、熱処理により、α-FeOOH粉末からα-Fe粉末が生成したことがわかった。また、図2より、熱処理前後で外形には変化が見られないことがわかった。したがって、熱処理後の棒状粒子の平均長さおよび平均径を測定しても、平均長さは0.65μm、平均径は0.15μm(アスペクト比:4.3)であった。
 なお、平均長さおよび平均径は、SEM像より複数の棒状粒子の長さおよび径を実測し、平均した値とした。
  <比表面積および細孔容積の測定>
 低温低湿物理吸着によるBET法(吸着質:窒素)を用い、α-FeOOH粉末および種々の温度で熱処理して得られたα-Fe粉末の比表面積および細孔容積を測定した。結果を図3に示した。図3において、●で示す値は比表面積、□で示す値は細孔容積である。なお、図3において熱処理温度が「0℃」の位置には、未処理のα-FeOOH粉末の測定結果を参考として示した。
 図3より、α-FeOOH粉末を熱処理することで、熱処理前よりも比表面積および細孔容積が高くなったことから、熱処理後のα-Fe粉末(粒子)には粒子表面からの脱水によって形成された複数の細孔が存在することがわかった。特に、270~360℃で熱処理されて得られたα-Fe粉末の比表面積および細孔容積は、80m/g以上かつ0.1cm/g以上で非常に高かった。ただし、熱処理温度が500℃以上では細孔閉塞が生じ、α-Fe粉末の比表面積および細孔容積は、熱処理前のα-FeOOH粉末の比表面積および細孔容積と同等かそれよりも低かった。適切な熱処理条件を選択することで、高比表面積かつ高細孔容積のα―Fe粉末が得られることがわかった。
 <リチウムイオン二次電池用負極の作製>
 鉄酸化物粉末としてα-FeOOH粉末を360℃で熱処理して得たα-Fe粉末を用いて、負極を作製した。
 珪素酸化物粉末として、市販のSiO粉末(シグマ・アルドリッチ・ジャパン社製、平均粒径5μm)の粒子表面を炭素被覆した粉末を使用した。炭素被覆は、SiO粉末をグルコース水溶液に添加し均一に混合した後、乾燥し、900℃で2時間熱処理して行った。なお、SiOは、この熱処理によって、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。なお、図4および図5では、この珪素酸化物粉末をSiO粉末と略記する。
 珪素酸化物粉末と鉄酸化物粉末とを所定の配合割合で混合し、負極活物質としての混合粉末を得た。この混合粉末85質量部と、バインダー(固形分)15質量部を混合してスラリーを調製した。バインダーには、市販のポリアミック酸のN-メチルピロリドン(NMP)溶液にさらにNMPを加えて用いた。このバインダー溶液の固形分は、18質量%であった。このスラリーを、厚さ10μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを真空乾燥し、活物質層の厚さが30μm程度の負極を形成した。
 なお、珪素酸化物粉末と鉄酸化物粉末との配合割合を、質量比で、珪素酸化物粉末:鉄酸化物粉末=100:0、90:10、80:20、70:30、60:40、50:50、20:80、10:90、0:100とし、負極活物質の異なる9種類の負極を作製した。
 <リチウムイオン二次電池の作製>
 上記の手順で作製した9種類の電極を評価極として用い、9種類のリチウムイオン二次電池(ハーフセル)を作製した。対極は、金属リチウム箔(厚さ500μm)とした。
 対極をφ15.5mm、評価極をφ15.0mmに裁断し、セパレータ(ポリエチレン製多孔質フィルム、厚さ25μm)を両者の間に挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比でEC:EMC=3:7で混合した混合溶媒にLiPFを1mol/dmの濃度で溶解した非水電解質を注入し、電池ケースを密閉して、リチウムイオン二次電池を得た。
  <充放電試験>
 作製したそれぞれのリチウムイオン二次電池に対し、室温下で充放電試験を行った。
 1サイクル目は充放電電流密度0.2mA/cmにて、2サイクル目以降は充放電電流密度0.5mA/cmにて定電流充放電試験を行った。電位範囲は、リチウム基準電位で0~3.0Vとした。
 1サイクル目の充放電容量および放電容量を図4に示した。また、70サイクル目までの放電容量の推移を図5に示した。
 図4より、珪素酸化物粉末の配合割合が増加するにしたがって、初期容量は増加する傾向にあった。特に、珪素酸化物粉末の配合割合が80質量%の時に容量は最大となった。珪素酸化物粉末の配合割合を75~90質量%(鉄酸化物粉末の添加量であれば10~25質量%)とすることで、鉄酸化物粉末を含まない場合よりも初期容量を増大させることができることがわかった。
 図5より、鉄酸化物粉末の使用により、サイクル数の上昇に伴う放電容量の低下が抑制されることがわかった。鉄酸化物粉末の添加量を40質量%以上とすることで、放電容量のサイクル推移が非常に安定した。一方、鉄酸化物粉末の添加量が10質量%である二次電池であれば、負極活物質が珪素酸化物粉末100質量%の二次電池と比較して、初期容量およびサイクル特性ともに優れることがわかった。すなわち、鉄酸化物粉末の添加量を5~15質量%(珪素酸化物粉末の配合割合であれば85~95質量%)とすることで、初期容量およびサイクル特性を高いレベルで両立するリチウムイオン二次電池が得られることがわかった。
 <参考例:α-Fe粉末の粒子形状の比較>
 棒状の鉄酸化物粉末または球状の鉄酸化物粉末を用いて、2種類の負極を作製した。棒状の鉄酸化物粉末には、上記のα-FeOOH粉末を360℃で熱処理して得たα-Fe粉末(平均長さ:0.65μm、平均径:0.15μm(アスペクト比:4.3))を用いた。球状の鉄酸化物粉末には、市販のα-Fe粉末(平均粒径:0.7μm(アスペクト比は略1))を用いた。
 棒状α-Fe粉末または球状α-Fe粉末85質量部、アセチレンブラック(AB)5質量部およびバインダー10質量部となるようにそれぞれ混合してスラリーを調製した。バインダーには、市販のポリアミック酸のN-メチルピロリドン(NMP)溶液にさらにNMPを加えて用いた。このバインダー溶液の固形分は、30質量%であった。このスラリーを、厚さ10μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを真空乾燥し、活物質層の厚さが30μm程度の負極を形成した。
 負極活物質層をSEMにより観察した結果を、図6および図7に示した。図6に見られる粒状体(一例を矢印で示す)はアセチレンブラックであった。SEM観察は、集電体の表面に対して垂直方向に負極活物質層の表面を観察した。図6では、集電体の表面に対して平行な棒状粒子が多数観察された。
 上記の手順で作製した2種類の電極を評価極として用い、前述の手順に従い2種類のリチウムイオン二次電池(ハーフセル)を作製した。作製したそれぞれのリチウムイオン二次電池に対し、室温下で充放電試験を行った。
 1サイクル目は充放電電流密度0.2mA/cmにて、2サイクル目以降は充放電電流密度0.5mA/cmにて定電流充放電試験を行った。電位範囲は、リチウム基準電位で0.005~3.0Vとした。
 1サイクル目から18サイクル目(球状α-Fe粉末を使用した場合には20サイクル目)までの放電容量の推移を図8に示した。棒状α-Fe粉末を使用した二次電池は、18サイクル目まで初期放電容量の85%以上を維持した。また、棒状α-Fe粉末を使用した二次電池の放電容量は、2サイクル目以降であっても700mAh/gで高かった。一方、球状α-Fe粉末を使用した二次電池は、初期放電容量が低く、2サイクル目で初期放電容量の半分程度まで低下し、20サイクル目にはさらに半分程度の容量に低下した。
 上記の評価に用いた2種類の二次電池において、粒子形状以外に両者に差は無い。そのため、棒状α-Fe粉末を使用した二次電池の高い容量および優れたサイクル特性は、粒子形状に起因することがわかった。そして、棒状のα-Fe粉末を珪素酸化物粉末とともに用いることで、図4および図5に示したように、珪素酸化物粉末単独では不十分であったサイクル特性および/または初期容量を向上させることができることがわかった。一方、球状α-Fe粉末を珪素酸化物粉末とともに用いると、球状α-Fe粉末の影響で、珪素酸化物粉末単独の容量およびサイクル特性よりも悪化することが予測される。

Claims (11)

  1.  珪素酸化物からなる珪素酸化物粒子と、鉄酸化物からなる棒状の鉄酸化物粒子と、の混合物を含むことを特徴とするリチウムイオン二次電池用負極活物質。
  2.  前記鉄酸化物粒子は、表面に複数の細孔を備える請求項1に記載のリチウムイオン二次電池用負極活物質。
  3.  前記鉄酸化物粒子は、アスペクト比が2以上10以下である請求項1または2に記載のリチウムイオン二次電池用負極活物質。
  4.  前記鉄酸化物粒子は、平均長さが0.4~0.7μm、平均径が0.085~0.17μmである請求項1~3のいずれかに記載のリチウムイオン二次電池用負極活物質。
  5.  前記鉄酸化物粒子は、α-Feを含む請求項1~4のいずれかに記載のリチウムイオン二次電池用負極活物質。
  6.  前記鉄酸化物粒子の前記細孔は、FeOOHの熱分解による脱水反応により形成される請求項1~5のいずれかに記載のリチウムイオン二次電池用負極活物質。
  7.  前記混合物全体を100質量%としたとき、前記鉄酸化物粒子を5~25質量%含む請求項1~6のいずれかに記載のリチウムイオン二次電池用負極活物質。
  8.  前記珪素酸化物粒子は、SiO相とSi相とを含み、該SiO相にはLiSi(0≦x≦4、0.3≦y≦1.6、2≦z≦4)で表される酸化物系化合物が含まれている請求項1~7のいずれかに記載のリチウムイオン二次電池用負極活物質。
  9.  前記珪素酸化物粒子は、表面に炭素材料からなる被覆層を備える請求項1~8のいずれかに記載のリチウムイオン二次電池用負極活物質。
  10.  請求項1~9のいずれかに記載の負極活物質を含むことを特徴とするリチウムイオン二次電池用負極。
  11.  請求項10に記載の負極を用いたことを特徴とするリチウムイオン二次電池。
PCT/JP2012/003054 2011-05-30 2012-05-10 リチウムイオン二次電池用負極活物質、それを用いた負極および二次電池 WO2012164834A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12792077.5A EP2717359B1 (en) 2011-05-30 2012-05-10 Lithium ion secondary cell
US14/122,973 US9735422B2 (en) 2011-05-30 2012-05-10 Lithium ion secondary cell
KR1020137031732A KR101914517B1 (ko) 2011-05-30 2012-05-10 리튬 이온 2차 전지
CN201280026201.8A CN103650217B (zh) 2011-05-30 2012-05-10 锂离子二次电池
JP2013517836A JP5749339B2 (ja) 2011-05-30 2012-05-10 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-120110 2011-05-30
JP2011120110 2011-05-30

Publications (1)

Publication Number Publication Date
WO2012164834A1 true WO2012164834A1 (ja) 2012-12-06

Family

ID=47258712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003054 WO2012164834A1 (ja) 2011-05-30 2012-05-10 リチウムイオン二次電池用負極活物質、それを用いた負極および二次電池

Country Status (6)

Country Link
US (1) US9735422B2 (ja)
EP (1) EP2717359B1 (ja)
JP (1) JP5749339B2 (ja)
KR (1) KR101914517B1 (ja)
CN (1) CN103650217B (ja)
WO (1) WO2012164834A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097819A1 (ja) * 2012-12-17 2014-06-26 日本電気株式会社 リチウムイオン二次電池用負極材及びその評価方法
KR20160077075A (ko) * 2013-10-29 2016-07-01 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 활물질의 제조 방법, 및 리튬 이온 이차 전지
US20160285091A1 (en) * 2012-11-13 2016-09-29 Nec Corporation Negative electrode active material, method for manufacturing same, and lithium secondary battery
JPWO2015177830A1 (ja) * 2014-05-19 2017-04-20 株式会社日立製作所 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
JP2017168325A (ja) * 2016-03-16 2017-09-21 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質電池および電池パック
WO2019087771A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2022015292A (ja) * 2020-07-08 2022-01-21 Jfeスチール株式会社 酸化鉄粒子含有粉末、および金属空気電池用負極材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567203B1 (ko) * 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101686332B1 (ko) * 2015-06-11 2016-12-13 울산대학교 산학협력단 손난로 폐기물로부터 유래된 철산화물을 포함하는 음극 활물질
CN106328887A (zh) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 锂离子电池阳极材料及其制备方法
JP6507106B2 (ja) * 2016-01-07 2019-04-24 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
CN109411713B (zh) * 2018-09-10 2022-07-22 江苏正力新能电池技术有限公司 含硅基材料的机械共包覆方法、含硅基材料及锂离子电池
JP2020087636A (ja) * 2018-11-21 2020-06-04 株式会社日立製作所 負極活物質、これを用いた負極及び二次電池
CN113422029A (zh) * 2021-06-29 2021-09-21 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158205A (ja) * 2002-11-01 2004-06-03 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法
JP2004265806A (ja) * 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
JP2005243431A (ja) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006172901A (ja) * 2004-12-16 2006-06-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2007287670A (ja) * 2006-04-17 2007-11-01 Samsung Sdi Co Ltd 負極活物質及びその製造方法
JP2008176981A (ja) * 2007-01-17 2008-07-31 Toyota Motor Corp 全固体リチウム二次電池用電極および全固体リチウム二次電池
JP2008262829A (ja) * 2007-04-12 2008-10-30 Toyota Motor Corp 電極材料の製造方法、電極材料および電池
JP2010003642A (ja) 2008-06-23 2010-01-07 Tdk Corp 電極、リチウムイオン二次電池及び電極の製造方法
JP2011034836A (ja) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The ナノサイズ粒子、ナノサイズ粒子を含むリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、ナノサイズ粒子の製造方法
JP2011060558A (ja) * 2009-09-09 2011-03-24 Sony Corp 非水電解質電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282844A (ja) 1994-04-11 1995-10-27 Hitachi Ltd 固体電解質およびその製造方法
JPH10233215A (ja) 1997-02-17 1998-09-02 Japan Storage Battery Co Ltd リチウム電池用正極活物質
JP2003132888A (ja) 2001-10-29 2003-05-09 Nippon Carbon Co Ltd リチウム系二次電池用炭素質負極材料の製造方法及び該炭素質負極材を用いたリチウム系二次電池
KR100570637B1 (ko) * 2003-05-21 2006-04-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
JP4794893B2 (ja) 2005-04-12 2011-10-19 パナソニック株式会社 非水電解液二次電池
JP4689391B2 (ja) 2005-07-28 2011-05-25 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用黒鉛材料の製造方法
CN101332508A (zh) * 2007-06-27 2008-12-31 上海华明高技术(集团)有限公司 硅包覆的针状多孔铁颗粒及其制造方法
JP2010092834A (ja) 2008-09-10 2010-04-22 Sumitomo Chemical Co Ltd 非水電解質二次電池用電極および非水電解質二次電池
US20110070495A1 (en) * 2009-09-23 2011-03-24 Alliance For Sustainable Energy, Llc Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries
JP5659696B2 (ja) * 2009-12-24 2015-01-28 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158205A (ja) * 2002-11-01 2004-06-03 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法
JP2004265806A (ja) * 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
JP2005243431A (ja) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006172901A (ja) * 2004-12-16 2006-06-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2007287670A (ja) * 2006-04-17 2007-11-01 Samsung Sdi Co Ltd 負極活物質及びその製造方法
JP2008176981A (ja) * 2007-01-17 2008-07-31 Toyota Motor Corp 全固体リチウム二次電池用電極および全固体リチウム二次電池
JP2008262829A (ja) * 2007-04-12 2008-10-30 Toyota Motor Corp 電極材料の製造方法、電極材料および電池
JP2010003642A (ja) 2008-06-23 2010-01-07 Tdk Corp 電極、リチウムイオン二次電池及び電極の製造方法
JP2011034836A (ja) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The ナノサイズ粒子、ナノサイズ粒子を含むリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、ナノサイズ粒子の製造方法
JP2011060558A (ja) * 2009-09-09 2011-03-24 Sony Corp 非水電解質電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285091A1 (en) * 2012-11-13 2016-09-29 Nec Corporation Negative electrode active material, method for manufacturing same, and lithium secondary battery
JPWO2014077113A1 (ja) * 2012-11-13 2017-01-05 日本電気株式会社 負極活物質およびその製造方法、並びにリチウム二次電池
US9985286B2 (en) * 2012-11-13 2018-05-29 Nec Corporation Negative electrode active material, method for manufacturing same, and lithium secondary battery
JPWO2014097819A1 (ja) * 2012-12-17 2017-01-12 日本電気株式会社 リチウムイオン二次電池用負極材及びその評価方法
WO2014097819A1 (ja) * 2012-12-17 2014-06-26 日本電気株式会社 リチウムイオン二次電池用負極材及びその評価方法
KR102227684B1 (ko) 2013-10-29 2021-03-15 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 활물질의 제조 방법, 및 리튬 이온 이차 전지
KR20160077075A (ko) * 2013-10-29 2016-07-01 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 활물질의 제조 방법, 및 리튬 이온 이차 전지
JPWO2015177830A1 (ja) * 2014-05-19 2017-04-20 株式会社日立製作所 負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
JP2017168325A (ja) * 2016-03-16 2017-09-21 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質電池および電池パック
JPWO2019087771A1 (ja) * 2017-10-31 2020-09-24 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019087771A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP7145452B2 (ja) 2017-10-31 2022-10-03 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2022015292A (ja) * 2020-07-08 2022-01-21 Jfeスチール株式会社 酸化鉄粒子含有粉末、および金属空気電池用負極材
JP7277419B2 (ja) 2020-07-08 2023-05-19 Jfeスチール株式会社 酸化鉄粒子含有粉末、および金属空気電池用負極材

Also Published As

Publication number Publication date
KR20140032410A (ko) 2014-03-14
EP2717359A1 (en) 2014-04-09
CN103650217A (zh) 2014-03-19
JP5749339B2 (ja) 2015-07-15
KR101914517B1 (ko) 2018-11-02
EP2717359A4 (en) 2014-12-31
US20140106226A1 (en) 2014-04-17
US9735422B2 (en) 2017-08-15
CN103650217B (zh) 2017-02-15
EP2717359B1 (en) 2017-12-27
JPWO2012164834A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5749339B2 (ja) リチウムイオン二次電池
JP6022297B2 (ja) リチウムイオン二次電池用負極材料、並びにそれを用いた負極及び二次電池
KR101342601B1 (ko) 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
KR101718055B1 (ko) 음극 활물질 및 이를 포함하는 리튬 전지
JP5165258B2 (ja) 非水電解質二次電池
KR101708360B1 (ko) 음극 활물질 및 이를 채용한 리튬 전지
JP5611453B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP5757148B2 (ja) リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
EP2498323A2 (en) Positive active material, and electrode and lithium battery containing the material
KR20080112977A (ko) 우수한 전기전도성의 음극재 및 이를 포함하는 고출력이차전지
JP5505479B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP5505480B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
KR20080029479A (ko) 양극 활물질, 이를 포함하는 리튬 이차 전지, 및 이를포함하는 하이브리드 커패시터
KR20220159010A (ko) 양극 첨가제 및 이를 함유하는 리튬 이차전지용 양극
KR20080036255A (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력리튬 이차전지
JP5668667B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
CN113646921A (zh) 非水电解质二次电池
KR101578974B1 (ko) 비수 전해질 이차전지용 정극 활물질, 그 제조 방법 및 비수 전해질 이차전지
KR101199915B1 (ko) 개선된 충방전 전압곡선 특성을 갖는 리튬이차전지용 음극 재료 및 이를 이용한 음극 전극의 제조방법
KR101115390B1 (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력 리튬 이차전지
KR20090010361A (ko) 우수한 전기전도성과 에너지 밀도를 갖는 리튬 이차전지용음극재 및 이를 포함하는 고출력 리튬 이차전지
KR102320977B1 (ko) 실리콘 복합체를 포함하는 음극 활물질 및 이를 포함하는 리튬 이차전지
KR102244226B1 (ko) 도전성 섬유에 의한 네트워크에 의해 형성된 실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101281946B1 (ko) 기공 분포가 조절된 이흑연화성 탄소 입자로 이루어진 음극 활물질 및 이를 포함하여 저온 출력이 향상된 리튬 이차 전지
KR101123060B1 (ko) 고출력 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517836

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122973

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137031732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE