WO2012151767A1 - 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法 - Google Patents

高铝粉煤灰生产氧化铝联产活性硅酸钙的方法 Download PDF

Info

Publication number
WO2012151767A1
WO2012151767A1 PCT/CN2011/075090 CN2011075090W WO2012151767A1 WO 2012151767 A1 WO2012151767 A1 WO 2012151767A1 CN 2011075090 W CN2011075090 W CN 2011075090W WO 2012151767 A1 WO2012151767 A1 WO 2012151767A1
Authority
WO
WIPO (PCT)
Prior art keywords
desiliconization
solution
liquid
calcium silicate
fly ash
Prior art date
Application number
PCT/CN2011/075090
Other languages
English (en)
French (fr)
Inventor
孙俊民
张战军
陈刚
闫绍勇
霍奇志
武利成
许宏立
秦立安
陈晓霞
Original Assignee
内蒙古大唐国际再生资源开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古大唐国际再生资源开发有限公司 filed Critical 内蒙古大唐国际再生资源开发有限公司
Publication of WO2012151767A1 publication Critical patent/WO2012151767A1/zh
Priority to US14/012,983 priority Critical patent/US9139445B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0693Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process from waste-like raw materials, e.g. fly ash or Bayer calcination dust
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/08Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals with sodium carbonate, e.g. sinter processes
    • C01F7/085Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals with sodium carbonate, e.g. sinter processes according to the lime-sinter process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds

Definitions

  • the invention relates to the high-tech resource utilization of fly ash, in particular to a method for producing high-aluminum fly ash to produce alumina co-produced active silicate. Background technique
  • the extraction of alumina from industrial solid waste such as fly ash and coal gangue has received increasing attention.
  • the extraction of alumina from high-aluminum fly ash and other aluminum-containing resources is attracting more and more attention.
  • the Late Paleozoic coal seams and intercalations in the Ordos Basin are rich in minerals such as boehmite and kaolinite.
  • the alumina content in the fly ash produced after combustion is as high as 50%, and the alumina content in the medium grade bauxite. Quite, it is an invaluable raw material for alumina production.
  • the potential reserves of high-alumina fly ash in the central and western regions of Inner Mongolia are as high as 15 billion tons.
  • the comprehensive development and utilization of the aluminum and silicon elements in these high-aluminum fly ash resources not only guarantees the strategic safety of China's aluminum industry, but also contributes to the protection and development of the local environment. It is an important circular economy industry.
  • the clinker sintering temperature is 1340 - 1390 °C, and each ton of alumina produces nearly 9 tons of residue, which has high energy consumption and cost. High, many residual residues and other shortcomings.
  • soda lime sintering method is derived from the production of alumina by low-alumina-silica bauxite soda lime sintering method. The higher the alumina content in fly ash, the more suitable it is. However, since the aluminum silicon of fly ash is relatively low, the soda lime sintering method is directly used, and not only the clinker firing range is narrow, It is difficult to control, and the material flow, energy consumption and slag formation are large. Therefore, in recent years, the idea of first mentioning silicon after aluminum has received more attention. Part of the silicon in the fly ash is extracted first, which not only makes full use of the silicon source, but also reduces the amount of slag, increases the ratio of aluminum to silicon of the residue, and reduces the difficulty of clinking.
  • Patent No. 200710062534.7 A method for extracting silicon from fly ash and then extracting aluminum.
  • the patent uses a sodium hydroxide solution with a concentration greater than 40% to extract fly ash, and dissolves silicon in the form of sodium silicate.
  • the sodium silicate and the alkali leaching residue are separated by a water addition and translation process.
  • the sodium silicate solution is prepared by the carbon method to prepare the Na 2 CO 3 solution, which is causticized with CaO, and the obtained sodium hydroxide solution is recycled, and the alkali leaching residue is chopped with soda lime or limestone sintering method. Production of alumina.
  • Patent No. 200710062534.7 A method for extracting silicon from fly ash and then extracting aluminum.
  • the invention provides a method for producing high-aluminum fly ash to produce alumina co-produced active calcium silicate, which solves the defects in the prior art, realizes less material flow and slag formation, relatively low energy consumption and production cost and production cost. , high alumina extraction rate, and co-production of high value added active calcium silicate, can be widely used in the work of i or.
  • the method for producing alumina and co-production calcium silicate by high alumina fly ash comprises the following steps:
  • step 2) the preparation of active calcium silicate, comprising the following steps: a, adding lime milk to the desiliconization liquid in step 1) for reaction, filtering to obtain a calcium silicate filter cake, and the filtrate is concentrated and returned to step 1) The sodium hydroxide solution is recycled, and the desiliconization liquid causticization and sodium hydroxide recovery and utilization are realized; b. the calcium silicate filter cake is washed and then added with clean water to prepare a calcium silicate slurry; and the calcium silicate slurry is added The lime milk is subjected to the alkali removal reaction; c.
  • the calcium silicate obtained by the alkali removal reaction is washed with water, added to the dilute gram acid solution, and immersed; the aluminum silicate is added to lower the pH to below 10, soaked; , removing slag, filtering, drying to obtain active calcium silicate;
  • raw slurry preparation adding sodium carbonate, limestone and/or quicklime solution to the fly ash filter cake to obtain a mixed slurry
  • the mixed slurry is ground in a ball mill and formulated into a raw slurry
  • Limestone and sodium carbonate need to be ground before mixing
  • the clinker is dissolved, the clinker is mixed with a section of the adjusting solution to be dissolved for a period of time to obtain a sodium aluminate crude solution and a portion of the dissolved crude residue;
  • one or two deep desiliconization adding sodium silicon slag seed crystal to the sodium aluminate crude liquid for a deep desiliconization to obtain a desiliconization refining liquid, and then part of the desiliconization refining liquid Performing two-stage deep desiliconization to obtain two-stage desiliconization refining liquid, and also obtaining two-stage deep desiliconization residue; the deep desiliconization means removing impurity silicon in the sodium aluminate crude liquid, and increasing the sodium aluminate crude liquid.
  • one section is to add sodium silicon slag to make seeds and high temperature and high pressure boiling; the second stage is to add a certain proportion of lime milk and further remove the residual sodium aluminate at a lower temperature. Silicon oxide. When the silicon content is reduced to a certain value, carbon and seed can be produced to produce aluminum hydroxide;
  • the second-stage desiliconization refining liquid is carbonized, and the aluminum hydroxide obtained by carbon is used as a seed crystal, and is added to the step 6) without performing the second-stage deep removal.
  • the deep desiliconization refining solution of silicon is seeded to obtain aluminum hydroxide, and the aluminum hydroxide is calcined to obtain alumina, which is a metallurgical grade.
  • the carbon is the alumina acid after the deep desiliconization
  • the seed is a process in which a sodium aluminate solution spontaneously crystallizes a part of aluminum hydroxide.
  • a certain amount of aluminum hydroxide is first added to the sodium aluminate crude solution as a seed crystal, and then the temperature of the sodium aluminate solution is lowered to 50-55. At °C, the crude sodium aluminate solution is changed into a supersaturated solution, and aluminum hydroxide is precipitated by using the added aluminum hydroxide seed crystal as a crystal nucleus.
  • step 1) the mass concentration of the sodium hydroxide solution is 10 to 30%, the mass ratio of sodium hydroxide to high aluminum fly ash is 0.2 to 0.8:1, and the reaction temperature is 70 to 135 °C. Reaction time: 0.5 ⁇ 3h.
  • the separation of the lime milk and the slag (slag) is carried out through the sieve, and the effective calcium oxide concentration in the lime milk in the step a is 100 to 220 g/L.
  • the molar ratio of the effective calcium oxide to the SiO 2 in the filtrate is 0.7 to 1.2, the reaction temperature is 50 to 100 ° C, and the reaction time is 30 to 120 min.
  • step b the liquid-solid ratio of the calcium silicate slurry is 2-6, and the amount of the lime milk added is 20 to 80:1 by mass ratio of effective calcium oxide to dry-based active calcium silicate in lime milk.
  • the alkali removal reaction time is 20 ⁇ lOOmin; the calcium silicate obtained by the alkali removal reaction is washed with water, the clear water temperature is 60 ⁇ 100 ° C, and the washing is 2 ⁇ 5 times;
  • the concentration of the dilute sulfuric acid solution is 1/1000 to 10/1000
  • the mass ratio of dry-based active calcium silicate to concentrated sulfuric acid is 20 to 80:1
  • the soaking time is 10 to 60 minutes
  • the mass ratio of aluminum to dry-based active calcium silicate is 30 ⁇ 100:1, the soaking time is 5 ⁇ 60min, the washing water temperature is 60 ⁇ 100 °C, washing 1 ⁇ 4 times; the pH will be lowered, the activity after washing Calcium silicate is driven into the sedimentation tank, and water is added to prepare a slurry with a liquid-solid ratio of 2 to 8.
  • the active calcium silicate prepared by the invention has the advantages of large surface area, low density, high activity and strong adsorption performance, and has the advantages of light weight, good filling performance, energy saving and environmental protection compared with the conventional filler.
  • step 3 the mixed slurry obtained by mixing the high-aluminum fly ash filter cake, the sodium carbonate solution, the limestone and/or the quicklime is ground in the tube mill, and then the raw slurry is prepared.
  • the raw slurry has a calcium ratio of 1.95 to 2.01, a sodium ratio of 0.95 to 1.05, and a water content of 25 to 50%.
  • step 4 the calcination of the raw slurry is completed in a rotary kiln, the calcination temperature is 1150 to 1300 ° C, and the calcination time is 10 to 60 minutes.
  • step 5 the clinker particle size is ⁇ 8 mm during a dissolution, the liquid-solid mass ratio of the segment adjusting liquid and the clinker is 2-8:1, the dissolution temperature is 55-85 ° C, and the dissolution time For 5 ⁇ 3 Omin, the eluate is sodium aluminate crude solution.
  • a section of the adjusting liquid is prepared by the residue (clinker second-stage dissolution slag) primary washing liquid, the second-stage eluting liquid and a part of the carbon mother liquid and the seed mother liquid, and the main components thereof include: 10 ⁇ 60g/l Na 2 O k , 10 ⁇ 60g / l of Na 2 O c .
  • the Na 2 O k (k is the first pinyin of the caustic alkali. Sometimes not added k, directly represented by Na 2 0) is used to characterize NaOH and NaA10 2 in sodium aluminate or other alkaline solution.
  • the sum of the contents, that is, the NaOH and NaA10 2 content are respectively converted into Na 2 0 in such an alkaline solution, and then the value obtained by adding the two is called the caustic content in the solution, using Na 2 O k to indicate.
  • the content of NaOH and NaA10 2 in a sodium aluminate solution is Xg/1 and Yg/1, respectively, and the conversion of Na 2 0 is 31 (X*62/80) and 56.7 (Y*62/164) g/1, respectively.
  • the Na 2 O k content of the solution is 31 (X*62/80) + 56.7 (Y* 62/ 164 ) g/l.
  • the first stage deep desiliconization condition in step 6) is: sodium silicon slag 10 ⁇ 100g/L, temperature 100 ⁇ 180°C, time 0.5 ⁇ 5h; second stage deep desiliconization condition is: effective calcium oxide addition The amount is 2 ⁇ 30g/L, the temperature is 70 ⁇ 100°C, and the time is 0.5 ⁇ 5h.
  • the effective calcium refers to the calcium oxide content in the form of calcium hydroxide in the form of calcium hydroxide per unit volume of lime milk (excluding calcium oxide in the form of calcium carbonate), and the unit is gram/liter, and these effective calcium can participate in the reaction.
  • Impurity silicon in addition to sodium aluminate solution Only a deep desiliconization of sodium aluminate crude solution is required to carry out a deep desiliconization and a two-stage deep desiliconization of the sodium aluminate crude liquid volume ratio of 1 ⁇ 3:1.
  • the temperature of the carbon in the two-stage desiliconization refining liquid in the step 7) is 85 ⁇
  • the carbon fraction is 85 ⁇ 93%
  • the seeding process follows the Bayer process.
  • the seed liquid, the aluminum hydroxide washing liquid, the elution residue one-time washing liquid, and a small portion of the carbon mother liquid are prepared, and the adjusting liquid is prepared and used as the one-stage and two-stage eluting liquid.
  • Dissolution Residue A washing liquid is a washing liquid obtained when the second-stage elution residue is subjected to the first washing
  • the aluminum hydroxide washing liquid is a washing liquid obtained by washing the aluminum hydroxide after the production of the aluminum hydroxide.
  • the invention also provides a method for producing alumina co-produced cement by high-aluminum fly ash, which comprises finely grinding the stripped crude residue in the step 6), mixing with the second-stage adjusting liquid for two-stage dissolution, and two-stage stripping slurry.
  • the water is diluted into the settling tank and separated by sedimentation.
  • the bottom stream is the second-stage dissolution residue, and the second phase of the overflow phase is used to prepare a conditioning solution for dissolution.
  • the calcium carbide slag is added thereto.
  • the reaction is subjected to de-alkali treatment, and after washing and filtering, the finished product of silicon calcium slag for producing cement.
  • the liquid-solid ratio of the second-stage adjustment liquid to the dissolved crude residue is 2-8:1, the dissolution temperature is 55-85 °C, the dissolution time is 5-30 min, and the dissolution slurry is diluted 1 ⁇ 5 times for liquid-solid separation.
  • the solid is a two-stage dissolution residue, and the average particle diameter of the two-stage dissolution residue is 40 to 70 ⁇ m, and the maximum particle diameter is not more than 200 ⁇ m.
  • the second-stage adjustment liquid is a residue secondary washing liquid, and its main components include: 5 ⁇ 50g / l Na 2 O k , 1 ⁇ 30g / l Na 2 O c .
  • the liquid-solid ratio of the two-stage dissolution residue slurry is 1.5 to 10
  • the mass ratio of the second-stage dissolution residue dry base to the calcium carbide residue dry basis is 100 to 10:1
  • the temperature of the second-stage dissolution residue reacts with the calcium carbide residue For 60 ⁇ 100°C, the de-alkali reaction time is 20 ⁇ 100min, the washing water temperature is 60 ⁇ 100°C, the mass ratio of the washing liquid to the second-stage elution residue is 1 ⁇ 5:1, and the washing is 1 ⁇ 5 times.
  • the method for producing aluminum oxide co-produced active calcium silicate by the high aluminum fly ash of the invention adopts a process route of extracting a part of silicon dioxide first, and then extracting the aluminum oxide, and extracting the alumina technology directly from the fly ash.
  • the present invention has the following advantages:
  • the invention firstly extracts amorphous silicon in fly ash efficiently and cheaply. In this way, the aluminum-to-silicon ratio of desiliconized fly ash is significantly improved, and the energy consumption and material consumption of the process are greatly saved.
  • the invention prepares high-quality active calcium silicate with cheap raw materials, fly ash and quicklime.
  • the calcium silicate powder prepared by the process has high whiteness, fine particles and uniform particle size distribution, and chemical composition is stable, Na, Fe and other impurities are low in content, and can be widely used in papermaking, coatings, rubber, plastics, paints and other industries, so it can greatly increase the utilization value of fly ash.
  • Embodiment 1 is a flow chart of a production process according to Embodiment 1 of the present invention.
  • Embodiment 2 is a flow chart of a production process provided by Embodiment 2 of the present invention. detailed description
  • FIG. 1 is a flow chart of a production process according to Embodiment 1 of the present invention. As shown in FIG. 1 , a method for producing activated alumina silicate by high alumina fly ash produced by the present embodiment can be seen, including the following steps:
  • step 2) Preparation of active calcium silicate, comprising the following steps: a. adding lime milk to the desiliconization liquid in step 1), the effective calcium oxide concentration in the lime milk is 150 g/L, effective calcium oxide and filtrate The molar ratio of Si0 2 is 1, the reaction temperature is 80 ° C, the reaction time is 60 min, and filtration is carried out to obtain a calcium silicate filter cake. The filtrate is concentrated and returned to step 1) as a sodium hydroxide solution for recycling, thereby realizing the desiliconization causticization. Recycling with sodium hydroxide; b.
  • the dosage is the mass ratio of effective calcium oxide to dry-base active calcium silicate in lime milk 60:1, and the time of de-alkali reaction is 70min; the calcium silicate obtained by de-alkali reaction is washed with water, the temperature of clear water is 80 °C, washing 4 c; the calcium silicate obtained by the alkali removal reaction is washed with water and then added to a mass concentration of 5/1000 dilute sulfuric acid solution, the mass ratio of dry-based active calcium silicate to concentrated sulfuric acid is 40:1, and the soaking time is 40 min;
  • the quality of aluminum sulfate and dry-based active calcium silicate The ratio is 70:1, the soaking time is 40min, the washing water temperature is 70°C, and the washing is 2 times; adding the aluminum sulphate to lower the pH to below 10, the pH-lowering and washing active calcium silicate
  • the active calcium silicate prepared by the invention has the advantages of large surface area, low density, high activity and strong adsorption performance, and has the advantages of light weight, good filling performance, energy saving and environmental protection compared with the conventional filler;
  • raw slurry preparation adding limestone and sodium carbonate solution to the fly ash filter cake to obtain a mixed slurry
  • the mixed slurry is ground in a ball mill and formulated into a raw slurry
  • the quicklime and sodium carbonate need to be ground before mixing Treatment
  • the raw slurry has a calcium ratio of 2, a sodium ratio of 1, and a water content of 30%;
  • the clinker is dissolved, the clinker is mixed with a section of the adjustment liquid to be dissolved for a period of time to obtain a sodium aluminate crude solution and a solution of the crude residue.
  • the liquid-solid mass ratio of the adjustment liquid to the clinker is 6:1, the dissolution temperature.
  • the temperature is 75 °C, the dissolution time is 20min;
  • the section adjustment liquid is prepared by the residue (clinker second stage dissolution slag), the second stage of the solution and the part of the carbon mother liquid and the seed mother liquid.
  • the main components include: 30g /l of Na 2 O k , 30 g / l of Na 2 O c ;
  • one, two deep desiliconization adding sodium silicon slag seed crystal to the sodium aluminate crude solution for a deep desiliconization to obtain a desiliconization refining solution, sodium silicon slag 50g / L, temperature 155 ° C, time 2h; Then, a part of the desiliconization refining liquid is subjected to two-stage deep desiliconization, the effective calcium oxide is added in an amount of 15 g/L, the temperature is 85 ° C, and the time is 3 h, and the second-stage desiliconization refining liquid is obtained, and at the same time, two are obtained.
  • Deep desiliconization residue refers to the process of removing the impurity silicon in the sodium aluminate crude solution to improve the purity of the sodium aluminate crude solution, using a two-stage desiliconization method, and adding a sodium silicide residue to the seed.
  • High temperature and high pressure boiling is carried out; the second stage is to add a certain proportion of lime milk to further remove the residual sodium aluminate silica at a lower temperature.
  • the silicon content is reduced to a certain value, carbon and seed can be produced to produce aluminum hydroxide; only a deep desiliconization of sodium aluminate crude liquid is required to be subjected to a deep desiliconization and a second depth removal.
  • the volume ratio of sodium aluminate to silicon is 2:1.
  • the second-stage desiliconization refining solution is carbonized, the carbon temperature is 87 ° C, the carbon fraction is 90%, and the seeding process follows the Bayer process.
  • the aluminum hydroxide obtained by carbon is used as a seed crystal, and is added to a deep desiliconization refining liquid in which the second stage deep desiliconization is not carried out in step 6) to obtain aluminum hydroxide, and the aluminum hydroxide is passed through.
  • Calcination gives alumina, which is metallurgical grade.
  • the carbon fraction is a process of introducing carbon dioxide into the crude sodium aluminate solution after deep desiliconization to convert most of the soluble aluminum therein into aluminum hydroxide precipitate.
  • the seed is a process in which a sodium aluminate solution spontaneously crystallizes a part of aluminum hydroxide.
  • a certain amount of aluminum hydroxide is first added to the sodium aluminate crude solution as a seed crystal, and then the temperature of the sodium aluminate solution is lowered to 50-55. °C, the sodium aluminate crude solution is changed into a supersaturated solution, and aluminum hydroxide is precipitated by using the added aluminum hydroxide seed crystal as a crystal nucleus.
  • the seed liquid, the aluminum hydroxide washing liquid, the elution residue, a washing liquid and a small portion of the carbon mother liquid are prepared, and the adjusting liquid is prepared and used as the elution liquid for the first and second stages.
  • the elution residue is a washing liquid obtained by the first washing of the second-stage elution residue
  • the aluminum hydroxide washing liquid is a washing liquid obtained by washing the aluminum hydroxide after the seed is produced.
  • the method for producing high-aluminum fly ash to produce alumina co-produced active calcium silicate according to the embodiment includes the following steps:
  • the preparation of active calcium silicate including the following steps: a, according to the effective CaO and SiO 2 molar ratio of 0.8: 1 to the desiliconization liquid solution to add effective CaO content of 190g / L of lime milk, at 90 ° temperature
  • the reaction was stirred for 1 h, the rotation speed was 180 rpm, and the liquid-solid separation was carried out by filtration using a horizontal vacuum belt filter to obtain a calcium silicate filter cake.
  • the filtrate was concentrated by evaporation and returned to the step 1) as a sodium hydroxide solution for recycling.
  • Desiliconization solution causticization and sodium hydroxide recovery; After the reaction, the concentration of Si0 2 in the desiliconization liquid is reduced to 1.8g/l, and the concentration of NaOH is 10%; lime milk and slag should be realized in the preparation process of adding lime milk to the desiliconization liquid. Separation (slag);
  • the calcium silicate filter cake is washed with hot water at 90 ° C for 3 times, and then added with water to prepare a liquid-solid ratio of 3:1 to prepare a calcium silicate slurry; and a lime milk is added to the calcium silicate slurry for de-alkali reaction.
  • Calcium milk was added according to the mass ratio of effective calcium to dry-base active calcium silicate in lime milk at 50:1; reacted at 70 ° C for 40 min, filtered, washed twice with hot water at 90 ° C, and filtered. After three washes of the calcium silicate filter cake, the Na 2 0 content was reduced to 2.8% and the pH was 13.7.
  • the pH value is reduced to 12.5; c, the calcium silicate obtained by the de-alkali reaction is washed with water and then added to a mass concentration of 3/1000 dilute sulfuric acid solution, dry-based active calcium silicate and concentrated
  • the mass ratio of sulfuric acid is 30:1, soaked for 20 minutes by pickling; the mass ratio of aluminum sulfate to dry-based active calcium silicate is 50:1, aluminum sulfate is added, the soaking time is lOmin, and it is washed twice with hot water at 90 °C, pH Decrease to 8.9, the washed active calcium silicate is put into the sedimentation tank, and water is added to prepare a slurry with a liquid-solid ratio of 2 ⁇ 8.
  • the active calcium silicate prepared by the invention has large surface area, low density, high activity and strong adsorption performance. Compared with traditional fillers, it has the advantages of light weight, good filling performance, energy saving and environmental protection.
  • raw slurry preparation adding limestone (lime) and sodium carbonate solution to the fly ash filter cake to obtain a mixed slurry, the mixed slurry is ground in a ball mill and formulated into a raw slurry; before limestone and sodium carbonate are mixed After grinding, the quicklime accounts for 25% of the total calcium, the adjusted calcium ratio is 1.96, the sodium ratio is 1.0, and the raw slurry moisture content is 35%;
  • one or two deep desiliconization adding 50g of sodium silicon slag seed crystal per liter of sodium aluminate crude solution for a deep desiliconization (desiliconization temperature 170 ° C, time 1.5h) to obtain a piece of desiliconization Chemical solution, a section of desiliconized semen A1 2 0 3 125.3g / l silicon volume index is 326; the sodium silicon slag is separated and then added with lime milk for two-stage deep desiliconization, each liter of solution plus lime milk is 10g, desiliconization temperature is 90 ° C, reaction time 1.5h.
  • Two-stage deep desiliconization to obtain two-stage desiliconization refining solution, and also obtained two-stage deep desiliconization residue, two-stage semen A1 2 0 3 117.5g/l, silicon content index 680; deep desiliconization means sodium aluminate
  • the impurity silicon in the crude liquid is removed, the process of improving the purity of the sodium aluminate crude solution, the two-stage desiliconization method is used, one part is added with sodium silicon slag as seeds and high temperature and high pressure is used for boiling; the second stage is to add a certain proportion of lime milk. Further, the residual silica of the sodium aluminate is removed at a lower temperature.
  • silicon content is reduced to a certain value, carbon and seed can be produced to produce aluminum hydroxide;
  • the carbon fraction is a process of introducing carbon dioxide into the crude sodium aluminate solution after deep desiliconization to convert most of the soluble aluminum therein into aluminum hydroxide precipitate.
  • the seed is a process in which a sodium aluminate solution spontaneously crystallizes a part of aluminum hydroxide.
  • a certain amount of aluminum hydroxide is first added to the sodium aluminate crude solution as a seed crystal, and then the temperature of the sodium aluminate solution is lowered to 50-55. °C, the sodium aluminate crude solution is changed into a supersaturated solution, and aluminum hydroxide is precipitated by using the added aluminum hydroxide seed crystal as a crystal nucleus.
  • the cement can be co-produced, which comprises mixing the two-stage adjustment liquid having a concentration of N 2 O k and N 2 O c of 20 g/L and 10 g/L in a step of grinding the crude slag in step 6).
  • the mill was ground in the middle of the mill for two stages of dissolution, the dissolution time was 15 min, and the dissolution temperature was 75 °C.
  • the concentration of A1 2 0 3 in the second- stage eluate was 59.4 g/l, the ratio of Si0 2 was 1.5 g/l, the caustic ratio was 1.19, and the net dissolution rate of the second-stage A1 2 0 3 was 22.3%.
  • the second-stage dissolution slurry is introduced into the sedimentation tank and diluted with water to carry out sedimentation separation.
  • the bottom stream is the second-stage dissolution residue, and the second phase of the overflow phase is used to prepare a conditioning solution for dissolution; the second-stage dissolution residue is subjected to three reverse washings, and the slag
  • the content of Na 2 0 was reduced to 1.39%.
  • the residue was dissolved and then degreased according to the following conditions: The dry ratio of the residue to the calcium carbide slag was 20:1, the liquid-solid ratio was 6:1, the alkali removal temperature was 95 ° C, the alkali removal time was 50 min, and the stirring rate was 120 rpm.
  • the moisture content of the filter cake is 29.5%.
  • the main chemical composition of the dry filter cake is: CaO 54.8%, Na 2 0 0.42%, Si0 2 24.5%, A1 2 0 3 4.59, Fe 2 0 3 2.49%, LOSS 7.98%. Dry filter cakes are used to produce cement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

高铝粉煤灰生产氧化铝联产活性硅酸钙的方法 技术领域
本发明涉及粉煤灰的高技术资源化利用, 尤其涉及一种高铝粉煤灰生 产氧化铝联产活性硅酸 4弓的方法。 背景技术
随着铝土矿资源的日益短缺, 利用粉煤灰、 煤矸石等工业固体废弃物 提取氧化铝越来越受到人们的重视。从高铝粉煤灰及其它含铝资源中提取 氧化铝越来越引起人们的关注。 例如, 鄂尔多斯盆地晚古生代煤层及夹矸 中富含一水软铝石和高岭石等矿物,燃烧后所产生的粉煤灰中氧化铝含量 高达 50%, 与中等品位铝土矿中氧化铝含量相当, 是一种非常宝贵的氧化 铝生产原料。 据统计, 内蒙古中西部地区高铝粉煤灰的潜在储量高达 150 亿吨。 综合开发利用这些高铝粉煤灰资源中的铝硅元素, 不仅可以保障我 国铝工业的战略安全, 还有利于当地环境的保护和发展, 是具有重要战略 意义的循环经济产业。
如何从粉煤灰中提取氧化铝,许多企业和科研单位进行了大量试验和 研究, 工艺路线一般分为酸法和碱法两大类。 利用酸法提取氧化铝, 虽然 成渣量少,设备投资小,但对设备的腐蚀比较严重,难以实现大规模生产。 利用粉煤灰提取氧化铝比较成熟也有望进行工业化推广的技术路线是碱 法, 该方法又可分为石灰烧结法和碱石灰烧结法。 内蒙古蒙西高新技术集 团有限公司采用石灰石烧结法从粉煤灰中提取氧化铝, 熟料烧结温度在 1340 - 1390 °C , 每生产 1吨氧化铝产生近 9吨残渣, 存在能耗大, 成本高, 剩余残渣多等缺点。碱石灰烧结法的思路来源于低铝硅比铝土矿碱石灰烧 结法生产氧化铝, 粉煤灰中氧化铝含量越高, 越适合于该方法。 但是, 由 于粉煤灰的铝硅比较低,直接釆用碱石灰烧结法,不仅熟料烧成范围较窄, 难以控制, 而且物料流量、 能耗及成渣量大。 所以, 近年来, 先提硅后提 铝的思路受到更多的关注。 先将粉煤灰中的部分硅提取出来, 既充分利用 了硅源, 减少了成渣量, 又提高了剩余物的铝硅比, 降低了熟料烧成的困 难。
专利号为 200710062534.7的 "一种从粉煤灰中先提硅后提铝的方法" 专利釆用浓度大于 40%的氢氧化钠溶液浸取粉煤灰,将硅以硅酸钠形式溶 出, 后经过加水稀译工序将硅酸钠和碱浸渣分离。 硅酸钠溶液用碳分法制 备白炭黑后产生的 Na2C03溶液用 CaO进行苛化, 得到的氢氧化钠溶液再 循环使用, 碱浸渣用碱石灰或石灰石烧结法烧制熟料生产氧化铝。 专利号 为 200710065366.7的 "一种从高铝粉煤灰中提取二氧化硅、 氧化铝及氧化 镓的方法" 专利也是先用氢氧化钠溶液浸取出粉煤灰中的硅, 将提取出的 硅用碳分法制备白炭黑, 氢氧化钠循环使用, 脱硅粉煤灰进行碱石灰烧结 法生产氧化铝。 虽然这些专利都考虑了粉煤灰的物相特征, 釆用先提硅后 提铝的思路, 降低能耗, 提高元素利用, 但是提硅后生产的白炭黑目前在 国内存在着市场份额较小, 用量有限的缺点, 而且碳分法生产白炭黑与传 统酸法生产白炭黑相比技术难以控制, 设备较为复杂, 成本更高。 发明内容
本发明提供一种高铝粉煤灰生产氧化铝联产活性硅酸钙的方法, 用以 解决现有技术中的缺陷, 实现物料流量和成渣量少, 能耗物耗及生产成本 相对较低, 氧化铝提取率高, 同时联产附加值较高的活性硅酸钙, 可广泛 应用于^ 工领 i或。
高铝粉煤灰生产氧化铝联产活性硅酸钙的方法, 包括以下步骤:
1 ) 、 预脱硅, 将高铝粉煤灰与氢氧化钠溶液混合后加热, 导入耐压 容器中进行脱硅反应, 然后进行液固分离得到液相的脱硅液和固相的粉煤 灰滤饼, 所述粉煤灰滤饼中的铝硅比比脱硅反应前高铝粉煤灰高; 所述高 铝粉煤灰中氧化铝质量含量高于 40%;
2 ) 、 活性硅酸钙的制备, 包括以下步骤: a、 向步骤 1 ) 中所述脱硅 液中加入石灰乳进行反应, 过滤, 得到硅酸钙滤饼, 滤液浓缩后返回步骤 1 )作为氢氧化钠溶液循环使用, 实现了脱硅液苛化与氢氧化钠回收利用; b、 将所述硅酸钙滤饼洗涤后加入清水制备硅酸钙浆液; 向所述硅酸钙浆 液中加入石灰乳进行脱碱反应; c、 脱碱反应得到的硅酸钙用清水洗涤后 加入到稀石克酸溶液中, 浸泡; 加入石克酸铝将 pH值降至 10以下, 浸泡; 后 经洗涤、 除渣、 过滤、 烘干获得活性硅酸钙;
3 ) 、 生料浆制备, 向所述粉煤灰滤饼中加入碳酸钠、 石灰石和 /或生 石灰溶液得到混合浆液, 将所述混合浆液在球磨机内磨细并调配成生料 浆; 所述石灰石和碳酸钠混合前需经磨细处理;
4 ) 、 熟料焙烧, 将所述生料浆焙烧成熟料, 所述熟料为粗颗粒熟料;
5 ) 、 熟料溶出, 将所述熟料与一段调整液混合进行一段溶出获得铝 酸钠粗液和一段溶出粗渣;
6 ) 、 一、 二段深度脱硅, 向所述铝酸钠粗液中加入钠硅渣晶种进行 一段深度脱硅得到一段脱硅精化液, 然后将部分所述一段脱硅精化液进行 二段深度脱硅得到二段脱硅精化液, 同时还得到二段深度脱硅残渣; 所述 深度脱硅是指将铝酸钠粗液中的杂质硅除去, 提高铝酸钠粗液纯度的过 程, 釆用两段脱硅法, 一段为加入钠硅渣做种子并进行高温高压压煮; 二 段为添加一定比例的石灰乳进一步在较低温度下脱除铝酸钠残存的二氧 化硅。 当其中的硅含量降低到一定值的时候就可进行碳分和种分生产氢氧 化铝;
7 )碳分、 种分及氢氧化铝焙烧, 将二段脱硅精化液进行碳分, 用碳 分得到的氢氧化铝作晶种, 将其加入步骤 6 ) 中未进行二段深度脱硅的一 段深度脱硅精化液中进行种分, 得到氢氧化铝, 将所述氢氧化铝经过焙烧 得到氧化铝, 所述氧化铝为冶金级。 所述碳分是指向深度脱硅之后的铝酸 钠粗液中通入二氧化碳使其中的大部分可溶性铝转化为氢氧化铝沉淀物 的过程。 种分是铝酸钠溶液自发结晶析出部分氢氧化铝的过程, 一般首先 向铝酸钠粗液中加入一定量的氢氧化铝作为晶种, 然后将铝酸钠溶液的温 度降到 50 ~ 55 °C,使铝酸钠粗液变成过饱和溶液而以已加入的氢氧化铝晶 种为晶核析出氢氧化铝。
进一步地, 步骤 1 ) 中所述氢氧化钠溶液的质量浓度为 10~30%, 氢 氧化钠与高铝粉煤灰的质量比为 0.2~0.8:1, 反应温度: 70~ 135 °C, 反应 时间: 0.5~3h。
进一步地, 向脱硅液中加入石灰乳的制备过程中应通过滤网实现石灰 乳与渣的分离(扒渣),步骤 a中所述石灰乳中的有效氧化钙浓度为 100 ~ 220g/L,所述有效氧化钙与滤液中 Si02摩尔比为 0.7 ~ 1.2,反应温度为 50 ~ 100°C , 反应时间为 30 ~ 120min。
进一步地, 步骤 b中, 所述硅酸钙浆液液固比为 2 ~ 6, 所述石灰乳的 加入量为石灰乳中有效氧化钙与干基活性硅酸钙质量比 20 ~80:1, 脱碱反 应时间为 20 ~ lOOmin; 脱碱反应得到的硅酸钙用清水洗涤, 清水温度为 60~ 100°C, 洗涤 2~ 5遍;
进一步地, 步骤 c中, 所述稀硫酸溶液浓度为 1/1000 ~ 10/1000, 干基 活性硅酸钙与浓硫酸的质量比 20 ~ 80:1, 浸泡时间为 10 ~ 60min; 所述硫 酸铝与干基活性硅酸钙的质量比为 30 ~ 100:1, 浸泡时间为 5 ~60min, 洗 涤用清水温度为 60~ 100°C, 洗涤 1 ~4遍; 将降 pH、 洗涤后的活性硅酸 钙打入沉降池, 加水调制成液固比为 2 ~ 8的浆液, 静止沉降 1 ~ 10h后用 泵将底部渣子抽走, 过滤上部干净活性硅酸钙, 烘干得到产品。 本发明制 备的活性硅酸钙表面积大、 密度低、 活性高、 吸附性能强, 与传统填料比 有质轻、 填充性能好、 节能环保等优点。
进一步地, 步骤 3 ) 中高铝粉煤灰滤饼、 碳酸钠溶液、 石灰石和 /或生 石灰混合得到的混合浆液在管磨机里面磨制后, 再经过调配得到生料浆, 所述生料浆的钙比为 1.95~2.01, 钠比为 0.95 ~ 1.05, 含水率为 25 ~ 50%。 进一步地, 步骤 4) 中生料浆的焙烧在回转窑中完成, 所述焙烧温度 为 1150~ 1300°C, 焙烧时间 10 ~ 60分钟。
进一步地, 步骤 5) 中: 一段溶出时所述熟料粒径≤8mm, —段调整液 与熟料的液固质量比为 2~8:1, 溶出温度为 55~85°C, 溶出时间为 5~ 3 Omin , 溶出液为铝酸钠粗液。
进一步地, 一段调整液由残渣(熟料二段溶出渣)一次洗液、 二段溶 出液及部分碳分母液与种分母液所调配, 其主要成分包括: 10~60g/l 的 Na2Ok, 10 ~ 60g/l的 Na2Oc。所述 Na2Ok( k为苛碱中苛的第一个拼音字母。 有时候后面不加 k, 直接用 Na20表示) 用来表征铝酸钠或其它碱性溶液 中 NaOH与 NaA102的含量之和, 即在这类碱性溶液中分别将 NaOH及 NaA102含量均折合成 Na20计算, 然后将二者相加所得的值称为溶液中的 苛碱含量, 用 Na2Ok来表示。 例如某铝酸钠溶液中 NaOH与 NaA102的含 量分别为 Xg/1与 Yg/1,折合成 Na20分别为 31(X*62/80)与 56.7( Y*62/164) g/1,该溶液的 Na2Ok含量就是 31(X*62/80)+56.7( Y* 62/ 164 )g/l。所述 Na2Oc ( C为碳酸根 C03 2-的缩写 )用来表征铝酸钠或其它碱性溶液中 Na2C03的 含量,将溶液中 Na2C03的含量折合成 Na20计算, 例如某溶液碳酸钠的含 量为 Zg/1, 用 Na2Oc来表示就是 70.19 (Z*62/106) g/l。
进一步地, 步骤 6) 中第一段深度脱硅条件为: 钠硅渣 10~100g/L, 温度 100~180°C, 时间 0.5~5h; 二段深度脱硅条件为: 有效氧化钙的加 入量为 2~30g/L, 温度 70~100°C, 时间 0.5 ~ 5h。 所述有效钙是指单位 体积石灰乳中以氢氧化钙方式存在 (以碳酸钙形式存在的氧化钙不计在 内)的氧化钙含量, 单位为克 /升, 这些有效钙均能参与反应而脱除铝酸钠 溶液中的杂质硅。 只进行一段深度脱硅的铝酸钠粗液与需即进行一段深度 脱硅又进行二段深度脱硅的铝酸钠粗液体积比为 1 ~3:1。
进一步地, 步骤 7) 中所述二段脱硅精化液进行碳分的温度为 85 ~ 90°C, 碳分率为 85 ~ 93%, 种分工艺遵循拜耳法种分过程。
进一步地, 种分母液、 氢氧化铝洗液、 溶出残渣一段洗液及少部分碳 分母液等溶液进行调配, 制备调整液, 用作一、 二段溶出的溶出液。 溶出 残渣一段洗液是在二段溶出残渣进行第一次洗涤时所获的洗液, 氢氧化铝 洗液是种分生产出氢氧化铝后对其进行洗涤所获的洗液。
本发明还提供一种高铝粉煤灰生产氧化铝联产水泥的方法, 包括将步 骤 6) 中所述一段溶出粗渣细磨后与二段调整液混合进行二段溶出, 二段 溶出浆液导入沉降槽中加水稀释并进行沉降分离, 底流为二段溶出残渣, 溢流相二段溶出液用来配制一段溶出时的调整液; 二段溶出残渣进行三次 逆向洗涤后, 向其中加入电石渣反应进行脱碱处理, 经洗涤和过滤后用于 生产水泥的硅钙渣成品。
二段调整液与一段溶出粗渣的液固比为 2~8:1, 溶出温度为 55 ~ 85 °C , 溶出时间为 5 ~ 30min, 溶出浆液经过稀译 1 ~ 5倍后进行液固分离, 固体即为二段溶出残渣, 所述二段溶出残渣平均粒径介于 40~70μηι, 最 大粒径不超过 200微米。 二段调整液为残渣二次洗液, 其主要成分包括: 5 ~ 50g/l的 Na2Ok, 1 ~ 30g/l的 Na2Oc
进一步地, 所述二段溶出残渣浆液的液固比为 1.5 ~ 10, 二段溶出残 渣干基与电石渣干基的质量比为 100 ~ 10:1, 二段溶出残渣与电石渣反应 的温度为 60~100°C, 脱碱反应时间为 20~ 100min, 洗涤清水温度为 60 ~ 100°C, 洗液与二段溶出残渣的质量比为 1 ~5:1, 洗涤 1~5遍。 本发明高铝粉煤灰生产氧化铝联产活性硅酸钙的方法釆用了先提取 部分二氧化硅, 再提取氧化铝的工艺路线, 与原有直接从粉煤灰中提取氧 化铝技术相比, 本发明具有以下优点:
1、 相比于粉煤灰石灰石烧结法提取氧化铝或碱石灰烧结法直接提取 氧化铝的技术路线, 本发明先将粉煤灰中的非晶态硅有效廉价地提取出 来, 显著提高了脱硅粉煤灰的铝硅比, 大幅度节约了工艺的能耗和物耗。
2、 本发明釆用廉价的原料一粉煤灰、 生石灰制备出优质活性硅酸钙, 用该工艺制备的硅酸钙微粉白度高, 颗粒细且粒度分布均勾, 化学成分稳 定, Na、 Fe等杂质含量低, 可广泛应用于造紙、 涂料、 橡胶、 塑料、 油 漆等行业, 因此可大幅增加粉煤灰的利用价值。
3、 相比于高铝粉煤灰的石灰石烧结法, 本技术路线的成渣量降低约 70%; 相比于铝土矿生产氧化铝所产生的赤泥, 这种残渣成分的特点使其 非常适合生产水泥或水泥熟料。
4、 本工艺釆取了终极提取、 物尽其用的方式, 可大幅增加高铝粉煤 灰的经济价值和社会价值。 附图说明
图 1为本发明实施例一提供的生产工艺流程图;
图 2为本发明实施例二提供的生产工艺流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
图 1为本发明实施例一提供的生产工艺流程图, 如图 1可见本实施例 提供的高铝粉煤灰生产氧化铝联产活性硅酸钙的方法, 包括以下步骤:
1 ) 、 预脱硅, 将高铝粉煤灰与质量浓度为 20%氢氧化钠溶液(氢氧 化钠与高铝粉煤灰的质量比为 0.5: 1 )组成的混合溶液加热到 1 10°C后, 导 入耐压容器中进行脱硅反应 2h,然后进行液固分离得到液相的脱硅液和固 相的粉煤灰滤饼, 粉煤灰滤饼中的铝硅比比脱硅反应前的高铝粉煤灰高; 高铝粉煤灰中氧化铝质量含量高于 40%;
2 ) 、 活性硅酸钙的制备, 包括以下步骤: a、 向步骤 1 ) 中脱硅液中 加入石灰乳进行反应, 石灰乳中的有效氧化钙浓度为 150g/L, 有效氧化钙 与滤液中 Si02摩尔比为 1 , 反应温度为 80 °C , 反应时间为 60min, 过滤, 得到硅酸钙滤饼, 滤液浓缩后返回步骤 1 )作为氢氧化钠溶液循环使用, 实现了脱硅液苛化与氢氧化钠的回收利用; b、 将硅酸钙滤饼洗涤后加入 清水制备液液固比为 4的硅酸钙浆液; 向硅酸钙浆液中加入石灰乳进行脱 碱反应, 石灰乳的加入量为石灰乳中有效氧化钙与干基活性硅酸钙质量比 60: 1 , 脱碱反应时间为 70min; 脱碱反应得到的硅酸钙用清水洗涤, 清水 温度为 80°C , 洗涤 4遍; c、 脱碱反应得到的硅酸钙用清水洗涤后加入到 质量浓度为 5/1000稀硫酸溶液中, 干基活性硅酸钙与浓硫酸的质量比 40: 1 , 浸泡时间为 40min; 硫酸铝与干基活性硅酸钙的质量比为 70: 1 , 浸 泡时间为 40min, 洗涤用清水温度为 70°C , 洗涤 2遍; 加入石克酸铝将 pH 值降至 10以下, 将降 pH、 洗涤后的活性硅酸钙打入沉降池, 加水调制成 液固比为 6的浆液, 静止沉降 5h后用泵将底部渣子抽走, 过滤上部干净 活性硅酸钙, 烘干得到白度为 92活性硅酸钙产品。 本发明制备的活性硅 酸钙表面积大、 密度低、 活性高、 吸附性能强, 与传统填料比有质轻、 填 充性能好、 节能环保等优点;
3 ) 、 生料浆制备, 向粉煤灰滤饼中加入石灰石和碳酸钠溶液得到混 合浆液, 将混合浆液在球磨机内磨细并调配成生料浆; 生石灰和碳酸钠混 合前需经磨细处理, 生料浆的钙比为 2 , 钠比为 1 , 含水率为 30%;
4 ) 、 熟料焙烧, 将生料浆在 1200°C下焙烧 30min成熟料;
5 ) 、 熟料溶出, 将熟料与一段调整液混合进行一段溶出获得铝酸钠 粗液和一段溶出粗渣, 一段调整液与熟料的液固质量比为 6: 1 , 溶出温度 为 75 °C , 溶出时间为 20min; —段调整液由残渣 (熟料二段溶出渣)一次 洗液、 二段溶出液及部分碳分母液与种分母液所调配, 其主要成分包括: 30g/l的 Na2Ok, 30g/l的 Na2Oc;
6 ) 、 一、 二段深度脱硅, 向铝酸钠粗液中加入钠硅渣晶种进行一段深 度脱硅得到一段脱硅精化液, 钠硅渣 50g/L, 温度 155°C , 时间 2h; 然后 将部分一段脱硅精化液进行二段深度脱硅,有效氧化钙的加入量为 15g/L, 温度 85 °C , 时间 3h, 得到二段脱硅精化液, 同时还得到二段深度脱硅残 渣; 深度脱硅是指将铝酸钠粗液中的杂质硅除去, 提高铝酸钠粗液纯度的 过程, 釆用两段脱硅法, 一段为加入钠硅渣做种子并进行高温高压压煮; 二段为添加一定比例的石灰乳进一步在较低温度下脱除铝酸钠残存的二 氧化硅。 当其中的硅含量降低到一定值的时候就可进行碳分和种分生产氢 氧化铝; 只进行一段深度脱硅的铝酸钠粗液与需即进行一段深度脱硅又进 行二段深度脱硅的铝酸钠粗液体积比为 2: 1。
7 )碳分、 种分及氢氧化铝焙烧, 将二段脱硅精化液进行碳分, 碳分 的温度为 87°C , 碳分率在 90%, 种分工艺遵循拜耳法种分过程, 用碳分得 到的氢氧化铝作晶种, 将其加入步骤 6 ) 中未进行二段深度脱硅的一段深 度脱硅精化液中进行种分, 得到氢氧化铝, 将氢氧化铝经过焙烧得到氧化 铝, 氧化铝为冶金级。 碳分是指向深度脱硅之后的铝酸钠粗液中通入二氧 化碳使其中的大部分可溶性铝转化为氢氧化铝沉淀物的过程。 种分是铝酸 钠溶液自发结晶析出部分氢氧化铝的过程, 一般首先向铝酸钠粗液中加入 一定量的氢氧化铝作为晶种, 然后将铝酸钠溶液的温度降到 50 ~ 55°C , 使 铝酸钠粗液变成过饱和溶液而以已加入的氢氧化铝晶种为晶核析出氢氧 化铝。 种分母液、 氢氧化铝洗液、 溶出残渣一段洗液及少部分碳分母液等 溶液进行调配, 制备调整液, 用作一、 二段溶出的溶出液。 溶出残渣一段 洗液是在二段溶出残渣进行第一次洗涤时所获的洗液, 氢氧化铝洗液是种 分生产出氢氧化铝后对其进行洗涤所获的洗液。 实施例二
图 2为本发明实施例二提供的生产工艺流程图, 如图 2所示, 本实施 例提供的高铝粉煤灰生产氧化铝联产活性硅酸钙的方法包括如下步骤:
1 ) 、 预脱硅, 将高铝粉煤灰与质量比为 10%氢氧化钠溶液组成的混 合溶液(氢氧化钠溶液与高铝粉煤灰的质量比为 0.6: 1 ) 加热到 130°C后, 导入保温停留罐中进行脱硅反应 2.5h, 然后自蒸发器降压后进行液固分离 得到液相的脱硅液和固相的脱硅粉煤灰滤饼, 其中原粉煤灰的铝硅比为 1.15 , 脱硅后升高到 2.12, 脱硅液中 Si02浓度为 62g/l;
2 ) 、 活性硅酸钙的制备, 包括以下步骤: a、 按照有效 CaO与 Si02 摩尔比为 0.8: 1向脱硅液液中加入有效 CaO含量为 190g/L的石灰乳, 90 ° 温度下搅拌反应 lh, 转速 180转 /分钟, 釆用水平真空带式过滤机过滤 进行液固分离, 得到硅酸钙滤饼, 滤液经过蒸发浓缩后返回步骤 1 )作为 氢氧化钠溶液循环使用, 实现了脱硅液苛化与氢氧化钠回收利用; 反应后 脱硅液中 Si02浓度降低到 1.8g/l, NaOH浓度 10%; 脱硅液中加入石灰乳 的制备过程中应实现石灰乳与渣的分离 (扒渣) ;
b、将硅酸钙滤饼用 90°C热水洗涤 3遍后加入清水,调制液固比为 3: 1 , 制备硅酸钙浆液; 向硅酸钙浆液中加入石灰乳进行脱碱反应, 按照石灰乳 中有效钙与干基活性硅酸钙质量比 50: 1加入石灰乳;在 70°C下反应 40min, 过滤, 用 90°C热水洗涤 2遍, 过滤。 硅酸钙滤饼经三次洗涤后 Na20含量 降低到 2.8%, pH值 13.7。 经脱碱后降低到 0.35%, pH值降低到 12.5; c、 脱碱反应得到的硅酸钙用清水洗涤后加入到质量浓度为 3/1000稀 硫酸溶液中, 干基活性硅酸钙与浓硫酸的质量比 30: 1 , 酸洗浸泡 20min; 按照硫酸铝与干基活性硅酸钙的质量比为 50: 1加入硫酸铝, 浸泡时间为 lOmin, 用 90°C热水洗涤 2遍, pH降为 8.9, 洗涤后的活性硅酸钙打入沉 降池, 加水调制成液固比为 2 ~ 8的浆液, 静止沉降 1 ~ 10h后用泵将底部 渣子抽走, 过滤上部干净活性硅酸钙, 烘干得到白度为 91活性硅酸钙产 品。 本发明制备的活性硅酸钙表面积大、 密度低、 活性高、 吸附性能强, 与传统填料比有质轻、 填充性能好、 节能环保等优点。
3 ) 、 生料浆制备, 向粉煤灰滤饼中加入石灰石 (生石灰) 和碳酸钠 溶液得到混合浆液, 将混合浆液在球磨机内磨细并调配成生料浆; 石灰石 和碳酸钠混合前需经磨细处理, 其中生石灰占总钙量的 25%, 调节钙比为 1.96, 钠比为 1.0, 生料浆含水率为 35%;
4 ) 、 熟料焙烧, 将生料浆在 1220°C的回转窑中焙烧 25min后得到熟 料, 熟料为粗颗粒熟料;
5 ) 、 熟料溶出, 将熟料与 N2Ok、 N2Oc浓度分别为 50g/L、 30g/L的一 段调整液按照液固比 1 : 2.5在筒形容出器中逆向流动进行一段溶出, 获得 铝酸钠粗液和一段溶出粗渣溶, 出时间为 lOmin, 溶出温度 70°C ; 其中一 段溶出液中 Al203136.3g/1, Si02 5.1g/l, 苛性比 1.21 , —段 A1203净溶出率 68.3%; 一段调整液由残渣(熟料二段溶出渣) 一次洗液、 二段溶出液及 部分碳分母液与种分母液所调配;
6 ) 、 一、 二段深度脱硅, 向每升铝酸钠粗液中加入 50g钠硅渣晶种 进行一段深度脱硅(脱硅温度 170°C , 时间 1.5h, )得到一段脱硅精化液, 一段脱硅精液 A1203 125.3g/l硅量指数为 326; 将钠硅渣分离后加石灰乳 进行二段深度脱硅, 每升溶液加石灰乳为 10g, 脱硅温度为 90°C , 反应时 间 1.5h。 二段深度脱硅得到二段脱硅精化液, 同时还得到二段深度脱硅残 渣, 二段精液 A1203 117.5g/l, 硅量指数 680; 深度脱硅是指将铝酸钠粗液 中的杂质硅除去, 提高铝酸钠粗液纯度的过程, 釆用两段脱硅法, 一段为 加入钠硅渣做种子并进行高温高压压煮; 二段为添加一定比例的石灰乳进 一步在较低温度下脱除铝酸钠残存的二氧化硅。 当其中的硅含量降低到一 定值的时候就可进行碳分和种分生产氢氧化铝;
7 )碳分、 种分及氢氧化铝焙烧, 将二段脱硅后的铝酸钠精液送至碳 分槽中进行串联式连续碳分, 碳分温度为 90°C , 碳分分解率为 90%, 用碳 分得到的氢氧化铝作晶种, 将其加入步骤 6 ) 中未进行二段深度脱硅的一 段深度脱硅精化液中进行种分, 种分温度 58°C , 种分率 > 57%。 得到氢氧 化铝, 将氢氧化铝经过焙烧得到氧化铝, 氧化铝符合二级冶金级氧化铝要 求的砂状氧化铝产品。 碳分是指向深度脱硅之后的铝酸钠粗液中通入二氧 化碳使其中的大部分可溶性铝转化为氢氧化铝沉淀物的过程。 种分是铝酸 钠溶液自发结晶析出部分氢氧化铝的过程, 一般首先向铝酸钠粗液中加入 一定量的氢氧化铝作为晶种, 然后将铝酸钠溶液的温度降到 50 ~ 55°C , 使 铝酸钠粗液变成过饱和溶液而以已加入的氢氧化铝晶种为晶核析出氢氧 化铝。
本实施例还可联产水泥, 包括将步骤 6 ) 中一段溶出粗渣细磨后与 N2Ok、 N2Oc浓度分别为 20g/L、 10g/L的二段调整液混合在棒磨机中边磨 碎边进行二段溶出, 溶出时间 15min, 溶出温度为 75 °C。 二段溶出液中 A1203浓度 59.4g/l , Si02 1.5g/l , 苛性比 1.19, 二段 A1203净溶出率 22.3%。 二段溶出浆液导入沉降槽中加水稀释并进行沉降分离, 底流为二段溶出残 渣, 溢流相二段溶出液用来配制一段溶出时的调整液; 二段溶出残渣进行 三次逆向洗涤后, 渣中 Na20含量降低到 1.39%。 溶出残渣然后按下述条 件脱碱: 残渣与电石渣的干基比例 20: 1 , 液固比 6: 1 , 脱碱温度 95 °C , 脱 碱时间 50min,搅拌速率 120转 /分钟。脱碱完毕之后釆用 90°C的清水洗涤 两遍, 然后通过板框压滤机进行液固分离。 最终获得的提铝残渣的主要性 能如下: 滤饼含水率 29.5%。干基滤饼的主要化学成分: CaO 54.8%, Na20 0.42%, Si0224.5%, A1203 4.59, Fe203 2.49%, LOSS 7.98%。 干基滤饼用 于生产水泥。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种高铝粉煤灰生产氧化铝联产活性硅酸钙的方法, 其特征在于, 包括以下步骤:
1 ) 、 预脱硅, 将高铝粉煤灰与氢氧化钠溶液混合后加热, 导入耐压 容器中进行脱硅反应, 液固分离得到液相的脱硅液和固相的粉煤灰滤饼;
2 ) 、 活性硅酸 4弓的制备, 包括如下步骤:
a、 向步骤 1 ) 中所述脱硅液中加入石灰乳进行反应, 过滤得到硅 酸钙滤饼;
b、 将所述硅酸钙滤饼洗涤后加入清水制备硅酸钙浆液, 向所述 硅酸钙浆液中加入石灰乳进行脱碱反应;
c、 将脱碱反应得到的硅酸钙用清水洗涤后加入到稀硫酸溶液中 , 浸泡; 加入石克酸铝将 pH值降至 10以下, 浸泡; 后经洗涤、 除渣、 过 滤、 烘干获得活性硅酸钙;
3 ) 、 生料浆制备, 向所述粉煤灰滤饼中加入碳酸钠、 石灰石和 /或生 石灰溶液得到混合浆液, 将所述混合浆液磨细并调配成生料浆;
4 ) 、 熟料焙烧, 将所述生料浆焙烧成熟料;
5 ) 、 熟料溶出, 将所述熟料与一段调整液混合进行一段溶出获得铝 酸钠粗液和一段溶出粗渣;
6 ) 、 一、 二段深度脱硅, 向所述铝酸钠粗液中加入钠硅渣晶种进行 一段深度脱硅得到一段脱硅精化液, 然后将部分所述一段脱硅精化液进行 二段深度脱硅得到二段脱硅精化液, 同时还得到二段深度脱硅残渣;
7 ) 、 碳分、 种分及氢氧化铝焙烧, 将所述二段脱硅精化液进行碳分, 用碳分得到的氢氧化铝作晶种, 将其加入步骤 6 ) 中未进行二段深度脱硅 的一段深度脱硅精化液中进行种分, 得到氢氧化铝, 将所述氢氧化铝焙烧 得到氧化铝。
2、 根据权利要求 1所述的方法, 其特征在于, 步骤 1 ) 中所述氢氧化 钠溶液的质量浓度为 10 ~ 30% , 氢氧化钠与高铝粉煤灰的质量比为 0.2 ~
0.8:1, 反应温度: 70~ 135°C, 反应时间: 0.5~3h。
3、 根据权利要求 1所述的方法, 其特征在于, 步骤 a所述石灰乳中 的有效氧化钙浓度为 100 ~ 220g/L , 所述有效氧化钙与滤液中 Si02摩尔比 为 0.7 ~ 1.2, 反应温度为 50~ 100°C, 反应时间为 30 ~ 120min。
4、 根据权利要求 1所述的方法, 其特征在于, 步骤 b所述硅酸钙浆 液液固比为 2~6,所述石灰乳的加入量为石灰乳中有效氧化钙与干基活性 硅酸钙质量比 20 - 80:1, 脱碱反应时间为 20 ~ 100min。
5、 根据权利要求 1所述的方法, 其特征在于, 步骤 c所述稀硫酸溶 液浓度为 1/1000 ~ 10/1000, 干基活性硅酸钙与浓硫酸的质量比 20 ~ 80:1, 浸泡时间为 10 ~ 60min; 所述石克酸铝与干基活性硅酸钙的质量比为 30 ~ 100:1, 浸泡时间为 5 ~ 60min。
6、 根据权利要求 1所述的方法, 其特征在于, 步骤 3)所述生料浆的 比为 1.95 ~2.01, 钠比为 0.95 ~ 1.05, 含水率为 25 ~ 50%。
7、 根据权利要求 1所述的方法, 其特征在于, 步骤 4)所述焙烧温度 为 1150~ 1300°C, 焙烧时间 10 ~ 60分钟。
8、 根据权利要求 1所述的方法, 其特征在于, 步骤 5)所述一段溶出 时熟料粒径≤8mm, —段调整液与熟料的液固质量比为 2~8:1, 溶出温度 为 55~85°C, 溶出时间为 5~30min, 溶出液为铝酸钠粗液, 所述一段调 整液成分包括: 10 ~ 60g/l的 Na2Ok, 10 ~ 60g/l的 Na2Oc
9、 根据权利要求 1所述的方法, 其特征在于, 步骤 6) 中一段深度脱 硅条件为: 钠硅渣 10 ~ 100g/L, 温度 100 ~ 180°C , 时间 0.5 ~ 5h; 二段深 度脱硅条件为: 有效氧化钙的加入量为 2 ~ 30g/L , 温度 70 ~ 100 °C , 时间 0.5 ~ 5h;只进行一段深度脱硅的铝酸钠粗液与需即进行一段深度脱硅又进 行二段深度脱硅的铝酸钠粗液体积比为 1 ~ 3: 1。
10、 根据权利要求 1所述的方法, 其特征在于, 步骤 7) 中所述二段脱 硅精化液进行碳分的温度为 85 ~ 90 °C , 碳分率为 85 ~ 93%。
PCT/CN2011/075090 2011-05-11 2011-06-01 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法 WO2012151767A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/012,983 US9139445B2 (en) 2011-05-11 2013-08-28 Method for co-producing alumina and activated calcium silicate from high-alumina fly ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110117710.9 2011-05-11
CN2011101177109A CN102249253B (zh) 2011-01-06 2011-05-11 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/012,983 Continuation US9139445B2 (en) 2011-05-11 2013-08-28 Method for co-producing alumina and activated calcium silicate from high-alumina fly ash

Publications (1)

Publication Number Publication Date
WO2012151767A1 true WO2012151767A1 (zh) 2012-11-15

Family

ID=47143370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075090 WO2012151767A1 (zh) 2011-05-11 2011-06-01 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法

Country Status (3)

Country Link
US (1) US9139445B2 (zh)
CN (1) CN102249253B (zh)
WO (1) WO2012151767A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528745A (zh) * 2014-12-02 2015-04-22 郭建文 采用粉煤灰制备合成硅灰石的方法
CN105692637A (zh) * 2016-01-29 2016-06-22 卓达新材料科技集团有限公司 一种利用普通粉煤炉粉煤灰制备水玻璃的方法
CN107720797A (zh) * 2017-11-01 2018-02-23 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN107935010A (zh) * 2017-12-29 2018-04-20 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN108083279A (zh) * 2017-12-29 2018-05-29 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN109734111A (zh) * 2019-03-13 2019-05-10 国家电投集团山西铝业有限公司 一种氧化铝生产方法及设备
CN111060417A (zh) * 2019-11-25 2020-04-24 中国石油化工股份有限公司 一种气化渣矿相的定量分析方法
CN112678839A (zh) * 2019-10-18 2021-04-20 中国科学院过程工程研究所 一种粒径可控的硅酸钙的制备方法及由其制备的硅酸钙和用途
CN113247914A (zh) * 2021-04-12 2021-08-13 南昌大学 一种利用粉煤灰提铝渣制备变针硅钙石的方法及应用
CN113683109A (zh) * 2021-08-03 2021-11-23 中铝中州铝业有限公司 一种氧化铝熟料钙比的控制方法
CN114470955A (zh) * 2021-12-27 2022-05-13 安徽华塑股份有限公司 一种电石渣深度净化处理制备高效脱硫剂的工艺

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249253B (zh) 2011-01-06 2013-05-01 内蒙古大唐国际再生资源开发有限公司 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法
CN102583410B (zh) * 2012-01-10 2014-07-30 中国科学院过程工程研究所 一种利用粉煤灰脱硅母液生产活性硅酸钙的方法
CN103419271A (zh) * 2012-05-23 2013-12-04 北京航空航天大学 一种硅酸钙板的制备方法
CN102897810B (zh) * 2012-11-06 2015-04-22 大唐国际发电股份有限公司 一种利用粉煤灰生产氧化铝的方法
CN103145160B (zh) * 2013-01-08 2015-03-18 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种由高铝粉煤灰生产氧化铝的方法
US8945247B1 (en) * 2013-02-08 2015-02-03 VRC Techonology, LLC Methods and apparatus for the improved treatment of carbonaceous fuel and/or feedstocks
CN103172095B (zh) * 2013-03-22 2014-10-15 东北大学设计研究院(有限公司) 高铝粉煤灰高温碱浸生产超白氢氧化铝及副产品的方法
CN103332697B (zh) * 2013-05-17 2015-05-20 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种活性硅酸钙的脱水方法
US10407787B2 (en) 2013-09-25 2019-09-10 Himonic Llc Method and apparatus for separation of aluminum from aluminum-containing source materials
CN104709914B (zh) * 2013-12-12 2017-02-15 神华集团有限责任公司 硬硅钙石材料和硬硅钙石保温材料及其制备方法
CN103708479B (zh) * 2013-12-30 2015-11-25 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 用粉煤灰同时制备偏铝酸钠和活性硅酸钙的方法
WO2015105723A1 (en) * 2014-01-09 2015-07-16 Nalco Company Surfactant based small molecules for reducing aluminosilicate scale in the bayer process
CN104803402B (zh) * 2014-01-23 2017-03-01 神华集团有限责任公司 一种粉煤灰铝硅分离利用的方法以及其方法得到的雪硅钙石和氧化硅
CN104043639B (zh) * 2014-06-27 2016-08-17 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种脱硅粉煤灰的生产方法
CN104030305B (zh) * 2014-06-27 2015-11-18 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种活性硅酸钙的制备方法
CN104120621A (zh) * 2014-06-30 2014-10-29 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 硅酸钙作为造纸用助留增厚剂的用途
CN104085896B (zh) 2014-07-18 2015-12-09 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 活性硅酸钙的制备方法
CN105502446B (zh) * 2014-09-22 2017-04-26 中国科学院过程工程研究所 一种粉煤灰的综合利用方法
CN104326480B (zh) * 2014-10-23 2017-08-25 宋宝祥 一种采用水玻璃和石灰乳液制备微孔硅酸钙的方法
CN104495899B (zh) * 2014-11-30 2016-01-13 湖南科技大学 一种电石渣与粉煤灰协同资源化利用的方法
CN104556170B (zh) * 2014-12-31 2016-08-24 东北大学设计研究院(有限公司) 一种粉煤灰碱浸烧结水热法生产硅灰石及氧化铝的方法
CN104843752B (zh) * 2015-03-27 2017-05-17 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种对铝酸钠溶液进行除铁的方法
CN104934089A (zh) * 2015-04-27 2015-09-23 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种放射性废水处理方法
CN104891838B (zh) * 2015-05-19 2017-05-31 河北工程大学 一种从粉煤灰中提取硅、钙用于制备补强剂的方法
CN104894915A (zh) * 2015-05-20 2015-09-09 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种造纸胶粘物控制剂及其制备方法和应用
EP3337761A1 (en) * 2015-08-18 2018-06-27 Himonic LLC Method and apparatus for separation of aluminum from aluminum-containing source materials
CN105585039B (zh) * 2015-12-18 2019-12-17 湖南绿脉环保科技有限公司 一种铝土矿高效快速脱硅方法
CN105498512B (zh) * 2016-01-19 2018-08-28 中国铝业股份有限公司 一种湿法烟气脱硫方法
CN105692666B (zh) * 2016-01-20 2017-12-12 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种高铝粉煤灰提取氧化铝的方法
CN105836776B (zh) * 2016-03-24 2018-02-23 中铝山东有限公司 活性硅渣、其制备方法,含硅铝酸钠脱硅方法
CN105858674B (zh) * 2016-03-28 2018-03-02 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种利用高铝粉煤灰制备方钠石的方法
CN105753025B (zh) * 2016-03-31 2017-07-07 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 利用高铝粉煤灰生产氧化铝的方法
CN105862501B (zh) * 2016-03-31 2018-09-11 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 利用脱硅液、纸浆纤维和石灰乳合成硅酸钙填料的方法
CN106187330A (zh) * 2016-07-08 2016-12-07 贵州鑫亚矿业有限公司 一种无定型二氧化硅制备优质枸溶性硅肥的方法
CN107758714B (zh) * 2016-08-17 2020-12-01 中国科学院过程工程研究所 一种粉煤灰中铝硅锂镓联合法协同提取的方法
CN106276998B (zh) * 2016-08-25 2018-01-02 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种粉煤灰碱石灰烧结法提取氧化铝的生料浆配制方法
CN106745016B (zh) * 2016-11-24 2019-05-07 河北工程大学 一种从粉煤灰中分离富集锂、铝、硅的方法
CN107021765B (zh) * 2017-05-25 2020-03-10 中国科学院过程工程研究所 一种利用高铝粉煤灰制备莫来石联产聚合氯化铝的方法
CN107697923B (zh) * 2017-09-29 2020-04-10 临沂三禾生物质科技有限公司 一种合成高活性、低碱含量硅酸钙的生产方法
CN107804981A (zh) * 2017-11-01 2018-03-16 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN108002415B (zh) * 2017-12-06 2019-11-15 中国铝业股份有限公司 氧化铝生产过程中脱除草酸钠的结晶物的处理方法
CN108192475A (zh) * 2017-12-12 2018-06-22 朱文杰 一种厚涂型抗裂纹地板漆的制备方法
CN108455647B (zh) * 2018-01-10 2021-01-15 湖北三宁化工股份有限公司 一种磷酸副产磷石膏与氟硅酸生产氟化钙副产白炭黑与硫酸铵的方法
CN108726489A (zh) * 2018-07-03 2018-11-02 贵州大学 一种磷石膏和粉煤灰制列车闸片材料联产酸的工艺
CN109081365B (zh) * 2018-08-17 2021-04-30 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 一种利用高铝粉煤灰制备高白氢氧化铝的方法
ES2953483T3 (es) * 2018-11-26 2023-11-13 Alunorte Alumina Do Norte Do Brasil S A Proceso y sistema para producir alúmina a partir de mineral de bauxita
CN109516484B (zh) * 2018-12-11 2021-06-01 内蒙古绿盎循环科技有限公司 一种用电石泥粉煤灰和煤矸石烧结法生产氧化铝的方法
CN109721081B (zh) * 2019-02-25 2021-08-27 河北工程大学 一种从富锂粉煤灰碱法母液中提取锂的方法
CN110040753A (zh) * 2019-04-29 2019-07-23 沈阳鑫博工业技术股份有限公司 一种利用拜耳法赤泥干法烧结制备铝酸钠溶液的方法
CN110436496A (zh) * 2019-08-30 2019-11-12 贵州大学 一种利用工业铝酸钠溶液制备超细高纯氧化铝的方法
CN113045341A (zh) * 2019-12-26 2021-06-29 国家能源投资集团有限责任公司 一种从含硅的酸处理液制备无碱硅肥的方法和无碱硅肥
CN113321230B (zh) * 2020-02-28 2022-06-14 国家能源投资集团有限责任公司 利用粉煤灰制备氧化铝和硅肥的方法
CN111592005B (zh) * 2020-05-08 2023-07-18 山西大学 一种煤粉炉粉煤灰酸法提铝尾渣低温下制备α-层状硅酸钠的方法
CN111606339B (zh) * 2020-05-22 2023-01-10 内蒙古蒙泰集团有限公司 一种利用粉煤灰制备铝硅氧化物的方法
CN111717929A (zh) * 2020-07-10 2020-09-29 沈阳鑫博工业技术股份有限公司 一种电石渣综合利用装置及方法
CN111977677B (zh) * 2020-08-25 2021-11-23 中国科学院过程工程研究所 一种利用铝灰制备铝酸钙的方法
CN111887465A (zh) * 2020-08-25 2020-11-06 陕西科技大学 制备高透气度和高吸收性的造纸法再造烟叶基片的方法
CN114506863A (zh) * 2020-11-16 2022-05-17 中国科学院过程工程研究所 一种铝硅基废催化剂的综合利用方法
CN112777620A (zh) * 2021-01-29 2021-05-11 哈尔滨工业大学(威海) 一种利用碱浸法再生利用铝灰或铝渣的方法
CN113061733A (zh) * 2021-03-19 2021-07-02 大连理工大学 粉煤灰烧结活化-酸浸法制备富铝浸出液的方法
CN113371745B (zh) * 2021-04-21 2024-03-29 上海电力大学 一种粉煤灰资源化生产高纯氧化铝的系统与方法
CN113683105B (zh) * 2021-09-24 2023-11-10 内蒙古会原科技有限公司 一种利用固废制备高白高纯氢氧化铝的生料配制方法
CN113800544B (zh) * 2021-09-24 2023-11-10 内蒙古会原科技有限公司 一种利用固废制备高白高纯氢氧化铝的方法及系统
CN114314676A (zh) * 2021-12-03 2022-04-12 内蒙古科技大学 一种从煤矸石中提取有价元素的方法
CN114273382B (zh) * 2021-12-27 2023-04-07 山东东顺环保科技有限公司 一种二次铝灰无害化处理方法
CN114368767A (zh) * 2022-01-18 2022-04-19 云南文山铝业有限公司 一种拜耳法制氧化铝工艺中除铁的方法
CN114632509B (zh) * 2022-03-25 2023-04-21 昆明理工大学 采用铝铬渣制备Cr-Al2O3介孔催化材料的方法及应用
CN114772625A (zh) * 2022-04-12 2022-07-22 四川大学 电石渣中钙离子的溶出方法及其在矿化封存co2联产轻质碳酸钙中的应用
CN114772959B (zh) * 2022-04-29 2023-01-20 北京科技大学 一种铝硅酸钠溶胶的制备方法及其产品和应用
CN114735732B (zh) * 2022-05-06 2023-10-27 内蒙古工业大学 一种高铝粉煤灰制备氧化铝和二氧化硅的方法
CN114988422B (zh) * 2022-08-05 2023-01-10 中国科学院过程工程研究所 一种利用气化粗渣得到的高模数水玻璃及其制备方法和应用
CN115672931A (zh) * 2022-09-14 2023-02-03 江苏柏环环境科技有限公司 一种含铝固体废物资源化方法
CN117446814B (zh) * 2023-12-21 2024-03-26 内蒙古科技大学 一种利用煤气化渣制备硅酸钙的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028936A (zh) * 2007-01-26 2007-09-05 长安大学 一种从高铝粉煤灰提取氧化铝及其废渣生产水泥的方法
CN101041450A (zh) * 2006-03-15 2007-09-26 中国地质大学(北京) 利用高铝粉煤灰制取氧化铝和白炭黑清洁生产工艺
CN101284668A (zh) * 2007-04-12 2008-10-15 清华大学 一种从高铝粉煤灰中提取二氧化硅、氧化铝及氧化镓的方法
CN101591197A (zh) * 2008-05-26 2009-12-02 同方环境股份有限公司 一种利用高铝粉煤灰预脱硅制备硅钙肥的方法
CN101591023A (zh) * 2008-05-26 2009-12-02 同方环境股份有限公司 一种利用高铝粉煤灰制备硅酸钙微粉的方法
CN101941725A (zh) * 2009-07-10 2011-01-12 同方环境股份有限公司 一种从煤矸石中提取氧化铝联产活性硅酸钙的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331507A (en) * 1979-12-10 1982-05-25 Dorr-Oliver Incorporated Desilication in alkaline pulp processes
US5019360A (en) * 1987-11-24 1991-05-28 Northern States Power Company Method for the processing of fly ash, scrubber sludge and the like; and product
CN1061949A (zh) * 1991-08-30 1992-06-17 宁夏回族自治区建筑材料研究所 采用粉煤灰生产白水泥的方法
CN101125656B (zh) 2007-08-07 2010-06-09 平朔煤炭工业公司 一种从粉煤灰中先提硅后提铝的方法
CN101857250A (zh) * 2009-04-09 2010-10-13 刘庆玲 利用粉煤灰生产氢氧化铝和硅酸及碳酸钠工艺方法
CN102249253B (zh) 2011-01-06 2013-05-01 内蒙古大唐国际再生资源开发有限公司 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041450A (zh) * 2006-03-15 2007-09-26 中国地质大学(北京) 利用高铝粉煤灰制取氧化铝和白炭黑清洁生产工艺
CN101028936A (zh) * 2007-01-26 2007-09-05 长安大学 一种从高铝粉煤灰提取氧化铝及其废渣生产水泥的方法
CN101284668A (zh) * 2007-04-12 2008-10-15 清华大学 一种从高铝粉煤灰中提取二氧化硅、氧化铝及氧化镓的方法
CN101591197A (zh) * 2008-05-26 2009-12-02 同方环境股份有限公司 一种利用高铝粉煤灰预脱硅制备硅钙肥的方法
CN101591023A (zh) * 2008-05-26 2009-12-02 同方环境股份有限公司 一种利用高铝粉煤灰制备硅酸钙微粉的方法
CN101941725A (zh) * 2009-07-10 2011-01-12 同方环境股份有限公司 一种从煤矸石中提取氧化铝联产活性硅酸钙的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528745A (zh) * 2014-12-02 2015-04-22 郭建文 采用粉煤灰制备合成硅灰石的方法
CN105692637A (zh) * 2016-01-29 2016-06-22 卓达新材料科技集团有限公司 一种利用普通粉煤炉粉煤灰制备水玻璃的方法
CN107720797A (zh) * 2017-11-01 2018-02-23 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN107935010A (zh) * 2017-12-29 2018-04-20 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN108083279A (zh) * 2017-12-29 2018-05-29 神雾环保技术股份有限公司 处理电石渣的系统和方法
CN109734111A (zh) * 2019-03-13 2019-05-10 国家电投集团山西铝业有限公司 一种氧化铝生产方法及设备
CN112678839B (zh) * 2019-10-18 2022-07-01 中国科学院过程工程研究所 一种粒径可控的硅酸钙的制备方法及由其制备的硅酸钙和用途
CN112678839A (zh) * 2019-10-18 2021-04-20 中国科学院过程工程研究所 一种粒径可控的硅酸钙的制备方法及由其制备的硅酸钙和用途
CN111060417A (zh) * 2019-11-25 2020-04-24 中国石油化工股份有限公司 一种气化渣矿相的定量分析方法
CN111060417B (zh) * 2019-11-25 2023-03-21 中国石油化工股份有限公司 一种气化渣矿相的定量分析方法
CN113247914A (zh) * 2021-04-12 2021-08-13 南昌大学 一种利用粉煤灰提铝渣制备变针硅钙石的方法及应用
CN113683109A (zh) * 2021-08-03 2021-11-23 中铝中州铝业有限公司 一种氧化铝熟料钙比的控制方法
CN114470955A (zh) * 2021-12-27 2022-05-13 安徽华塑股份有限公司 一种电石渣深度净化处理制备高效脱硫剂的工艺

Also Published As

Publication number Publication date
CN102249253A (zh) 2011-11-23
CN102249253B (zh) 2013-05-01
US9139445B2 (en) 2015-09-22
US20130343971A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
WO2012151767A1 (zh) 高铝粉煤灰生产氧化铝联产活性硅酸钙的方法
CN100542961C (zh) 一种氢氧化钠熔盐法处理铝土矿生产氢氧化铝的工艺
CN109516484B (zh) 一种用电石泥粉煤灰和煤矸石烧结法生产氧化铝的方法
CN100532262C (zh) 一种中低品位铝土矿生产氧化铝的方法
AU2014392419A1 (en) Method for recycling alkali and aluminum during treatment of Bayer red mud by using calcification-carbonization process
CN102502733B (zh) 一种高浓度碱液常压处理三水铝石矿的方法
WO2018233688A1 (zh) 钙铁榴石一步碱热法处理中低品位铝土矿生产氢氧化铝的方法
CN103303952A (zh) 一种利用高铝粉煤灰低温液相碱溶法制备铝酸钠联产硅基材料的方法
CN101117230A (zh) 一种拜耳法溶出方法
WO2017101746A1 (zh) 一种铝土矿高效快速脱硅方法
CN103130254A (zh) 一种碱法生产氧化铝的方法
WO2018233687A1 (zh) 钙铁榴石一步碱热法处理中低品位铝土矿生产铝酸钠的方法
CN103950960B (zh) 一种基于钙化-碳化法的无蒸发生产氧化铝的方法
CN103738972B (zh) 一种粉煤灰提铝残渣制备硅微粉的方法
CN103421960B (zh) 一种铝土矿选尾矿回收铝铁同步制备高硅酸渣的方法
WO2018233686A1 (zh) 钙铁榴石一步碱热法处理中低品位铝土矿生产冶金级氧化铝的方法
CN102198956B (zh) 低品位铝土矿或高岭土类原料碱法生产铝、硅化工产品工艺
WO2019019844A1 (zh) 钙铁榴石一步碱热法处理拜耳法赤泥生产4a沸石的方法
CN102583475A (zh) 采用低铝硅比含铝资源干法或半干法生产氧化铝的方法
CN103964477A (zh) 一种通过多级碳化降低赤泥铝硅比的方法
CN112551564B (zh) 一种铝酸钠溶液的深度净化方法
CN103964478B (zh) 一种钙化-碳化法处理中低品位含铝原料及铝循环的方法
CN102491386A (zh) 一种提高拜耳法精液硅量指数的方法
CN108658090B (zh) 粉煤灰酸法提铝残渣制备13x型分子筛和高硅丝光沸石的方法及粉煤灰的利用方法
CN112813284A (zh) 一种从含铝矿物中提取铝的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865062

Country of ref document: EP

Kind code of ref document: A1