WO2012133761A1 - 改変型グルコースデヒドロゲナーゼ - Google Patents

改変型グルコースデヒドロゲナーゼ Download PDF

Info

Publication number
WO2012133761A1
WO2012133761A1 PCT/JP2012/058568 JP2012058568W WO2012133761A1 WO 2012133761 A1 WO2012133761 A1 WO 2012133761A1 JP 2012058568 W JP2012058568 W JP 2012058568W WO 2012133761 A1 WO2012133761 A1 WO 2012133761A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
gdh
nad
acid sequence
Prior art date
Application number
PCT/JP2012/058568
Other languages
English (en)
French (fr)
Inventor
理文 八尾
川瀬 至道
伸一 横堀
明彦 山岸
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to KR1020137028552A priority Critical patent/KR101980065B1/ko
Priority to US14/008,927 priority patent/US9023608B2/en
Priority to JP2013507780A priority patent/JP5949757B2/ja
Priority to EP12765279.0A priority patent/EP2695939B1/en
Publication of WO2012133761A1 publication Critical patent/WO2012133761A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01047Glucose 1-dehydrogenase (1.1.1.47)

Definitions

  • the present invention relates to thermostability and glycation by changing a specific amino acid of glucose dehydrogenase [NAD (P) + GDH] having nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a coenzyme to another amino acid.
  • NAD (P) + GDH glucose dehydrogenase
  • the present invention relates to a method for producing modified NAD (P) + GDH to be used.
  • the glucose measurement test agent utilizes the property that an enzyme for quantifying glucose, for example, glucose dehydrogenase (GDH) catalyzes the dehydrogenation reaction of glucose, whereby the glucose concentration in the analysis sample can be quantified.
  • GDH glucose dehydrogenase
  • GDH for example, NAD (P) + GDH derived from Bacillus megaterium can also be used, but there is a problem that the thermal stability is extremely low when no excessive inorganic salt is present.
  • Patent Document 3 discloses that a mutant in which the 170th glutamic acid of NAD (P) + GDH derived from Bacillus megaterium is substituted with lysine and the 252nd glutamine with leucine is 66 ° C. for 8 hours in the absence of an inorganic salt. It is described that the relative activity of about 60% is maintained even in the case of the above treatment.
  • Bacillus subtilis-derived NAD (P) + GDH which is classified into the same genus as Bacillus megaterium as described above, the enzyme has been isolated and the gene has already been identified (for example, Non-patent Documents 3 to 3). 4) The enzyme can also be used for a glucose measurement test.
  • the Bacillus subtilis-derived NAD (P) + GDH shows about 85% homology with the Bacillus megaterium-derived NAD (P) + GDH (for example, Non-Patent Document 5), and 900 U / in the presence of a high concentration of sodium chloride. It is an enzyme showing a high specific activity of mg or more.
  • NAD (P) H reproduction a recent new use of GDH includes NAD (P) H reproduction.
  • NAD (P) H can be reproduced by conjugating the reaction of NAD (P) + GDH catalyzing glucose to a reaction system in which NAD (P) H is consumed and NAD (P) is produced
  • P NAD
  • Patent Document 4 describes at least one amino acid among 165th isoleucine, 194th proline and 204th lysine of NAD (P) + GDH derived from Bacillus subtilis in the use of NAD (P) H reproduction.
  • a mutant that is substituted with another amino acid and further substituted with another amino acid has a specific activity several times higher than that of the wild-type enzyme, and a residual activity of 80% or more after heat treatment at 50 ° C. for 20 minutes. It is described that it becomes.
  • Non-Patent Document 6 also shows that the 45th proline of NAD (P) + GDH derived from Bacillus subtilis is alanine, the 155th phenylalanine is a tyrosine, and the 170th position is also used for the reproduction of NAD (P) H. Mutations in which glutamic acid is replaced with arginine, 227th valine with alanine, and 252nd glutamine with leucine and other mutants are hardly inactivated at 65 ° C. in the presence of 0.3 M sodium chloride. It is described that it has thermal stability and a specific activity of 100 to 150 U / mg.
  • Non-Patent Document 7 also discloses that the 45th proline of NAD (P) + GDH derived from Bacillus subtilis is alanine, the 46th asparagine is glutamic acid, and the 155th is NAD (P) H. Mutants in which phenylalanine was replaced with tyrosine, 170th glutamic acid with lysine, 227th valine with alanine, 230th tryptophan with phenylalanine, and 252nd glutamine with leucine were almost inactivated at 65 ° C. It has been described that it has unsatisfactory thermal stability and that resistance to organic solvents such as acetone is improved compared to the wild-type enzyme.
  • NAD (P) + GDH is a biofuel cell.
  • a biofuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of the negative electrode and the positive electrode can efficiently extract electrons from a fuel that cannot be used by a normal industrial catalyst such as glucose. It is attracting attention as a fuel cell.
  • NAD (P) + GDH is used as an important enzyme that first extracts electrons from glucose at the cathode.
  • Japanese Unexamined Patent Publication No. 2-86779 Japanese Laid-Open Patent Publication No. 4-258293 Japanese Unexamined Patent Publication No. 2003-310274 US Pat. No. 7,816,111 Japanese Unexamined Patent Publication No. 2004-071559 Japanese Unexamined Patent Application Publication No. 2010-219021
  • NAD (P) + GDH that has been used under relatively mild conditions such as glucose measurement test drugs in the past, but in recent years industrial conditions where heat and solvent conditions are more severe.
  • modified NAD (P) + GDH that can be stably used in a wide temperature range without being limited by the presence of an inorganic salt such as sodium chloride.
  • NAD (P) + GDH mutants have been created as described above, these mutant enzymes function stably in harsh environments exceeding 70 ° C in the absence of inorganic salts. However, it was unclear whether it could be used for industrial applications where conditions such as heat and solvent are more severe. Therefore, in order to make NAD (P) + GDH function in a wide thermal environment in the absence of an inorganic salt, further functional modification such as thermal stabilization is required.
  • Bacillus megaterium-derived NAD (P) + GDH or Bacillus as described in Patent Document 3, Non-Patent Document 6, and Non-Patent Document 7.
  • An amino acid substitution that replaces the 170th glutamic acid with lysine which is a known mutation that has been shown to improve thermal stability in the presence and absence of an inorganic salt of subtilis-derived NAD (P) + GDH, and the 252nd A mutant introduced with an amino acid substitution that replaces glutamine with leucine has very low residual activity after heat treatment at 70 ° C. in the absence of an inorganic salt, and is completely inactivated after heat treatment at 80 ° C. It has been found that conditions such as heat and solvent are not suitable for more demanding industrial applications.
  • the present invention provides NAD (P) + GDH that functions stably in a wide temperature range even in the absence of an inorganic salt, and can be used for industrial applications where conditions such as heat and / or solvent are more severe.
  • the purpose is to do.
  • NAD (P) + GDH that functions as an organic solvent such as acetone and has resistance to an organic solvent such as acetone by genetic engineering techniques.
  • a gene required for mass production of the modified NAD (P) + GDH, a recombinant vector containing the gene, a transformant obtained from the vector, and a modified NAD (P) + GDH using the transformant It aims at providing the manufacturing method of.
  • the present inventors changed the specific amino acid of NAD (P) + GDH derived from Bacillus subtilis to another amino acid, in the absence of sodium chloride, The present inventors have found that modified NAD (P) + GDH with improved thermostability and / or organic solvent resistance compared to conventional mutant enzymes can be produced.
  • a protein having a glucose dehydrogenase [NAD (P) + GDH] activity comprising nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a coenzyme, comprising the following amino acid sequence of (a) or (b):
  • the amino acid sequence of (a) is an amino acid sequence represented by SEQ ID NO: 1 in the Sequence Listing, wherein the following amino acid substitution (1) is made, and at least selected from the group consisting of (2) to (9) 2.
  • the protein according to item 1 above which is an amino acid sequence in which 1 amino acid substitution has been made.
  • the amino acid sequence of (a) is SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 in the sequence listing. 3.
  • the protein according to item 1 or 2 which is the amino acid sequence represented by any one of 39 and 41. 4).
  • the amino acid sequence of the protein of the preceding item 3 at the positions other than the 170th, 252nd, 31st, 64th, 111th, 159th, 179th, 217th, 218th and 246th amino acids, 1 or A protein having NAD (P) + GDH activity consisting of an amino acid sequence in which several amino acids are deleted, substituted or added. 5.
  • NAD (P) + GDH activity consisting of an amino acid sequence in which several amino acids are deleted, substituted or added. 5.
  • the amino acid sequence shown in SEQ ID NO: 79 in the Sequence Listing the residual activity after heating treatment at 70 ° C.
  • the residual activity after treatment with an organic solvent in the absence of an inorganic salt is higher in the amino acid sequence shown in SEQ ID NO: 79 of the sequence listing than a protein in which amino acid substitution of I165M + E170K + P194T + A197K + K204E + K206R + E222D + S237C has been made The protein described. 10.
  • a recombinant vector comprising the DNA according to item 11 or item 12. 14 A transformant obtained by the recombinant vector according to item 12 above. 15. 15. The transformant according to 14 above, wherein the host is Escherichia coli. 16.
  • NAD (P) + GDH To generate NAD (P) + GDH by culturing the transformant according to item 14 or the preceding 15 involves collecting the NAD (P) + GDH, production of modified NAD (P) + GDH Method. 17. 11. A glucose measurement test agent comprising the protein according to any one of 1 to 10 above. 18. 11. A glucose sensor comprising the protein according to any one of 1 to 10 above. 19. 11. A method for measuring glucose concentration using the protein according to any one of 1 to 10 above.
  • Modified NAD of the present invention (P) + GDH, in addition to amino acid substitutions that substitute 170th glutamic acid and 252 th glutamine Bacillus subtilis-derived NAD (P) + GDH with another amino acid, more specific amino acid
  • P Bacillus subtilis-derived NAD
  • P a substituted amino acid sequence
  • it functions stably in a wide temperature range while maintaining the high specific activity of NAD (P) + GDH in the absence of an inorganic salt, and the conventional NAD (P) + Significantly higher thermal stability and / or resistance to organic solvents compared to GDH.
  • FIG. 1 is a diagram on the N-terminal side of a diagram obtained by dividing a multiple alignment diagram including NAD (P) + GDH into two parts.
  • FIG. 2 is a diagram on the C-terminal side of the multiple alignment diagram including NAD (P) + GDH divided into two.
  • FIG. 3 is a diagram of one of the four types of created molecular phylogenetic trees.
  • FIG. 4 is a diagram of one of the four types of created molecular phylogenetic trees.
  • FIG. 5 is a diagram of one of the four types of created molecular phylogenetic trees.
  • FIG. 6 is a diagram of one of the four types of created molecular phylogenetic trees.
  • FIG. 1 is a diagram on the N-terminal side of a diagram obtained by dividing a multiple alignment diagram including NAD (P) + GDH into two parts.
  • FIG. 2 is a diagram on the C-terminal side of the multiple alignment diagram including NAD (P) + GDH
  • FIG. 7 is a diagram on the N-terminal side of a diagram obtained by dividing a multiple alignment diagram including a putative ancestral amino acid sequence and NAD (P) + GDH into three parts.
  • FIG. 8 is a diagram of a central portion between the N-terminus and the C-terminus of the multiple alignment diagram including the putative ancestral amino acid sequence and NAD (P) + GDH, divided into three parts.
  • FIG. 9 is a diagram on the C-terminal side of a diagram obtained by dividing a multiple alignment diagram including a putative ancestral amino acid sequence and NAD (P) + GDH into three parts.
  • glycine (Gly) is G
  • alanine (Ala) is A
  • valine (Val) is V
  • leucine (Leu) is L
  • isoleucine (Ile) is I
  • phenylalanine (Phe) is F
  • tyrosine (Tyr) is Y
  • Tryptophan (Trp) is W
  • serine (Ser) is S
  • threonine (Thr) is T
  • cysteine (Cys) is C
  • methionine (Met) is M
  • aspartic acid (Asp) is D
  • glutamic acid (Glu) is E
  • Asparagine (Asn) is N
  • glutamine (Gln) is Q
  • lysine (Lys) is K
  • arginine (Arg) is R
  • histidine (His) is H
  • proline (Pro) is P.
  • expressions such as “A159C” are amino acid substitution notations.
  • A159C means that the 159th amino acid A from the N-terminal side in a specific amino acid sequence is substituted with amino acid C.
  • expressions such as “Y217R + I218L” in this specification mean that amino acid substitutions of Y217R and I218L are simultaneously introduced into the amino acid sequence.
  • the modified NAD (P) + GDH of the present invention is a protein having the following amino acid sequence (a) and having NAD (P) + GDH activity.
  • the protein is heat stable above 70 ° C. in the absence of inorganic salts.
  • A In the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing, the 170th glutamic acid and the 252nd glutamine are substituted with other amino acids, and the 31st glutamine, the 64th glycine, the 111th lysine, 159
  • each amino acid it is preferable to substitute each amino acid by the following amino acid, for example.
  • the substitution of 252nd glutamine: leucine is preferred.
  • Glycine is an ancestral amino acid described later of the 31st glutamine.
  • (Iv) 64th glycine: substitution to alanine, methionine, leucine or cysteine is preferred, and substitution to alanine is more preferred.
  • Alanine is an ancestral amino acid described later of the 64th glycine.
  • V 111th lysine: substitution with arginine, leucine, glycine or glutamic acid is preferred, and substitution with arginine is more preferred.
  • Arginine is an ancestral amino acid described later of the 111st lysine.
  • Alanine at position 159 substitution with cysteine, glycine, threonine or serine is preferred, and substitution with cysteine is more preferred. Cysteine is an ancestral amino acid described later of the 159th alanine.
  • (Ix) 218th isoleucine substitution to leucine, tryptophan, tyrosine, methionine, proline or methionine is preferred, and substitution to leucine is more preferred.
  • Leucine is an ancestral amino acid described later of the 218th isoleucine.
  • (X) 246th alanine substitution to valine or isoleucine is preferable, and substitution to valine is more preferable.
  • Valine is an ancestral amino acid described later of the 246th alanine.
  • the modified NAD (P) + GDH containing the amino acid sequence functions stably in a wide temperature range while maintaining the high specific activity of NAD (P) + GDH in the absence of inorganic salts. Compared to NAD (P) + GDH, it exhibits significantly higher thermal stability and / or organic solvent resistance.
  • the amino acid sequence of (a) is at least selected from the group consisting of (2) to (9) in which the following amino acid substitution (1) is made in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing It is preferably an amino acid sequence in which 1 amino acid substitution has been made.
  • the amino acid sequence of (a) is the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, (1) E170K + Q252L + (5) A159C amino acid substitution, (1) E170K + Q252L + (5) A159C + (2) Q31G amino acid substitution, (1) E170K + Q252L + (5) A159C + (3) G64A amino acid substitution, (1) E170K + Q252L + (5) A159C + (4) K111R amino acid substitution, (1) E170K + Q252L + (5) A159C + (6) K179Y amino acid substitution, (1) ) E170K + Q252L + (5) A159C + (9) A246V amino acid substitution or (1) E170K + Q252L + (7) Y217R + (8) I218L amino acid substitution, (1) E170K + Q252L + (7) Y217 + (8) amino acid substitution of I218L + (2) Q31G, (1) E170K + Q252L + (7)
  • amino acid sequence (a) examples include, for example, SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, An amino acid sequence represented by any one of 31, 33, 35, 37, 39 and 41 can be mentioned.
  • the modified NAD (P) + GDH of the present invention includes a protein having NAD (P) + GDH activity, which includes the following amino acid sequence (b).
  • the protein is heat stable above 70 ° C. in the absence of inorganic salts.
  • the number of amino acid residues to be modified is preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 6. More preferably, there are several (1 to 2 or 3), most preferably 1.
  • the modified NAD (P) + GDH of the present invention has NAD (P) + GDH activity, including an amino acid sequence having homology to the amino acid sequence of (a), and is free of inorganic salts Contains proteins that are thermostable above 70 ° C. below.
  • the homology is, for example, preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
  • the term “homology” refers to BLAST PACKAGE [sgi32 bit edition, Version 2.0.12; available from the National Center for Biotechnology Information [NCBI]. FEMS Microbiol.Lett., Vol.174, 247-250, 1999). Examples of parameters include Gap insertion Cost value: 11 and Gap extension Cost value: 1.
  • NAD (P) + GDH is a glucose dehydrogenase that uses nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as a coenzyme.
  • NAD (P) + GDH is an enzyme that catalyzes the dehydrogenation reaction of ⁇ -D-glucose (glucose) in combination with the reaction of adding hydrogen to a coenzyme, and is an enzyme classified as EC 1.1.147. is there.
  • the activity of NAD (P) + GDH is measured using the following reagents under the following measurement conditions.
  • enzyme activity measurement reagent 100 mM Tris-HCl buffer pH 8.0 100 mM NAD (P) + aqueous solution 1M D-glucose aqueous solution
  • enzyme activity measurement reagent 17.5 mL of the above Tris-hydrochloric acid buffer solution, 0.5 mL of NAD (P) + aqueous solution, and 2 mL of glucose aqueous solution were mixed to enzyme activity Use as measurement reagent.
  • Enzyme activity measurement solution 20 mM potassium phosphate buffer (pH 8.0) is used as a solution for diluting the enzyme [NAD (P) + GDH] to a desired concentration (hereinafter also referred to as “enzyme diluent”).
  • an enzyme stock solution hereinafter also referred to as “enzyme stock solution” is diluted so that the following activity value is 5 to 15 U / mL to obtain an enzyme activity measurement solution.
  • 905 is the amount of the enzyme activity measuring reagent and the enzyme activity measuring solution
  • 6.22 is the molecular extinction coefficient of NAD + (cm 2 / micromol) under the measurement conditions
  • 5 is the enzyme activity measuring solution.
  • the liquid volume, 1.0 indicates the optical path length (cm) of the cell used for enzyme activity measurement.
  • the specific activity value is a value representing the activity of the enzyme as an activity value per protein weight.
  • the specific activity value of NAD (P) + GDH is measured using the following reagents under the following measurement conditions.
  • the enzyme stock solution is diluted with an enzyme diluent, and the activity is determined by the above activity measurement method.
  • the activity (U / mL) of the enzyme stock solution is determined, and the protein concentration (mg / ml) of the enzyme stock solution is determined. From these values, the specific activity is determined according to the following formula.
  • the specific activity (U / mg) of the modified NAD (P) + GDH of the present invention is preferably 500 U / mg-protein or more, more preferably 600 U / mg-protein or more, and 800 U / mg- More preferably, it is more than protein.
  • the modified NAD (P) + GDH of the present invention exhibits thermal stability at 70 ° C. or higher in the absence of an inorganic salt.
  • the inorganic salt sodium chloride, sodium hydrogen carbonate, sodium carbonate, sodium percarbonate, sodium phosphate, sodium sulfite, sodium sulfate, sodium thiosulfate, sodium hydrogen sulfite, sodium nitrite, sodium nitrate, sodium bromide Sodium iodide, sodium borate and the like, among which sodium chloride is preferable.
  • the thermal stability of modified NAD (P) + GDH in the absence of an inorganic salt is evaluated based on, for example, the residual activity rate measured by the following procedures (1) and (2).
  • the enzyme stock solution is diluted to a specific concentration with an enzyme diluent to obtain an enzyme activity measurement solution.
  • the protein concentration of the enzyme in the enzyme activity measurement solution is preferably 1 to 1000 ⁇ g / mL.
  • the enzyme dilution solution, the enzyme stock solution, and the enzyme activity measurement solution are all free from inorganic salts.
  • the enzyme activity measurement solution is heat-treated at an arbitrary temperature for a specific time under conditions not containing an inorganic salt, and the enzyme activity before and after the heat treatment is determined.
  • the heat treatment time is preferably 30 minutes to 1 hour.
  • the residual activity rate (%) after the heat treatment when the activity value before the heat treatment is 100 is determined.
  • the thermal stability in the absence of an inorganic salt is measured, for example, by the method described later in Examples.
  • the enzyme activity measurement reagent for measuring enzyme activity also does not contain sodium chloride.
  • Thermal stability at 70 ° C. or higher in the absence of inorganic salt means that the residual activity ratio (%) after heat treatment at 70 ° C. or higher is 20% or higher.
  • the residual activity of the modified NAD (P) + GDH of the present invention after heat treatment at 70 ° C. for 30 minutes is 20% or more, preferably 75% or more, and more preferably 80% or more. .
  • the residual activity of the modified NAD (P) + GDH of the present invention after heat treatment at 80 ° C. for 30 minutes is preferably 1% or more, preferably 20% or more, and 60% or more. More preferably.
  • the residual activity of the modified NAD (P) + GDH of the present invention after heat treatment at 84 ° C. for 30 minutes is preferably 1% or more, preferably 10% or more, and 30% or more. More preferably it is.
  • the residual activity of the modified NAD (P) + GDH of the present invention after heat treatment at 70 ° C. for 30 minutes is the protein having the amino acid substitution of I165M + E170K + P194T + A197K + K204E + K206R + E222D + S237C in the amino acid sequence shown in SEQ ID NO: 79 in the Sequence Listing. It is preferable to be higher than that.
  • amino acid sequence shown in SEQ ID NO: 79 in the sequence listing differs from the amino acid sequence shown in SEQ ID NO: 1 by 3 amino acids, but both are derived from the same Bacillus subtilis and are substantially the same amino acid sequence.
  • the protein in which amino acid substitution of I165M + E170K + P194T + A197K + K204E + K206R + E222D + S237C is made is a variant described in SEQ ID NO: 164 of US Pat. No. 7,816,111.
  • the modified NAD (P) + GDH of the present invention is NAD (P) + GDH (hereinafter “wild type NAD”) consisting of the amino acid sequence shown in SEQ ID NO: 1 before amino acid substitution (hereinafter also referred to as “before modification”).
  • wild type NAD consisting of the amino acid sequence shown in SEQ ID NO: 1 before amino acid substitution
  • the modified NAD (P) + GDH of the present invention includes an NAD comprising an amino acid sequence in which the 170th glutamic acid and the 252nd glutamine are substituted with other amino acids in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing. It is more preferable that the thermal stability in the absence of an inorganic salt and at 70 ° C. or higher is improved as compared with the (P) + GDH mutant.
  • the modified NAD (P) + GDH of the present invention is compared with a mutant of NAD (P) + GDH containing an amino acid sequence in which an amino acid substitution of E170K + Q252L is made in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing.
  • the thermal stability at 70 ° C. or higher is improved in the absence of an inorganic salt.
  • the modified NAD (P) + GDH of the present invention is NAD (P) + GDH (hereinafter “wild type NAD”) consisting of the amino acid sequence shown in SEQ ID NO: 1 before amino acid substitution (hereinafter also referred to as “before modification”).
  • wild type NAD consisting of the amino acid sequence shown in SEQ ID NO: 1 before amino acid substitution
  • the modified NAD (P) + GDH of the present invention has an amino acid substitution of I165M + E170K + P194T + A197K + K204E + K206R + E222D + S237C in the amino acid sequence shown in SEQ ID NO: 79 in the sequence listing in the residual activity after treatment with an organic solvent in the absence of an inorganic salt. It is preferable that it is higher than the protein.
  • the inorganic salt examples include sodium chloride, sodium hydrogen carbonate, sodium carbonate, sodium percarbonate, sodium phosphate, sodium sulfite, sodium sulfate, sodium thiosulfate, sodium hydrogen sulfite, sodium nitrite, sodium nitrate, sodium bromide, iodine Sodium chloride, sodium borate, and the like, among which sodium chloride is preferable.
  • organic solvent examples include ethylene glycol, 1,2-propanediol, ethanol, methanol, acetonitrile, acetone, 1,4-dioxane, etc. Among them, acetone is preferable.
  • the organic solvent resistance in the absence of the inorganic salt in the present invention is evaluated based on, for example, the residual activity rate measured by the following procedures (1) to (3).
  • the enzyme stock solution is diluted to a specific concentration with an enzyme diluent to obtain an enzyme activity measurement solution.
  • the enzyme dilution solution, the enzyme stock solution, and the enzyme activity measurement solution are all free from inorganic salts.
  • the protein concentration of the enzyme in the enzyme activity measurement solution is preferably 1 to 1000 ⁇ g / mL.
  • the enzyme activity measurement solution is put into an organic solvent and stirred, and then all the solvent is removed by heat drying.
  • the heat drying conditions vary depending on the type of organic solvent, but usually the temperature is preferably 20 to 80 ° C.
  • the time is preferably 5 minutes to 1 hour.
  • the enzyme after drying is resuspended with an enzyme diluent, and the enzyme activity before and after organic solvent / heat drying is determined.
  • the residual activity rate (%) after the organic solvent / heat drying is determined with the activity value before the organic solvent / heat drying as 100.
  • the resistance to an organic solvent in the absence of an inorganic salt is measured, for example, by the method described later in Examples. As described later in Examples, it is preferable that an enzyme activity measurement reagent for measuring enzyme activity also does not contain an inorganic salt.
  • the modified NAD (P) + GDH of the present invention comprises NAD (P) containing an amino acid sequence in which the 170th glutamic acid and the 252nd glutamine are substituted with other amino acids in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing. It is more preferable that the resistance to organic solvent in the absence of inorganic salt is improved as compared with a mutant of + GDH.
  • the modified NAD (P) + GDH of the present invention is compared with a mutant of NAD (P) + GDH containing an amino acid sequence in which the amino acid substitution of E170K + Q252L is made in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing.
  • a mutant of NAD (P) + GDH containing an amino acid sequence in which the amino acid substitution of E170K + Q252L is made in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing.
  • the modified NAD (P) + GDH of the present invention can be a fusion protein linked to a foreign protein or peptide.
  • the foreign protein or peptide means a protein or peptide exogenous to the modified NAD (P) + GDH of the present invention.
  • proteins or peptides used for protein purification eg, glutathione S-transferase, maltose-binding protein, thioredoxin, cellulose-binding domain, streptavidin-binding peptide, and histidine tag.
  • Position connecting the foreign protein or peptide with respect to modified NAD (P) + GDH of the present invention, to have a modified NAD (P) + GDH and the foreign protein or peptide and the respective function or activity of the present invention Can be appropriately selected.
  • the modified NAD (P) + GDH of the present invention is not a random mutagenesis method using a commonly used evolutionary engineering technique, but in addition to the following (1) consensus method based on multiple alignment diagrams, (2) An amino acid substitution determined by using an ancestral amino acid introduction method based on a phylogenetic technique is introduced into the amino acid sequence of wild type NAD (P) + GDH represented by SEQ ID NO: 1 in the sequence listing Can be obtained.
  • Consensus method based on a multiple alignment diagram The consensus method based on a multiple alignment diagram is originally used for the purpose of modifying the function of an antibody, and has been used for the purpose of improving the thermal stability of an enzyme. This is a site-specific mutagenesis method in a sequence or amino acid sequence (a method for site-specific determination of which mutation is to be introduced at which position on the sequence). See B. for details. Steipe, et al. , J .; Mol. Biol. 240, 188-192, 1994.
  • the candidate protein when the candidate protein is not active due to deletion of the amino acid sequence or the like, there is a situation where a specific locus of the amino acid sequence of the candidate protein is deleted and some amino acid is arranged in the amino acid sequence other than the candidate gene. Observed. If, for example, methionine (M) is abundantly arranged at amino acid residues other than the candidate protein at that locus, M is inserted into the deletion site. Similarly, if serine (S) is arranged in a large amount, S is inserted at the deletion site.
  • M methionine
  • S serine
  • Such a method for introducing a mutation by majority decision is called a consensus method.
  • Consensus methods can be used to modify or improve various performances of enzymes.
  • the consensus method is not necessarily a method for improving the thermal stability of NAD (P) + GDH in the absence of an inorganic salt when used alone.
  • the present inventors have combined the ancestral amino acid introduction method based on the following phylogenetic method, whereby a modified NAD (improved thermal stability in the absence of an inorganic salt) ( P) + GDH was found to be obtained.
  • An ancestral amino acid introduction method based on a phylogenetic method estimates an amino acid sequence of a common ancestor in a plurality of species for a specific enzyme, This method was developed for the purpose of inferring the function of the common ancestor enzyme by introducing part or all of the common ancestor amino acid sequence into the original enzyme as a mutation.
  • phylogenetic tree estimation programs such as TREE PUZZLE, MOLPHY and PHYLIP can be used.
  • an algorithm based on the maximum likelihood principle is known, and a computer program that realizes the algorithm can be used or obtained.
  • various phylogenetic tree estimation programs such as ModelTest, PHYML, PHYLIP, and TreeFinder can be used. They can be used to create a phylogenetic tree, but more easily, a phylogenetic tree that has already been published can also be used.
  • the maximum likelihood method is used for the estimation of the amino acid sequence of an ancestral enzyme (“Masato Nei“ Molecular Evolution Genetics ”,“ Fufukan ”,“ Masatoshi Nei, S. Kumar “Molecular Evolution and Molecular Phylogenetics”). It was.
  • the maximum likelihood method that can be used in the present invention is any ancestral amino acid at a specific position in the tree shape (mainly the root of the tree) based on the tree tree and amino acid substitution model determined in advance. This is a method of estimating the sequence and selecting the most likely sequence as the most promising ancestral amino sequence. Further, based on the maximum likelihood method, a program PAML for performing ancestor type estimation from a phylogenetic tree and multiple alignments of amino acid sequences can be used.
  • An ancestral amino acid can be determined for each site of multiple aligned amino acid residues using the obtained phylogenetic tree. In this way, an ancestral amino acid residue can be estimated for each residue of a multiple aligned sequence, and as a result, an ancestral amino acid sequence of the corresponding region can be estimated.
  • changing the species used to estimate the ancestral amino acid sequence may change the tree shape of the phylogenetic tree, resulting in different ancestral amino residues. It also depends on the amino acid sequence used for comparison.
  • amino acid residues at positions where such fluctuations are relatively small are targeted for modification.
  • Such amino acid residues are used to create a phylogenetic tree, such as changing the species used to create a phylogenetic tree, or using only part of the amino acid sequence information used to create a phylogenetic tree without changing the species. It can be determined by estimating the degree of dendritic change when the amino acid sequence information to be changed is selected, and selecting residues that have little influence on the dendritic shape.
  • the enzyme is modified by substituting at least one of the non-ancestral amino acid residues for the enzyme to be analyzed with the ancestral amino acid residue. be able to.
  • amino acid substitution determined by (1) consensus method based on multiple alignment diagram and (2) ancestral amino acid introduction method based on phylogenetic method is introduced into wild-type amino acid sequence
  • modified NAD (P) + GDH with significantly improved thermal stability and / or organic solvent resistance in the absence of inorganic salt as compared with conventional NAD (P) + GDH.
  • the specific ancestral amino acid of all living organisms that are said to be specific mutations different from those conventionally known, that is, hyperthermophilic bacteria Mutations can be effectively introduced into the amino acid sequence of wild type NAD (P) + GDH and the resulting thermal stability and / or organic in the absence of the modified NAD (P) + GDH inorganic salt It is considered that the solvent resistance is improved.
  • DNA encoding modified NAD (P) + GDH [DNA encoding modified NAD (P) + GDH]
  • the DNA encoding the modified NAD (P) + GDH of the present invention can be obtained by introducing a mutation so that the amino acid substitution is introduced into the wild-type NAD (P) + GDH DNA before modification. .
  • the wild-type NAD (P) + GDH DNA or the modified NAD (P) + GDH DNA can also be artificially synthesized by a total gene synthesis method. At that time, DNA in which the codon usage frequency in the DNA base sequence is optimized to the codon usage frequency of Escherichia coli described later can be artificially synthesized.
  • wild-type NAD (P) + GDH DNA is, for example, a known DNA having the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing, PCR is used from Bacillus subtilis NBRC3134 strain. Can be isolated by conventional methods.
  • a DNA site-specific mutagenesis method or the like widely available on the market and available to those skilled in the art can be used.
  • a specific method for converting bases in DNA for example, use of a commercially available kit (QuickChange Lightning Site-Directed Mutagenesis kit: manufactured by Stratagene, KOD-Plus-Mutageness kit: manufactured by Toyobo Co., Ltd.) and the like can be mentioned.
  • the base sequence of the DNA thus obtained can be confirmed using a DNA sequencer.
  • the obtained nucleotide sequence is analyzed by nucleotide sequence analysis software such as DNASIS (manufactured by Hitachi Software Engineering Co., Ltd.) and GENETYX (manufactured by GENETICS Co., Ltd.), whereby the coding region of NAD (P) + GDH gene in DNA Can be specified.
  • the modified NAD (P) of the present invention is then obtained by chemical synthesis, PCR using the cloned probe as a template, or hybridization using a DNA fragment having the base sequence as a probe. + A gene encoding GDH can be obtained.
  • a mutant of the gene encoding the modified NAD (P) + GDH of the present invention having a function equivalent to that before mutation can be synthesized by site-directed mutagenesis.
  • a known method such as the Kunkel method, the Gapped duplex method or the megaprimer PCR method or a method equivalent thereto should be employed. Can do.
  • the DNA of the present invention is a DNA encoding the modified NAD (P) + GDH of the present invention or the fusion protein described above.
  • Examples of the base sequence of the DNA encoding the modified NAD (P) + GDH of the present invention include, for example, SEQ ID NOS: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, Examples include the sequences represented by 26, 28, 30, 32, 34, 36, 38, 40 and 42.
  • the modified NAD (P) of the present invention is used.
  • + Prepare DNA in which DNA encoding GDH is linked to DNA encoding foreign protein or peptide.
  • the DNA may be a ligated DNA itself or a vector containing the DNA.
  • a method for linking a DNA encoding a foreign protein or peptide to a DNA encoding the modified NAD (P) + GDH of the present invention comprises a purified gene encoding the modified DNA D (P) + GDH of the present invention and A method in which a DNA encoding a foreign protein or peptide is cleaved with an appropriate restriction enzyme and ligated is employed.
  • the DNA encoding the modified NAD (P) + GDH of the present invention is subjected to mutation treatment to the DNA or a cell having the DNA, and from these DNA or cells, for example, SEQ ID NOs: 4, 6, and 8 in the Sequence Listing. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 and 42, which is stringent with DNA comprising the base sequence represented by at least one of DNA obtained by selecting DNA that hybridizes under conditions, and also DNA that encodes a polypeptide having GDH activity.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed, but non-specific hybrids are not formed. Although it is difficult to quantify this condition clearly, nucleic acids with high homology, for example, DNAs having homology of 70 to 90% or more hybridize, and nucleic acids with lower homology hybridize. The conditions etc. which do not soy are mentioned.
  • “under stringent conditions” means, for example, the following conditions. 6 containing 0.5% SDS, 5 ⁇ Denhartz [Denhartz's, 0.1% bovine serum albumin (BSA), 0.1% polyvinylpyrrolidone, 0.1% Ficoll 400] and 100 ⁇ g / ml salmon sperm DNA ⁇ SSC (1 ⁇ SSC: 0.15M NaCl, 0.015M sodium citrate, pH 7.0) refers to conditions for incubation at 50 ° C. to 65 ° C. for 4 hours to overnight.
  • BSA bovine serum albumin
  • Ficoll 400 0.1%
  • Hybridization can be performed under the stringent conditions described above.
  • a nylon membrane on which a DNA library or cDNA library encoding the modified NAD (P) + GDH of the present invention is immobilized is prepared, and 6 ⁇ SSC, 0.5% SDS, 5 ⁇ Denharz, 100 ⁇ g / ml Block the nylon membrane at 65 ° C. in a prehybridization solution containing salmon sperm DNA. Thereafter, each probe labeled with 32P is added and incubated overnight at 65 ° C.
  • This nylon membrane was placed in 6 ⁇ SSC for 10 minutes at room temperature, in 2 ⁇ SSC containing 0.1% SDS, for 10 minutes at room temperature, in 0.2 ⁇ SSC containing 0.1% SDS for 30 minutes at 45 ° C. After washing, autoradiography can be taken to detect DNA that specifically hybridizes with the probe. In addition, genes having various homologies can be obtained by changing conditions such as washing.
  • the DNA encoding the modified NAD (P) + GDH of the present invention includes DNA having homology to the DNA and encoding a polypeptide having NAD (P) + GDH activity.
  • the homology is preferably a gene having at least 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 98% or more.
  • the DNA encoding the modified NAD (P) + GDH of the present invention is preferably a DNA whose codon appearance frequency is optimized for the host, and more preferably a DNA whose codon usage is optimized for E. coli.
  • the total number of optimal codon usage for each codon is adopted as an index representing the frequency of codon appearance.
  • the optimal codon is defined as the codon having the highest appearance frequency among codons corresponding to the same amino acid.
  • the codon usage is not particularly limited as long as it is optimized for the host. Examples of codon usage of E. coli include the following.
  • F phenylalanine (ttt), L: leucine (ctg), I: isoleucine (att), M: methionine (atg), V: valine (gtg), Y: tyrosine (tat), stop codon (taa), H: Histidine (cat), Q: glutamine (cag), N: asparagine (aat), K: lysine (aaa), D: aspartic acid (gat), E: glutamic acid (gaa), S: serine (agc), P: Proline (ccg), T: threonine (acc), A: alanine (gcg), C: cysteine (tgc), W: tryptophan (tgg), R: arginine (cgg), G: glycine (ggc). *
  • a recombinant vector containing DNA encoding the modified NAD (P) + GDH of the present invention (hereinafter referred to as the recombinant vector of the present invention) encodes the modified NAD (P) + GDH of the present invention in the expression vector. It can be obtained by inserting DNA.
  • suitable expression vectors are those constructed for gene recombination from phages or plasmids that can autonomously grow in the host.
  • Examples of the phage include Lambda gt10 and Lambda gt11 when Escherichia coli described later is used as a host.
  • plasmids include, for example, pBR322, pUC18, pUC118, pUC19, pUC119, pTrc99A, pBluescript, and Super Cos I which is a cosmid when E. coli is used as a host.
  • RSF1010, pBBR122, pCN51 etc. which are wide host range vectors for Gram-negative bacteria are mentioned, for example.
  • Further examples include animal viruses such as retrovirus and vaccinia virus, and insect virus vectors such as baculovirus.
  • the host is not particularly limited as long as the recombinant vector is stable, can autonomously propagate and can express a trait of a foreign gene.
  • Escherichia genus such as Escherichia coli, Bacillus subtilis (Bacillus) bacteria belonging to the genus Bacillus such as Subtilis and Pseudomonas putida such as Pseudomonas, animal cells such as yeast and COS cells, insect cells such as Sf9, and whole plants belonging to the Brassicaceae and the like, plant organs (For example, leaves, petals, stems, roots, seeds, etc.), plant tissues (eg, epidermis, phloem, soft tissues, xylem, vascular bundles, etc.), plant cultured cells, and the like.
  • E. coli is preferable, and E. coli DH5 ⁇ and E. coli XL-1 Blue MR are more preferable.
  • the method of inserting the DNA of the present invention into a vector can be performed according to the above-described method of linking a gene encoding a foreign protein or peptide to the gene encoding the modified NAD (P) + GDH of the present invention.
  • the method for introducing the recombinant vector of the present invention into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. Examples thereof include a method using a competent cell by calcium ion treatment and an electroporation method.
  • the method for introducing the recombinant vector of the present invention into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • Examples thereof include an electroporation method (electroporation method), a spheroplast method, and a lithium acetate method.
  • the method for introducing the recombinant vector of the present invention into animal cells is not particularly limited as long as it is a method for introducing DNA into animal cells.
  • electroporation method, calcium phosphate method, lipofection method and the like can be mentioned.
  • the method for introducing the recombinant vector of the present invention into insect cells is not particularly limited as long as it is a method for introducing DNA into insect cells.
  • a method for introducing DNA into insect cells For example, calcium phosphate method, lipofection method, electroporation method and the like can be mentioned.
  • the method for introducing the recombinant vector of the present invention into a plant is not particularly limited as long as it is a method for introducing DNA into a plant.
  • electroporation method Agrobacterium method, particle gun method, PEG method and the like can be mentioned.
  • Examples of the method for confirming whether or not the recombinant vector of the present invention has been incorporated into the host include, for example, PCR method, Southern hybridization method, Northern hybridization method and the like.
  • the recombinant vector is separated and purified from the transformant.
  • the recombinant vector is separated and purified based on a lysate obtained by lysing the bacterium.
  • a method for lysis for example, treatment is performed with a lytic enzyme such as lysozyme, and a protease and other enzymes and a surfactant such as sodium lauryl sulfate (SLS) are used in combination as necessary.
  • a lytic enzyme such as lysozyme
  • a protease and other enzymes and a surfactant such as sodium lauryl sulfate (SLS) are used in combination as necessary.
  • SLS sodium lauryl sulfate
  • Separation and purification of DNA from the lysate can be performed by, for example, appropriately combining a deproteinization treatment by a phenol treatment and a protease treatment, a ribonuclease treatment, an alcohol precipitation treatment, and a commercially available kit.
  • the DNA can be cleaved according to a conventional method, for example, using a restriction enzyme treatment.
  • restriction enzymes include type II restriction enzymes that act on specific nucleotide sequences.
  • the DNA and the expression vector are bound using, for example, DNA ligase.
  • PCR is performed by designing primers specific to the DNA of the present invention using the separated and purified DNA as a template.
  • the amplification product obtained by PCR is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide or SYBR Green solution, etc. Confirm that it has been converted.
  • PCR can be performed using a primer previously labeled with a fluorescent dye or the like to detect an amplification product.
  • a method of binding an amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence, enzyme reaction, or the like may be employed.
  • the transformant of the present invention can be obtained by applying a marker to a recombinant vector and introducing the recombinant vector into a host. From the transformant, screening is performed using a recombinant vector marker and the expression of enzyme activity as an index to obtain a gene-donating microorganism holding a recombinant vector containing a gene encoding modified NAD (P) + GDH.
  • the base sequence of the gene encoding modified NAD (P) + GDH can be deciphered by a conventionally known method such as the dideoxy method.
  • the amino acid sequence of modified NAD (P) + GDH can be deduced from the base sequence determined by the method.
  • the culture form of the transformant may be selected in consideration of the nutritional physiological properties of the host, and is preferably a liquid culture. Industrially, aeration and agitation culture is advantageous.
  • the carbon source may be any carbon compound that can be assimilated, and examples thereof include glucose, sucrose, lactose, maltose, molasses, and pyruvic acid.
  • the nitrogen source may be any assimitable nitrogen compound, and examples thereof include peptone, meat extract, yeast extract, casein hydrolyzate, and soybean meal alkaline extract.
  • salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese and zinc, specific amino acids, specific vitamins and the like are used as necessary.
  • the culture temperature can be appropriately changed within the range in which the host grows and the host produces modified NAD (P) + GDH, but is preferably about 15 to 37 ° C.
  • the culture may be completed at an appropriate time in consideration of the time when the modified NAD (P) + GDH reaches the maximum yield, and the culture time is usually about 12 to 48 hours.
  • the pH of the medium can be appropriately changed within the range where the host grows and the host produces modified NAD (P) + GDH, but is preferably in the range of about pH 5.0 to 9.0.
  • a water-soluble fraction containing a modified NAD (P) + GDH can be obtained by solubilization by using a protease and other enzymes together with a surfactant such as sodium lauryl sulfate (SDS).
  • SDS sodium lauryl sulfate
  • the expressed modified NAD (P) + GDH can be secreted into the culture medium by selecting an appropriate expression vector and host.
  • the enzyme can be immediately purified from the water-soluble fraction. It can also be performed after concentrating the modified NAD (P) + GDH.
  • Concentration can be performed by, for example, vacuum concentration, membrane concentration, salting-out treatment, and fractional precipitation with a hydrophilic organic solvent (for example, methanol, ethanol and acetone). Heat treatment and isoelectric point treatment are also effective purification means for concentrating modified NAD (P) + GDH.
  • a hydrophilic organic solvent for example, methanol, ethanol and acetone.
  • Purification of the concentrate can be performed by appropriately combining methods such as gel filtration, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the above method is already known and can be carried out by referring to appropriate documents, magazines, textbooks and the like.
  • the purified enzyme thus obtained can be pulverized by, for example, freeze drying, vacuum drying and spray drying and distributed to the market.
  • Example 1 Determination of site of mutation introduction into NAD (P) + GDH (1-1) Acquisition of NAD (P) + GDH homologous amino acid sequence information NAD derived from Bacillus subtilis shown in SEQ ID NO: 1 in the sequence listing Using the amino acid sequence of P) + GDH, homology search was performed by Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and amino acid sequence information derived from various species was obtained. .
  • NAD (P) -dependent glucose 1-dehydrogenase (Seq01, YP_192407, Gluconobacter oxydans 621H), glucose 1-dehydrogenase putavive (Seq02, YP_002426623, Acidithiobacillus ferrooxidans ATCC 23270), glucose 1-dehydrogenase (Seq03, NP_393669, Thermoplasma acidophilum DSM 1728, probable glucose 1-dehydrogenase (Seq04, ZP_01092744, Blastopirilla maria a DSM 3645), glucose 1-dehydrogenase (Seq05, YP_001228184, Synechococcus sp.RCC307), 3-oxoacyl-reductase (Seq06, ZP_00995731, Janibacter sp.
  • amino acid sequence (Seq15) of NAD (P) + GDH derived from Bacillus subtilis of SEQ ID NO: 1 was added to these sequence information.
  • Seq ⁇ indicates the sequence number of the amino acid sequence shown in FIGS. 1 to 2 and the like described later, and the character string (for example, YP_192407) is the accession number of each amino acid sequence registered in the database. Point to. After that, the name of the species and the strain name are shown.
  • amino acid sequence represented by SEQ ID NO: 49 is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • amino acid sequence represented by SEQ ID NO: 50 is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • amino acid sequence represented by SEQ ID NO: 51 is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • amino acid sequence represented by SEQ ID NO: 52 is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • the amino acid sequence indicated as Tre1Anc is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • the amino acid sequence shown as Tre2Anc is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • the amino acid sequence shown as Tre3Anc is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • the amino acid sequence shown as Tre4Anc is a putative ancestral amino acid sequence at the root position of the phylogenetic tree in FIG.
  • NAD (P) + GDH derived from Bacillus megaterium + NAD (P) derived from Bacillus subtilis ) + GDH is a known mutation that has been shown to improve the thermal stability in the presence and absence of sodium chloride in the presence of sodium chloride, and was also used in the present invention with the putative ancestral amino acid.
  • Mutant 21 is a mutant combining the mutations described in Patent Document 1 and Patent Document 3, and was used as a comparative example in Examples.
  • the mutation of mutant 22 was a mutation described in Non-Patent Document 7 that showed effects on heat stability and organic solvent resistance, but was used as a reference example because the strain of the genus Bacillus used was different.
  • Mutant 23 is a mutation described in Non-Patent Document 7 that has an effect on thermal stability and organic solvent resistance, but was used as an example because the strain of the genus Bacillus used was different.
  • Variant 1 A159C + E170K + Q252L Mutant 2: Q31G + A159C + E170K + Q252L Mutant 3: G64A + A159C + E170K + Q252L Variant 4: K111R + A159C + E170K + Q252L Mutant 5: A159C + E170K + K179Y + Q252L Mutant 6: A159C + E170K + A246V + Q252L Mutant 7: E170K + Y217R + I218L + Q252L Variant 8: Q31G + E170K + Y217R + I218L + Q252L Mutant 9: G64 + AE170K + Y217R + I218L + Q252L Variant 10: K111R + E170K + Y217R + I218L + Q252L Mutant 11: E170K + K179Y + Y217R + I218L +
  • expressions such as “A159C” are amino acid substitution notations.
  • A159C means that the 159th amino acid A from the N-terminal side in a specific amino acid sequence is substituted with amino acid C.
  • expressions such as “Y217R + I218L” in the present specification mean that amino acid substitutions of Y217R and I218L are introduced simultaneously.
  • oligonucleotides having the nucleotide sequences represented by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58 in the sequence listing were used.
  • oligonucleotides having the base sequences shown by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 59 and SEQ ID NO: 60 were used. .
  • the oligonucleotides of the base sequences shown in SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 61 and SEQ ID NO: 62 were used. .
  • the oligonucleotides of the nucleotide sequences shown in SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 63 and SEQ ID NO: 64 were used. .
  • oligonucleotides having the base sequences shown by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 67 and SEQ ID NO: 68 were used. .
  • oligonucleotides having the nucleotide sequences represented by SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 69 and SEQ ID NO: 70 in the Sequence Listing were used.
  • oligonucleotides having the base sequences shown by SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 59 and SEQ ID NO: 60, SEQ ID NO: 69 and SEQ ID NO: 70 were used. .
  • oligonucleotides having the base sequences shown in SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 61 and SEQ ID NO: 62, SEQ ID NO: 69 and SEQ ID NO: 70 were used. .
  • oligonucleotides having the base sequences shown in SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 63 and SEQ ID NO: 64, SEQ ID NO: 69 and SEQ ID NO: 70 were used. .
  • oligonucleotides having the base sequences shown in SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 65 and SEQ ID NO: 66, SEQ ID NO: 69 and SEQ ID NO: 70 were used. .
  • oligonucleotides having the base sequences shown in SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 67 and SEQ ID NO: 68, SEQ ID NO: 69 and SEQ ID NO: 70 were used. .
  • the oligonucleotides of the nucleotide sequences shown in SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 69 and SEQ ID NO: 70 were used. .
  • the mutation 14 is represented by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 59 and SEQ ID NO: 60, SEQ ID NO: 69 and SEQ ID NO: 70 in the sequence listing.
  • An oligonucleotide having a base sequence was used.
  • the mutation 15 is represented by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 61 and SEQ ID NO: 62, SEQ ID NO: 69 and SEQ ID NO: 70 in the Sequence Listing.
  • An oligonucleotide having a base sequence was used.
  • the mutation 16 is represented by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 63 and SEQ ID NO: 64, SEQ ID NO: 69 and SEQ ID NO: 70 in the sequence listing.
  • An oligonucleotide having a base sequence was used.
  • the mutation 17 is represented by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 65 and SEQ ID NO: 66, SEQ ID NO: 69 and SEQ ID NO: 70 in the Sequence Listing.
  • An oligonucleotide having a base sequence was used.
  • the mutation 18 is represented by SEQ ID NO: 53 and SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 67 and SEQ ID NO: 68, SEQ ID NO: 69 and SEQ ID NO: 70 in the Sequence Listing.
  • An oligonucleotide having a base sequence was used.
  • the oligonucleotide of the base sequence shown by 69 and SEQ ID NO: 70 was used.
  • the oligonucleotide of the base sequence shown by 69 and SEQ ID NO: 70 was used.
  • oligonucleotides having the nucleotide sequences represented by SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 71 and SEQ ID NO: 72 in the sequence listing were used.
  • oligonucleotides having the nucleotide sequences represented by SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58 in the sequence listing were used.
  • the mutation 23 is represented by SEQ ID NO: 55 and SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58, SEQ ID NO: 73 and SEQ ID NO: 74, SEQ ID NO: 75 and SEQ ID NO: 76, SEQ ID NO: 77 and SEQ ID NO: 78.
  • An oligonucleotide having a base sequence was used.
  • the wild type NAD (P) + GDH DNA of SEQ ID NO: 2 isolated from Bacillus subtilis NBRC3134 strain by a conventional method using PCR was used as pET-21c.
  • the cloned vector was used.
  • this vector is also referred to as pETGDH.
  • site-directed mutagenesis was performed by PCR using QuickChange Lightning Site-Directed Mutagenesis kit (manufactured by Stratagene) using pETGDH as a template. The method was based on the protocol attached to the kit.
  • Escherichia coli DH5 ⁇ was transformed with the vector after site-directed mutagenesis experiment and cloned, and it was confirmed by sequencing whether the desired mutation could be introduced on the DNA of NAD (P) + GDH.
  • the obtained mutant vectors were pETGDH1, pETGDH2, pETGDH3, pETGDDH4, pETGDH5, pETGDH6, pETGDH7, pETGDH8, pETGDH9, pETGDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, pETGDDH11, They were named pETGDH17, pETGDH18, pETGDH19, pETGDH20, pETGDDH21, pETGDDH22 and pETGDH23.
  • the DNA sequences of NAD (P) + GDH cloned into pETGDH1 to pETGDH23 are, in order, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, Sequence number 18, Sequence number 20, Sequence number 22, Sequence number 24, Sequence number 26, Sequence number 28, Sequence number 30, Sequence number 32, Sequence number 34, Sequence number 36, Sequence number 38, Sequence number 40, Sequence number 42, SEQ ID NO: 44 and SEQ ID NO: 46, SEQ ID NO: 48.
  • the DNA sequence of wild type NAD (P) + GDH cloned in pETGDH was as shown in SEQ ID NO: 2 in the sequence listing.
  • amino acid sequences encoded by the DNA sequences of NAD (P) + GDH cloned in pETGDDH1 to pETGDH23 are, in order, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, Sequence number 13, Sequence number 15, Sequence number 17, Sequence number 19, Sequence number 21, Sequence number 23, Sequence number 25, Sequence number 27, Sequence number 29, Sequence number 31, Sequence number 33, Sequence number 35, Sequence number 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, and SEQ ID NO: 47.
  • the amino acid sequence encoded by the DNA sequence of wild type NAD (P) + GDH cloned into pETGDH was as shown in SEQ ID NO: 1 in the sequence listing.
  • Table 1 shows the homology (%) in the nucleotide sequence and amino acid sequence of Mutants 1 to 23 and Comparative Example 1, and the homology (%) in the nucleotide sequence with the wild type.
  • 1 mL of the precultured culture solution was inoculated into 100 mL of a Terific culture solution containing 100 ⁇ g / mL ampicillin and 0.5 mM IPTG (isopropyl- ⁇ -thiogalactopyranoside), and cultured with shaking at 30 ° C. After completion of the culture, the culture solution was centrifuged (8000 rpm, 10 minutes) to collect E. coli expressing each mutant enzyme. The recovered E. coli was stored at ⁇ 80 ° C. until used in the following purification step.
  • the collected fraction having NAD (P) + GDH activity was dialyzed against 20 mM phosphate buffer (pH 8) and concentrated with an ultrafiltration membrane. It was confirmed by SDS-PAGE that the concentrated NAD (P) + GDH active fraction was purified to a single protein.
  • the NAD (P) + GDH mutant enzyme solution that has been dialyzed and concentrated with a 20 mM phosphate buffer (pH 8) is hereinafter also referred to as a purified enzyme.
  • Example 3 Performance Evaluation of NAD (P) + GDH Mutant Enzyme The performance evaluation of the mutant enzyme was performed with respect to the following “specific activity”, “thermal stability”, and “acetone / heat drying resistance”. . All items were carried out under the condition that none of the enzyme stock solution, enzyme dilution solution, and enzyme activity measurement solution contained sodium chloride having a stabilizing effect of NAD (P) + GDH. The experimental results are summarized in Table 2.
  • the purified enzyme was diluted with an enzyme diluent: 20 mM phosphate buffer (pH 8) so that the protein concentration became 30 ⁇ g / mL.
  • the diluted enzyme solution was dispensed by 0.5 mL into a 1.5 mL plastic tube.
  • the plastic tube was put into a water bath adjusted to a predetermined temperature and heat-treated for 30 minutes. When the heat treatment was completed, the plastic tube was put into ice water and rapidly cooled.
  • the activity before and after the heat treatment was determined by the method as described above.
  • the purified enzyme was diluted with an enzyme diluent: 20 mM phosphate buffer (pH 8) to a protein concentration of 500 ⁇ g / mL. 10 ⁇ L of the diluted enzyme solution was dispensed into a 1.5 mL plastic tube, 90 ⁇ L of acetone was added thereto, and the mixture was stirred well at room temperature for 1 minute.
  • the plastic tube was set in a centrifugal evaporator CVE-3100 (manufactured by EYELA) set at 50 ° C., and all solvents were removed by heat drying for 30 minutes.
  • the enzyme powder after drying was resuspended in 20 mM phosphate buffer (pH 8), and the activity before and after the acetone / heat drying treatment was determined by the method as described above.
  • mutants 1 to 21 and mutant 23 into which an ancestral mutation was introduced exhibited a slight decrease in specific activity compared to mutant 22 (E170K + Q252L). However, it was not at a level that caused practical problems.
  • mutant 1 (A159C + E170K + Q252L), mutant 2 (Q31G + A159C + E170K + Q252L), mutant 3 (G64A + A159C + E170K + Q252L), mutant 4 (K111R + A159C + E170K + E170K + E170K + E170K + E170K + E170K + Q25L)
  • Mutant 6 (A159C + E170K + A246V + Q252L), Mutant 7 (E170K + Y217R + I218L + Q252L), Mutant 8 (Q31G + E170K + Y217R + I218L + Q252L), Mutant 9 (G64 + AE170K + Y217R + E218L + L225L) Body 11 (E170K + K179Y + Y217R + I218L + Q252L)
  • mutant 22 E170K + Q252L
  • mutant 21 E133K + E170K + Q252L
  • 23 P45A + N46E + F155Y + E170K + V227A + W230F + Q252L
  • all the ancestral mutants of mutant 1 to mutant 20 had a residual activity of 80% or more, and many of them were not inactivated at all.
  • the mutant 21 and the mutant 23 of the comparative example were less than 4 times resistant to the mutant 22, whereas the mutant 1 into which the ancestral mutation was introduced. Therefore, it was shown that the mutant 20 has 4 times higher resistance. It was shown that the mutant 13 to the mutant 20 has a resistance 7 times or more higher.
  • the obtained modified NAD (P) + GDH functions stably after heat treatment at 70 ° C. or higher while maintaining the high specific activity of NAD (P) + GDH in the absence of inorganic salts. It has also been found that it can have resistance to organic solvents such as acetone.
  • mutants 1 to 20 have significantly superior thermal stability, acetone resistance, and specific activity, and also have excellent acetone resistance. It was. From these results, the mutants 1 to 20 of the present invention, as shown in Table 1, have high heat resistance and organic solvent, although the base sequence homology with Comparative Example 1 and the wild type is as high as 95% or more. It was found that it was remarkably superior in resistance to
  • NAD (P) + GDH that is not limited to the presence of an inorganic salt such as sodium chloride and can be stably used in a wide temperature range. More specifically, in order to withstand widespread use in industrial applications, in the absence of inorganic salt, while maintaining the high specific activity of NAD (P) + GDH derived from Bacillus subtilis A mutant enzyme that functions stably after heat treatment and has resistance to an organic solvent such as acetone is provided by genetic engineering techniques, etc., and a gene required for mass production thereof, a recombinant vector containing the gene, Provided are a transformant obtained from a vector and a method for producing modified NAD (P) + GDH using the transformant.
  • an inorganic salt such as sodium chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、塩化ナトリウム非存在下における熱安定性および/または有機溶媒耐性を向上させたニコチンアミドアデニンジヌクレオチドまたはニコチンアミドアデニンジヌクレオチドリン酸を補酵素とするグルコースデヒドロゲナーゼ[NAD(P)GDH]に関する。

Description

改変型グルコースデヒドロゲナーゼ
 本発明は、ニコチンアミドアデニンジヌクレオチドまたはニコチンアミドアデニンジヌクレオチドリン酸を補酵素とするグルコースデヒドロゲナーゼ[NAD(P)GDH]の特定のアミノ酸を他のアミノ酸に変更することにより、熱安定性および/または有機溶媒耐性を向上させた改変型NAD(P)GDH、該酵素のアミノ酸配列をコードする遺伝子、該遺伝子を含む組換えベクター、該ベクターにより得られる形質転換体、該形質転換体を用いる改変型NAD(P)GDHの製造方法に関する。
 特定の基質に対して特異的に反応する酵素を用いた臨床検査薬は様々な体内分子の測定に利用されており、その代表的なものの一つとして、グルコース測定検査薬が挙げられる。
 グルコース測定検査薬は、グルコース定量用酵素、例えばグルコースデヒドロゲナーゼ(GDH)がグルコースの脱水素反応を触媒する性質を利用しており、これにより分析試料中のグルコース濃度を定量することができる。
 GDHとしては、例えばバチルス・メガテリウム(Bacillus megaterium)由来NAD(P)GDHも利用することができるが、過剰の無機塩が存在しない場合は極めて熱安定性が低いといった課題がある。
 そのため、バチルス・メガテリウム由来NAD(P)GDHにおける特定のアミノ酸を他のアミノ酸に置換した変異体を作製することにより、無機塩非存在下における熱安定性、pH安定性または比活性を向上させる試みがなされている(例えば、特許文献1~3および非特許文献1~2)。
 特許文献3には、バチルス・メガテリウム由来NAD(P)GDHの170番目のグルタミン酸をリジンに、252番目のグルタミンをロイシンに置換した変異体は、無機塩の非存在下において66℃、8時間の処理でも約60%の相対活性を保持していることが記載されている。
 上記のバチルス・メガテリウムと同じバチルス属に分類される、バチルス・サブチリス(Bacillus subtilis)由来NAD(P)GDHは酵素が単離されて遺伝子も既に特定されており(例えば、非特許文献3~4)、該酵素もグルコース測定検査薬用途に利用することができる。
 前記バチルス・サブチリス由来NAD(P)GDHは、バチルス・メガテリウム由来NAD(P)GDHと85%程度の相同性を示し(例えば非特許文献5)、高濃度の塩化ナトリウム存在下で900U/mg以上の高い比活性を示す酵素である。
 しかしながら、バチルス・メガテリウム由来NAD(P)GDHと同様に無機塩非存在下における熱安定性などは十分でなかった。そのため、バチルス・サブチリス由来NAD(P)GDHについても、特定のアミノ酸を他のアミノ酸に置換した変異体を作製することにより、無機塩非存在下における熱安定性、pH安定性または比活性を向上させる試みがなされている。
 一方、最近のGDHの新しい用途として、NAD(P)Hの再生産が挙げられる。NAD(P)Hを消費してNAD(P)が複生するような反応系にグルコースを触媒するNAD(P)GDHの反応を共役させると、高価なNAD(P)Hを再生産できる場合があるが、この際にもNAD(P)GDHの熱安定性などが課題になっていた。
 特許文献4には、NAD(P)Hの再生産の用途において、バチルス・サブチリス由来NAD(P)GDHの165番目のイソロイシン、194番目のプロリンおよび204番目のリジンのうち、少なくとも1アミノ酸を別のアミノ酸に置換し、更に他のアミノ酸にも置換を施した変異体は、野生型酵素に比べて比活性が数倍向上し、50℃で20分間の熱処理で残存活性が80%以上となることが記載されている。
 非特許文献6には、同じくNAD(P)Hの再生産の用途において、バチルス・サブチリス由来NAD(P)GDHの45番目のプロリンをアラニンに、155番目のフェニルアラニンをチロシンに、170番目のグルタミン酸をアルギニンに、227番目のバリンをアラニンに、252番目のグルタミンをロイシンに置換した変異体およびその他の変異体は、0.3Mの塩化ナトリウムの共存下、65℃においてほとんど失活が観察されない熱安定性を有することと、100~150U/mgの比活性を有することが記載されている。
 非特許文献7には、同じくNAD(P)Hの再生産の用途において、バチルス・サブチリス由来NAD(P)GDHの45番目のプロリンをアラニンに、46番目のアスパラギンをグルタミン酸に、155番目のフェニルアラニンをチロシンに、170番目のグルタミン酸をリジンに、227番目のバリンをアラニンに、230番目のトリプトファンをフェニルアラニンに、252番目のグルタミンをロイシンに置換した変異体は、65℃においてほとんど失活が観察されない熱安定性を有することと、野生型酵素に比べてアセトンなどの有機溶媒に対する耐性が向上することが記載されている。
 さらに、NAD(P)GDHの別の新しい用途として、バイオ燃料電池が挙げられる。負極又は正極の少なくとも一方の電極上に触媒として酸化還元酵素を固定したバイオ燃料電池は、例えばグルコースのように通常の工業触媒では利用できない燃料から効率よく電子を取り出すことができるため、次世代の燃料電池として注目されている。例えば特許文献5または特許文献6に記載されるように、陰極において、グルコースからはじめに電子を引き抜く重要な酵素としてNAD(P)GDHが利用されている。
日本国特開平2-86779号公報 日本国特開平4-258293号公報 日本国特開2003-310274号公報 米国特許第7,816,111号明細書 日本国特開2004-071559号公報 日本国特開2010-219021号公報
Y.Makino et al. Stability-increasing Mutants of Glucose Dehydrogenase from Bacillus megaterium IWG3. J Biol Chem.1989.264(11).p6381-6385. S.H.Baik et al. Significantly enhanced stability of Glucose Dehydrogenase by directed evolution. Appl Microbiol Biotechnol.2003.61.p329-335. Ramaley et al. Glycerol protection and purification of Bacillus subtilis glucose dehydrogenase.J Biol Chem.1983.258(20).p12558-12565. Lampel et al. Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J Bacteriol. 1986.166(1).p238-243. Fortnagel et al. Sequence homologies of glucose-dehydrogenases of Bacillus megaterium and Bacillus subtilis. J Theor Biol.1986.120(4).p489-497. Eduardo et al. Development of a Thermostable Glucose Dehydrogenase by a Structure-Guided Consensus Concept. ChemBioChem.2007.8.p2295-2301. Eduardo et al. Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Engineering,Design&Selection.2008.21(11)p673-680.
 上記したように、従来はグルコース測定検査薬用途のような比較的温和な条件で利用されてきたNAD(P)GDHであるが、近年では熱および溶媒などの条件がより厳しい工業用途での利用が図られてきており、塩化ナトリウムのような無機塩の存在に制限されず、幅広い温度域で安定して利用できる改変型NAD(P)GDHが望まれている。
 しかしながら、上記のように様々なNAD(P)GDHの変異体が作出されてきているものの、これらの変異体酵素が無機塩非存在下で、70℃を超える過酷な環境においても安定に機能し、熱および溶媒などの条件がより厳しい工業用途に用いることができるかは不明であった。したがって、NAD(P)GDHを無機塩非存在下で幅広い熱環境下で機能させるには、更なる熱安定化などの機能改変が必要であった。
 さらに、本発明者らは、実施例においても後述するように、特許文献3、非特許文献6、非特許文献7に記載されている通り、バチルス・メガテリウム由来NAD(P)GDHまたはバチルス・サブチリス由来NAD(P)GDHの無機塩存在下、非存在下における熱安定性を向上させることが示されている公知の変異である170番目のグルタミン酸をリジンに置換するアミノ酸置換および252番目のグルタミンをロイシンに置換するアミノ酸置換を導入した変異体は、無機塩非存在下で、70℃の熱処理後における残存活性が非常に低く、80℃の熱処理後においては完全に失活することから、熱および溶媒などの条件がより厳しい工業用途には適していないことを見出した。
 したがって、本発明は、無機塩非存在下においても、幅広い温度域で安定して機能し、熱および/または溶媒などの条件がより厳しい工業用途に用いることのできるNAD(P)GDHを提供することを目的とする。
 より具体的には、工業用途での広範な利用にも耐えうるよう、無機塩非存在下において、NAD(P)GDHの高い比活性を維持したまま、70℃以上の熱処理後も安定して機能し、アセトンのような有機溶媒に対する耐性も持ち合わせる改変型NAD(P)GDHを遺伝子工学的手法等により提供することを目的とする。
 また、該改変型NAD(P)GDHの大量生産に必要な遺伝子、該遺伝子を含む組換えベクター、該ベクターにより得られる形質転換体、該形質転換体を用いる改変型NAD(P)GDHの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、バチルス・サブチリス由来NAD(P)GDHの特定のアミノ酸を他のアミノ酸に変更することにより、塩化ナトリウム非存在下において、熱安定性および/または有機溶媒耐性を従来の変異体酵素に比べて向上させた改変型NAD(P)GDHを生産できることを見出し、本発明に達した。
 すなわち、本発明の要旨は以下である。
1.以下の(a)または(b)のアミノ酸配列を含む、ニコチンアミドアデニンジヌクレオチドまたはニコチンアミドアデニンジヌクレオチドリン酸を補酵素とするグルコースデヒドロゲナーゼ[NAD(P)GDH]活性を有するタンパク質。
(a)配列表の配列番号1に示されるアミノ酸配列において、170番目のグルタミン酸および252番目のグルタミンが他のアミノ酸に置換され、さらに31番目のグルタミン、64番目のグリシン、111番目のリジン、159番目のアラニン、179番目のリジン、217番目のチロシン、218番目のイソロイシンおよび246番目のアラニンからなる群より選択される少なくとも1以上のアミノ酸が他のアミノ酸に置換されたアミノ酸配列
(b)前記(a)のアミノ酸配列において、前記170番目、252番目、31番目、64番目、111番目、159番目、179番目、217番目、218番目および246番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列
2.前記(a)のアミノ酸配列が、配列表の配列番号1に示されるアミノ酸配列において、以下の(1)のアミノ酸置換がなされ、且つ、(2)~(9)からなる群より選択される少なくとも1のアミノ酸置換がなされたアミノ酸配列である、前項1に記載のタンパク質。
(1)E170K+Q252L
(2)Q31G
(3)G64A
(4)K111R
(5)A159C
(6)K179Y
(7)Y217R
(8)I218L
(9)A246V
3.前記(a)のアミノ酸配列が、配列表の配列番号3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39および41のいずれか1で示されるアミノ酸配列である前項1または2に記載のタンパク質。
4.前項3に記載のタンパク質のアミノ酸配列において、前記170番目、252番目、31番目、64番目、111番目、159番目、179番目、217番目、218番目および246番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなる、NAD(P)GDH活性を有するタンパク質。
5.配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質に比べて、無機塩の非存在下における70℃、30分の加熱処理後の残存活性が高い前項1~4のいずれか1に記載のタンパク質。
6.無機塩の非存在下における70℃、30分の加熱処理後の残存活性が20%以上である前項1~5のいずれか1に記載のタンパク質。
7.無機塩の非存在下における80℃、30分の加熱処理後の残存活性が1%以上である前項1~6のいずれか1に記載のタンパク質。
8.無機塩の非存在下における84℃、30分の加熱処理後の残存活性が1%以上である前項1~7のいずれか1に記載のタンパク質。
9.無機塩の非存在下における有機溶媒処理後の残存活性が、配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質に比べて高い前項1~8のいずれか1に記載のタンパク質。
10.無機塩の非存在下における有機溶媒処理後の残存活性が、配列表の配列番号1に示されるアミノ酸配列からなるタンパク質の該処理後の該残存活性に比べて高い前項1~9のいずれか1に記載のタンパク質。
11.前項1~10のいずれか1に記載のタンパク質をコードするDNA。
12.DNAの塩基配列におけるコドン利用頻度を大腸菌のコドン利用頻度に最適化した前項11に記載のDNA。
13.前項11または前項12に記載のDNAを含む、組換えベクター。
14.前項12に記載の組換えベクターにより得られる形質転換体。
15.宿主が大腸菌である前項14に記載の形質転換体。
16.前項14または前項15に記載の形質転換体を培養することによりNAD(P)GDHを生成させ、該NAD(P)GDHを採取することを含む、改変型NAD(P)GDHの製造方法。
17.前項1~10のいずれか1に記載のタンパク質を含むグルコース測定検査薬。
18.前項1~10のいずれか1に記載のタンパク質を含むグルコースセンサ。
19.前項1~10のいずれか1に記載のタンパク質を用いるグルコース濃度の測定方法。
 本発明の改変型NAD(P)GDHは、バチルス・サブチリス由来NAD(P)GDHの170番目のグルタミン酸および252番目のグルタミンを他のアミノ酸に置換するアミノ酸置換に加えて、さらに特定のアミノ酸置換がなされたアミノ酸配列を含むことにより、無機塩の非存在下において、NAD(P)GDHの高い比活性を維持したまま、幅広い温度域で安定して機能し、従来のNAD(P)GDHに比べて、顕著に高い熱安定性および/または有機溶媒耐性を示す。
図1は、NAD(P)GDHを含むマルチプルアライメント図を二分割した図のうち、N末端側の図である。 図2は、NAD(P)GDHを含むマルチプルアライメント図を二分割した図のうち、C末端側の図である。 図3は、作成した4種類の分子系統樹のうちの1つの図である。 図4は、作成した4種類の分子系統樹のうちの1つの図である。 図5は、作成した4種類の分子系統樹のうちの1つの図である。 図6は、作成した4種類の分子系統樹のうちの1つの図である。 図7は、推定祖先型アミノ酸配列とNAD(P)GDHを含むマルチプルアライメント図を三分割した図のうち、N末端側の図である。 図8は、推定祖先型アミノ酸配列とNAD(P)GDHを含むマルチプルアライメント図を三分割した図のうち、N末端およびC末端の間の中央部分の図である。 図9は、推定祖先型アミノ酸配列とNAD(P)GDHを含むマルチプルアライメント図を三分割した図のうち、C末端側の図である。
 以下、本発明を詳細に説明する。
 配列表を除いた本明細書におけるアミノ配列中の20種類のアミノ酸残基は、一文字略記で表現している。すなわち、グリシン(Gly)はG、アラニン(Ala)はA、バリン(Val)はV、ロイシン(Leu)はL、イソロイシン(Ile)はI、フェニルアラニン(Phe)はF、チロシン(Tyr)はY、トリプトファン(Trp)はW、セリン(Ser)はS、スレオニン(Thr)はT、システイン(Cys)はC、メチオニン(Met)はM、アスパラギン酸(Asp)はD、グルタミン酸(Glu)はE、アスパラギン(Asn)はN、グルタミン(Gln)はQ、リジン(Lys)はK、アルギニン(Arg)はR、ヒスチジン(His)はH、プロリン(Pro)はPである。
 本明細書における「A159C」等の表現は、アミノ酸置換の表記法である。例えば「A159C」とは、ある特定のアミノ酸配列におけるN末端側から159番目のアミノ酸Aを、アミノ酸Cに置換することを意味する。
 また、本明細書における「Y217R+I218L」等の表現は、Y217RおよびI218Lのアミノ酸置換をアミノ酸配列に同時に導入していることを意味する。
 本発明の改変型NAD(P)GDHは、以下の(a)のアミノ酸配列を含む、NAD(P)GDH活性を有するタンパク質である。該タンパク質は、無機塩の非存在下において70℃以上で熱安定性である。
(a)配列表の配列番号1に示されるアミノ酸配列において、170番目のグルタミン酸および252番目のグルタミンが他のアミノ酸に置換され、さらに31番目のグルタミン、64番目のグリシン、111番目のリジン、159番目のアラニン、179番目のリジン、217番目のチロシン、218番目のイソロイシンおよび246番目のアラニンからなる群より選択される少なくとも1以上のアミノ酸が他のアミノ酸に置換されたアミノ酸配列。
 前記他のアミノ酸としては、例えば、各アミノ酸を下記のアミノ酸に置換することが好ましい。
(i)170番目のグルタミン酸:リジン、アルギニンまたはイソロイシンへの置換が好ましく、リジンへの置換がより好ましい。
(ii)252番目のグルタミン:ロイシンへの置換が好ましい。
(iii)31番目のグルタミン:グリシンまたはアラニンへの置換が好ましく、グリシンへの置換がより好ましい。グリシンは、31番目のグルタミンの後述する祖先型アミノ酸である。
(iv)64番目のグリシン:アラニン、メチオニン、ロイシンまたはシステインへの置換が好ましく、アラニンへの置換がより好ましい。アラニンは、64番目のグリシンの後述する祖先型アミノ酸である。
(v)111番目のリジン:アルギニン、ロイシン、グリシンまたはグルタミン酸への置換が好ましく、アルギニンへの置換がより好ましい。アルギニンは、111番目のリジンの後述する祖先型アミノ酸である。
(vi)159番目のアラニン:システイン、グリシン、スレオニンまたはセリンへの置換が好ましく、システインへの置換がより好ましい。システインは、159番目のアラニンの後述する祖先型アミノ酸である。
(vii)179番目のリジン:チロシン、アルギニン、ヒスチジン、ロイシン、グルタミン、アスパラギン酸またはアラニンへの置換が好ましく、チロシンへの置換がより好ましい。チロシンは、179番目のリジンの後述する祖先型アミノ酸である。
(viii)217番目のチロシン:アルギニン、リシンまたはヒスチジンへの置換が好ましく、アルギニンへの置換がより好ましい。アルギニンは217番目のチロシンの後述する祖先型アミノ酸である。
(ix)218番目のイソロイシン:ロイシン、トリプトファン、チロシン、メチオニン、プロリンまたはメチオニンへの置換が好ましく、ロイシンへの置換がより好ましい。ロイシンは、218番目のイソロイシンの後述する祖先型アミノ酸である。
(x)246番目のアラニン:バリンまたはイソロイシンへの置換が好ましく、バリンへの置換がより好ましい。バリンは、246番目のアラニンの後述する祖先型アミノ酸である。
 下記(1)170番目のグルタミン酸および252番目のグルタミンを他のアミノ酸に置換するアミノ酸置換に加えて、さらに下記(2)~(9)からなる群より選択される少なくとも1以上のアミノ酸置換がなされたアミノ酸配列を含む改変型NAD(P)GDHは、無機塩の非存在下において、NAD(P)GDHの高い比活性を維持したまま、幅広い温度域で安定して機能し、従来のNAD(P)GDHに比べて、顕著に高い熱安定性および/または有機溶媒耐性を示す。
 前記(a)のアミノ酸配列は、配列表の配列番号1に示されるアミノ酸配列において、以下の(1)のアミノ酸置換がなされ、且つ、(2)~(9)からなる群より選択される少なくとも1のアミノ酸置換がなされたアミノ酸配列であることが好ましい。
(1)E170K+Q252L
(2)Q31G
(3)G64A
(4)K111R
(5)A159C
(6)K179Y
(7)Y217R
(8)I218L
(9)A246V
 配列番号1に示されるアミノ酸配列において(1)E170K+Q252Lのアミノ酸置換をするだけでは、得られる変異体は無機塩非存在下において70℃以上における熱処理後の残存活性が非常に低く、80℃以上の熱処理では失活するため、幅広い温度域で安定して機能することができない。
 しかしながら、配列番号1に示されるアミノ酸配列において(1)E170K+Q252Lのアミノ酸置換に加えて、さらに前記(2)~(9)からなる群より選択される少なくとも1のアミノ酸置換がなされることにより、得られる改変型NAD(P)GDHは、無機塩非存在下において、NAD(P)GDHの高い比活性を維持したまま、70℃以上の熱処理後も安定して機能し、および/またはアセトンのような有機溶媒に対する耐性も持ち合わせることができる。
 なお、無機塩非存在下における有機溶媒に対する耐性を向上させるためには、配列番号1に示されるアミノ酸配列において(1)E170K+Q252Lのアミノ酸置換に加えて、さらに前記(5)、(7)および(8)からなる群より選択される少なくとも1以上のアミノ酸置換がなされることが特に好ましい。
 前記(a)のアミノ酸配列は、配列表の配列番号1に示されるアミノ酸配列において、(1)E170K+Q252L+(5)A159Cのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(2)Q31Gのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(3)G64Aのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(4)K111Rのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(6)K179Yのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(9)A246Vのアミノ酸置換または(1)E170K+Q252L+(7)Y217R+(8)I218Lのアミノ酸置換、(1)E170K+Q252L+(7)Y217R+(8)I218L+(2)Q31Gのアミノ酸置換、(1)E170K+Q252L+(7)Y217R+(8)I218L+(3)G64Aのアミノ酸置換、(1)E170K+Q252L+(7)Y217R+(8)I218L+(4)K111Rのアミノ酸置換、(1)E170K+Q252L+(7)Y217R+(8)I218L+(6)K179Yのアミノ酸置換または(1)E170K+Q252L+(7)Y217R+(8)I218L+(9)A246Vのアミノ酸置換が導入されたアミノ酸配列であることがより好ましく、(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218Lのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(2)Q31Gのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(3)G64Aのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(4)K111Rのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(6)K179Yのアミノ酸置換、(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(9)A246Vのアミノ酸置換または(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(3)G64A+(4)K111Rのアミノ酸置換または(1)E170K+Q252L+(5)A159C+(7)Y217R+(8)I218L+(2)Q31G+(3)G64Aが導入されたアミノ酸配列であることがより好ましい。
 前記(a)のアミノ酸配列としては、具体的には、例えば、配列表の配列番号3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39および41のいずれか1で示されるアミノ酸配列が挙げられる。
 本発明の改変型NAD(P)GDHには、下記(b)のアミノ酸配列を含む、NAD(P)GDH活性を有するタンパク質が含まれる。該タンパク質は、無機塩の非存在下において70℃以上で熱安定性である。
(b)前記(a)のアミノ酸配列において、前記170番目、252番目、31番目、64番目、111番目、159番目、179番目、217番目、218番目および246番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列。
 前記(b)のアミノ酸配列において、アミノ酸改変がなされるアミノ酸残基の個数は、1個乃至20個であることが好ましく、1個乃至10個であることがより好ましく、1個乃至6個であることがさらに好ましく、数個(1から2または3個)であることが特に好ましく、1個であることが最も好ましい。
 なお、既に報告されているNAD(P)GDHのアミノ酸配列の145番目のセリン、158番目のチロシン、162番目のリジンがNAD(P)GDH活性に必要であることが知られている[Keizo Yamamoto et al.J.Biochem.129(2)303-312(2002)]。したがって、(b)のアミノ酸配列において、これらのアミノ酸は保持されていることが好ましい。
 さらに、本発明の改変型NAD(P)GDHには、前記(a)のアミノ酸配列に相同性を有するアミノ酸配列を含む、NAD(P)GDH活性を有し、かつ無機塩の非存在下において70℃以上で熱安定性であるタンパク質を含む。該相同性は、例えば、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、99%以上であることが特に好ましい。
 ここで、「相同性」とは、BLAST PACKAGE〔sgi32 bit edition,Version 2.0.12;available from the National Center for Biotechnology Information [NCBI]〕のbl2seq program(Tatiana A.Tatsusova,Thomas L.Madden,FEMS Microbiol.Lett.,Vol.174,247-250,1999)により得られる同一性の値を示す。パラメーターとしては、Gap insertion Cost value:11、Gap extension Cost value:1が例示される。
 NAD(P)GDHは、ニコチンアミドアデニンジヌクレオチドまたはニコチンアミドアデニンジヌクレオチドリン酸を補酵素とするグルコースデヒドロゲナーゼである。NAD(P)GDHは、補酵素に水素を添加する反応と共役してβ-D-グルコース(ブドウ糖)の脱水素反応を触媒する酵素であり、EC1.1.147に分類される酵素である。
〔NAD(P)GDHの活性の測定〕
 本発明において、NAD(P)GDHの活性は下記試薬を用いて、下記測定条件で測定する。
(試薬)
100mM トリス-塩酸緩衝液 pH8.0
100mM NAD(P)水溶液
1M D-グルコース水溶液
酵素活性測定試薬:上記トリス-塩酸緩衝液を17.5mL、NAD(P)水溶液を0.5mL、グルコース水溶液を2mL、を混合して酵素活性測定試薬とする。
酵素活性測定溶液:酵素[NAD(P)GDH]を所望の濃度に希釈するための溶液(以下、「酵素希釈液」ともいう)として、20mM リン酸カリウム緩衝液(pH8.0)を使用し、以下の活性値が5~15U/mLとなるように酵素の原液(以下、「酵素原液」ともいう)を希釈して酵素活性測定溶液とする。
(測定条件)
 酵素活性測定試薬0.9mLを分光光度計用セルに入れ、37℃で5分間以上プレインキュベートする。酵素活性測定溶液0.005mLを添加してよく混合し、37℃で予めインキュベートされた分光光度計で、340nmの吸光度変化を40秒間記録し、1分間あたりの吸光度変化(ΔOD/分)を計算する。ブランクは、酵素活性測定溶液の代わりに水を酵素活性測定試薬に混合して上記のように1分間あたりの吸光度変化(ΔODblank/分)を計算する。これらの値から、下記の計算式にしたがって活性値を求める。
(式)活性(U/mL)=(ΔOD/分-ΔODblank/分)×905×希釈倍率/(6.22×5×1.0)
 なお、上記計算式の905は酵素活性測定試薬と酵素活性測定溶液の液量、6.22は本測定条件におけるNADの分子吸光係数(cm/マイクロモル)、5は酵素活性測定溶液の液量、1.0は酵素活性測定に使用するセルの光路長(cm)を示す。
〔NAD(P)GDHの比活性の測定〕
 比活性値とは、酵素の活性をタンパク質重量当たりの活性値で表現した値である。本発明において、NAD(P)GDHの比活性値は下記試薬を用いて、下記測定条件で測定する。
(試薬)
酵素希釈液:20mM リン酸カリウム緩衝液(pH8.0)
酵素活性測定試薬:上記の酵素活性測定試薬
(測定条件)
 必要であれば酵素原液を酵素希釈液で希釈し、上記活性測定法により活性を求める。酵素原液のタンパク質濃度を、280nmの吸光度において、1OD=1mg/mlとして計算する。
 上記計算式により、酵素原液の活性(U/mL)を求め、酵素原液のタンパク質濃度(mg/ml)を求める。これらの値から、以下の計算式にしたがって、比活性を求める。
(式)比活性(U/mg)=(活性)/(タンパク質濃度)
 本発明の改変型NAD(P)GDHの比活性(U/mg)は、500U/mg-タンパク質以上であることが好ましく、600U/mg-タンパク質以上であることがより好ましく、800U/mg-タンパク質以上であることがさらに好ましい。
〔無機塩の非存在下における熱安定性〕
 本発明の改変型NAD(P)GDHは、無機塩の非存在下において70℃以上で熱安定性を示す。ここで、無機塩としては、塩化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、過炭酸ナトリウム、リン酸ナトリウム、亜硫酸ナトリウム、硫酸ナトリウム、チオ硫酸ナトリウム、亜硫酸水素ナトリウム、亜硝酸ナトリウム、硝酸ナトリウム、臭化ナトリウム、ヨウ化ナトリウムおよびホウ酸ナトリウム等が挙げられ、中でも塩化ナトリウムが好ましい。
 無機塩の非存在下における改変型NAD(P)GDHの熱安定性は、例えば、下記(1)および(2)の手順で測定する残存活性率に基づいて評価する。
(1)酵素希釈液により、酵素原液を特定の濃度に希釈して酵素活性測定溶液を得る。酵素活性測定溶液における酵素のタンパク質濃度は、1~1000μg/mLとすることが好ましい。ここで、酵素希釈液、酵素原液および酵素活性測定溶液のいずれも無機塩を含まない条件とする。
(2)無機塩を含まない条件において、酵素活性測定溶液を、任意の温度で特定の時間熱処理し、熱処理前後の酵素活性を求める。熱処理時間は30分~1時間が好ましい。熱処理前の活性値を100としたときの熱処理後の残存活性率(%)を求める。
 無機塩の非存在下における熱安定性は、具体的には、例えば、実施例において後述する方法により測定する。実施例において後述するように、酵素活性を測定するための酵素活性測定試薬も塩化ナトリウムを含まないことが好ましい。
 「無機塩の非存在下において70℃以上で熱安定である」とは、70℃以上で加熱処理後の残存活性率(%)が、20%以上であることをいう。本発明の改変型NAD(P)GDHの70℃、30分の加熱処理後の残存活性は、20%以上であり、75%以上であることが好ましく、80%以上であることがより好ましい。
 また、本発明の改変型NAD(P)GDHの80℃、30分の加熱処理後の残存活性は、1%以上であることが好ましく、20%以上であることが好ましく、60%以上であることがより好ましい。
 さらに、本発明の改変型NAD(P)GDHの84℃、30分の加熱処理後の残存活性は、1%以上であることが好ましく、10%以上であることが好ましく、30%以上であることがさらに好ましい。
 また、本発明の改変型NAD(P)GDHの70℃、30分の加熱処理後の残存活性は、配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質に比べて高いことが好ましい。
 配列表の配列番号79に示されるアミノ酸配列と配列番号1に記載のアミノ酸配列とは、3アミノ酸異なるが、両者は共に同じBacillus subtilis菌由来であり実質的に同一のアミノ酸配列である。
 ここで、配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質とは、米国特許第7816111号明細書の配列番号164に記載の変異体である。
 本発明の改変型NAD(P)GDHは、アミノ酸置換前(以下、「改変前」ともいう)の配列番号1に示されるアミノ酸配列からなるNAD(P)GDH(以下、「野生型NAD(P)GDH」ともいう)と比較して、無機塩の非存在下かつ70℃以上における熱安定性が向上していることが好ましい。
 また、本発明の改変型NAD(P)GDHは、配列表の配列番号1に示されるアミノ酸配列において、170番目のグルタミン酸および252番目のグルタミンが他のアミノ酸に置換されたアミノ酸配列を含むNAD(P)GDHの変異体と比較して、無機塩の非存在下かつ70℃以上における熱安定性が向上していることがより好ましい。
 さらに、本発明の改変型NAD(P)GDHは、配列表の配列番号1に示されるアミノ酸配列において、E170K+Q252Lのアミノ酸置換がなされたアミノ酸配列を含むNAD(P)GDHの変異体と比較して、無機塩の非存在下かつ70℃以上における熱安定性が向上していることが更に好ましい。
〔無機塩の非存在下における有機溶媒耐性〕
 本発明の改変型NAD(P)GDHは、アミノ酸置換前(以下、「改変前」ともいう)の配列番号1に示されるアミノ酸配列からなるNAD(P)GDH(以下、「野生型NAD(P)GDH」ともいう)と比較して、無機塩の非存在下における有機溶媒耐性が向上したポリペプチドであることが好ましい。
 また、本発明の改変型NAD(P)GDHは、無機塩の非存在下における有機溶媒処理後の残存活性が、配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質に比べて高いことが好ましい。
 前記無機塩としては、塩化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、過炭酸ナトリウム、リン酸ナトリウム、亜硫酸ナトリウム、硫酸ナトリウム、チオ硫酸ナトリウム、亜硫酸水素ナトリウム、亜硝酸ナトリウム、硝酸ナトリウム、臭化ナトリウム、ヨウ化ナトリウムおよびホウ酸ナトリウム等が挙げられ、中でも塩化ナトリウムが好ましい。
 また、有機溶媒としては、例えば、エチレングリコール、1、2-プロパンジオール、エタノール、メタノール、アセトニトリル、アセトンおよび1、4-ジオキサン等が挙げられ、中でもアセトンが好ましい。
 本発明における無機塩の非存在下における有機溶媒耐性は、例えば、下記(1)~(3)の手順で測定する残存活性率に基づいて評価する。
(1)酵素希釈液により、酵素原液を特定の濃度に希釈して酵素活性測定溶液を得る。ここで、酵素希釈液、酵素原液、酵素活性測定溶液のいずれも無機塩を含まない条件とする。酵素活性測定溶液における酵素のタンパク質濃度は、1~1000μg/mLとすることが好ましい。
(2)無機塩を含まない条件において、酵素活性測定溶液を有機溶媒中に投入して攪拌した後、熱乾燥によりすべての溶媒を除去する。熱乾燥の条件は有機溶媒の種類により異なるが、通常、温度は、20~80℃とすることが好ましく、時間は5分~1時間とすることが好ましい。
(3)乾燥終了後の酵素を酵素希釈液で再懸濁し、有機溶媒/熱乾燥前後の酵素活性を求める。有機溶媒/熱乾燥前の活性値を100としたときの、有機溶媒/熱乾燥後の残存活性率(%)を求める。
 無機塩の非存在下における有機溶媒耐性は、具体的には、例えば、実施例において後述する方法により測定する。実施例において後述するように、酵素活性を測定するための酵素活性測定試薬も無機塩を含まないことが好ましい。
 本発明の改変型NAD(P)GDHは、配列表の配列番号1に示されるアミノ酸配列において、170番目のグルタミン酸および252番目のグルタミンが他のアミノ酸に置換されたアミノ酸配列を含むNAD(P)GDHの変異体と比較して、無機塩の非存在下における有機溶媒耐性が向上していることがより好ましい。
 また、本発明の改変型NAD(P)GDHは、配列表の配列番号1に示されるアミノ酸配列において、E170K+Q252Lのアミノ酸置換がなされたアミノ酸配列を含むNAD(P)GDHの変異体と比較して、無機塩の非存在下における有機溶媒耐性が向上していることが更に好ましい。
 本発明の改変型NAD(P)GDHは、外来タンパク質又はペプチドと連結された融合タンパク質とすることができる。ここで、外来タンパク質又はペプチドとは、本発明の改変型NAD(P)GDHに対して外因的なタンパク質又はペプチドを意味する。
 前記外来タンパク質又はペプチドとしては、例えば、タンパク質精製に使用されるタンパク質又はペプチド(例えば、グルタチオンS-トランスフェラーゼ、マルトース結合タンパク質、チオレドキシン、セルロース結合ドメイン、ストレプトアビジン結合ペプチドおよびヒスチジンタグ等)が挙げられる。
 本発明の改変型NAD(P)GDHに対して外来タンパク質又はペプチドを連結する位置は、本発明の改変型NAD(P)GDHと外来タンパク質又はペプチドとがそれぞれの機能又は活性を有するように適宜選択することができる。
〔野生型NAD(P)GDHへの変異導入部位の決定方法〕
 本発明の改変型NAD(P)GDHは、一般的に用いられる進化工学的な手法を利用したランダム変異導入法ではなく、以下の(1)マルチプルアライメント図に基づくコンセンサス法に加えて、さらに(2)系統学的手法に基づいた祖先型アミノ酸導入法を併用することにより決定されるアミノ酸置換を、配列表の配列番号1で示される野生型NAD(P)GDHのアミノ酸配列に導入することにより得られる。
(1)マルチプルアライメント図に基づくコンセンサス法
 マルチプルアライメント図に基づくコンセンサス法とは、本来は抗体の機能改変を目的として利用され始め、酵素の熱安定性の向上を目的として利用された実績もあるDNA配列あるいはアミノ酸配列における部位特異的変異導入法(配列上のどの位置にどの変異を導入するか部位特異的に決定する方法)である。詳細についてはB.Steipe,et al.,J.Mol.Biol.,240,188-192,1994に記述されている。
 マルチプルアライメント図に基づくコンセンサス法の材料としては、既知のアミノ酸配列を公知のデータベースに対して相同性検索することで得られる複数のアミノ酸配列を、公知のアライメントプログラムなどを利用してマルチプルアライメントさせた図を使用する。マルチプルアライメント図のすべての座位は、コンピュータープログラムにより挿入、欠失または置換等が最小となるように並べられる。
 例えば、アミノ酸配列の欠失等により候補タンパク質に活性がない場合には、候補タンパク質のアミノ酸配列の特定の座位が欠失し、候補遺伝子以外のアミノ酸配列には何らかのアミノ酸が配置されている状況が観察される。その座位において候補タンパク質以外のアミノ酸残基に例えばメチオニン(M)が多く配列していれば、該欠失部位にMを挿入する。同様にセリン(S)が多く配置していれば、該欠失部位にSを挿入する。このような多数決的な決定による変異導入法をコンセンサス法と呼ぶ。
 コンセンサス法は、酵素の様々な性能の改変または向上に利用できる。しかしながら、その反面、コンセンサス法は、単独で用いた場合、必ずしも無機塩の非存在下におけるNAD(P)GDHの熱安定性の向上を図る手法とは言えない。本発明者らは、コンセンサス法に加えて、以下に示す系統学的手法に基づいた祖先型アミノ酸導入法を併用することによって、無機塩の非存在下における熱安定性の向上した改変型NAD(P)GDHを得られることを見出した。
(2)系統学的手法に基づいた祖先型アミノ酸導入法
 系統学的手法に基づいた祖先型アミノ酸導入法は、ある特定の酵素についての複数の生物種における共通祖先のアミノ酸配列を推定し、該共通祖先のアミノ酸配列の一部あるいは全部をもとの酵素に変異として導入することにより共通祖先の酵素の機能を推察する目的で開発された手法である。
 一般的に共通祖先型の酵素はもとの酵素に対して熱安定化することが示されており、全生物の共通祖先が超好熱菌であるとの仮説を支持するものであるが、本発明における利用のように、産業用酵素の機能改変にも利用されている方法である。詳細については、Hisako,I.,et al.,FEMS Microbiology Letters,243,393-398,2005;Keiko,W.,et al.,FEBS Letters,580,3867-3871,2006;日本国特開2002-247991号公報;日本国特開2011-139677号公報に記載されている。
 祖先型アミノ酸導入法において共通祖先のアミノ酸配列を推定する際には、前述のコンセンサス法でも用いた特定の候補遺伝子のアミノ酸配列をデータベースに対して相同性検索することにより得られた複数の相同アミノ酸配列とそのマルチプルアライメント図に加えて、それらの相同アミノ酸配列群を基に作成した分子系統樹(以下、系統樹とも表記する)、および系統樹作成のためのアルゴリズム、並びにマルチプルアライメント図を材料として利用する。
 系統樹を作成するためのいくつかのアルゴリズムには、例えば、最大節約原理に基づくアルゴリズム等が知られており、それを実現するコンピュータープログラムも利用または入手することができる。例えば、TREE PUZZLE、MOLPHYおよびPHYLIP等の種々の系統樹推定プログラムが利用できる。
 また、例えば、最尤原理に基づくアルゴリズム等が知られており、それを実現するコンピュータープログラムも利用または入手することができる。例えば、ModelTest、PHYML、PHYLIPおよびTreeFinder等の種々の系統樹推定プログラムが利用できる。それらを用いて系統樹を作成することができるが、より簡便には、既に公表されている系統樹を利用することもできる。
 このような系統樹においては、分子進化的に近い位置の生物種は、系統樹中で近い位置に現れる。また、系統樹中で根元に近い位置にある生物種はより祖先に近いと考えられる。
 特定の酵素のアミノ酸配列をデータベースに対して相同性検索することで得られた複数の相同アミノ酸配列のデータをもとに適当なプログラムを使用してマルチプルアラインメントの結果が得られたならば、特定の系統樹における祖先型酵素のアミノ酸配列を推定することができる。
 本発明においては、特に祖先型酵素のアミノ酸配列の推定に最尤法(「根井正利『分子進化遺伝学』培風館、「根井正利、S.クマー『分子進化と分子系統学』培風館」)を用いた。
 本発明に使用し得る最尤法とは、予め決定した系統樹の樹形とアミノ酸置換モデルに基づいて、樹形の特定の位置に(主に系統樹の根にあたる部分)おけるあらゆる祖先型アミノ酸配列を推定し、最も尤度の高い配列を最も有望な祖先型アミノ配列として選択する方法である。また、最尤法に基づいて、系統樹およびアミノ酸配列のマルチプルアライメントから祖先型推定を行うためのプログラムPAML等も利用可能である。
 得られた系統樹を利用してマルチプルアラインメントしたアミノ酸残基のそれぞれの部位に関して祖先型アミノ酸を決定することができる。このようにして、マルチプルアラインメントした配列の各々の残基に関して祖先型アミノ酸残基を推定し、その結果、対応する領域の祖先型アミノ酸配列を推定することができる。
 この場合、祖先型アミノ酸配列を推定するために用いる生物種を変えると、系統樹の樹形が変化し、それと関連して異なる祖先型アミノ残基が得られる場合もあり、その位置と種類は比較に用いるアミノ酸配列にも依存する。
 従って、そのような変動が比較的少ない位置のアミノ酸残基を改変の対象とすることが考えられる。そのようなアミノ酸残基は、系統樹の作成に用いる生物種を変える、または、生物種は変えずに系統樹作成に使用するアミノ酸配列情報の一部のみを用いるなど、系統樹の作成に使用するアミノ酸配列情報を変化させた場合の樹形変化の程度を見積り、樹形への影響の少ない残基を選択することによって決定できる。
 上記のようにして祖先型アミノ酸残基が決定されたならば、解析対象とした酵素について非祖先型であるアミノ酸残基の少なくとも1つを祖先型アミノ酸残基に置換してその酵素を改変することができる。
 上記のように(1)マルチプルアライメント図に基づくコンセンサス法に、さらに(2)系統学的手法に基づいた祖先型アミノ酸導入法を併用して決定されるアミノ酸置換を野生型のアミノ酸配列に導入することにより、従来のNAD(P)GDHに比べて大幅に無機塩の非存在下における熱安定性および/または有機溶媒耐性を向上させた改変型NAD(P)GDHを得ることができる。
 前記(1)の手法に前記(2)の手法を併用することにより、従来知られているものとは異なる特定の変異、すなわち超高熱菌であったと言われている全生物の共通祖先型アミノ酸変異を効果的に野生型NAD(P)GDHのアミノ酸配列に対して導入することができ、得られる改変型NAD(P)GDHの無機塩の非存在下における熱安定性および/または有機溶媒耐性が向上するものと考えられる。
 以下、本発明の改変型NAD(P)GDHをコードするDNA、該DNAを含む組換えベクター、該ベクターを導入した形質転換体、また、該形質転換体を用いた改変型NAD(P)GDHの製造方法について説明する。
〔改変型NAD(P)GDHをコードするDNA〕
 本発明の改変型NAD(P)GDHをコードするDNAは、改変前の野生型NAD(P)GDHのDNAに前記アミノ酸置換が導入されるように変異を導入することにより得ることができる。
 前記野生型NAD(P)GDHのDNAまたは改変型NAD(P)GDHのDNAは、遺伝子の全合成法により人工合成することもできる。その際、該DNAの塩基配列におけるコドン利用頻度を、後述する大腸菌(Escherichia coli)のコドン利用頻度に最適化したDNAを人工合成することもできる。
 ここで、野生型NAD(P)GDHのDNAは、例えば、配列表の配列番号2に示される塩基配列である公知のDNAであれば、バチルス・サブチリス(Bacillus subtilis)NBRC3134株からPCRを用いた定法により単離することができる。
 特定の部位に特定の変異を導入する方法として、キットなどが広く販売され当業者が容易に利用可能なDNAの部位特異的変異導入法などが利用できる。DNA中の塩基を変換する具体的な方法としては、例えば市販のキット(QuickChange Lightning Site-Directed Mutagenesis kit:Stratagene製、KOD-Plus-Mutagenesis kit:東洋紡製など)の利用などが挙げられる。
 このようにして得られたDNAは、DNAシーケンサーを用いて塩基配列を確認することができる。得られた塩基配列については、DNASIS(日立ソフトエンジニアリング社製)およびGENETYX(株式会社ゼネティックス製)等の塩基配列解析ソフトによる解析を行うことにより、DNA中のNAD(P)GDH遺伝子のコード領域を特定することができる。
 一旦、塩基配列が確定されると、その後は化学合成、クローニングされたプローブを鋳型としたPCR、または該塩基配列を有するDNA断片をプローブとするハイブリダイゼーションによって、本発明の改変型NAD(P)GDHをコードする遺伝子を得ることができる。
 さらに、部位特異的突然変異誘発法等によって本発明の改変型NAD(P)GDHをコードする遺伝子の変異型であって変異前と同等の機能を有するものを合成することができる。なお、本発明の改変型NAD(P)GDHをコードする遺伝子に変異を導入するには、Kunkel法、Gapped duplex法またはメガプライマーPCR法等の公知の手法又はこれに準ずる方法を採用することができる。
 本発明のDNAは、本発明の改変型NAD(P)GDH又は上述の融合タンパク質をコードするDNAである。本発明の改変型NAD(P)GDHをコードするDNAの塩基配列としては、例えば、配列表の配列番号4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40および42で示される配列が挙げられる。
 本発明の改変型NAD(P)GDHをコードするDNAと外来タンパク質又はペプチドをコードするDNAとを連結した融合タンパク質をコードするDNAを作製する場合には、本発明の改変型NAD(P)GDHをコードするDNAに外来タンパク質又はペプチドをコードするDNAを連結したDNAを準備する。
 前記DNAは、連結したDNA自体であってもよく、当該DNAを含むベクター等であってよい。本発明の改変型NAD(P)GDHをコードするDNAに外来タンパク質又はペプチドをコードするDNAを連結する方法は、それぞれ精製された本発明の改変型DNAD(P)GDHをコードする遺伝子及び外来タンパク質又はペプチドをコードするDNAを適当な制限酵素で切断し、連結する方法が採用される。
 また、本発明の改変型NAD(P)GDHをコードするDNAと外来タンパク質又はペプチドをコードするDNAのそれぞれ一部に相同な領域を持たせることにより、PCR等を用いたin vitro法又は酵母等を用いたin vivo法によって両者を連結する方法であってもよい。
 本発明の改変型NAD(P)GDHをコードするDNAは、該DNAまたは該DNAを有する細胞に変異処理を行い、これらのDNA若しくは細胞から、例えば、配列表の配列番号4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40および42の少なくとも1つで示される塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAを選択することによって得られるDNAであって、GDH活性を有するポリペプチドをコードするDNAも含有する。
 ここでいう「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成されるが、非特異的なハイブリッドは形成されない条件をいう。この条件を明確に数値化することは困難であるが、相同性が高い核酸同士、例えば70~90%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低い核酸同士がハイブリダイズしない条件等が挙げられる。
 また、「ストリンジェントな条件下」とは、例えば以下の条件をいう。すなわち0.5%SDS、5×デンハルツ〔Denhartz’s、0.1%ウシ血清アルブミン(BSA)、0.1%ポリビニルピロリドン、0.1%フィコール400〕および100μg/mlサケ精子DNAを含む6×SSC(1×SSCは、0.15M NaCl、0.015M クエン酸ナトリウム、pH7.0)中で、50℃~65℃で4時間~一晩保温する条件をいう。
 ハイブリダイゼーションは、前記のストリンジェントな条件下で行うことができる。例えば、本発明の改変型NAD(P)GDHをコードするDNAライブラリーまたはcDNAライブラリーを固定化したナイロン膜を作成し、6×SSC、0.5% SDS、5×デンハルツ、100μg/mlサケ精子DNAを含むプレハイブリダイゼーション溶液中、65℃でナイロン膜をブロッキングする。その後、32Pでラベルした各プローブを加えて、65℃で一晩保温する。このナイロン膜を6×SSC中、室温で10分間、0.1%SDSを含む2×SSC中、室温で10分間、0.1%SDSを含む0.2×SSC中、45℃で30分間洗浄した後、オートラジオグラフィーをとり、プローブと特異的にハイブリダイズするDNAを検出することができる。また、洗いなどの条件を変えることによって様々な相同性を示す遺伝子を得ることができる。
 また、本発明の改変型NAD(P)GDHをコードするDNAには、該DNAに相同性を有するDNAであって、NAD(P)GDH活性を有するポリペプチドをコードするDNAも含まれる。相同性としては、少なくとも80%以上、好ましくは90%以上の相同性を有する遺伝子、さらに好ましくは95%以上、さらに好ましくは98%以上であることが好ましい。
 ここで、DNAの「相同性」とは、BLAST PACKAGE[sgi32 bit edition,Version 2.0.12;available from the National Center for Biotechnology Information(NCBI)]のbl2seq program(Tatiana A. Tatsusova,Thomas L.Madden,FEMS Microbiol.Lett.,Vol.174,247-250,1999)により得られる同一性の値を示す。パラメーターとしては、Gap insertion Cost value:11、Gap extension Cost value:1が例示される。
 本発明の改変型NAD(P)GDHをコードするDNAは、コドン出現頻度を宿主に最適化したものが好ましく、コドンユーゼージを大腸菌に最適化させたDNAがより好ましい。
 コドン出現頻度を表す指標として、各コドンの宿主最適コドン使用頻度の総計を採択する。最適コドンとは、同じアミノ酸に対応するコドンのうち出現頻度が最も高いコドンと定義する。コドンユーゼージは、宿主に最適化したものであれば特に限定されないが、例えば、大腸菌のコドンユーゼージの一例として以下のものが挙げられる。
 F:フェニルアラニン(ttt)、L:ロイシン(ctg)、I:イソロイシン(att)、M:メチオニン(atg)、V:バリン(gtg)、Y:チロシン(tat)、終止コドン(taa)、H:ヒスチジン(cat)、Q:グルタミン(cag)、N:アスパラギン(aat)、K:リジン(aaa)、D:アスパラギン酸(gat)、E:グルタミン酸(gaa)、S:セリン(agc)、P:プロリン(ccg)、T:スレオニン(acc)、A:アラニン(gcg)、C:システイン(tgc)、W:トリプトファン(tgg)、R:アルギニン(cgc)、G:グリシン(ggc)。 
〔組換えベクター〕
 本発明の改変型NAD(P)GDHをコードするDNAを含む組換えベクター(以下、本発明の組換えベクターという)は、発現ベクターに本発明の改変型NAD(P)GDHをコードするDNAを挿入することにより得ることができる。
 ここで発現ベクターとしては、宿主内で自律的に増殖し得るファージまたはプラスミドから遺伝子組換え用として構築されたものが適している。
 ファージとしては、例えば、後述する大腸菌を宿主とする場合には、Lambda gt10およびLambda gt11などが挙げられる。
 一方、プラスミドとしては、例えば、大腸菌を宿主とする場合には、pBR322、pUC18、pUC118、pUC19、pUC119、pTrc99A、pBluescriptおよびコスミドであるSuper Cos Iなどが挙げられる。
 シュードモナスを用いる場合には、例えば、グラム陰性菌用広宿主域ベクターであるRSF1010、pBBR122およびpCN51などが挙げられる。さらに、例えば、レトロウイルスおよびワクシニアウイルス等の動物ウイルス並びにバキュロウイルス等の昆虫ウイルスベクターなどが挙げられる。
 宿主としては、組換えベクターが安定であり、かつ自律増殖可能で外来性遺伝子の形質を発現できるのであれば特に制限されないが、例えば、大腸菌(Escherichia coli)等のエッシェリヒア属、バチルス・ズブチリス(Bacillus subtilis)等のバチルス属およびシュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属等に属する細菌、酵母、COS細胞等の動物細胞、Sf9等の昆虫細胞、並びにアブラナ科等に属する植物体全体、植物器官(例えば、葉、花弁、茎、根および種子等)、植物組織(例えば、表皮、師部、柔組織、木部および維管束等)および植物培養細胞等が挙げられる。これらの中でも大腸菌が好ましく、大腸菌DH5αおよび大腸菌XL-1 Blue MRがより好ましい。
 ベクターに本発明のDNAを挿入する方法は、上述した本発明の改変型NAD(P)GDHをコードする遺伝子に外来タンパク質又はペプチドをコードする遺伝子を連結する方法に準じて行うことができる。
 細菌への本発明の組換えベクター等の導入方法は、細菌にDNAを導入する方法であれば特に限定されるものではない。例えば、カルシウムイオン処理によるコンピテントセル用いる方法およびエレクトロポレーション法等が挙げられる。
 酵母への本発明の組換えベクター等の導入方法は、酵母にDNAを導入する方法であれば特に限定されるものではない。例えば、電気穿孔法(エレクトロポレーション法)、スフェロプラスト法および酢酸リチウム法等が挙げられる。
 動物細胞への本発明の組換えベクター等の導入方法としては、動物細胞にDNAを導入する方法であれば特に限定されるものではない。例えば、エレクトロポレーション法、リン酸カルシウム法およびリポフェクション法等が挙げられる。
 昆虫細胞への本発明の組換えベクター等の導入方法としては、昆虫細胞にDNAを導入する方法であれば特に限定されるものではない。例えば、リン酸カルシウム法、リポフェクション法およびエレクトロポレーション法等が挙げられる。
 植物への本発明の組換えベクター等の導入方法としては、植物にDNAを導入する方法であれば特に限定されるものではない。例えば、エレクトロポレーション法、アグロバクテリウム法、パーティクルガン法およびPEG法等が挙げられる。
 本発明の組換えベクター等が宿主に組み込まれたか否かを確認する方法としては、例えば、PCR法、サザンハイブリダイゼーション法およびノーザンハイブリダイゼーション法等が挙げられる。
 PCR法よる場合、例えば、形質転換体から組換えベクターを分離・精製する。
 組換えベクターの分離・精製は、例えば、宿主が細菌の場合、細菌を溶菌して得られる溶菌物に基づいて行われる。溶菌の方法としては、例えばリゾチームなどの溶菌酵素により処理が施され、必要に応じてプロテアーゼおよび他の酵素並びにラウリル硫酸ナトリウム(SLS)などの界面活性剤が併用される。
 さらに、凍結融解およびフレンチプレス処理のような物理的破砕方法を組み合わせてもよい。溶菌物からのDNAの分離・精製は、例えば、フェノール処理およびプロテアーゼ処理による除蛋白処理、リボヌクレアーゼ処理、アルコール沈殿処理並びに市販のキットを適宜組み合わせることにより行うことができる。
 DNAの切断は、常法にしたがい、例えば、制限酵素処理を用いて行うことができる。制限酵素としては、例えば、特定のヌクレオチド配列に作用するII型制限酵素が挙げられる。DNAと発現ベクターとの結合は、例えば、DNAリガーゼを用いて行う。
 その後、分離・精製したDNAを鋳型として、本発明のDNAに特異的なプライマーを設計してPCRを行う。PCRにより得られた増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動、キャピラリー電気泳動等を行い、臭化エチジウムまたはSYBR Green液等により染色し、そして増幅産物をバンドとして検出することにより、形質転換されたことを確認する。
 また、予め蛍光色素等により標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。さらに、マイクロプレート等の固相に増幅産物を結合させ、蛍光および酵素反応等により増幅産物を確認する方法も採用してもよい。
〔形質転換体〕
 本発明の形質転換体は、組換えベクターにマーカーを施して、該組換えベクターを宿主に導入することにより得られる。該形質転換体から、組換えベクターのマーカーと酵素活性の発現を指標としてスクリーニングして、改変型NAD(P)GDHをコードする遺伝子を含有する組換えベクターを保持する遺伝子供与微生物を得る。
 改変型NAD(P)GDHをコードする遺伝子の塩基配列は、従来公知の方法、例えばジデオキシ法により解読できる。改変型NAD(P)GDHのアミノ酸配列は、当該方法により決定された塩基配列より推定できる。
 形質転換体の培養形態は、宿主の栄養生理的性質を考慮して培養条件を選択すればよく、好ましくは液体培養で行う。工業的には通気攪拌培養を行うのが有利である。
 培地の栄養源としては、微生物の培養に通常用いられるものが使用され得る。炭素源としては、資化可能な炭素化合物であればよく、例えば、グルコース、シュークロース、ラクトース、マルトース、糖蜜およびピルビン酸などが挙げられる。
 窒素源としては、資化可能な窒素化合物であればよく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物および大豆粕アルカリ抽出物などが挙げられる。
 その他に、例えば、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガンおよび亜鉛などの塩類、特定のアミノ酸並びに特定のビタミンなどを必要に応じて使用する。
 培養温度は、宿主が生育し、宿主が改変型NAD(P)GDHを産生する範囲で適宜変更し得るが、好ましくは15~37℃程度である。培養は、改変型NAD(P)GDHが最高収量に達する時期を見計らって適当時期に完了すればよく、通常は培養時間が12~48時間程度である。
 培地のpHは、宿主が発育し、宿主が改変型NAD(P)GDHを産生する範囲で適宜変更し得るが、好ましくはpH5.0~9.0程度の範囲である。
 形質転換体を培養し、培養液を遠心分離などの方法により培養上清または菌体を回収し、菌体は超音波およびフレンチプレスといった機械的方法またはリゾチームなどの溶菌酵素により処理を施し、必要に応じてプロテアーゼおよび他の酵素並びにラウリル硫酸ナトリウム(SDS)などの界面活性剤を併用することにより可溶化し、改変型NAD(P)GDHを含む水溶性画分を得ることができる。
 また、適当な発現ベクターと宿主を選択することにより、発現した改変型NAD(P)GDHを培養液中に分泌させることもできる。
 上記のようにして得られた改変型NAD(P)GDHを含む水溶性画分から該酵素を精製する方法としては、該水溶性画分から直ちに行うこともできるが、該水溶性画分中の改変型NAD(P)GDHを濃縮した後に行うこともできる。
 濃縮は、例えば、減圧濃縮、膜濃縮、塩析処理および親水性有機溶媒(例えば、メタノール、エタノールおよびアセトン)による分別沈殿法により行うことができる。改変型NAD(P)GDHの濃縮には、加熱処理および等電点処理も有効な精製手段である。
 濃縮液の精製は、例えば、ゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィーおよびアフィニティクロマトグラフィー等の方法を適宜組み合わせることによって行うことができる。
 前記方法はすでに公知であり、適当な文献、雑誌および教科書等を参照することで進めることができる。このようにして得られた精製酵素は、例えば、凍結乾燥、真空乾燥およびスプレードライにより粉末化して市場に流通させることができる。
 次に、本発明を具体的に説明するが、本発明は以下に限定されるものではない。
<実施例1>NAD(P)GDHへの変異導入部位の決定
 (1-1)NAD(P)GDH相同アミノ酸配列情報の取得
 配列表の配列番号1で示されるバチルス・サブチリス由来NAD(P)GDHのアミノ酸配列を使用してBlast(http://blast.ncbi.nlm.nih.gov/Blast.cgi)により相同性検索を行い、様々な生物種由来のアミノ酸配列情報を得た。
 具体的には、NAD(P)-dependent glucose 1-dehydrogenase(Seq01、YP_192407、Gluconobacter oxydans 621H)、glucose 1-dehydrogenase putavive(Seq02、YP_002426623、Acidithiobacillus ferrooxidans ATCC 23270)、glucose 1-dehydrogenase(Seq03、NP_393669、Thermoplasma acidophilum DSM 1728)、probable glucose 1-dehydrogenase(Seq04、ZP_01092744、Blastopirellula marina DSM 3645)、glucose 1-dehydrogenase(Seq05、YP_001228184、Synechococcus sp.RCC307)、3-oxoacyl-reductase(Seq06、ZP_00995731、Janibacter sp. HTCC2649)、short-chain dehydrogenase/reductase SDR(Seq07、YP_969459、Acidovorax avenae subsp. citrulli AAC00-1)、short-chain dehydrogenase/reductase SDR(Seq08、YP_001046841、Methanoculleus marisnigri JR1)、short-chain dehydrogenase/reductase SDR(Seq09、YP_002462956、Chloroflexus aggregans DSM 9485)、2-deoxy-D-gluconate 3-dehydrogenase(Seq10、NP_070035、Archaeoglobus fulgidus DSM 4304)、predicted protein(Seq11、XP_001415472、Ostreococcus lucimarinus CCE9901)、short-chain dehydrogenase/reductase SDR(Seq12、YP_001541201、Caldivirga maguilingensis IC-167)、short chain dehydrogenase(Seq13、YP_001012508、Hyperthermus butylicus DSM 5456)、2-deoxy-D-gluconate 3-dehydrogenase(Seq14、YP_001470653、Thermotoga lettingae TMO)のアミノ酸配列情報を得た。
 さらに、これらの配列情報に、配列番号1のバチルス・サブチリス(Bacillus subtilis)由来NAD(P)GDHのアミノ酸配列(Seq15)も付け加えた。
 ここで、Seq~とは後述の図1~図2などに示したアミノ酸配列の配列番号を指し、間の文字列(例えばYP_192407など)はデータベースに登録されているそれぞれのアミノ酸配列のアクセッションナンバーを指す。さらにその後に、生物種の名称および株名を示した。
 (1-2)NAD(P)GDHを含むマルチプルアライメント図の作成
 上記のデータベースに登録されたアミノ酸配列データを、ClustalWによりアライメントし、アライメント図(図1~図2)とデータファイルを得た。得られたデータは、後述の分子系統樹の作成に使用した。
 (1-3)分子系統樹の作成
 NAD(P)GDHを含むマルチプルアライメント図のデータを使用して、公知のコンピュータープログラムを使用して最尤法により4種類の分子系統樹を作成した。WAG+Gモデルを分子置換モデルとして採用した。4種類の分子系統樹をそれぞれ図3~図6に示す。
 (1-4)祖先型アミノ酸配列の推定
 公知のコンピュータープログラム、NAD(P)GDHを含むマルチプルアライメント図のデータ、上述した4種類の分子系統樹を用いて、最尤法により、それぞれの分子系統樹の根の位置における祖先型アミノ酸配列を計算した。WAGモデルを分子置換モデルとして採用した。
 具体的には、配列番号49で示されるアミノ酸配列は、図3の系統樹の根の位置における推定祖先型アミノ酸配列である。配列番号50で示されるアミノ酸配列は、図4の系統樹の根の位置における推定祖先型アミノ酸配列である。配列番号51で示されるアミノ酸配列は、図5の系統樹の根の位置における推定祖先型アミノ酸配列である。配列番号52で示されるアミノ酸配列は、図6の系統樹の根の位置における推定祖先型アミノ酸配列である。
 (1-5)推定祖先型アミノ酸配列とNAD(P)GDHを含むマルチプルアライメント図の作成、および推定祖先型アミノ酸導入部位の決定
 4種類の分子系統樹から推定された祖先型アミノ酸配列を、図1~図2に示したマルチプルアライメント図に追加した。得られた推定祖先型アミノ酸配列とNAD(P)GDHを含むマルチプルアライメント図を図7~図9に分割して示す。
 図7~図9において、Tre1Ancと示されているアミノ酸配列は、図3の系統樹の根の位置における推定祖先型アミノ酸配列である。Tre2Ancと示されているアミノ酸配列は、図4の系統樹の根の位置における推定祖先型アミノ酸配列である。
 Tre3Ancと示されているアミノ酸配列は、図5の系統樹の根の位置における推定祖先型アミノ酸配列である。Tre4Ancと示されているアミノ酸配列は、図6の系統樹の根の位置における推定祖先型アミノ酸配列である。
 推定祖先型アミノ酸配列とNAD(P)GDHを含むマルチプルアライメント図を観察しながら、例えば図9に示すように、バチルス・サブチリス由来NAD(P)GDH(Seq15)の217番目のアミノ酸残基はチロシンであるが、その下に並んでいる祖先型アミノ酸残基はすべてアルギニンであるので、アルギニンを変異として導入すると決定した。同様にしてその他の推定祖先型アミノ酸導入部位も決定し、以下のアミノ酸置換がなされた変異体1~変異体23を作製、評価することを決定した。
 なお、以下のE170KおよびQ252Lは先行技術文献の特許文献3、非特許文献6、非特許文献7に記載されている通り、バチルス・メガテリウム由来NAD(P)GDHやバチルス・サブチリス由来NAD(P)GDHの塩化ナトリウム存在下、非存在下における熱安定性を向上させることが示されている公知の変異であり、本発明においても推定祖先型アミノ酸とともに利用した。
 変異体21は、特許文献1および特許文献3に記載されている変異を組み合わせた変異体であり、実施例における比較例として使用した。変異体22の変異は、非特許文献7に記載されている熱安定性および有機溶媒耐性に効果が示された変異であるが、用いたバチルス属の株が異なるため、参考例として使用した。
 変異体23の変異は、非特許文献7に記載されている熱安定性および有機溶媒耐性に効果が示された変異であるが、用いたバチルス属の株が異なるため、実施例として使用した。
 変異体1:A159C+E170K+Q252L
 変異体2:Q31G+A159C+E170K+Q252L
 変異体3:G64A+A159C+E170K+Q252L
 変異体4:K111R+A159C+E170K+Q252L
 変異体5:A159C+E170K+K179Y+Q252L
 変異体6:A159C+E170K+A246V+Q252L
 変異体7:E170K+Y217R+I218L+Q252L
 変異体8:Q31G+E170K+Y217R+I218L+Q252L
 変異体9:G64+AE170K+Y217R+I218L+Q252L
 変異体10:K111R+E170K+Y217R+I218L+Q252L
 変異体11:E170K+K179Y+Y217R+I218L+Q252L
 変異体12:E170K+Y217R+I218L+A246V+Q252L
 変異体13:A159C+E170K+Y217R+I218L+Q252L
 変異体14:Q31G+A159C+E170K+Y217R+I218L+Q252L
 変異体15:G64A+A159C+E170K+Y217R+I218L+Q252L
 変異体16:K111R+A159C+E170K+Y217R+I218L+Q252L
 変異体17:A159C+E170K+K179Y+Y217R+I218L+Q252L
 変異体18:A159C+E170K+Y217R+I218L+A246V+Q252L
 変異体19:G64A+K111R+A159C+E170K+Y217R+I218L+Q252L
 変異体20:Q31G+G64A+A159C+E170K+Y217R+I218L+Q252L
 変異体21:E133K+E170K+Q252L
 変異体22:E170K+Q252L
 変異体23:P45A+N46E+F155Y+E170K+V227A+W230F+Q252L
 本明細書における「A159C」等の表現は、アミノ酸置換の表記法である。例えば「A159C」とは、ある特定のアミノ酸配列におけるN末端側から159番目のアミノ酸Aを、アミノ酸Cに置換することを意味する。
 また、本明細書における「Y217R+I218L」等の表現は、Y217RおよびI218Lのアミノ酸置換を同時に導入していることを意味する。
<実施例2>NAD(P)GDHへの変異導入と発現、精製
 (2-1)NAD(P)GDH遺伝子への部位特異的変異導入
 上述した変異体1~変異体23の遺伝子をそれぞれ合成すべく、配列番号2の野生型NAD(P)GDHのDNA配列に対してPCRによる部位特異的変異導入を行った。それに先立ち、PCRによる部位特異的変異導入に使用するオリゴヌクレオチドを以下に記述するように設計して合成した。
 変異1については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58で示される塩基配列のオリゴヌクレオチドを利用した。
 変異2については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号59および配列番号60で示される塩基配列のオリゴヌクレオチドを利用した。
 変異3については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号61および配列番号62で示される塩基配列のオリゴヌクレオチドを利用した。
 変異4については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号63および配列番号64で示される塩基配列のオリゴヌクレオチドを利用した。
 変異5については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号65および配列番号66で示される塩基配列のオリゴヌクレオチドを利用した。
 変異6については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号67および配列番号68で示される塩基配列のオリゴヌクレオチドを利用した。
 変異7については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異8については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号59および配列番号60、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異9については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号61および配列番号62、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異10については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号63および配列番号64、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異11については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号65および配列番号66、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異12については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号67および配列番号68、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異13については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異14については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号59および配列番号60、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異15については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号61および配列番号62、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異16については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号63および配列番号64、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異17については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号65および配列番号66、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異18については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号67および配列番号68、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異19については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号61および配列番号62、配列番号63および配列番号64、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異20については、配列表の配列番号53および配列番号54、配列番号55および配列番号56、配列番号57および配列番号58、配列番号59および配列番号60、配列番号61および配列番号62、配列番号69および配列番号70で示される塩基配列のオリゴヌクレオチドを利用した。
 変異21については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号71および配列番号72で示される塩基配列のオリゴヌクレオチドを利用した。
 変異22については、配列表の配列番号55および配列番号56、配列番号57および配列番号58で示される塩基配列のオリゴヌクレオチドを利用した。
 変異23については、配列表の配列番号55および配列番号56、配列番号57および配列番号58、配列番号73および配列番号74、配列番号75および配列番号76、配列番号77および配列番号78で示される塩基配列のオリゴヌクレオチドを利用した。
 PCRによる部位特異的変異導入の鋳型には、バチルス・サブチリス(Bacillus subtilis)NBRC3134株からPCRを用いた定法により単離した配列番号2の野生型NAD(P)GDHのDNAをpET-21cにクローニングしたベクターを使用した。以下、本ベクターをpETGDHとも呼ぶ。
 上記の相補的なオリゴヌクレオチドを利用して、QuickChange Lightning Site-Directed Mutagenesis kit(Stratagene製)を使用し、pETGDHを鋳型としてPCRによる部位特異的変異導入を行った。方法はキットに添付のプロトコルに準拠した。
 部位特異的変異導入実験を行ったあとのベクターにより大腸菌DH5αを形質転換してクローニングし、NAD(P)GDHのDNA上に所望の変異が導入できたかどうか、シーケンスにより確認した。
 得られた変異体ベクターを、変異体1から変異体23の順にそれぞれpETGDH1、pETGDH2、pETGDH3、pETGDH4、pETGDH5、pETGDH6、pETGDH7、pETGDH8、pETGDH9、pETGDH10、pETGDH11、pETGDH12、pETGDH13、pETGDH14、pETGDH15、pETGDH16、pETGDH17、pETGDH18、pETGDH19、pETGDH20、pETGDH21、pETGDH22およびpETGDH23と命名した。
 pETGDH1~pETGDH23にクローニングされたNAD(P)GDHのDNA配列は、順に配列表の配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、配列番号24、配列番号26、配列番号28、配列番号30、配列番号32、配列番号34、配列番号36、配列番号38、配列番号40、配列番号42、配列番号44および配列番号46、配列番号48のとおりであった。pETGDHにクローニングされた野生型NAD(P)GDHのDNA配列は配列表の配列番号2のとおりであった。
 したがって、pETGDH1~pETGDH23にクローニングされたNAD(P)GDHのDNA配列にコードされたアミノ酸配列は、順に配列表の配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、配列番号23、配列番号25、配列番号27、配列番号29、配列番号31、配列番号33、配列番号35、配列番号37、配列番号39、配列番号41、配列番号43、配列番号45および配列番号47のとおりであった。pETGDHにクローニングされた野生型NAD(P)GDHのDNA配列にコードされたアミノ酸配列は配列表の配列番号1のとおりであった。
 なお、比較例1として、配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされた変異体[米国特許第7816111号明細書(特許文献4)の配列番号164に記載の変異体]を作成した。
 表1に変異体1~23と比較例1との塩基配列およびアミノ酸配列における相同性(%)、および野生型との塩基配列における相同性(%)を示す。
Figure JPOXMLDOC01-appb-T000001
 pETGDH1~pETGDH23およびpETGDHにより大腸菌DH5αをそれぞれ形質転換した形質転換体を用いて、以下の発現解析実験を行った。
 (2-2)NAD(P)GDH変異体遺伝子の発現
 上述の6種類の形質転換体を100μg/mLのアンピシリンを含むLB寒天プレート培地で培養してコロニーを形成させた。それぞれの形質転換体の単一コロニーを100μg/mLのアンピシリンを含むLB培地1mLに植菌し、37℃で振とう培養した。
 前培養した培養液1mLを、100μg/mLのアンピシリンおよび0.5mMのIPTG(イソプロピル-β-チオガラクトピラノシド)含むTerrific培養液100mLに植菌し、30℃で振とう培養した。培養が完了した後、培養液を遠心分離(8000rpm、10分)してそれぞれの変異体酵素を発現させた大腸菌を回収した。回収した大腸菌は以下の精製工程で使用するまで-80℃で保存した。
 (2-3)精製
 -80℃で保存した大腸菌を20mLの20mM リン酸緩衝液(pH8)に懸濁して超音波により破砕した。破砕液を遠心分離(10000×g、10分)して上清を回収した。得られた上清を、60℃で60分間、熱処理し、遠心分離(10000×g、20分)して上清を回収した。
 得られた遠心上清に氷冷下で35%飽和硫安となるように硫酸アンモニウムを添加して硫安沈殿し、遠心分離(10000×g、20分)により上清を回収した。硫安沈殿後の遠心上清を35%飽和硫安を含む20mM リン酸緩衝液で予め平衡化した6mLのRESOURCE PHEカラム(GEヘルスケア製)に吸着させ、35%から0%飽和硫安の濃度勾配で溶出した。
 回収されたNAD(P)GDH活性を有する画分を20mM リン酸緩衝液(pH8)で透析し、限外濾過膜により濃縮した。SDS-PAGEにより、濃縮されたNAD(P)GDH活性画分が単一のタンパク質まで精製されていることを確認した。20mM リン酸緩衝液(pH8)で透析して濃縮したNAD(P)GDH変異体酵素溶液を以下、精製酵素ともいう。
<実施例3>NAD(P)GDH変異体酵素の性能評価
 該変異体酵素の性能評価は、以下に示す「比活性」、「熱安定性」、「アセトン/熱乾燥耐性」に関して実施した。すべての項目は、酵素原液、酵素希釈液、酵素活性測定溶液のいずれもNAD(P)GDHの安定化作用のある塩化ナトリウムを全く含まない条件で実施した。実験結果は表2にまとめて示す。
 (3-1)比活性の測定
 6種類のNAD(P)GDH変異体酵素それぞれの比活性は、上記した通りの方法により求めた。結果を表2に示す。
 (3-2)熱安定性の測定
 精製酵素を酵素希釈液:20mMリン酸緩衝液(pH8)によりタンパク質濃度を30μg/mLとなるように希釈した。希釈した酵素溶液を1.5mLのプラスチックチューブに0.5mLずつ分注した。該プラスチックチューブを所定の温度に調節したウォーターバスに投入し、30分間、熱処理した。熱処理が終了したら、該プラスチックチューブを氷水に投入して急冷した。熱処理前後の活性を上記した通りの方法により求めた。
 熱処理前の活性値を100としたときの、熱処理後の残存活性(%)を求め、熱安定性の指標とした。その結果を表2に示す。
 (3-3)アセトン/熱乾燥耐性の測定
 精製酵素を酵素希釈液:20mMリン酸緩衝液(pH8)によりタンパク質濃度を500μg/mLとなるように希釈した。希釈した酵素溶液10μLを1.5mLのプラスチックチューブに分注し、そこに90μLのアセトンを加えて室温で1分間よく撹拌した。
 前記プラスチックチューブを50℃に設定した遠心エバポレーターCVE-3100(EYELA製)にセットして30分間の熱乾燥によりすべての溶媒を除去した。乾燥終了後の酵素粉末を20mMリン酸緩衝液(pH8)で再懸濁し、アセトン/熱乾燥処理前後の活性を上記した通りの方法により求めた。
 熱処理前の活性値を100としたときの、熱処理後の残存活性(%)を求めたうえで、変異体22の残存活性を1.0としたときの相対値を求めてアセトン耐性の指標とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比活性に関しては、祖先型変異を導入した変異体1~変異体21及び変異体23は、変異体22(E170K+Q252L)に比べて若干の比活性の低下が観察されたが、実用上の問題が生じるレベルではなかった。
 また、表2に示すように、熱安定性に関しては、変異体1(A159C+E170K+Q252L)、変異体2(Q31G+A159C+E170K+Q252L)、変異体3(G64A+A159C+E170K+Q252L)、変異体4(K111R+A159C+E170K+Q252L)、変異体5(A159C+E170K+K179Y+Q252L)、変異体6(A159C+E170K+A246V+Q252L)、変異体7(E170K+Y217R+I218L+Q252L)、変異体8(Q31G+E170K+Y217R+I218L+Q252L)、変異体9(G64+AE170K+Y217R+I218L+Q252L)、変異体10(K111R+E170K+Y217R+I218L+Q252L)、変異体11(E170K+K179Y+Y217R+I218L+Q252L)、変異体12(E170K+Y217R+I218L+A246V+Q252L)、変異体13(A159C+E170K+Y217R+I218L+Q252L)、変異体14(Q31G+A159C+E170K+Y217R+I218L+Q252L)、変異体15(G64A+A159C+E170K+Y217R+I218L+Q252L)、変異体16(K111R+A159C+E170K+Y217R+I218L+Q252L)、変異体17(A159C+E170K+K179Y+Y217R+I218L+Q252L)、変異体18(A159C+E170K+Y217R+I218L+A246V+Q252L)、変異体19(G64A+K111R+A159C+E170K+Y217R+I218L+Q252L)、変異体20(Q31G+G64A+A159C+E170K+Y217R+I218L+Q252Lが極めて高い熱安定性を有することが示された。
 また、70℃で30分間処理した後の残存活性は、変異体22(E170K+Q252L)が20%を下回ったのに対し、比較例の変異体21(E133K+E170K+Q252L)は45%、変異体23(P45A+N46E+F155Y+E170K+V227A+W230F+Q252L)は74%であった。一方、変異体1から変異体20のすべての祖先型変異体は残存活性が80%以上であり、その多くは失活が全く観察されなかった。
 同様に、80℃で30分間処理した後の残存活性は、比較例の変異体21、変異体22、変異体23は完全に失活した。一方で、変異体1、変異体2、変異体6、変異体7、変異体8、変異体9、変異体10は数%の残存活性を示した。変異体13、変異体14、変異体15、変異体16、変異体17、変異体18、変異体19、変異体20に至っては60%以上の残存活性を示した。
 同様に、84℃で30分間処理した後の残存活性は、比較例の変異体21、変異体22、変異体23は完全に失活した。一方で、変異体13、変異体14、変異体15、変異体16、変異体17、変異体18、変異体19、変異体20至っては30%以上の残存活性を示した。
 表2に示すように、アセトン耐性に関しては、変異体22に対し、比較例の変異体21および変異体23は4倍未満の耐性であったのに対し、祖先型変異を導入した変異体1から変異体20は、4倍以上の高い耐性を有していることが示された。変異体13から変異体20に至っては、7倍以上高い耐性を有していることが示された。
 これらの結果から、E170K+Q252Lのアミノ酸置換をするだけでは、得られる変異体は無機塩非存在下において70℃以上における熱処理後の残存活性が非常に低く、80℃以上の熱処理では失活するため、幅広い温度域で安定して機能することができないことが分かった。
 これに対し、配列番号1に示されるアミノ酸配列においてE170K+Q252Lのアミノ酸置換に加えて、さらにQ31G、G64A、K111R、A159C、K179Y、Y217R、I218LおよびA246Vからなる群より選択される少なくとも1のアミノ酸置換がなされることにより、得られる改変型NAD(P)GDHは、無機塩非存在下において、NAD(P)GDHの高い比活性を維持したまま、70℃以上の熱処理後も安定して機能し、アセトンのような有機溶媒に対する耐性も持ち合わせることができることがわかった。
 さらに、表2に示すように比較例1(I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237C)と比較して、変異体1~20は、顕著に優れた熱安定性、アセトン耐性、および比活性を有するとともに、アセトン耐性にも優れていた。この結果から、本発明の変異体1~20は表1に示すように比較例1および野生型との塩基配列の相同性が95%以上と非常に高いにも関わらず、耐熱性および有機溶媒に対する耐性において顕著に優れていることがわかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更および修正を加えることができることは当業者にとって明らかである。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2011年3月30日付で出願された日本特許出願(特願2011-75449)に基づいており、その全体が引用により援用される。
 本発明により、塩化ナトリウムのような無機塩の存在に制限されず、幅広い温度域で安定して利用できるNAD(P)GDHを提供することが可能になった。より具体的には、工業用途での広範な利用にも耐えうるよう、無機塩の非存在下において、バチルス・サブチリス由来NAD(P)GDHの高い比活性を維持したまま、70℃以上の熱処理後も安定して機能し、アセトンのような有機溶媒に対する耐性も持ち合わせる変異体酵素を遺伝子工学的手法等により提供するとともに、その大量生産に必要な遺伝子、該遺伝子を含む組換えベクター、該ベクターにより得られる形質転換体、該形質転換体を用いる改変型NAD(P)GDHの製造方法を提供する。

Claims (19)

  1.  以下の(a)または(b)のアミノ酸配列を含む、ニコチンアミドアデニンジヌクレオチドまたはニコチンアミドアデニンジヌクレオチドリン酸を補酵素とするグルコースデヒドロゲナーゼ[NAD(P)GDH]活性を有するタンパク質。
    (a)配列表の配列番号1に示されるアミノ酸配列において、170番目のグルタミン酸および252番目のグルタミンが他のアミノ酸に置換され、さらに31番目のグルタミン、64番目のグリシン、111番目のリジン、159番目のアラニン、179番目のリジン、217番目のチロシン、218番目のイソロイシンおよび246番目のアラニンからなる群より選択される少なくとも1以上のアミノ酸が他のアミノ酸に置換されたアミノ酸配列
    (b)前記(a)のアミノ酸配列において、前記170番目、252番目、31番目、64番目、111番目、159番目、179番目、217番目、218番目および246番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列
  2.  前記(a)のアミノ酸配列が、配列表の配列番号1に示されるアミノ酸配列において、以下の(1)のアミノ酸置換がなされ、且つ、(2)~(9)からなる群より選択される少なくとも1のアミノ酸置換がなされたアミノ酸配列である、請求項1に記載のタンパク質。
    (1)E170K+Q252L
    (2)Q31G
    (3)G64A
    (4)K111R
    (5)A159C
    (6)K179Y
    (7)Y217R
    (8)I218L
    (9)A246V
  3.  前記(a)のアミノ酸配列が、配列表の配列番号3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39および41のいずれか1で示されるアミノ酸配列である請求項1または2に記載のタンパク質。
  4.  請求項3に記載のタンパク質のアミノ酸配列において、前記170番目、252番目、31番目、64番目、111番目、159番目、179番目、217番目、218番目および246番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなる、NAD(P)GDH活性を有するタンパク質。
  5.  配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質に比べて、無機塩の非存在下における70℃、30分の加熱処理後の残存活性が高い請求項1~4のいずれか1項に記載のタンパク質。
  6.  無機塩の非存在下における70℃、30分の加熱処理後の残存活性が20%以上である請求項1~5のいずれか1項に記載のタンパク質。
  7.  無機塩の非存在下における80℃、30分の加熱処理後の残存活性が1%以上である請求項1~6のいずれか1項に記載のタンパク質。
  8.  無機塩の非存在下における84℃、30分の加熱処理後の残存活性が1%以上である請求項1~7のいずれか1項に記載のタンパク質。
  9.  無機塩の非存在下における有機溶媒処理後の残存活性が、配列表の配列番号79に示されるアミノ酸配列において、I165M+E170K+P194T+A197K+K204E+K206R+E222D+S237Cのアミノ酸置換がなされたタンパク質に比べて高い請求項1~8のいずれか1項に記載のタンパク質。
  10.  無機塩の非存在下における有機溶媒処理後の残存活性が、配列表の配列番号1に示されるアミノ酸配列からなるタンパク質の該処理後の該残存活性に比べて高い請求項1~9のいずれか1項に記載のタンパク質。
  11.  請求項1~10のいずれか1項に記載のタンパク質をコードするDNA。
  12.  DNAの塩基配列におけるコドン利用頻度を大腸菌のコドン利用頻度に最適化した請求項11に記載のDNA。
  13.  請求項11または請求項12に記載のDNAを含む、組換えベクター。
  14.  請求項12に記載の組換えベクターにより得られる形質転換体。
  15.  宿主が大腸菌である請求項14に記載の形質転換体。
  16.  請求項14または請求項15に記載の形質転換体を培養することによりNAD(P)GDHを生成させ、該NAD(P)GDHを採取することを含む、改変型NAD(P)GDHの製造方法。
  17.  請求項1~10のいずれか1項に記載のタンパク質を含むグルコース測定検査薬。
  18.  請求項1~10のいずれか1項に記載のタンパク質を含むグルコースセンサ。
  19.  請求項1~10のいずれか1項に記載のタンパク質を用いるグルコース濃度の測定方法。
     
PCT/JP2012/058568 2011-03-30 2012-03-30 改変型グルコースデヒドロゲナーゼ WO2012133761A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137028552A KR101980065B1 (ko) 2011-03-30 2012-03-30 개변형 글루코스 데히드로게나제
US14/008,927 US9023608B2 (en) 2011-03-30 2012-03-30 Modified glucose dehydrogenase
JP2013507780A JP5949757B2 (ja) 2011-03-30 2012-03-30 改変型グルコースデヒドロゲナーゼ
EP12765279.0A EP2695939B1 (en) 2011-03-30 2012-03-30 Modified glucose dehydrogenase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011075449 2011-03-30
JP2011-075449 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133761A1 true WO2012133761A1 (ja) 2012-10-04

Family

ID=46931458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058568 WO2012133761A1 (ja) 2011-03-30 2012-03-30 改変型グルコースデヒドロゲナーゼ

Country Status (5)

Country Link
US (1) US9023608B2 (ja)
EP (1) EP2695939B1 (ja)
JP (1) JP5949757B2 (ja)
KR (1) KR101980065B1 (ja)
WO (1) WO2012133761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042032A (ja) * 2014-08-14 2016-03-31 ニプロ株式会社 グルコースセンサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877305B (zh) * 2019-11-29 2022-06-03 湖州颐辉生物科技有限公司 对辅酶亲和力提高的葡萄糖脱氢酶突变体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286779A (ja) 1988-09-22 1990-03-27 Amano Pharmaceut Co Ltd 改良型組換えdna、それを含む形質転換体及びそれを用いた耐熱性グルコースデヒドロゲナーゼの製造法
JPH04258293A (ja) 1991-02-13 1992-09-14 Amano Pharmaceut Co Ltd 組換えdna、それを含む形質転換体及びそれを用い たグルコースデヒドロゲナーゼの製造法
JP2002247991A (ja) 2000-07-04 2002-09-03 Ajinomoto Co Inc タンパク質の耐熱性を向上させる方法、該方法により耐熱性の向上したタンパク質、および該タンパク質をコードする核酸
JP2003310274A (ja) 2002-04-30 2003-11-05 Amano Enzyme Inc グルコース脱水素酵素およびそれをコードする遺伝子
JP2004071559A (ja) 2002-07-26 2004-03-04 Sony Corp 燃料電池
JP2007502114A (ja) * 2003-08-11 2007-02-08 コデクシス, インコーポレイテッド 改良されたグルコースデヒドロゲナーゼポリペプチドおよび関連ポリヌクレオチド
JP2010219021A (ja) 2009-02-20 2010-09-30 Sony Corp 燃料電池、電子機器及びバイオセンサー
JP2011075449A (ja) 2009-09-30 2011-04-14 Kurabo Ind Ltd ヒドロキシルラジカル含有水供給装置
JP2011139677A (ja) 2010-01-08 2011-07-21 Unitika Ltd 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081170A (ko) 2008-10-06 2011-07-13 소니 주식회사 연료 전지 및 효소 전극

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286779A (ja) 1988-09-22 1990-03-27 Amano Pharmaceut Co Ltd 改良型組換えdna、それを含む形質転換体及びそれを用いた耐熱性グルコースデヒドロゲナーゼの製造法
JPH04258293A (ja) 1991-02-13 1992-09-14 Amano Pharmaceut Co Ltd 組換えdna、それを含む形質転換体及びそれを用い たグルコースデヒドロゲナーゼの製造法
JP2002247991A (ja) 2000-07-04 2002-09-03 Ajinomoto Co Inc タンパク質の耐熱性を向上させる方法、該方法により耐熱性の向上したタンパク質、および該タンパク質をコードする核酸
JP2003310274A (ja) 2002-04-30 2003-11-05 Amano Enzyme Inc グルコース脱水素酵素およびそれをコードする遺伝子
JP2004071559A (ja) 2002-07-26 2004-03-04 Sony Corp 燃料電池
JP2007502114A (ja) * 2003-08-11 2007-02-08 コデクシス, インコーポレイテッド 改良されたグルコースデヒドロゲナーゼポリペプチドおよび関連ポリヌクレオチド
US7816111B2 (en) 2003-08-11 2010-10-19 Codexis, Inc. Glucose dehydrogenase polypeptides and related polynucleotides
JP2010219021A (ja) 2009-02-20 2010-09-30 Sony Corp 燃料電池、電子機器及びバイオセンサー
JP2011075449A (ja) 2009-09-30 2011-04-14 Kurabo Ind Ltd ヒドロキシルラジカル含有水供給装置
JP2011139677A (ja) 2010-01-08 2011-07-21 Unitika Ltd 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
B. STEIPE ET AL., J. MOL. BIOL., vol. 240, 1994, pages 188 - 192
EDUARDO ET AL.: "Development of a Thermostable Glucose Dehydrogenase by a Structure-Guided Consensus Concept", CHEMBIOCHEM, vol. 8, 2007, pages 2295 - 2301
EDUARDO ET AL.: "Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media", PROTEIN ENGINEERING,DESIGN&SELECTION, vol. 21, no. 11, 2008, pages 673 - 680
FORTNAGEL ET AL.: "Sequence homologies of glucose-dehydrogenases of Bacillus megaterium and Bacillus subtilis", J THEOR BIOL, vol. 120, no. 4, 1986, pages 489 - 497
HISAKO, I. ET AL., FEMS MICROBIOLOGY LETTERS, vol. 243, 2005, pages 393 - 398
KEIKO, W. ET AL., FEBS LETTERS, vol. 580, 2006, pages 3867 - 3871
KEIZO YAMAMOTO ET AL., J. BIOCHEM., vol. 129, no. 2, 2002, pages 303 - 312
LAMPEL ET AL.: "Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene", J BACTERIOL., vol. 166, no. 1, 1986, pages 238 - 243
RAMALEY ET AL.: "Glycerol protection and purification of Bacillus subtilis glucose dehydrogenase", J BIOL CHEM., vol. 258, no. 20, 1983, pages 12558 - 12565
S.H.BAIK ET AL.: "Significantly enhanced stability of Glucose Dehydrogenase by directed evolution", APPL MICROBIOL BIOTECHNOL., vol. 61, 2003, pages 329 - 335
TATIANA A. TATSUSOVA; THOMAS L. MADDEN, FEMS MICROBIOL. LETT., vol. 174, 1999, pages 247 - 250
VAZQUEZ-FIGUEROA, E. ET AL.: "Development of a Thermostable Glucose Dehydrogenase by a Structure-Guided Consensus Concept", CHEMBIOCHEM, vol. 8, 2007, pages 2295 - 2301, XP055106661 *
VAZQUEZ-FIGUEROA, E. ET AL.: "Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous organic media", PROTEIN ENGINEERING, DESIGN & SELECTION, vol. 21, no. 11, 2008, pages 673 - 680, XP055106659 *
Y. MAKINO ET AL.: "Stability-increasing Mutants of Glucose Dehydrogenase from Bacillus megaterium IWG3", J BIOL CHEM., vol. 264, no. 11, 1989, pages 6381 - 6385

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042032A (ja) * 2014-08-14 2016-03-31 ニプロ株式会社 グルコースセンサ

Also Published As

Publication number Publication date
US9023608B2 (en) 2015-05-05
KR20140032393A (ko) 2014-03-14
EP2695939A1 (en) 2014-02-12
US20140030749A1 (en) 2014-01-30
EP2695939B1 (en) 2017-11-01
JP5949757B2 (ja) 2016-07-13
JPWO2012133761A1 (ja) 2014-07-28
KR101980065B1 (ko) 2019-05-21
EP2695939A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2010053161A1 (ja) 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP2011139677A (ja) 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
US11667897B2 (en) D-amino acid oxidative enzyme mutant and application thereof
JP6853549B2 (ja) 改変型meso−ジアミノピメリン酸脱水素酵素
JP5949757B2 (ja) 改変型グルコースデヒドロゲナーゼ
JP5821843B2 (ja) ジアホラーゼ活性を有するタンパク質
WO2015008637A1 (ja) キサンチンオキシダーゼ遺伝子とそれをコードするアミノ酸配列
JP5289801B2 (ja) ウリカーゼ活性を有する蛋白質
JP6514849B2 (ja) 低温における酵素活性を向上させた好熱菌由来酵素の改変体の取得方法、及び低温における酵素活性が向上しているサーマス・サーモフィラス由来3−イソプロピルリンゴ酸脱水素酵素の改変体
JP6398295B2 (ja) 変異型グルコース−6−リン酸脱水素酵素
JP4352286B2 (ja) 変異型グルコース−6−リン酸デヒドロゲナーゼおよびその製造法
WO2023157936A1 (ja) 改変型d-アルロース-3-エピメラーゼ
JP6369052B2 (ja) 熱安定性アシルCoAシンテターゼ及びその製造方法
JP2942564B2 (ja) 乳酸オキシダーゼの遺伝情報を有するdnaおよびその用途
JP7311496B2 (ja) 改変型エステラーゼ及びその用途
JP6476542B2 (ja) 変異型グルコース−6−リン酸脱水素酵素
JP6398313B2 (ja) 熱安定性アシルCoAオキシダーゼ及びその製造方法
JP4116349B2 (ja) 補酵素依存型を改変したギ酸脱水素酵素
JP2008022766A (ja) ウリカーゼの比活性を向上させる方法、および比活性の向上した改変型ウリカーゼ
JP4890134B2 (ja) ウリカーゼの安定性を向上させる方法、および安定性の向上した改変型ウリカーゼ
JP3220471B2 (ja) 組換えdna、それを含む形質転換体及びそれを用い たグルコースデヒドロゲナーゼの製造法
JPH08238087A (ja) サルコシンオキシダーゼおよびその製造法
JPH0530976A (ja) 耐熱性スーパーオキシドジスムターゼをコードする遺伝子及びそれを含むプラスミド
JP2003250553A (ja) 耐熱性2−デオキシリボース−5−リン酸アルドラーゼ
JPH0880192A (ja) ホスホエノールピルビン酸カルボキシラーゼをコードするdnaおよび該dnaを保有する実質的に純粋な微生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008927

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012765279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012765279

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028552

Country of ref document: KR

Kind code of ref document: A