WO2012132240A1 - 鉄道車両の車体傾斜制御方法 - Google Patents

鉄道車両の車体傾斜制御方法 Download PDF

Info

Publication number
WO2012132240A1
WO2012132240A1 PCT/JP2012/001514 JP2012001514W WO2012132240A1 WO 2012132240 A1 WO2012132240 A1 WO 2012132240A1 JP 2012001514 W JP2012001514 W JP 2012001514W WO 2012132240 A1 WO2012132240 A1 WO 2012132240A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressed air
air reservoir
pressure
vehicle body
Prior art date
Application number
PCT/JP2012/001514
Other languages
English (en)
French (fr)
Inventor
大輔 品川
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CA2830884A priority Critical patent/CA2830884C/en
Priority to CN201280016610.XA priority patent/CN103459233B/zh
Priority to US14/008,198 priority patent/US9238471B2/en
Priority to JP2013507115A priority patent/JP5397566B2/ja
Priority to EP12764173.6A priority patent/EP2692608B1/en
Publication of WO2012132240A1 publication Critical patent/WO2012132240A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/683Electrical control in fluid-pressure brake systems by electrically-controlled valves in pneumatic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • B61F5/10Bolster supports or mountings incorporating fluid springs

Definitions

  • the present invention relates to a vehicle body tilt control method for a railway vehicle that tilts a vehicle body supported by an air spring on a carriage when the railway vehicle travels on a curved road.
  • the railway vehicle is composed of a vehicle body and a carriage, and the vehicle body is supported on the carriage via a pair of air springs on the left and right.
  • a railway vehicle that travels at a high speed such as the Shinkansen
  • the vehicle body tilt control is performed in which compressed air is introduced into the air spring on the outer gauge side and the vehicle body is tilted toward the inner gauge side with respect to the carriage (see, for example, Patent Documents 1 and 2).
  • the vehicle body tilt uses compressed air stored in an air reservoir (air tank) as a power source, and the compressed air is produced by a compressor and supplied to the air reservoir.
  • the compressed air in the air reservoir is a power source for various pneumatic equipments installed in railway vehicles, and is also used as a power source for brake devices in particular. Therefore, from the viewpoint of safety, it must be avoided that the pressure of the compressed air in the air reservoir (hereinafter also referred to as “air reservoir pressure”) decreases excessively.
  • the vehicle body tilt is executed in a continuous section of a curved road, the compressed air in the air reservoir is significantly consumed, so that the air reservoir pressure is excessively reduced, and the brake operation may be hindered. .
  • the vehicle body tilt is forcibly stopped when the air reservoir pressure is equal to or lower than a predetermined pressure even during traveling on a curved road.
  • the vehicle body tilt is stopped when the air reservoir pressure falls below the specified pressure, the compressed air in the air reservoir will not be consumed any further, so that the brake operation will not be disturbed.
  • the tilt angle is 0 (zero), so that the ride comfort is remarkably deteriorated. There is a problem.
  • the present invention has been made in view of the above-described problems, and the vehicle body of a railway vehicle that can suppress deterioration in riding comfort when traveling on a curved road without falling into a situation in which the operation of the brake is hindered.
  • An object is to provide a tilt control method.
  • the present inventors have obtained the following knowledge.
  • the compressed air is replenished to the air reservoir whose pressure has decreased by driving the compressor.
  • the amount of compressed air introduced from the air reservoir to the air spring is limited to less than the amount of compressed air replenished by the compressor, and the vehicle body tilt angle is lowered.
  • the amount of compressed air consumption associated with the inclination is reduced.
  • the tilt angle of the vehicle body is lowered, the vehicle body tilt is executed, so that it is possible to suppress the deterioration of the riding comfort.
  • the amount of compressed air consumption associated with the leaning of the vehicle body is reduced, and more compressed air than is consumed is replenished from the compressor to the air reservoir, so that the air reservoir pressure exceeds the minimum required for brake operation. Therefore, there is no situation where the brake operation is hindered.
  • the present invention has been completed based on the above findings, and the gist of the present invention lies in the vehicle body tilt control method described below. That is, when a railway vehicle travels on a curved road, a vehicle body tilt control method for inclining a vehicle body by introducing compressed air from an air reservoir into a pair of left and right air springs that support the vehicle body on a carriage. When the pressure of the compressed air in the air reservoir is detected, and when the case where the air reservoir pressure falls below the first threshold value due to the introduction of the compressed air into the air spring, the compressed air is supplied to the air reservoir.
  • the compressor is driven and the introduction amount of compressed air from the air reservoir to the air spring is continued, but the introduction amount is limited to less than the replenishment amount of compressed air from the compressor to the air reservoir, and the air reservoir pressure is braked on the railway vehicle.
  • the vehicle body tilt control method for a railway vehicle is characterized by ensuring a pressure that is at least as high as that required for operation of the vehicle.
  • the amount of compressed air introduced into the air spring is limited, and the air reservoir pressure is equal to or higher than the second threshold value exceeding the first threshold value as the compressed air is supplied by the compressor.
  • the driving of the compressor is stopped and the restriction on the amount of compressed air introduced into the air spring is released.
  • an absolute pressure the first threshold value P 1 may be set by the following equation (1)
  • the threshold P 2 of the second the equation (2) below Can be set.
  • P 1 P 0 + ⁇ ⁇ Pm ⁇ k ⁇ A / V ⁇ T
  • P 2 P 0 + ⁇ ⁇ Pm ⁇ k ⁇ A / V ⁇ T + ⁇ ⁇ Pm ⁇ A / V ⁇ T
  • P 0 Air reservoir pressure [kPa] required for brake operation as a minimum
  • Pm average value of air reservoir pressure [kPa]
  • k correction coefficient
  • B Amount of compressed air supplied from the compressor to the air reservoir [m 3 / s]
  • A Amount of introduction of compressed air from the air reservoir to the air spring in an unrestricted state [m 3 / s]
  • V Volume of air reservoir [m 3 ]
  • T Time lag
  • the compressor is driven and the amount of compressed air introduced into the air spring is controlled by the compressor when the air reservoir pressure becomes equal to or less than a predetermined pressure when traveling on a curved road.
  • the amount of compressed air By limiting the amount of compressed air to less than or equal to the replenishment amount, the tilt angle of the vehicle body decreases, but the vehicle body tilt is executed, so that deterioration in ride comfort can be suppressed, and more compressed air is consumed than is consumed. Since the air reservoir is replenished from the compressor, the air reservoir pressure can be ensured to be equal to or higher than the minimum pressure required for the operation of the brake, and the brake operation is not hindered.
  • FIG. 1 is a schematic diagram showing a configuration example of a railway vehicle equipped with a vehicle body tilting device to which the vehicle body tilt control method of the present invention can be applied.
  • FIG. 2 is a flowchart for explaining a control operation by the vehicle body tilt control method of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of a railway vehicle equipped with a vehicle body tilting device to which the vehicle body tilt control method of the present invention can be applied. This figure shows a state in which the vehicle body is tilted when traveling on a curved road.
  • the railway vehicle 1 includes a vehicle body 2 and a carriage 3 that supports the vehicle body 2 in the front-rear direction and travels on the rail 4.
  • the vehicle body 2 is elastically supported by a pair of air springs 5 interposed between the vehicle 3 and the left and right.
  • the railway vehicle 1 includes a vehicle body tilting device that tilts the vehicle body 2 with respect to the carriage 3 in order to tilt the vehicle body 2 toward the inner track side when traveling on a curved road.
  • an air pipe 11 extending from an air reservoir (air tank) 6 to each air spring 5 is disposed, and a tilt control valve 12 is interposed in the path of the air pipe 11.
  • the inclination control valve 12 is connected to the control unit 7 and operates according to a command from the control unit 7.
  • the air reservoir 6 is connected to a compressor 8 that generates compressed air and replenishes the air reservoir 6.
  • the compressor 8 operates according to a command from the control unit 7.
  • a pressure gauge 9 is installed in the air reservoir 6.
  • the pressure gauge 9 detects the pressure of the compressed air stored in the air reservoir 6, that is, the air reservoir pressure, and sends the detection signal to the control unit 7.
  • the air reservoir 6 here includes not only a main tank directly connected to the compressor 8 and mainly storing compressed air, but also an auxiliary tank used only for leaning the vehicle body.
  • air spring height detection sensors 13 for detecting the height of each air spring 5 are provided on both the left and right sides. Based on the output signal from the air spring height detection sensor 13, the control unit 7 sequentially grasps the height of the air spring 5, and further the inclination angle of the vehicle body 2 from the air spring height. This is to ensure proper operation.
  • a rotation angle sensor such as a resolver or an encoder can be employed.
  • the basic control operation when the vehicle body is tilted as when traveling on a curved road at high speed is as follows. Based on the trajectory information of the curved road, the control unit 7 selects an appropriate inclination angle ⁇ of the vehicle body 2 from a database registered in advance in its own memory, and the vehicle body 2 is inclined at the appropriate predetermined inclination angle ⁇ . The tilt control valve 12 is actuated to do this.
  • the height of the air spring 5 on the outer gauge side (right side in FIG. 1) of the left and right air springs 5 is made higher than the height of the air spring 5 on the inner gauge side (left side in FIG. 1).
  • compressed air is introduced from the air reservoir 6 through the air pipe 11 to the air spring 5 on the outer gauge side by the operation of the inclination control valve 12 on the outer gauge side. (Refer to the solid arrow in FIG. 1).
  • the air in the inner spring air spring 5 is discharged to the outside through the air pipe 11 (see the broken line arrow in FIG. 1).
  • the control unit 7 sequentially acquires the output signal from the air spring height detection sensor 13 to detect the height of the air spring 5, and further sequentially grasps the inclination angle of the vehicle body 2 from the air spring height. is doing. Then, the control unit 7 continuously operates the inclination control valve 12 so that the inclination angle of the vehicle body 2 to be sequentially detected becomes an appropriate predetermined inclination angle ⁇ , and supply / exhaust of compressed air to the air spring 5. I do.
  • the railcar 1 can incline the vehicle body 2 with respect to the carriage 3 at an appropriate predetermined inclination angle ⁇ when traveling on a curved road.
  • Vehicle Body Tilt Control Method In the above-described basic vehicle body tilt control, the vehicle body 2 is inclined at an appropriate predetermined inclination angle ⁇ when traveling on a curved road, so that riding comfort can be improved. However, if such a vehicle body tilt is executed in a continuous section of the curved road, the compressed air in the air reservoir 6 is consumed significantly, so that the air reservoir pressure decreases excessively and the brake of the railway vehicle 1 is reduced. Operation may be disturbed. Therefore, in the vehicle body tilt control method of the present invention, the following control is performed in addition to the above basic control.
  • FIG. 2 is a flowchart for explaining a control operation by the vehicle body tilt control method of the present invention.
  • the control unit 7 controls the pressure gauge 9 installed in the air reservoir 6 in step # 5.
  • the detection signal is sequentially acquired from the air and the air reservoir pressure is detected.
  • the control unit 7 sequentially determines whether the air reservoir pressure is the first threshold value P 1 or less.
  • compressed air is introduced from the air reservoir 6 to the air spring 5 and the compressed air in the air reservoir 6 is consumed as the vehicle body is tilted at an appropriate predetermined inclination angle ⁇ . It gradually decreases.
  • the first threshold value P 1 at least, the value of the above pressure the minimum required to operate the brake is set.
  • the first threshold value P 1 is registered in advance in the memory of the control unit 7.
  • step # 10 if the air reservoir pressure exceeds the first threshold value P 1, the process proceeds to step # 15, without limiting the introduction of compressed air to the air springs 5, the body 2 proper predetermined Is maintained at the inclination angle ⁇ . In this case, since the air reservoir pressure is greater than the first threshold value P 1, and the air reservoir pressure is secured over the pressure to minimum required to operate the brake, there is no trouble in operation of the brake.
  • step # 10 if the air reservoir pressure reaches the first threshold value P 1 or less, the process proceeds to step # 20 and # 25, thereby simultaneously restoring air reservoir pressure By keeping the consumption of compressed air Transition to pressure recovery mode. That is, in step # 20, the control unit 7 drives the compressor 8. Thereby, compressed air is replenished to the air reservoir 6 in which the pressure has decreased.
  • step # 25 the control unit 7 continues the introduction of the compressed air from the air reservoir 6 to the air spring 5, while restricting the introduction amount to be equal to or less than the replenishment amount of the compressed air by the compressor 8.
  • the inclination angle is lowered from an appropriate predetermined inclination angle ⁇ . This is because the inclination angle of the vehicle body 2 decreases almost in proportion to the decrease in the amount of compressed air introduced into the air spring 5.
  • the control unit 7 selects an inclination angle ⁇ L smaller than a predetermined predetermined inclination angle ⁇ corresponding to the pressure recovery mode from a database registered in advance in its own memory, and the vehicle body 2 actuating the tilt control valve 12 to tilt at the tilt angle theta L of the pressure recovery mode. Thereby, the consumption of compressed air accompanying a vehicle body inclination is reduced.
  • step # 20 and # 25 pressure recovery mode By moving such a step # 20 and # 25 pressure recovery mode, although the inclination angle of the vehicle body 2 is suppressed to an appropriate predetermined inclination angle theta is less than the inclination angle theta L, since the vehicle body inclination is performed , Deterioration of ride comfort can be suppressed.
  • the amount of compressed air consumption associated with the leaning of the vehicle body is reduced, and more compressed air than is consumed is replenished from the compressor 8 to the air reservoir 6, so that the air reservoir pressure is at least required for the operation of the brake The pressure can be secured above the pressure, and there will be no trouble in operating the brake.
  • the control unit 7 sequentially obtains detection signals from the pressure gauge 9 in step # 30 to obtain the air reservoir pressure. detected at the next step # 35, the air reservoir pressure is successively determines whether a second threshold value P 2 or more.
  • the second threshold value P 2 the value exceeds the first threshold value P 1 is set.
  • the second threshold value P 2 is also registered in advance in the memory of the control unit 7.
  • step # 35 it determines if the air reservoir pressure falls below the second threshold value P 2, maintains the pressure recovery mode.
  • step # 35 the air reservoir pressure is when it becomes the second threshold value P 2 or more
  • the process proceeds to step # 40 and # 45 to release the pressure recovery mode. That is, the control unit 7 stops the drive of the compressor 8 at step # 40, and at the same time, at step # 45, the control unit 7 releases the restriction on the amount of compressed air introduced into the air spring 5, and The inclination angle is returned to an appropriate predetermined inclination angle ⁇ . Thereby, riding comfort can be improved again.
  • Step # 5 return to Step # 5 and repeat the above control operation.
  • the above control operation is forcibly terminated.
  • the first threshold value P 1 and the second threshold value P 2 The following shows a first example of a threshold value P 1 and the second threshold value P 2, which can be employed in the vehicle body tilt control method of the present invention described above.
  • the first threshold value P 1 [kPa] is an absolute pressure and is set by the following equation (1)
  • the second threshold value P 2 [kPa] is an absolute pressure and is set by the following equation (2). Can do. Also, usually, the first threshold value P 1 is higher than the value set by (1), the second threshold value P 2 is set higher than the value set by the equation (2).
  • P 1 P 0 + ⁇ ⁇ Pm ⁇ k ⁇ A / V ⁇ T (1)
  • P 2 P 0 + ⁇ ⁇ Pm ⁇ k ⁇ A / V ⁇ T + ⁇ ⁇ Pm ⁇ A / V ⁇ T (2)
  • P 0 Air reservoir pressure [kPa] required for brake operation as a minimum
  • Pm average value of air reservoir pressure [kPa]
  • k correction coefficient
  • B Amount of compressed air supplied from the compressor to the air reservoir [m 3 / s]
  • A Amount of introduction of compressed air from the air reservoir to the air spring in an unrestricted state [m 3 / s]
  • V Volume of air reservoir [m 3 ]
  • T Time lag [s] from the start of driving in the compressor to the start of discharge of compressed air.
  • the first threshold value P 1 represented by the above equation (1) and the second threshold value P 2 represented by the above equation (2) are those in consideration of the actual operating characteristics of the compressor 8. That is, in the operation of the compressor 8, a certain time lag T is generated from the start of driving until the stable supply of compressed air starts. During this time lag T, since the compressed air is not supplied to the air reservoir 6, the compressed air in the air reservoir 6 is only consumed as the vehicle body tilts.
  • the process proceeds to pressure recovery mode by the threshold P 1 as the starting point, even consumption amount introduced is limited compressed air is reduced during the time lag T, It is necessary to make sure that the air reservoir pressure does not fall below the minimum pressure required for brake operation. Therefore, the above equation (1) takes into account the consumption of compressed air at the time lag T due to the introduction of limited compressed air by the second term ( ⁇ ⁇ Pm ⁇ k ⁇ A / V ⁇ T). .
  • the average value Pm of the air reservoir pressure is appropriately set in consideration of the normal use state of the air reservoir pressure.
  • the thresholded P 2 pressure recovery mode by starting at the release, with the compressor 8 is stopped, the consumption without limitation introduction amount of compressed air is increased Therefore, it is necessary to avoid re-entering the pressure recovery mode immediately after the pressure recovery mode is released. For this reason, the above expression (2) takes into account the consumption of compressed air at the time lag T due to the introduction of unrestricted compressed air by the third term ( ⁇ ⁇ Pm ⁇ A / V ⁇ T).
  • the threshold P 2 of the second represented by the above formula (2), by substituting equation (1) can also be expressed by the following expression (3).
  • P 2 P 1 + ⁇ ⁇ Pm ⁇ A / V ⁇ T (3)
  • the correction coefficient k can be arbitrarily determined as long as the condition of B / A or lower ( ⁇ B / A) is satisfied.
  • the compressor discharge rate is 1600 [NL / min]
  • the average value of the air reservoir pressure is 800 [kPa] as the gauge pressure.
  • the correction coefficient k is set to a value of 0.54 or less, for example 0.5.
  • the expression (3) ((2)) from equation, the second threshold value P 2 is as follows.
  • the vehicle body tilt control method of the present invention it is possible to suppress the deterioration of the ride comfort even when the air reservoir pressure is equal to or lower than a specified pressure when traveling on a curved road.
  • the air reservoir pressure can be ensured to be equal to or higher than the minimum pressure required for the operation of the brake, and no trouble occurs in the operation of the brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 鉄道車両が曲線路を走行する際の車体傾斜制御において、空気溜め内の圧縮空気の圧力を検知し、この空気溜め圧が空気バネへの圧縮空気の導入に伴って第1の閾値P以下となった場合を検知したとき、空気溜めに圧縮空気を補給するコンプレッサを駆動させるとともに、空気溜めから空気バネへの圧縮空気の導入を継続しつつその導入量をコンプレッサから空気溜めへの圧縮空気の補給量以下に制限し、空気溜め圧を鉄道車両のブレーキの作動に最低限必要とする圧力以上に確保する。これにより、ブレーキの作動に支障が生じる事態に陥ることなく、曲線路を走行する際に乗り心地の悪化を抑制することができる。

Description

鉄道車両の車体傾斜制御方法
 本発明は、鉄道車両が曲線路を走行する際に、台車上で空気バネによって支持された車体を傾斜させる鉄道車両の車体傾斜制御方法に関する。
 鉄道車両は車体と台車から構成され、車体は台車上に左右に一対の空気バネを介して支持される。通常、新幹線などのように高速で走行する鉄道車両は、曲線路を走行する際、遠心力が作用し乗客に不快感を与える。そこで、乗り心地を向上させるために、外軌側の空気バネに圧縮空気を導入して、台車に対し車体を内軌側に傾倒させる車体傾斜制御が行われる(例えば、特許文献1、2参照)。車体傾斜は、空気溜め(エアタンク)に蓄えられた圧縮空気を動力源とし、その圧縮空気は、コンプレッサにより作り出され空気溜めに補給される。
 一般に、空気溜め内の圧縮空気は、鉄道車両に装備される種々の空気圧機器の動力源であり、特にブレーキ装置の動力源としても用いられる。したがって、安全上の観点から、空気溜め内の圧縮空気の圧力(以下、「空気溜め圧」ともいう)が低下し過ぎることは避けなければならない。
 しかし、曲線路の連続する区間で車体傾斜が実行されると、空気溜め内の圧縮空気が著しく消費されることから、空気溜め圧が過剰に低下し、ブレーキの作動に支障が生じるおそれがある。このため、従来の車体傾斜制御方法では、曲線路の走行時であっても、空気溜め圧が規定の圧力以下となった場合は、車体傾斜を強制的に中止するようにしている。
特開平5-238387号公報 特開2008-254577号公報
 上述の通り、空気溜め圧が規定の圧力以下となった場合に車体傾斜を中止すれば、空気溜め内の圧縮空気がそれ以上消費されないため、ブレーキの作動に支障が生じる事態は起こらない。しかし、曲線路の走行時にもかかわらず、車体傾斜の中止に伴い、台車に対して車体が傾斜しない状態、すなわち傾斜角度が0(ゼロ)の状態になることから、乗り心地が顕著に悪化するという問題がある。
 本発明は、上記の問題に鑑みてなされたものであり、ブレーキの作動に支障が生じる事態に陥ることなく、曲線路を走行する際に乗り心地の悪化を抑制することができる鉄道車両の車体傾斜制御方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、下記の知見を得た。曲線路の走行時に空気溜め圧が規定の圧力以下となった場合、コンプレッサを駆動させることにより、圧力が低下した空気溜めに圧縮空気が補給される。これと同時に、車体傾斜を中止しなくても、空気溜めから空気バネへの圧縮空気の導入量をコンプレッサによる圧縮空気の補給量以下に制限して、車体の傾斜角度を低下させることにより、車体傾斜に伴う圧縮空気の消費量が低減される。
 これらのことから、車体の傾斜角度が低下するものの、車体傾斜が実行されるので、乗り心地の悪化を抑制することができる。しかも、車体傾斜に伴う圧縮空気の消費量が低減されるとともに、消費される以上の圧縮空気がコンプレッサから空気溜めに補給されるので、空気溜め圧をブレーキの作動に最低限必要とする圧力以上に確保することができ、ブレーキの作動に支障が生じる事態は起こらない。
 本発明は上記の知見に基づいて完成させたものであり、その要旨は、下記に示す鉄道車両の車体傾斜制御方法にある。すなわち、鉄道車両が曲線路を走行する際に、台車上で車体を支持する左右に一対の空気バネに空気溜めから圧縮空気を導入して車体を傾斜させる鉄道車両の車体傾斜制御方法であって、空気溜め内の圧縮空気の圧力を検知し、この空気溜め圧が空気バネへの圧縮空気の導入に伴って第1の閾値以下となった場合を検知したとき、空気溜めに圧縮空気を補給するコンプレッサを駆動させるとともに、空気溜めから空気バネへの圧縮空気の導入を継続しつつその導入量をコンプレッサから空気溜めへの圧縮空気の補給量以下に制限し、空気溜め圧を鉄道車両のブレーキの作動に最低限必要とする圧力以上に確保することを特徴とする鉄道車両の車体傾斜制御方法である。
 上記の車体傾斜制御方法は、空気バネへの圧縮空気の導入量を制限している状態で、空気溜め圧がコンプレッサによる圧縮空気の補給に伴って前記第1の閾値を超える第2の閾値以上となった場合を検知したとき、コンプレッサの駆動を停止させるとともに、空気バネへの圧縮空気の導入量の制限を解除する構成とすることが好ましい。
 上記の車体傾斜制御方法において、絶対圧で、前記第1の閾値Pは、下記の(1)式により設定することができ、前記第2の閾値Pは、下記の(2)式により設定することができる。
 P=P+γ×Pm×k×A/V×T …(1)
 P=P+γ×Pm×k×A/V×T+γ×Pm×A/V×T …(2)
 ただし、上記の(1)式、(2)式中、
 P:ブレーキの作動に最低限必要とする空気溜め圧[kPa]、
 γ:ポリトープ指数、
 Pm:空気溜め圧の平均値[kPa]、
 k:補正係数;<B/A、
 B:コンプレッサから空気溜めへの圧縮空気の補給量[m/s]、
 A:空気溜めから空気バネへの圧縮空気の制限しない状態での導入量[m/s]、
 V:空気溜めの容積[m]、および
 T:コンプレッサにおける駆動開始から圧縮空気の吐出開始までのタイムラグ[s]。
 本発明の鉄道車両の車体傾斜制御方法によれば、曲線路の走行時に空気溜め圧が規定の圧力以下となった場合、コンプレッサを駆動させるとともに、空気バネへの圧縮空気の導入量をコンプレッサによる圧縮空気の補給量以下に制限することにより、車体の傾斜角度が低下するものの、車体傾斜が実行されるので、乗り心地の悪化を抑制することができ、しかも、消費される以上の圧縮空気がコンプレッサから空気溜めに補給されるので、空気溜め圧をブレーキの作動に最低限必要とする圧力以上に確保することができ、ブレーキの作動に支障が生じる事態に陥ることもない。
図1は、本発明の車体傾斜制御方法を適用できる車体傾斜装置を搭載した鉄道車両の構成例を示す模式図である。 図2は、本発明の車体傾斜制御方法による制御動作を説明するフローチャートである。
 以下に、本発明の鉄道車両の車体傾斜制御方法について、その実施形態を詳述する。
 1.鉄道車両の構成
 図1は、本発明の車体傾斜制御方法を適用できる車体傾斜装置を搭載した鉄道車両の構成例を示す模式図である。同図では、曲線路の走行時に車体傾斜を実行している状態を示している。
 鉄道車両1は、車体2と、この車体2を前後で支持する台車3とから構成され、レール4上を走行する。車体2は、台車3との間に介装された左右に一対の空気バネ5によって弾性支持される。鉄道車両1は、曲線路を走行する際に車体2を内軌側に傾倒させるため、台車3に対し車体2を傾斜させる車体傾斜装置を備える。
 車体傾斜装置としては、空気溜め(エアタンク)6から各空気バネ5に到る空気配管11が配設され、この空気配管11の経路に傾斜制御弁12が介設される。傾斜制御弁12は制御部7に接続されており、制御部7からの指令により作動する。
 空気溜め6には、圧縮空気を作り出し空気溜め6に補給するコンプレッサ8が連結される。コンプレッサ8は、制御部7からの指令により作動する。また、空気溜め6には、圧力計9が設置される。圧力計9は、空気溜め6に蓄えられた圧縮空気の圧力、すなわち空気溜め圧を検出し、その検出信号を制御部7に送出する。なお、ここでいう空気溜め6は、コンプレッサ8に直接連結され圧縮空気を主体的に蓄える主タンクのほかに、車体傾斜のみに用いられる補助タンクも含む。
 また、車体2と台車3の間には、左右の両側に各空気バネ5の高さを検出するための空気バネ高さ検知センサ13が設けられる。空気バネ高さ検知センサ13からの出力信号に基づいて、制御部7により、空気バネ5の高さ、さらにはこの空気バネ高さから車体2の傾斜角度を逐次把握し、傾斜制御弁12を適切に作動させるためである。空気バネ高さ検知センサ13としては、レゾルバまたはエンコーダといった回転角度センサを採用することができる。
 このような鉄道車両1において、高速での曲線路走行時のように車体傾斜を実行する際の基本的な制御動作は、以下の通りである。制御部7は、曲線路の軌道情報に基づいて、自身のメモリに予め登録されているデータベースから車体2の適正な傾斜角度θを選定し、車体2がその適正な所定の傾斜角度θで傾斜するように傾斜制御弁12を作動させる。
 具体的には、左右の空気バネ5のうちの外軌側(図1では右側)の空気バネ5の高さを内軌側(図1では左側)の空気バネ5の高さよりも高くして、車体2を内軌側に所定の傾斜角度θで傾倒させるため、外軌側の傾斜制御弁12の作動により、空気溜め6から空気配管11を通じて外軌側の空気バネ5に圧縮空気を導入する(図1中の実線矢印参照)。場合によっては、それと同時に内軌側の傾斜制御弁12の作動により、内軌側の空気バネ5内の空気を空気配管11を通じて外部に排出する(図1中の破線矢印参照)。
 その際、制御部7は、空気バネ高さ検知センサ13からの出力信号を逐次取得して、空気バネ5の高さを検知し、さらにこの空気バネ高さから車体2の傾斜角度を逐次把握している。そして、制御部7は、逐次検知する車体2の傾斜角度が適正な所定の傾斜角度θとなるように、傾斜制御弁12を継続して作動させ、空気バネ5に対して圧縮空気の給排気を行う。こうして、鉄道車両1は、曲線路を走行する際、台車3に対して車体2を適正な所定の傾斜角度θに傾斜させることができる。
 2.車体傾斜制御方法
 上述した車体傾斜の基本的な制御では、曲線路の走行時に車体2が適正な所定の傾斜角度θに傾斜するため、乗り心地を向上させることができる。ただし、このような車体傾斜が曲線路の連続する区間で実行されると、空気溜め6内の圧縮空気が著しく消費されることから、空気溜め圧が過剰に低下し、鉄道車両1のブレーキの作動に支障が生じるおそれがある。そこで、本発明の車体傾斜制御方法では、上記の基本的な制御に加え、以下に示す制御を行う。
 図2は、本発明の車体傾斜制御方法による制御動作を説明するフローチャートである。車体2が適正な所定の傾斜角度θに傾斜した状態で鉄道車両1が曲線路を走行している際に、ステップ#5にて、制御部7は、空気溜め6に設置された圧力計9から検出信号を逐次取得し、空気溜め圧を検知する。続くステップ#10にて、制御部7は、空気溜め圧が第1の閾値P以下であるか否かを逐次判定する。このとき、適正な所定の傾斜角度θでの車体傾斜に伴って、空気溜め6から空気バネ5に圧縮空気が導入され、空気溜め6内の圧縮空気が消費されることから、空気溜め圧は次第に低下する。ここで、第1の閾値Pとしては、少なくとも、ブレーキの作動に最低限必要とする圧力以上の値が設定される。この第1の閾値Pは、制御部7のメモリに予め登録されている。
 ステップ#10の判定にて、空気溜め圧が第1の閾値Pを上回る場合、ステップ#15に進み、空気バネ5への圧縮空気の導入量を制限することなく、車体2を適正な所定の傾斜角度θに維持する。この場合、空気溜め圧が第1の閾値Pを上回っていることから、空気溜め圧がブレーキの作動に最低限必要とする圧力以上に確保されており、ブレーキの作動に支障は生じない。
 一方、ステップ#10の判定にて、空気溜め圧が第1の閾値P以下となった場合は、ステップ#20および#25に進み、圧縮空気の消費を抑えると同時に空気溜め圧を回復させる圧力回復モードに移行する。すなわち、ステップ#20では、制御部7はコンプレッサ8を駆動させる。これにより、圧力が低下した空気溜め6に圧縮空気が補給される。
 また、ステップ#25では、制御部7は、空気溜め6から空気バネ5への圧縮空気の導入を継続しつつ、その導入量をコンプレッサ8による圧縮空気の補給量以下に制限し、車体2の傾斜角度を適正な所定の傾斜角度θから低下させる。車体2の傾斜角度は、空気バネ5への圧縮空気の導入量の低下に伴って、ほぼ比例して低下するからである。具体的には、制御部7は、自身のメモリに予め登録されているデータベースから、圧力回復モードに対応して適正な所定の傾斜角度θよりも小さい傾斜角度θを選定し、車体2がその圧力回復モードの傾斜角度θで傾斜するように傾斜制御弁12を作動させる。これにより、車体傾斜に伴う圧縮空気の消費量が低減される。
 このようなステップ#20および#25の圧力回復モードに移行することにより、車体2の傾斜角度が適正な所定の傾斜角度θより小さい傾斜角度θに抑えられるものの、車体傾斜が実行されるので、乗り心地の悪化を抑制することができる。しかも、車体傾斜に伴う圧縮空気の消費量が低減されるとともに、消費される以上の圧縮空気がコンプレッサ8から空気溜め6に補給されるので、空気溜め圧をブレーキの作動に最低限必要とする圧力以上に確保することができ、ブレーキの作動に支障が生じる事態は起こらない。
 引き続き、圧力回復モードで空気バネ5への圧縮空気の導入量を制限している状態において、制御部7は、ステップ#30にて、圧力計9から検出信号を逐次取得して空気溜め圧を検知し、続くステップ#35にて、空気溜め圧が第2の閾値P以上であるか否かを逐次判定する。このとき、空気溜め6には、コンプレッサ8による圧縮空気の補給に伴って、消費される以上の圧縮空気が空気溜め6に補給されることから、空気溜め圧は次第に上昇する。ここで、第2の閾値Pとしては、第1の閾値Pを超える値が設定される。この第2の閾値Pも、制御部7のメモリに予め登録されている。
 ステップ#35の判定にて、空気溜め圧が第2の閾値Pを下回る場合、そのまま圧力回復モードを維持する。
 一方、ステップ#35の判定にて、空気溜め圧が第2の閾値P以上となった場合は、ステップ#40および#45に進み、圧力回復モードを解除する。すなわち、制御部7は、ステップ#40にて、コンプレッサ8の駆動を停止させ、これと同時に、ステップ#45にて、空気バネ5への圧縮空気の導入量の制限を解除し、車体2の傾斜角度を適正な所定の傾斜角度θに復帰させる。これにより、再び乗り心地を向上させることができる。
 そして、ステップ#5に戻り、上記の制御動作を繰り返す。上記の制御動作の最中に鉄道車両1が曲線路を抜けた場合は、上記の制御動作を強制終了する。
 3.第1の閾値Pおよび第2の閾値P
 以下に、上述した本発明の車体傾斜制御方法で採用できる第1の閾値Pおよび第2の閾値Pの一例を示す。第1の閾値P[kPa]は、絶対圧で、下記の(1)式により設定し、第2の閾値P[kPa]は、絶対圧で、下記の(2)式により設定することができる。また、通常は、第1の閾値Pは(1)式により設定される値より高く、第2の閾値Pは、(2)式により設定される値より高く設定される。
 P=P+γ×Pm×k×A/V×T …(1)
 P=P+γ×Pm×k×A/V×T+γ×Pm×A/V×T …(2)
 ただし、上記の(1)式、(2)式中、
 P:ブレーキの作動に最低限必要とする空気溜め圧[kPa]、
 γ:ポリトープ指数、
 Pm:空気溜め圧の平均値[kPa]、
 k:補正係数;<B/A、
 B:コンプレッサから空気溜めへの圧縮空気の補給量[m/s]、
 A:空気溜めから空気バネへの圧縮空気の制限しない状態での導入量[m/s]、
 V:空気溜めの容積[m]、および
 T:コンプレッサにおける駆動開始から圧縮空気の吐出開始までのタイムラグ[s]。
 上記(1)式で表される第1の閾値P、および上記(2)式で表される第2の閾値Pは、実際のコンプレッサ8の動作特性を考慮したものである。すなわち、コンプレッサ8の動作においては、駆動が開始してから安定して圧縮空気の補給が開始するまでに、ある程度のタイムラグTが発生する。このタイムラグTの間は、空気溜め6に圧縮空気が補給されないため、車体傾斜に伴って空気溜め6内の圧縮空気が消費されるのみとなる。
 したがって、第1の閾値Pを定めるにあたり、この閾値Pを起点にして圧力回復モードに移行し、圧縮空気の導入量が制限されて消費量が低減したとしても、タイムラグTの間に、空気溜め圧がブレーキの作動に最低限必要とする圧力を下回らないようにする必要がある。このため、上記(1)式は、第2項(γ×Pm×k×A/V×T)により、制限された圧縮空気の導入によるタイムラグTでの圧縮空気の消費量を加味している。空気溜め圧の平均値Pmは、空気溜め圧の通常の使用状態を考慮し、適宜設定される。
 また、第2の閾値Pを定めるにあたり、この閾値Pを起点にして圧力回復モードが解除され、コンプレッサ8が停止するとともに、圧縮空気の導入量が制限されずに消費量が増加することから、圧力回復モード解除後に直ちに圧力回復モードに再移行するのを回避する必要がある。このため、上記(2)式は、第3項(γ×Pm×A/V×T)により、制限されていない圧縮空気の導入によるタイムラグTでの圧縮空気の消費量を加味している。
 なお、上記(2)式で表される第2の閾値Pは、上記(1)式を代入して、下記の(3)式で表すこともできる。
 P=P+γ×Pm×A/V×T …(3)
 ここで、上記(1)式、上記(2)式中のポリトープ指数γは、最大で1.4を採用する。また、補正係数kは、B/A以下(≦B/A)の条件を満足すれば、任意に定めることができる。
 上記(1)式による第1の閾値P、および上記(2)式((3)式)による第2の閾値Pの具体例を以下に示す。
 2車両につき1台のコンプレッサが搭載された鉄道車両について、コンプレッサの吐出量が1600[NL/min]であり、空気溜め圧の平均値がゲージ圧で800[kPa]であるとすると、コンプレッサから空気溜めへの圧縮空気の補給量Bは、以下の通りとなる。
 B=1600/2/60×101.3/(800+101.3)≒1.5[L/s]=1.5×10-3[m/s]
 車体傾斜装置による空気バネへの給気能力が1500[NL/min]であるとすると、空気溜めから空気バネへの圧縮空気の制限しない状態での導入量Aは、以下の通りとなる。
 A=1500/60×101.3/(800+101.3)≒2.8[L/s]=2.8×10-3[m/s]
 したがって、B/Aは0.54となる。このことから、補正係数kは、0.54以下の値、例えば0.5とする。
 そして、空気溜めの容積Vが300[L]で、コンプレッサ動作のタイムラグTが10[s]で、ブレーキの作動に最低限必要とする空気溜め圧Pが590[kPa]であり、ポリトープ指数γとして1.4を採用すると、上記(1)式より、第1の閾値Pは以下の通りとなる。
 P=590+1.4×(800+101.3)×0.5×2.8/300×10=590+59=649[kPa]
 また、上記(3)式((2)式)式より、第2の閾値Pは以下の通りとなる。
 P=649+1.4×(800+101.3)×2.8/300×10=649+118=767[kPa]
 以上の通り、本発明の鉄道車両の車体傾斜制御方法によれば、曲線路の走行時に空気溜め圧が規定の圧力以下となった場合であっても、乗り心地の悪化を抑制することができ、しかも、空気溜め圧をブレーキの作動に最低限必要とする圧力以上に確保することができ、ブレーキの作動に支障が生じる事態は起こらない。
  1:鉄道車両、  2:車体、  3:台車、  4:レール、
  5:空気バネ、  6:空気溜め、  7:制御部、  
  8:コンプレッサ、  9:圧力計、  11:空気配管、  
  12:傾斜制御弁、  13:空気バネ高さ検知センサ、  
  P:第1の閾値、  P:第2の閾値

Claims (4)

  1.  鉄道車両が曲線路を走行する際に、台車上で車体を支持する左右に一対の空気バネに空気溜めから圧縮空気を導入して車体を傾斜させる鉄道車両の車体傾斜制御方法であって、
     空気溜め内の圧縮空気の圧力を検知し、この空気溜め圧が空気バネへの圧縮空気の導入に伴って第1の閾値以下となった場合を検知したとき、空気溜めに圧縮空気を補給するコンプレッサを駆動させるとともに、空気溜めから空気バネへの圧縮空気の導入を継続しつつその導入量をコンプレッサから空気溜めへの圧縮空気の補給量以下に制限し、空気溜め圧を鉄道車両のブレーキの作動に最低限必要とする圧力以上に確保する
    ことを特徴とする鉄道車両の車体傾斜制御方法。
  2.  前記第1の閾値Pは、絶対圧で、下記の(1)式により設定する
    ことを特徴とする請求項1に記載の鉄道車両の車体傾斜制御方法。
     P=P+γ×Pm×k×A/V×T …(1)
     ただし、上記の(1)式中、
     P:ブレーキの作動に最低限必要とする空気溜め圧[kPa]、
     γ:ポリトープ指数、
     Pm:空気溜め圧の平均値[kPa]、
     k:補正係数;<B/A、
     B:コンプレッサから空気溜めへの圧縮空気の補給量[m/s]、
     A:空気溜めから空気バネへの圧縮空気の制限しない状態での導入量[m/s]、
     V:空気溜めの容積[m]、および
     T:コンプレッサにおける駆動開始から圧縮空気の吐出開始までのタイムラグ[s]。
  3.  空気バネへの圧縮空気の導入量を制限している状態で、空気溜め圧がコンプレッサによる圧縮空気の補給に伴って前記第1の閾値を超える第2の閾値以上となった場合を検知したとき、コンプレッサの駆動を停止させるとともに、空気バネへの圧縮空気の導入量の制限を解除する
    ことを特徴とする請求項1または2に記載の鉄道車両の車体傾斜制御方法。
  4.  前記第2の閾値Pは、絶対圧で、下記の(2)式により設定する
    ことを特徴とする請求項3に記載の鉄道車両の車体傾斜制御方法。
     P=P+γ×Pm×k×A/V×T+γ×Pm×A/V×T …(2)
     ただし、上記の(2)式中、
     P:ブレーキの作動に最低限必要とする空気溜め圧[kPa]、
     γ:ポリトープ指数、
     Pm:空気溜め圧の平均値[kPa]、
     k:補正係数;<B/A、
     B:コンプレッサから空気溜めへの圧縮空気の補給量[m/s]、
     A:空気溜めから空気バネへの圧縮空気の制限しない状態での導入量[m/s]、
     V:空気溜めの容積[m]、および
     T:コンプレッサにおける駆動開始から圧縮空気の吐出開始までのタイムラグ[s]。
PCT/JP2012/001514 2011-03-31 2012-03-06 鉄道車両の車体傾斜制御方法 WO2012132240A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2830884A CA2830884C (en) 2011-03-31 2012-03-06 Method for control of vehicle body tilting of railway vehicle
CN201280016610.XA CN103459233B (zh) 2011-03-31 2012-03-06 铁路车辆的车体倾斜控制方法
US14/008,198 US9238471B2 (en) 2011-03-31 2012-03-06 Method for control of vehicle body tilting of railway vehicle
JP2013507115A JP5397566B2 (ja) 2011-03-31 2012-03-06 鉄道車両の車体傾斜制御方法
EP12764173.6A EP2692608B1 (en) 2011-03-31 2012-03-06 Method for controlling body lean of railroad car

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079326 2011-03-31
JP2011079326 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132240A1 true WO2012132240A1 (ja) 2012-10-04

Family

ID=46930035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001514 WO2012132240A1 (ja) 2011-03-31 2012-03-06 鉄道車両の車体傾斜制御方法

Country Status (7)

Country Link
US (1) US9238471B2 (ja)
EP (1) EP2692608B1 (ja)
JP (1) JP5397566B2 (ja)
CN (1) CN103459233B (ja)
CA (1) CA2830884C (ja)
TW (1) TWI438109B (ja)
WO (1) WO2012132240A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850978B1 (ja) * 2011-05-09 2012-01-11 ピー・エス・シー株式会社 車体傾斜装置及び車体傾斜装置に用いられる二層三方弁
JP5912898B2 (ja) * 2012-06-18 2016-04-27 川崎重工業株式会社 鉄道車両用台車
ITMI20130609A1 (it) * 2013-04-12 2014-10-13 Rolic Internat S A R L Carrello per impianti di trasporto a fune e impianto di trasporto a fune comprendente tale carrello
CN104454479B (zh) * 2014-12-09 2016-08-17 南车株洲电力机车有限公司 一种轨道车辆压缩机的控制方法
DE102015112015B3 (de) 2015-07-23 2016-09-29 Bombardier Transportation Gmbh Luftfederanordnung für schienenfahrzeug und schienenfahrzeug mit luftfederanordnung
US10632820B2 (en) * 2016-10-20 2020-04-28 Toyota Motor Engineering & Manufacturing North America, Inc. AC cut cycles for vehicle air conditioning control based on high vehicle pitch conditions
CN109094597B (zh) * 2018-07-16 2019-09-27 中车株洲电力机车有限公司 地铁车辆空气弹簧供风系统、控制方法和地铁车辆
JP7220561B2 (ja) * 2018-12-26 2023-02-10 ナブテスコ株式会社 鉄道車両用空気圧縮システム
CN112441030B (zh) * 2019-08-30 2022-07-15 比亚迪股份有限公司 用于轨道车辆的风源系统、轨道车辆和风源系统的控制方法
FR3108300B1 (fr) * 2020-03-23 2022-04-01 Alstom Transp Tech Véhicule ferroviaire et procédé associé
CN111976781B (zh) * 2020-08-25 2021-08-10 中车山东机车车辆有限公司 一种铁路货车用独立供风制动系统及使用方法
CN112046532B (zh) * 2020-09-18 2021-11-12 中车青岛四方机车车辆股份有限公司 主动倾摆装置及控制方法、转向架悬挂系统、轨道车辆
CN112896215B (zh) * 2021-02-04 2022-04-08 中车青岛四方车辆研究所有限公司 一种轨道交通用主动倾摆系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325068A (ja) * 1989-06-22 1991-02-01 Nippon Air Brake Co Ltd 車両用圧力空気源装置
JPH05238387A (ja) 1992-02-27 1993-09-17 Sumitomo Metal Ind Ltd 空気ばね付き鉄道車両の車体傾斜制御方法
JPH0624325A (ja) * 1992-07-03 1994-02-01 Central Japan Railway Co 鉄道車両の圧縮空気供給方法
JPH06344907A (ja) * 1993-06-11 1994-12-20 Mitsubishi Electric Corp 列車への乗車人数予測方法並びに車両用空気圧縮機の制御方法及び制御装置
JPH08216872A (ja) * 1995-02-16 1996-08-27 Nippon Sharyo Seizo Kaisha Ltd 車両用圧縮機制御装置
JP2001213131A (ja) * 2000-01-31 2001-08-07 Nissan Diesel Motor Co Ltd 車両のエアリザーバ装置
JP2002089456A (ja) * 2000-09-20 2002-03-27 Kawasaki Heavy Ind Ltd 鉄道車両における電動空気圧縮機の制御装置
JP2004359124A (ja) * 2003-06-05 2004-12-24 Isuzu Motors Ltd 車高調整装置
JP2004359118A (ja) * 2003-06-05 2004-12-24 Isuzu Motors Ltd 車高調整装置
JP2004359085A (ja) * 2003-06-04 2004-12-24 Isuzu Motors Ltd 車高調整装置
JP2005075055A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 車両用空気圧縮装置の制御方法
JP2008254577A (ja) 2007-04-04 2008-10-23 Sumitomo Metal Ind Ltd 車体傾斜制御方法及び装置
JP2011183861A (ja) * 2010-03-05 2011-09-22 Kawasaki Heavy Ind Ltd 鉄道車両の車体傾斜装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH530892A (de) * 1970-11-02 1972-11-30 Schweizerische Lokomotiv Schienenfahrzeug mit regulierbaren Federn
JP2975235B2 (ja) * 1993-04-30 1999-11-10 東日本旅客鉄道株式会社 鉄道車両の車体傾斜制御装置
JP4242719B2 (ja) * 2003-07-15 2009-03-25 日本車輌製造株式会社 鉄道車両の車体傾斜装置
JP2006192942A (ja) * 2005-01-11 2006-07-27 Toshiba Corp 流体圧バネを利用した車体傾斜システム
US20090155106A1 (en) * 2007-12-12 2009-06-18 Caterpillar Inc. Extended compressor operation for auxiliary air supply
JP5182239B2 (ja) * 2009-07-08 2013-04-17 新日鐵住金株式会社 鉄道車両の車体傾斜制御装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325068A (ja) * 1989-06-22 1991-02-01 Nippon Air Brake Co Ltd 車両用圧力空気源装置
JPH05238387A (ja) 1992-02-27 1993-09-17 Sumitomo Metal Ind Ltd 空気ばね付き鉄道車両の車体傾斜制御方法
JPH0624325A (ja) * 1992-07-03 1994-02-01 Central Japan Railway Co 鉄道車両の圧縮空気供給方法
JPH06344907A (ja) * 1993-06-11 1994-12-20 Mitsubishi Electric Corp 列車への乗車人数予測方法並びに車両用空気圧縮機の制御方法及び制御装置
JPH08216872A (ja) * 1995-02-16 1996-08-27 Nippon Sharyo Seizo Kaisha Ltd 車両用圧縮機制御装置
JP2001213131A (ja) * 2000-01-31 2001-08-07 Nissan Diesel Motor Co Ltd 車両のエアリザーバ装置
JP2002089456A (ja) * 2000-09-20 2002-03-27 Kawasaki Heavy Ind Ltd 鉄道車両における電動空気圧縮機の制御装置
JP2004359085A (ja) * 2003-06-04 2004-12-24 Isuzu Motors Ltd 車高調整装置
JP2004359124A (ja) * 2003-06-05 2004-12-24 Isuzu Motors Ltd 車高調整装置
JP2004359118A (ja) * 2003-06-05 2004-12-24 Isuzu Motors Ltd 車高調整装置
JP2005075055A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 車両用空気圧縮装置の制御方法
JP2008254577A (ja) 2007-04-04 2008-10-23 Sumitomo Metal Ind Ltd 車体傾斜制御方法及び装置
JP2011183861A (ja) * 2010-03-05 2011-09-22 Kawasaki Heavy Ind Ltd 鉄道車両の車体傾斜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692608A4 *

Also Published As

Publication number Publication date
EP2692608B1 (en) 2016-06-01
US20140020595A1 (en) 2014-01-23
US9238471B2 (en) 2016-01-19
EP2692608A1 (en) 2014-02-05
EP2692608A4 (en) 2015-05-06
JP5397566B2 (ja) 2014-01-22
TWI438109B (zh) 2014-05-21
JPWO2012132240A1 (ja) 2014-07-24
CN103459233A (zh) 2013-12-18
CA2830884C (en) 2015-05-05
CA2830884A1 (en) 2012-10-04
CN103459233B (zh) 2016-01-20
TW201304990A (zh) 2013-02-01

Similar Documents

Publication Publication Date Title
JP5397566B2 (ja) 鉄道車両の車体傾斜制御方法
KR101465525B1 (ko) 철도차량의 활주제어 연계시스템 및 방법
JP2006327391A (ja) 鉄道車両の車体傾斜制御システム
EP4035959A2 (en) Railway vehicle brake control device and railway vehicle brake device
JP6833477B2 (ja) 鉄道車両の高さ調整装置
JP2011183861A (ja) 鉄道車両の車体傾斜装置
JP6564292B2 (ja) 車体傾斜装置を備えた鉄道車両および列車編成
JP5254748B2 (ja) レール運搬車両および連結運搬車両
JP4292973B2 (ja) 鉄道車両の車体傾斜制御方法及び装置
JP4271605B2 (ja) 鉄道車両制御方法
KR20160081564A (ko) 철도차량용 주공기압축기 제어 장치 및 그 제어 방법
JP4300122B2 (ja) 鉄道車両
JP7471997B2 (ja) 鉄道車両の車体傾斜装置
JP2004306865A (ja) 鉄道車両用滑走制御装置
JPH0737231B2 (ja) 鉄道車両用空気ばねの電子制御方法
JP4391890B2 (ja) 鉄道車両の制振システム
JP2013193666A (ja) 鉄道車両
KR102614161B1 (ko) 차량의 댐퍼속도 도출 시스템
JP2006327392A (ja) 鉄道車両の車体傾斜制御システム
JPS60166556A (ja) 鉄道車両用空気ばね高さ調整装置
JP5151252B2 (ja) 車体の姿勢制御方法及び鉄道車両
JP2001088694A (ja) モノレール車両
JP2015020445A (ja) 鉄道車両
KR20230157444A (ko) 제동 시스템, 레일 차량 감속의 위한 컴퓨터 구현 방법, 컴퓨터 프로그램 및 비휘발성 데이터 캐리어
JPH0415160A (ja) 鉄道車両の車体姿勢の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507115

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2830884

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14008198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012764173

Country of ref document: EP