WO2012128065A1 - ハイブリッド車両のクラッチ制御装置 - Google Patents

ハイブリッド車両のクラッチ制御装置 Download PDF

Info

Publication number
WO2012128065A1
WO2012128065A1 PCT/JP2012/056076 JP2012056076W WO2012128065A1 WO 2012128065 A1 WO2012128065 A1 WO 2012128065A1 JP 2012056076 W JP2012056076 W JP 2012056076W WO 2012128065 A1 WO2012128065 A1 WO 2012128065A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine
master cylinder
clutch device
automatic transmission
Prior art date
Application number
PCT/JP2012/056076
Other languages
English (en)
French (fr)
Inventor
寺川 智充
泰宏 細井
北村 雄一郎
鈴木 良英
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201280009630.4A priority Critical patent/CN103380038B/zh
Priority to EP12760101.1A priority patent/EP2689978B1/en
Priority to US13/983,479 priority patent/US9096224B2/en
Publication of WO2012128065A1 publication Critical patent/WO2012128065A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D29/00Clutches and systems of clutches involving both fluid and magnetic actuation
    • F16D29/005Clutches and systems of clutches involving both fluid and magnetic actuation with a fluid pressure piston driven by an electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/0206Control by fluid pressure in a system with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • B60Y2400/4242Friction clutches of dry type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/026The controlling actuation is directly performed by the pressure source, i.e. there is no intermediate valve for controlling flow or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1083Automated manual transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • F16D2500/30808Detection of transmission in neutral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • F16D2500/30816Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/31426Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5016Shifting operation, i.e. volume compensation of the master cylinder due to wear, temperature changes or leaks in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/7044Output shaft torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70464Transmission parameters
    • F16D2500/70488Selection of the gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention relates to a clutch control device for a hybrid vehicle that includes an engine, a motor, and an automated clutch device, and can ensure the relationship between the clutch actuator operation amount and the clutch torque regardless of the thermal expansion and contraction of hydraulic oil. Is.
  • AMT Automatic Manual Transmission
  • the master cylinder when the clutch is disengaged, the master cylinder is actuated by a clutch actuator that uses a motor as a driving source, thereby closing the idle port and the slave cylinder (hydraulic direct cylinder) of the friction clutch. And the diaphragm spring is deformed to reduce the pressure load of the clutch disc against the flywheel. That is, when the clutch is disengaged, the idle port of the master cylinder is closed, and the communication path that connects the master cylinder and the slave cylinder is sealed.
  • Patent Document 1 is an engine and a motor generator (a motor that generates driving force that is transmitted from electric power stored in a battery to driving wheels and is driven by the driving wheels during regeneration to regenerate electric power).
  • a motor generator a motor that generates driving force that is transmitted from electric power stored in a battery to driving wheels and is driven by the driving wheels during regeneration to regenerate electric power.
  • the clutch device that connects the engine and the automatic transmission is disconnected and held, so that the clutch disengaged state continues for a certain period of time.
  • the hydraulic oil sealed in the communication path expands or contracts due to changes in the ambient temperature.
  • the slave cylinder is operated even though the master cylinder is not operated, and the relationship between the operation amount of the clutch actuator and the clutch torque changes.
  • the clutch disengagement operation and the engagement operation at the time of shifting are not performed at the intended timing in the AMT.
  • the clutch disengagement time becomes longer than the intended time, the torque from the engine is not transmitted to the wheels during the disengagement of the clutch, and the driver may feel a sense of stall.
  • the clutch disconnection time becomes longer, the engine that is not subjected to load will blow up excessively, and the difference between the engine speed and the input shaft speed of the automatic transmission will increase when the clutch is engaged, resulting in an excessive shift shock. There is also a risk of doing.
  • the present invention has been made in view of the above-described problems.
  • the hybrid vehicle is configured to temporarily engage the clutch device to ensure the clutch torque control accuracy.
  • An object of the present invention is to provide a clutch control device.
  • the feature of the invention according to claim 1 is that the rotation of the input shaft adapted to be rotated by the engine torque output from the engine mounted on the vehicle is changed to a gear ratio of a plurality of stages.
  • An automatic transmission that transmits to the drive wheels of the vehicle, a motor that is rotationally connected to the drive wheels, an output shaft of the engine and the input shaft of the automatic transmission, and the input from the output shaft.
  • the clutch device that controls the clutch torque transmitted to the shaft to the target clutch torque, the output rod stroked by the actuator, and the idle port that is operated according to the stroke of the output rod and communicates with the reservoir is closed to A clutch actuator including a generated master cylinder, and a communication path with the master cylinder.
  • the slave cylinder that is operated according to the hydraulic pressure generated by the master cylinder and that controls the disengagement and engagement of the clutch device, and the disengagement state of the clutch device is continued for a predetermined time during traveling by the motor
  • a clutch engagement holding control unit that operates the master cylinder in a direction to open the idle port to temporarily engage and hold the clutch device.
  • the clutch device is returned to the disconnected and held state after the clutch device is held and engaged by the clutch engagement and holding control unit after a predetermined time has elapsed. is there.
  • the clutch device is engaged and held by the clutch engagement / holding control unit under the condition that the vehicle is stopped when the motor is running. is there.
  • the automatic transmission device is the automatic transmission apparatus according to the second aspect, wherein the automatic transmission device is running when the motor is running and the engine is rotated to drive auxiliary machinery and the like Is shifted to the neutral state, and then the clutch device is engaged and held by the clutch engagement and holding control unit.
  • the automatic transmission device is shifted to the neutral state before being shifted to the neutral state. It is.
  • a feature of the invention according to claim 7 is that, in claim 1, when the clutch device is held in a disengaged state, the master cylinder closes the idle port.
  • the clutch engagement when the clutch device is disengaged for a predetermined time during running by the motor, the clutch engagement for temporarily engaging and holding the clutch device by operating the master cylinder in the direction to open the idle port. Since it has a holding control unit, the clutch torque does not change with respect to the operating amount of the clutch actuator due to the thermal expansion or contraction of the hydraulic oil in the communication path that connects the master cylinder and the slave cylinder. Accuracy can be ensured.
  • the clutch device is returned to the disengagement / holding state after the clutch device engagement / holding control unit has been engaged and held for a predetermined time. The vehicle will not be disturbed by the joint holding.
  • the clutch device when the vehicle is running, the clutch device is engaged and held by the clutch engagement and holding control unit under the condition that the vehicle is stopped. Power is not transmitted from the wheel side to the engine side.
  • the clutch Since the clutch device is engaged and held by the engagement and holding control unit, the engine torque is transmitted to the drive wheels even when the rotation of the engine is transmitted to the automatic transmission by the engagement and holding of the clutch device. There is no.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle including a shift control device according to an embodiment of the present invention. It is a schematic block diagram of the engine of FIG. 1, an automatic transmission, and a clutch apparatus. It is a clutch torque map which shows the relationship between a clutch actuator operation amount and a clutch torque. It is a flowchart which shows the control state of the clutch control apparatus which concerns on this embodiment. It is the elements on larger scale of FIG. 2 which shows the connection state of a master cylinder and a slave cylinder. It is a figure which shows the operation state of FIG.
  • FIG. 1 schematically shows the configuration of a hybrid vehicle 10.
  • the hybrid vehicle 10 includes an engine 11 and a motor generator 12 (corresponding to the motor of the present invention) as a travel drive source.
  • the drive wheels 16a and 16b are configured to be driven.
  • the hybrid vehicle 10 includes an automatic transmission 13 and a clutch device 14.
  • FIG. 2 is a diagram showing a schematic configuration of the engine 11, the automatic transmission 13, and the clutch device 14 in FIG. In FIG. 1 and FIG. 2, broken arrows connecting the constituent devices indicate the flow of control.
  • the engine 11 is disposed horizontally on the front side of the axles 15a and 15b of the drive wheels 16a and 16b.
  • the engine 11, the clutch device 14, and the automatic transmission 13 are arranged in the vehicle width direction in the order described, and the rotation axis is between the output shaft 17 of the engine 11 and the input shaft 31 of the automatic transmission 13. Share.
  • a non-contact type engine speed sensor 27 that detects the speed of the output shaft 17 is provided.
  • the engine 11 is provided with a throttle valve 28 for adjusting the air intake amount, and an unillustrated injector for adjusting the fuel supply amount in relation to the air intake amount. .
  • a throttle actuator 29 for adjusting the throttle opening of the throttle valve 28 and a throttle sensor 30 for detecting the throttle opening are provided.
  • the clutch device 14 is a dry / single plate hydraulically operated friction clutch.
  • the clutch device 14 includes a flywheel 41, a clutch disk 42, a clutch fading 43, a pressure plate 44, a diaphragm spring 45, a clutch cover 46, a slave cylinder (hydraulic direct cylinder) 47, a clutch actuator 48, and the like.
  • the flywheel 41 has a thick disc shape and a mass that maintains inertia, and is coaxially fixed to the output shaft 17 of the engine 11.
  • a substantially cylindrical clutch cover 46 is erected from the outer periphery of the flywheel 41 opposite to the engine 11 toward the axial direction.
  • a substantially disc-shaped clutch disc 42 is disposed inside the clutch cover 46 and adjacent to the flywheel 41.
  • the clutch disk 42 is spline-coupled to the input shaft 31 of the automatic transmission 13 at the center and rotates integrally.
  • a clutch fading 43 is fixed to both surfaces near the outer periphery.
  • Adjacent to the clutch disk 42, a substantially annular pressure plate 44 is provided so as to be movable in the axial direction.
  • a diaphragm spring 45 and an annular slave cylinder 47 are provided as members for driving the pressure plate 44.
  • a clutch actuator 48 for operating the slave cylinder 47 is provided as a clutch drive mechanism.
  • the clutch actuator 48 includes a DC motor 61 (corresponding to the actuator of the present invention), a speed reduction mechanism 62 composed of a worm gear, an output wheel 63, an output rod 64, a master cylinder 65, an assist spring 66, a stroke sensor 67, and the like. .
  • the hydraulic pressure generated in the master cylinder 65 is transmitted to the slave cylinder 47 via the communication path 68, and the slave cylinder 47 is operated to drive the pressure plate 44 in the axial direction via the diaphragm spring 45.
  • the pressure plate 44 sandwiches and presses the clutch disk 42 between the pressure wheel 44 and the pressure plate 44, and can change the pressure load of the clutch fading 43 of the clutch disk 42 that slides and rotates with respect to the flywheel 41.
  • the assist spring 66 assists the return of the output rod 64 to the rear, and the stroke sensor 67 detects the stroke amount Ma of the output rod 64.
  • the idle port 70 connected to the reservoir 69 is opened in the master cylinder 65 of the clutch actuator 48.
  • the idle port 70 is connected to the master cylinder 65 when the clutch device 14 is held in an engaged state, that is, when the piston rod 65a of the master cylinder 65 is positioned at the right end (retracted end) in FIG.
  • the communication path 68 is communicated with the reservoir 69 via the idle port 70.
  • the idle port 70 is closed by the piston rod 65a. By closing the idle port 70, the hydraulic pressure generated by the operation of the master cylinder 65 is transmitted to the slave cylinder 47 via the communication path 68, and the clutch device 14 is held in the disconnected state.
  • the clutch device 14 can be switched between an engaged state in which the output shaft 17 of the engine 11 and the input shaft 31 of the automatic transmission 13 are rotationally connected and a disconnected state.
  • the engagement between the output shaft 17 and the input shaft 31 is achieved by an adjustable clutch torque Tc.
  • FIG. 3 is a diagram illustrating an example of torque transmission characteristics of the clutch device 14.
  • the horizontal axis indicates the operation amount of the clutch actuator 48, that is, the stroke amount Ma of the output rod 64
  • the vertical axis indicates the transmittable clutch torque Tc.
  • the automatic transmission 13 is an AMT (automated manual transmission) in which each of the plurality of gear trains 33 is selectively meshed and coupled by a driver's shift lever operation, and each actuator is added to automate the shifting operation. ).
  • the automatic transmission 13 has a parallel shaft gear meshing structure having a gear train 33 of five forward speeds and one reverse speed between the input shaft 31 and the output shaft 32 arranged in parallel. have.
  • the input shaft 31 is rotationally driven by the engine torque output from the engine 11 via the clutch device 14.
  • a rotation speed sensor 37 that detects the input rotation speed to the input shaft 31 is provided in the vicinity of the input shaft 31.
  • the output shaft 32 is gear-coupled to the input side of the differential device 18 disposed in the center in the vehicle width direction, and is rotationally connected to the drive wheels 16 a and 16 b via the differential device 18.
  • the automatic transmission 13 includes a shift actuator 34 and a select actuator 35 as a gear switching mechanism that selectively meshes and connects one of the gear trains 33. . Since the driving methods of the shift actuator 34 and the select actuator 35 are known, detailed description thereof will be omitted (see, for example, Japanese Patent Application Laid-Open No. 2004-176894).
  • the motor generator 12 is disposed on the rear side of the axles 15a and 15b of the drive wheels 16a and 16b.
  • the motor generator 12 is a three-phase AC rotating electric machine that is generally used in a hybrid vehicle.
  • An output shaft (not shown) of the motor generator 12 is rotationally connected to the input side of the differential device 18 via a speed reduction mechanism (not shown). Therefore, the output shaft of the motor generator 12 is rotationally connected to both the output shaft 32 of the automatic transmission 13 and the drive wheels 16a and 16b.
  • an inverter 55 and a battery 56 are mounted on the rear side of the hybrid vehicle 10.
  • Inverter 55 is connected to motor generator 12 and to battery 56.
  • the inverter 55 converts the DC power output from the battery 56 into variable frequency AC power and supplies it to the motor generator 12, and converts the AC power generated by the motor generator 12 into DC power. Both of the AC / DC conversion functions for charging the battery 56 are provided.
  • the battery 56 can be provided exclusively for traveling driving, and may be used for other purposes.
  • the motor generator 12 functions as an electric motor when supplied with AC power, and can generate assist torque that can be added to engine torque to assist drive the drive wheels 16a and 16b. Further, when the motor generator 12 is driven by a part of the power generation torque of the engine torque Te, it functions as a generator and can charge the battery 56.
  • a plurality of electronic control devices (hereinafter abbreviated as ECU) are provided. That is, as shown in FIG. 1, an engine ECU 21, a transmission ECU 22, a motor ECU 23, and a battery ECU 24 are provided. Furthermore, a hybrid ECU 25 that controls the entire hybrid vehicle 10 is provided.
  • the ECUs 21 to 24 that handle the respective parts are CAN-connected to the hybrid ECU 25 to exchange necessary information with each other, and are managed and controlled by the hybrid ECU 25.
  • Each of the ECUs 21 to 25 is configured to include a CPU section that executes arithmetic processing, a storage section such as a ROM or RAM that stores programs and various maps, and an input / output section for exchanging information. .
  • the hybrid ECU 25 includes a mode selection unit that selects a travel mode of the hybrid vehicle 10.
  • the mode selection unit includes a battery state detected by an unillustrated battery state detection sensor, a vehicle speed detected by an unillustrated vehicle speed sensor, an operation amount of an accelerator pedal detected by an unillustrated accelerator operation detection sensor, In accordance with the amount of operation of the brake pedal detected by the brake operation detection sensor, an appropriate travel mode is selected and a gear position in each travel mode is selected.
  • the hybrid vehicle 10 includes only a motor travel mode (hereinafter referred to as an EV mode) when the engine is stopped, in which only the motor torque of the motor generator 12 is transmitted to the drive wheels 16a and 16b, and only the engine torque of the engine 11. Is transmitted to the drive wheels 16a and 16b, a parallel mode in which both the motor torque of the motor generator 12 and the engine torque of the engine 11 are transmitted in parallel to the drive wheels 16a and 16b, and the motor of the motor generator 12 Only the torque is transmitted to the drive wheels 16a and 16b, and the motor running mode (hereinafter referred to as the series mode) in the engine operation in which accessories such as an air conditioner compressor (not shown) and an alternator are driven by the engine torque of the engine 11. ) One drive mode is selected by the selection unit.
  • an EV mode motor travel mode
  • the engine ECU 21 starts the engine 11 by driving a starter 26 (see FIG. 1) in response to an operation of an ignition switch (not shown). Further, the engine ECU 21 acquires a signal of the engine speed of the output shaft 17 from the engine speed sensor 27 and acquires a signal of the throttle opening from the throttle sensor 30. Then, the engine ECU 21 issues a command to the throttle actuator 29 while monitoring the engine speed of the output shaft 17 to open and close the throttle valve 28, and controls the injector (not shown) so that the engine torque and the engine Control the number of revolutions.
  • the engine speed is not controlled only by the depression operation amount of the accelerator pedal that the driver depresses, but is configured to be preferentially controlled by a command from the hybrid ECU 25.
  • the transmission ECU 22 executes shift control by controlling the clutch device 14 and the automatic transmission 13 in association with each other.
  • the transmission ECU 22 drives the DC motor 61 of the clutch actuator 48 to control the transmittable clutch torque Tc, and further obtains a signal of the operation amount Ma of the output rod 64 from the stroke sensor 67, The clutch torque Tc at the time is grasped. Further, the transmission ECU 22 acquires the input rotational speed from the rotational speed sensor 37 of the automatic transmission 13 and further drives the shift actuator 34 and the select actuator 35 to selectively mesh one of the gear trains 33. Coupled to switch the gear position.
  • the motor generator 12 is activated, and the drive wheels are driven by the motor torque of the motor generator 12. 16a and 16b are driven.
  • the engine mode is selected, the ignition switch is turned on to start the engine 11, the clutch device 14 is held in an engaged state, and the engine torque of the engine 11 is transmitted to the automatic transmission 13 via the clutch device 14. Then, the drive wheels 16 a and 16 b are driven via the gear train 33.
  • the parallel mode is selected, the motor generator 12 is activated and the engine 11 is activated, so that the vehicle is driven by both the motor generator 12 and the engine 11 torque.
  • the motor generator 12 is started and the engine 11 is rotated at the idle speed, but only the motor torque of the motor generator 12 is transmitted to the drive wheels 16a and 16b.
  • auxiliary equipment such as an air conditioner compressor (not shown) and an alternator is driven.
  • the clutch device 14 is held in the disconnected state, and the communication path 68 that connects the master cylinder 65 and the slave cylinder 47 is hermetically sealed (See FIG. 6). Therefore, when this state continues for a long time (for example, 10 minutes or more), the relationship between the master cylinder 65 and the slave cylinder 47 changes due to thermal expansion or contraction of the hydraulic oil in the communication path 68.
  • the temperature of the hydraulic oil in the communication path 68 rises due to a change in ambient temperature, for example, heat generated by slipping of the clutch disk 42 that occurs while the hybrid vehicle 10 is traveling. Then, the hydraulic oil in the communication path 68 is thermally expanded.
  • the engine drive is switched to driving by only the motor generator 12, the engine 11 is cooled and the temperature of the hydraulic oil in the communication path 68 is lowered, so that the hydraulic oil in the communication path 68 is thermally contracted.
  • the master cylinder 65 is not operated, the slave cylinder 47 is operated, and the clutch torque with respect to the operation amount of the clutch actuator 48 changes.
  • the master cylinder 65 is reset, the idle port 70 is opened, and the communication path 68 is communicated with the reservoir 69.
  • the clutch torque is related to the operation amount of the clutch actuator 48 due to the thermal expansion or contraction of the hydraulic oil.
  • step 100 it is determined whether or not the clutch device 14 is held disconnected.
  • the clutch device 14 is held in the engaged state (in the case of NO)
  • the idle port 70 of the master cylinder 65 is opened, as shown in FIG. Since the clutch torque does not change with respect to the operation amount of the clutch actuator 48 due to the thermal contraction, the program is terminated.
  • the operation of the master cylinder 65 in the right direction in FIG. 2 opens the idle port 70 of the master cylinder 65 and connects the communication path 68 to the reservoir 69, so that the thermal expansion of the hydraulic oil in the communication path 68 is performed. Or the change of the clutch torque with respect to the operation amount of the clutch actuator 48 due to thermal contraction can be prevented, and the clutch torque control accuracy can be ensured. In this way, by engaging the clutch device 14 that has been in the disconnected state, the relationship of the clutch torque with respect to the operation amount of the clutch actuator 48 can be ensured regardless of the thermal expansion or contraction of the hydraulic oil.
  • step 102 determines whether or not the motor travel mode is not the engine stopped (in the case of NO), that is, if it is determined that the motor travel mode is the engine operation.
  • the routine proceeds to step 108, where At 108, it is determined whether or not the vehicle speed is not 0 (vehicle speed ⁇ 0), and the disconnected state of the clutch device 14 is continued for a predetermined time t2. If it is determined in step 108 that the vehicle speed is not zero and the disconnected state has continued for a predetermined time t2, then in step 110, the automatic transmission 13 is shifted out to the neutral state, and then in step 112, the clutch is engaged. A command to engage the clutch device 14 is issued to the actuator 48.
  • the DC motor 61 is driven, the master cylinder 65 is operated via the speed reducer 62 and the output wheel 63, the idle port 70 is opened, and the communication path 68 is communicated with the reservoir 69.
  • the clutch device 14 is engaged and held. At this time, since the shift is removed, the engine torque of the engine 11 can be transmitted to the drive wheels 16a and 16b via the clutch device 14 and the automatic transmission 13 even if the clutch device 14 is engaged and held. Absent.
  • the above-described steps 106 and 112 constitute a clutch engagement holding control unit that temporarily holds the clutch device 14 when the clutch device 14 is kept disconnected for a predetermined time.
  • the timer is timed up in steps 118 and 120, and in the next steps 122 and 124, the clutch actuator 48. In response to this, a command to disconnect the clutch device 14 is issued.
  • the DC motor 61 is driven in the opposite direction, the master cylinder 65 is operated in the left direction in FIG. 2 to close the idle port 70, and the slave cylinder 47 of the clutch device 14 is operated through the communication path 68. To do. Thereby, the diaphragm spring 45 is actuated via the slave cylinder 47, and the pressure-bonding load of the clutch disc 42 to the flywheel 41 is reduced, whereby the clutch device 14 is returned to the original disconnected state.
  • Step 122 In the motor running mode when the engine is stopped, the program is terminated when the clutch device 14 is disconnected and held (step 122). On the other hand, in the motor running mode when the engine is operating, the clutch device 14 is disconnected and held. (Step 124), the program is terminated after the automatic transmission 13 is shifted from the neutral state to the original shift state in Step 126.
  • the clutch device 14 when the clutch device 14 is kept in the disconnected state for a predetermined time, the clutch device 14 is once held in the engaged state, and after the predetermined time has elapsed, the clutch device 14 is returned to the original disconnected state. Therefore, regardless of the thermal expansion or contraction of the hydraulic oil in the communication passage 68 that communicates the master cylinder 65 and the slave cylinder 47, the relationship of the clutch torque Tc to the operation amount Ma of the clutch actuator 48 is obtained. The desired relationship shown in FIG. 3 can always be maintained, and the clutch torque control accuracy can be stably secured.
  • the clutch device 14 is connected after the automatic transmission 13 is pulled out to the neutral position, so that even when the engine 11 is driven, the engine 11 and the drive wheels 16a and 16b
  • the clutch device 14 since the clutch device 14 is connected under the condition that the hybrid vehicle 10 is stopped, the transmission gear of the automatic transmission 13 is assumed to be at the first speed. Even if it is in, it will not be a problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 クラッチの切断保持が所定時間継続された場合には、クラッチ装置を一時的に係合させ、クラッチトルク制御精度を確保できるようにしたハイブリッド車両のクラッチ制御装置を提供する。 エンジンと、自動変速装置と、クラッチ装置とを備えるとともに、アクチュエータによってストロークされる出力ロッド、及び出力ロッドのストロークに応じて作動され、リザーバに連通するアイドルポートを閉止して油圧を発生するマスタシリンダを含むクラッチアクチュエータと、マスタシリンダと連通路を介して連通され、マスタシリンダが発生する油圧に応じて作動され、クラッチ装置を切断および係合制御するスレーブシリンダと、モータによる走行時にクラッチ装置14の切断状態が所定時間継続された場合に、アイドルポートを開放する方向にマスタシリンダを作動してクラッチ装置を一時的に係合保持するクラッチ係合保持制御部とを有する。

Description

ハイブリッド車両のクラッチ制御装置
 本発明は、エンジンとモータと自動化されたクラッチ装置を備え、作動油の熱膨張、熱収縮に係わらずクラッチアクチュエータ作動量とクラッチトルクとの関係を確保できるようにしたハイブリッド車両のクラッチ制御装置に関するものである。
 従来、エンジンを駆動源とする車両において、例えば、特許文献1に記載されているように、既存のマニュアルトランスミッションにアクチュエータを取り付け、運転者の意思、若しくは車両状態により一連の変速操作(クラッチの断接、ギヤシフト、及びセレクト)を自動的に行なう自動変速機(以下、AMT(オートメイテッドマニュアルトランスミッション)という)が知られている。
 この種のAMTにおいては、クラッチを切断する場合には、モータを駆動源とするクラッチアクチュエータによってマスタシリンダを作動させ、これにより、アイドルポートを閉止して、摩擦クラッチのスレーブシリンダ(油圧ダイレクトシリンダ)を作動させ、ダイヤフラムスプリングを変形して、フライホイールに対するクラッチディスクの圧着荷重を低減するようになっている。すなわち、クラッチの切断状態においては、マスタシリンダのアイドルポートが閉止され、マスタシリンダとスレーブシリンダとを連通する連通路が密閉されるようになる。
特開2008-75814号公報
 しかしながら、特許文献1に開示された技術を、エンジンとモータジェネレータ(バッテリに蓄えられた電力から駆動輪に伝達する駆動力を発生し、回生時には駆動輪によって駆動されて電力を回生するモータ)とを備えたハイブリッド車両に適用した場合、モータジェネレータのモータトルクのみによる走行時には、エンジンと自動変速機とを連結するクラッチ装置が切断保持されているので、そのクラッチ切断状態が一定時間継続されると、連通路に密閉された作動油が、雰囲気温度の変化によって熱膨張あるいは熱収縮する。これによって、マスタシリンダが作動されていないにも係わらず、スレーブシリンダが作動され、クラッチアクチュエータの作動量とクラッチトルクとの関係が変化することになる。
 このように、クラッチアクチュエータの作動量とクラッチトルクとの関係が変化すると、AMTにおいては、変速時のクラッチ切断操作と係合操作とが意図したタイミングどおりに行なわれなくなる。例えば、クラッチ切断時間が意図した時間を越えて長くなると、クラッチ切断中にはエンジンからのトルクが車輪に伝達されず運転者が失速感を感じる虞れがある。また、クラッチ切断時間が長くなると、負荷を受けないエンジンが過大に吹き上がり、クラッチ係合動作時にエンジンの回転数と自動変速機の入力軸回転数の差が大きくなって過大な変速ショックが発生する虞れもある。
 本発明は上記した課題に鑑みてなされたもので、クラッチの切断保持が所定時間継続された場合には、クラッチ装置を一時的に係合させ、クラッチトルク制御精度を確保できるようにしたハイブリッド車両のクラッチ制御装置を提供することを目的とするものである。
 上記課題を解決するため、請求項1に係る発明の特徴は、車両に搭載されたエンジンが出力するエンジントルクによって回転されるよう適合された入力軸の回転を複数段の変速比に変速して前記車両の駆動輪に伝達する自動変速機と、前記駆動輪に回転連結されたモータと、前記エンジンのアウトプットシャフトと前記自動変速機の前記入力軸とを係脱するとともに前記アウトプットシャフトから前記入力軸に伝達されるクラッチトルクを目標クラッチトルクに制御するクラッチ装置と、アクチュエータによってストロークされる出力ロッド、及び該出力ロッドのストロークに応じて作動され、リザーバに連通するアイドルポートを閉止して油圧を発生するマスタシリンダを含むクラッチアクチュエータと、前記マスタシリンダと連通路を介して連通され、前記マスタシリンダが発生する油圧に応じて作動され、前記クラッチ装置を切断および係合制御するスレーブシリンダと、前記モータによる走行時に前記クラッチ装置の切断状態が所定時間継続された場合に、前記アイドルポートを開放する方向に前記マスタシリンダを作動して前記クラッチ装置を一時的に係合保持するクラッチ係合保持制御部とを有することである。
 請求項2に係る発明の特徴は、請求項1において、前記クラッチ係合保持制御部による前記クラッチ装置の係合保持状態が所定時間経過した後に、前記クラッチ装置を切断保持状態に復帰させることである。
 請求項3に係る発明の特徴は、請求項1または請求項2において、前記モータによる走行時には、車両が停止した条件で、前記クラッチ係合保持制御部によって前記クラッチ装置を係合保持することである。
 請求項4に係る発明の特徴は、請求項1または請求項3において、前記モータによる走行時であって、かつ、補機類等の駆動のために前記エンジンが回転されている場合には、前記自動変速機をニュートラル状態にシフト抜きした後に、前記クラッチ係合保持制御部によって前記クラッチ装置を係合保持することである。
 請求項5に係る発明の特徴は、請求項2において、前記モータによる走行時であって、かつ、補機類等の駆動のために前記エンジンが回転されている場合には、前記自動変速装置をニュートラル状態にシフト抜きした後に、前記クラッチ係合保持制御部によって前記クラッチ装置を係合保持するようにしたことである。
 請求項6に係る発明の特徴は、請求項5において、前記クラッチ装置を切断保持状態に復帰させた後に、前記自動変速装置をニュートラル状態に前記シフト抜きする前のシフト状態にするようにしたことである。
 請求項7に係る発明の特徴は、請求項1において、前記クラッチ装置が切断状態に保持される場合には、前記マスタシリンダが前記アイドルポートを閉止していることである。
 本発明によれば、モータによる走行時にクラッチ装置の切断状態が所定時間継続された場合に、アイドルポートを開放する方向にマスタシリンダを作動してクラッチ装置を一時的に係合保持するクラッチ係合保持制御部を有するので、マスタシリンダとスレーブシリンダとを連通する連通路中の作動油の熱膨張あるいは熱収縮によって、クラッチアクチュエータの作動量に対してクラッチトルクが変化することがなく、クラッチトルク制御精度を確保することができる。
 また、本発明によれば、クラッチ係合保持制御部によるクラッチ装置の係合保持状態が所定時間経過した後に、クラッチ装置を切断保持状態に復帰させるようにしたので、クラッチ装置の一時的な係合保持によって車両に支障を及ぼすことがない。
 また、本発明によれば、モータによる走行時には、車両が停止した条件で、クラッチ係合保持制御部によってクラッチ装置を係合保持するようにしたので、クラッチ装置が係合保持されても、駆動輪側からエンジン側に動力が伝達されることがない。
 また、本発明によれば、モータによる走行時であって、かつ、補機類等の駆動のためにエンジンが回転されている場合には、自動変速機をニュートラル状態にシフト抜きした後に、クラッチ係合保持制御部によってクラッチ装置を係合保持するようにしたので、クラッチ装置の係合保持によって、エンジンの回転が自動変速機に伝達された場合でも、駆動輪にエンジントルクが伝達されることがない。
本発明の実施の形態に係る変速制御装置を含むハイブリッド車両の概略構成図である。 図1のエンジン、自動変速機、及びクラッチ装置の概略構成図である。 クラッチアクチュエータ作動量とクラッチトルクとの関係を示すクラッチトルクマップである。 本実施形態に係るクラッチ制御装置の制御状態を示すフローチャートである。 マスタシリンダとスレーブシリンダとの接続状態を示す図2の部分拡大図である。 図5の作動状態を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、ハイブリッド車両10の構成を模式的に示したもので、ハイブリッド車両10は、走行駆動源としてエンジン11およびモータジェネレータ12(本発明のモータに相当)を備え、いずれか一方または両者により駆動輪16a、16bを駆動できるように構成されている。また、ハイブリッド車両10は、自動変速機13やクラッチ装置14などを備えている。
 図2は、図1中のエンジン11、自動変速機13およびクラッチ装置14の概略構成を示す図である。図1および図2において、構成装置間を結ぶ破線の矢印は制御の流れを示している。
 エンジン11は、図1に示されるように、駆動輪16a、16bの車軸15a、15bよりも前側に横置きに配設されている。エンジン11、クラッチ装置14および自動変速機13の三者は、記載した順番で車幅方向に並べて配設され、エンジン11のアウトプットシャフト17から自動変速機13の入力軸31までの間は回転軸線を共有している。エンジン11のアウトプットシャフト17の近傍には、アウトプットシャフト17の回転数を検出する非接触式のエンジン回転数センサ27が設けられている。また、図2に模式的に示すように、エンジン11には、空気吸入量を調整するスロットルバルブ28、および空気吸入量に関連して燃料供給量を調整する図略のインジェクタが設けられている。さらに、スロットルバルブ28のスロットル開度を調整するスロットル用アクチュエータ29、およびスロットル開度を検出するスロットルセンサ30が設けられている。
 クラッチ装置14は、乾式・単板式で油圧操作タイプの摩擦クラッチである。クラッチ装置14は、フライホイール41、クラッチディスク42、クラッチフェージング43、プレッシャプレート44、ダイヤフラムスプリング45、クラッチカバー46、スレーブシリンダ(油圧ダイレクトシリンダ)47、およびクラッチアクチュエータ48などにより構成されている。図2に示されるように、フライホイール41は、厚い円板状で慣性を維持する質量を有し、エンジン11のアウトプットシャフト17に同軸に固定されている。フライホイール41のエンジン11とは逆側の外周寄りから軸線方向に向けて、略筒状のクラッチカバー46が立設されている。クラッチカバー46の内側でフライホイール41に隣接して略円板状のクラッチディスク42が配設されている。クラッチディスク42は、中心部で自動変速機13の入力軸31にスプライン結合されて一体的に回転し、その外周寄りの両面にはクラッチフェージング43が固着されている。 クラッチディスク42に隣接して、略環状のプレッシャプレート44が軸線方向に移動可能に設けられている。プレッシャプレート44を駆動する部材として、ダイヤフラムスプリング45および環状のスレーブシリンダ47が設けられている。
 さらに、クラッチ駆動機構として、スレーブシリンダ47を操作するクラッチアクチュエータ48が設けられている。クラッチアクチュエータ48は、直流モータ61(本発明のアクチュエータに相当)、ウォームギヤからなる減速機構62、出力ホイール63、出力ロッド64、マスタシリンダ65、アシストスプリング66、およびストロークセンサ67などにより構成されている。
 クラッチアクチュエータ48の直流モ-タ61が回動駆動されると、減速機構62を介して出力ホイール63が回動され、出力ロッド64が前方(図2の左方)または後方(図2の右方)に移動される。これにより、出力ロッド64にピボットピンを介して連結されたピストンロッド65aが作動され、マスタシリンダ65に油圧が発生する。
 マスタシリンダ65で発生した油圧は、連通路68介してスレーブシリンダ47に伝えられ、スレーブシリンダ47を作動させ、ダイヤフラムスプリング45を介してプレッシャプレート44を軸線方向に駆動するようになっている。プレッシャプレート44は、フライホイール41との間にクラッチディスク42を挟み込んで押圧し、フライホイール41に対して摺動回転するクラッチディスク42のクラッチフェージング43の圧着荷重を変化させることができる。なお、アシストスプリング66は出力ロッド64の後方への復帰をアシストし、ストロークセンサ67は出力ロッド64のストローク量Maを検出する。
 クラッチアクチュエータ48のマスタシリンダ65には、リザーバ69に接続されたアイドルポート70が開口されている。アイドルポート70は、クラッチ装置14が係合状態に保持されているとき、すなわち、マスタシリンダ65のピストンロッド65aが図2の右方端(後退端)に位置されているとき、マスタシリンダ65に開口され、これによって、連通路68がアイドルポート70を介してリザーバ69に連通されている。これに対し、マスタシリンダ65のピストンロッド65aが図2の左方に前進された場合には、ピストンロッド65aによってアイドルポート70が閉止される。アイドルポート70の閉止により、マスタシリンダ65の作動によって発生した油圧が連通路68を介してスレーブシリンダ47に伝達され、クラッチ装置14が切断状態に保持される。
 クラッチ装置14は、エンジン11のアウトプットシャフト17と自動変速機13の入力軸31とを回転連結する係合状態と、切断状態とに切り替え操作することができる。アウトプットシャフト17と入力軸31との係合は、調整可能なクラッチトルクTcによって達成される。図3は、クラッチ装置14のトルク伝達特性の一例を示す図である。図3において、横軸はクラッチアクチュエータ48の作動量、すなわち、出力ロッド64のストローク量Ma、縦軸は伝達可能なクラッチトルクTcを示している。クラッチ装置14は、作動量Ma=0でクラッチトルクTcが最大の完全係合状態となる常時係合タイプのクラッチであり、作動量Maが増加するにしたがって半接続状態における伝達可能なクラッチトルクTcが減少し、作動量Ma=Mmaxで切断状態になる特性を有している。
 自動変速機13は、ドライバのシフトレバー操作により複数のギヤトレーン33のうちの一つを選択的に噛合結合させる手動変速機に、各アクチュエータを付加して変速操作を自動化したAMT(オートメイテッドマニュアルトランスミッション)である。図1に破線で示されるように、自動変速機13は、平行配置された入力軸31と出力軸32との間に前進5段・後進1段のギヤトレーン33を有する平行軸歯車噛合式の構造を有している。入力軸31は、クラッチ装置14を介して、エンジン11から出力されるエンジントルクによって回転駆動されるようになっている。入力軸31の近傍に、入力軸31への入力回転数を検出する回転数センサ37が設けられている。出力軸32は、車幅方向の中央に配設された差動装置18の入力側とギヤ結合され、差動装置18を介して駆動輪16a、16bに回転連結されている。
 また、図1及び図2に示されるように、自動変速機13は、ギヤトレーン33のうちの一つを選択的に噛合結合するギヤ切替機構として、シフトアクチュエータ34およびセレクトアクチュエータ35を有している。シフトアクチュエータ34およびセレクトアクチュエータ35の駆動方法については公知であるので詳細な説明は省略する(例えば、特開2004-176894号公報を参照)。
 モータジェネレータ12は、図1に示されるように、駆動輪16a、16bの車軸15a、15bよりも後側に配設されている。モータジェネレータ12は、ハイブリッド車両で一般的に使用される三相交流回転電機である。モータジェネレータ12の図略のアウトプットシャフトは、図略の減速機構を介して差動装置18の入力側に回転連結されている。従って、モータジェネレータ12のアウトプットシャフトは、自動変速機13の出力軸32と、駆動輪16a、16bの両方に回転連結されていることになる。
 モータジェネレータ12を駆動するために、インバータ55およびバッテリ56がハイブリッド車両10の後側に搭載されている。インバータ55はモータジェネレータ12に接続されるとともに、バッテリ56に接続されている。インバータ55は、バッテリ56から出力される直流電力を周波数可変の交流電力に変換してモータジェネレータ12に供給する直流/交流変換機能、および、モータジェネレータ12で発電した交流電力を直流電力に変換してバッテリ56を充電する交流/直流変換機能の両方を具備している。なお、バッテリ56は、走行駆動専用に設けることができ、他の用途と兼用するようにしでもよい。
 モータジェネレータ12は、交流電力を供給されると電動機として機能し、エンジントルクに加算可能なアシストトルクを発生して駆動輪16a、16bをアシスト駆動することができる。また、モータジェネレータ12は、エンジントルクTeの一部の発電トルク分で駆動されると発電機として機能し、バッテリ56を充電することができる。
 ハイブリッド車両10を制御するために、複数の電子制御装置(以下、ECUと略称する)が設けられている。すなわち、図1に示されるように、エンジンECU21、変速機ECU22、モータECU23、およびバッテリECU24が設けられている。さらに、ハイブリッド車両10の全体を総括的に制御するハイブリッドECU25が設けられている。各部をそれぞれ受け持つECU21~24は、ハイブリッドECU25にCAN接続されて相互に必要な情報を交換するとともに、ハイブリッドECU25によって管理および制御されている。各ECU21~25はそれぞれ、演算処理を実行するCPU部と、プログラムや各種マップなどを保存するROMやRAMなどの記憶部と、情報を交換するための入出力部とを備えて構成されている。
 また、ハイブリッドECU25は、ハイブリッド車両10の走行モードを選択するモード選択部を備えている。モード選択部は、図略のバッテリ状態検出センサによって検出されるバッテリ状態、図略の車速センサによって検出される車速、図略のアクセル操作検出センサによって検出されるアクセルペダルの操作量、図略のブレーキ操作検出センサによって検出されるブレーキペダルの操作量等に応じて、適切な走行モードの選択及び各走行モードにおける変速段の選択を行う。
 実施の形態においては、ハイブリッド車両10は、モータジェネレータ12のモータトルクのみが駆動輪16a,16bに伝達されるエンジン停止でのモータ走行モード(以下、EVモードという)と、エンジン11のエンジントルクのみが駆動輪16a,16bに伝達されるエンジンモードと、モータジェネレータ12のモータトルクとエンジン11のエンジントルクとの両方がパラレルに駆動輪16a、16bに伝達されるパラレルモードと、モータジェネレータ12のモータトルクのみが駆動輪16a、16bに伝達され、エンジン11のエンジントルクによってエアコン用のコンプレッサ(図示せず)、オルタネータ等の補機類が駆動されるエンジン動作でのモータ走行モード(以下、シリーズモードという)を備えており、モード選択部によって1つの走行モードが選択される。
 エンジンECU21は、図略のイグニッションスイッチの操作に応じてスターター26(図1参照)を駆動し、エンジン11を始動する。また、エンジンECU21は、エンジン回転数センサ27からアウトプットシャフト17のエンジン回転数の信号を取得し、スロットルセンサ30からスロットル開度の信号を取得する。そして、エンジンECU21は、アウトプットシャフト17のエンジン回転数を監視しながら、スロットル用アクチュエータ29に指令を発してスロットルバルブ28を開閉し、また、図略のインジェクタを制御することにより、エンジントルクおよびエンジン回転数を制御する。なお、本実施の形態においては、エンジン回転数は、ドライバが踏み込むアクセルペダルの踏み込み操作量のみによって制御されるものではなく、ハイブリッドECU25からの指令により優先制御される構成となっている。
 変速機ECU22は、クラッチ装置14および自動変速機13を関連付けて制御することにより、変速制御を実行する。変速機ECU22は、クラッチアクチュエータ48の直流モ-タ61を駆動して、伝達可能なクラッチトルクTcを制御し、さらに、ストロークセンサ67から出力ロッド64の操作量Maの信号を取得して、その時点におけるクラッチトルクTcを把握する。また、変速機ECU22は、自動変速機13の回転数センサ37から入力回転数を取得し、さらに、シフトアクチュエータ34およびセレクトアクチュエータ35を駆動して、ギヤトレーン33のうちの一つを選択的に噛合結合して変速段を切り替え制御する。
 このように構成された本実施の形態に係るハイブリッド車両10は、ハイブリッドECU25のモード選択部によって、例えばEVモードが選択されると、モータジェネレータ12が起動され、モータジェネレータ12のモータトルクによって駆動輪16a、16bが駆動される。エンジンモードが選択されると、イグニッションスイッチがONされてエンジン11が起動されるとともに、クラッチ装置14が係合状態に保持され、エンジン11のエンジントルクがクラッチ装置14を介して自動変速機13に伝達され、ギヤトレーン33を介して駆動輪16a、16bが駆動される。また、パラレルモードが選択されると、モータジェネレータ12が起動されるとともに、エンジン11が起動されて、モータジェネレータ12およびエンジン11の両トルクによって車両が走行される。一方、シリーズモードが選択されると、モータジェネレータ12が起動されるとともに、エンジン11がアイドル回転数にて回転されるが、駆動輪16a、16bにはモータジェネレータ12のモータトルクのみが伝達され、エンジン11のアイドル回転によって、エアコン用のコンプレッサ(図示せず)、オルタネータ等の補機類が駆動される。
 ところで、上記したEVモードあるいはシリーズモードでハイブリッド車両10が走行している状態においては、クラッチ装置14が切断状態に保持され、マスタシリンダ65とスレーブシリンダ47とを連通する連通路68が密閉状態(図6参照)に保持される。従って、この状態が長時間(例えば、10分以上)継続されると、連通路68中の作動油の熱膨張あるいは熱収縮によって、マスタシリンダ65とスレーブシリンダ47との関係が変化する。
 すなわち、連通路68の密閉状態が長時間持続されると、雰囲気温度変化、例えば、ハイブリッド車両10の走行中に発生するクラッチディスク42の滑りによる発熱によって連通路68中の作動油の温度が上昇し、連通路68中の作動油が熱膨張する。あるいはエンジン駆動からモータジェネレータ12のみによる走行に切替わると、エンジン11が冷えて連通路68中の作動油の温度が低下するため、連通路68中の作動油が熱収縮する。この結果、マスタシリンダ65が作動されていないにも係らず、スレーブシリンダ47が作動してしまい、クラッチアクチュエータ48の作動量に対するクラッチトルクが変化することになる。
 そこで、本実施の形態においては、連通路68の密閉状態が長時間継続された場合には、マスタシリンダ65をリセットしてアイドルポート70を開放し、連通路68をリザーバ69に連通することにより、作動油の熱膨張あるいは熱収縮によるクラッチアクチュエータ48の作動量に対するクラッチトルクの関係を確保できるように構成されている。
 以下、図4のフローチャートに基づいて、本実施の形態におけるクラッチ装置14の制御動作を説明する。
 まず、ステップ100において、クラッチ装置14が切断保持されているか否かが判断される。クラッチ装置14が係合状態に保持されている場合(NOの場合)には、図5に示すように、マスタシリンダ65のアイドルポート70が開口され、連通路68中の作動油の熱膨張あるいは熱収縮によって、クラッチアクチュエータ48の作動量に対してクラッチトルクが変化することがないので、プログラムは終了される。
 クラッチ装置14が切断保持されている場合(YESの場合)には、ステップ102に移行し、モード選択部によって選択されている走行モードがエンジン停止中のモータ走行モード(EVモード)であるか否かが判別される。エンジン停止中のモータ走行モードと判別された場合(YESの場合)には、ステップ104に移行し、同ステップ104において、車速が0(車速=0)で、かつクラッチ装置14の切断状態が所定時間t1継続されたか否かが判断される。ステップ104において、車速が0で、かつ切断状態が所定時間t1継続されたと判断されると、続くステップ106において、クラッチアクチュエータ48に対し、クラッチ装置14を係合すべき旨の指令が発せられる。
 これにより、直流モータ61が駆動され、減速機62を介して出力ホイール63が図2の時計回りに回動される。かかる出力ホイール63の回動により、マスタシリンダ65が図2の右方向に作動され、これによって、図5に示すように、アイドルポート70が開放され、連通路68がリザーバ69に連通される。この結果、スレーブシリンダ47の油圧が低減されるため、ダイヤフラムスプリング45によりプレッシャプレート44が押圧され、フライホイール41に対するクラッチディスク42の圧着荷重が増加されて、クラッチ装置14が係合保持される。
 この際、マスタシリンダ65の図2の右方向への作動により、マスタシリンダ65のアイドルポート70が開放され、連通路68がリザーバ69に連通されるので、連通路68中の作動油の熱膨張あるいは熱収縮によるクラッチアクチュエータ48の作動量に対するクラッチトルクの変化を防止でき、クラッチトルク制御精度を確保できるようになる。このように、切断状態にあったクラッチ装置14を係合させることで、作動油の熱膨張あるいは熱収縮に係らず、クラッチアクチュエータ48の作動量に対するクラッチトルクの関係を確保できるようになる。
 一方、ステップ102において、エンジン停止中のモータ走行モードでないと判別された場合(NOの場合)、すなわち、エンジン動作中のモータ走行モードと判別された場合には、ステップ108に移行し、同ステップ108において、車速が0でなく(車速≠0)、かつクラッチ装置14の切断状態が所定時間t2継続されたか否かが判断される。ステップ108において、車速が0でなく、かつ切断状態が所定時間t2継続されたと判断されると、続くステップ110において、自動変速機13をシフト抜きしてニュートラル状態とした後に、ステップ112において、クラッチアクチュエータ48に対し、クラッチ装置14を係合すべき旨の指令が発せられる。
 これにより、上述したと同様に、直流モータ61が駆動され、減速機62および出力ホイール63を介してマスタシリンダ65が作動され、アイドルポート70を開放して、連通路68をリザーバ69に連通し、クラッチ装置14を係合保持する。この際、シフト抜きされていることにより、クラッチ装置14を係合保持しても、エンジン11のエンジントルクがクラッチ装置14および自動変速機13を介して駆動輪16a、16bに伝達されることがない。
 上記したステップ106、112により、クラッチ装置14の切断状態が所定時間継続された場合に、クラッチ装置14を一時的に係合保持するクラッチ係合保持制御部を構成している。
 各ステップ114、116において、クラッチ装置14の係合時間が所定時間継続されたことが判別されると、ステップ118、120において、タイマがタイムアップされ、次のステップ122、124で、クラッチアクチュエータ48に対し、クラッチ装置14を切断すべき旨の指令が発せられる。
 これにより、直流モータ61が前記と逆方向に駆動され、マスタシリンダ65が図2の左方向に作動されてアイドルポート70を閉止し、連通路68を介してクラッチ装置14のスレーブシリンダ47を作動する。これにより、スレーブシリンダ47を介してダイヤフラムスプリング45が作動され、フライホイール41に対するクラッチディスク42の圧着荷重が低下されることで、クラッチ装置14が元の切断状態に復帰される。
 なお、エンジン停止でのモータ走行モードにおいては、クラッチ装置14が切断保持される(ステップ122)と、プログラムが終了され、一方、エンジン動作でのモータ走行モードにおいては、クラッチ装置14が切断保持される(ステップ124)と、ステップ126において、自動変速機13がニュートラル状態から元のシフト状態にシフト入りされた後、プログラムが終了される。
 上記した実施の形態によれば、クラッチ装置14の切断保持状態が所定時間継続された場合には、クラッチ装置14を一度係合状態に保持し、所定時間経過後にクラッチ装置14を元の切断状態に復帰するようにしたので、マスタシリンダ65とスレーブシリンダ47とを連通する連通路68中の作動油の熱膨張あるいは熱収縮に係らず、クラッチアクチュエータ48の作動量Maに対するクラッチトルクTcの関係を常に図3に示す所期の関係に維持することができ、クラッチトルク制御精度を安定的に確保できるようになる。
 しかも、シリーズモード時においては、自動変速機13をニュートラルに抜いてからクラッチ装置14をつなぐようにしたので、エンジン11が駆動されている場合であっても、エンジン11と駆動輪16a、16bとが連結状態となることがなく、また、EVモード時においては、ハイブリッド車両10が停車している条件で、クラッチ装置14をつなぐようにしたので、仮に、自動変速機13の変速ギヤが1速に入っている場合でも、問題になることはない。
 なお、上記した実施の形態においては、自動変速機13を平行軸歯車噛合式で構成した例で述べたが、遊星ギヤを用いたものであってもよい。
 以上、本発明の実施の形態について説明したが、本発明は実施の形態に限定されるものではなく、特許請求の範囲に記載した本発明の主旨を逸脱しない範囲内で種々の変形が可能であることは勿論である。
 10・・・ハイブリッド車両、11・・・エンジン、12・・・モータ、13・・・自動変速機、14・・・クラッチ装置、25・・・ハイブリッドECU、47・・・スレーブシリンダ、48・・・クラッチアクチュエータ、61・・・アクチュエータ、65・・・マスタシリンダ、68・・・連通路、69・・・リザーバ、70・・・アイドルポート、ステップ106、112・・・クラッチ係合保持制御部。

Claims (7)

  1.  車両に搭載されたエンジンが出力するエンジントルクによって回転されるよう適合された入力軸の回転を複数段の変速比に変速して前記車両の駆動輪に伝達する自動変速装置と、
     前記駆動輪に回転連結されたモータと、
     前記エンジンのアウトプットシャフトと前記自動変速装置の前記入力軸とを係脱するとともに前記アウトプットシャフトから前記入力軸に伝達されるクラッチトルクを目標クラッチトルクに制御するクラッチ装置と、
     アクチュエータによってストロークされる出力ロッド、及び該出力ロッドのストロークに応じて作動され、リザーバに連通するアイドルポートを閉止して油圧を発生するマスタシリンダを含むクラッチアクチュエータと、
     前記マスタシリンダと連通路を介して連通され、前記マスタシリンダが発生する油圧に応じて作動され、前記クラッチ装置を切断および係合制御するスレーブシリンダと、
     前記モータによる走行時に前記クラッチ装置の切断状態が所定時間継続された場合に、前記アイドルポートを開放する方向に前記マスタシリンダを作動して前記クラッチ装置を一時的に係合保持するクラッチ係合保持制御部と、
    を有するハイブリッド車両のクラッチ制御装置。
  2.  請求項1において、前記クラッチ係合保持制御部による前記クラッチ装置の係合保持状態が所定時間経過した後に、前記クラッチ装置を切断保持状態に復帰させるようにしてなるハイブリッド車両のクラッチ制御装置。
  3.  請求項1または請求項2において、前記モータによる走行時には、車両が停止した条件で、前記クラッチ係合保持制御部によって前記クラッチ装置を係合保持するようにしてなるハイブリッド車両のクラッチ制御装置。
  4.  請求項1または請求項3において、前記モータによる走行時であって、かつ、補機類等の駆動のために前記エンジンが回転されている場合には、前記自動変速装置をニュートラル状態にシフト抜きした後に、前記クラッチ係合保持制御部によって前記クラッチ装置を係合保持するようにしてなるハイブリッド車両のクラッチ制御装置。
  5.  請求項2において、前記モータによる走行時であって、かつ、補機類等の駆動のために前記エンジンが回転されている場合には、前記自動変速装置をニュートラル状態にシフト抜きした後に、前記クラッチ係合保持制御部によって前記クラッチ装置を係合保持するようにしてなるハイブリッド車両のクラッチ制御装置。
  6.  請求項5において、前記クラッチ装置を切断保持状態に復帰させた後に、前記自動変速装置をニュートラル状態に前記シフト抜きする前のシフト状態にするようにしてなるハイブリッド車両のクラッチ制御装置。
  7.  請求項1において、前記クラッチ装置が切断状態に保持される場合には、前記マスタシリンダが前記アイドルポートを閉止しているハイブリッド車両のクラッチ制御装置。
PCT/JP2012/056076 2011-03-24 2012-03-09 ハイブリッド車両のクラッチ制御装置 WO2012128065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280009630.4A CN103380038B (zh) 2011-03-24 2012-03-09 混合动力车辆的离合器控制装置
EP12760101.1A EP2689978B1 (en) 2011-03-24 2012-03-09 Hybrid vehicle clutch control device
US13/983,479 US9096224B2 (en) 2011-03-24 2012-03-09 Hybrid vehicle clutch control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-066161 2011-03-24
JP2011066161A JP5589922B2 (ja) 2011-03-24 2011-03-24 ハイブリッド車両のクラッチ制御装置

Publications (1)

Publication Number Publication Date
WO2012128065A1 true WO2012128065A1 (ja) 2012-09-27

Family

ID=46879219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056076 WO2012128065A1 (ja) 2011-03-24 2012-03-09 ハイブリッド車両のクラッチ制御装置

Country Status (5)

Country Link
US (1) US9096224B2 (ja)
EP (1) EP2689978B1 (ja)
JP (1) JP5589922B2 (ja)
CN (1) CN103380038B (ja)
WO (1) WO2012128065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415760B2 (en) 2014-04-02 2016-08-16 Ford Global Technologies, Llc Clutch calibration for a hybrid electric powertrain

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652544B2 (ja) 2011-03-25 2015-01-14 アイシン精機株式会社 ハイブリッド車両の変速制御装置
EP2806141B1 (en) * 2012-01-19 2019-03-13 Nissan Motor Co., Ltd Engine control device and control method for hybrid drive vehicle
CN104379423A (zh) * 2012-06-15 2015-02-25 丰田自动车株式会社 混合动力车辆用驱动装置
KR101427932B1 (ko) * 2012-12-07 2014-08-08 현대자동차 주식회사 구동모터의 속도 제어를 수반한 하이브리드 차량의 변속 제어 방법 및 시스템
JP6020197B2 (ja) * 2013-01-24 2016-11-02 アイシン精機株式会社 ハイブリッド車両のクラッチ制御装置
KR101509943B1 (ko) * 2013-10-22 2015-04-07 현대자동차주식회사 엔진 클러치 액츄에이터 고장-안전 제어 방법 및 이에 사용되는 장치
JP5810149B2 (ja) * 2013-12-24 2015-11-11 本田技研工業株式会社 輸送機関の駆動装置
US9296380B2 (en) 2014-04-09 2016-03-29 Ford Global Technologies, Llc Prestroking engine disconnect clutch in a hybrid vehicle
US9988036B2 (en) * 2014-09-05 2018-06-05 Ford Global Technologies, Llc Clutch and electric machine control for driveline damping
KR101776528B1 (ko) * 2016-10-10 2017-09-07 현대자동차주식회사 하이브리드 차량의 엔진 클러치 유압 리필 시 제어 방법
JP6703193B2 (ja) 2017-06-30 2020-06-03 本田技研工業株式会社 車両用変速システム
CN107985119B (zh) * 2017-10-24 2020-08-11 山东理工大学 一种飞轮混动双电机四轮驱动电动车辆驱动控制方法
CN107901749A (zh) * 2017-12-14 2018-04-13 茵卡动力新能源江苏有限公司 一种自动离合器执行机构
JP6969440B2 (ja) * 2018-02-26 2021-11-24 トヨタ自動車株式会社 車両の運転支援装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176894A (ja) 2002-11-29 2004-06-24 Aisin Ai Co Ltd 歯車式変速機の自動変速操作装置
JP2008075814A (ja) 2006-09-22 2008-04-03 Aisin Seiki Co Ltd クラッチ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529477A (ja) 1998-10-02 2003-10-07 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 自動車
JP4562195B2 (ja) * 2006-09-20 2010-10-13 三菱ふそうトラック・バス株式会社 ハイブリッド電気自動車の変速制御装置
JP2009041695A (ja) * 2007-08-10 2009-02-26 Toyota Motor Corp 自動クラッチの制御装置
DE102008057656B4 (de) * 2007-12-03 2019-03-14 Schaeffler Technologies AG & Co. KG Kupplungssystem mit einer automatisierten Reibungskupplung
DE102008059235A1 (de) * 2007-12-19 2009-06-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Betreiben eines Fahrzeugs mit einem Hybridantrieb
JP4798154B2 (ja) 2008-03-06 2011-10-19 日産自動車株式会社 ハイブリッド車両の制御装置
US8337358B2 (en) 2008-04-04 2012-12-25 GM Global Technology Operations LLC Hydraulic clutch control mechanization with all-mode default for use in a multimode hybrid transmission
DE102008002383A1 (de) 2008-06-12 2009-12-17 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs
JP2010038176A (ja) * 2008-07-31 2010-02-18 Toyota Motor Corp クラッチストローク制御装置
JP5039098B2 (ja) * 2009-07-24 2012-10-03 日産自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176894A (ja) 2002-11-29 2004-06-24 Aisin Ai Co Ltd 歯車式変速機の自動変速操作装置
JP2008075814A (ja) 2006-09-22 2008-04-03 Aisin Seiki Co Ltd クラッチ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415760B2 (en) 2014-04-02 2016-08-16 Ford Global Technologies, Llc Clutch calibration for a hybrid electric powertrain

Also Published As

Publication number Publication date
EP2689978B1 (en) 2018-11-28
JP2012201168A (ja) 2012-10-22
EP2689978A1 (en) 2014-01-29
US9096224B2 (en) 2015-08-04
EP2689978A4 (en) 2015-09-30
CN103380038B (zh) 2016-08-10
CN103380038A (zh) 2013-10-30
US20130310217A1 (en) 2013-11-21
JP5589922B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5589922B2 (ja) ハイブリッド車両のクラッチ制御装置
JP5847514B2 (ja) ハイブリッド車両の制御装置
JP6074236B2 (ja) ハイブリッド車両用駆動装置の変速制御装置
JP3893395B2 (ja) ハイブリッド電気自動車の駆動制御装置
JP3915698B2 (ja) ハイブリッド車輌の制御装置
US8092340B2 (en) Hybrid electric vehicle powertrain control after a requested change in vehicle direction
JP6052073B2 (ja) ハイブリッド車両用駆動装置の変速制御装置
JP5573747B2 (ja) ハイブリッド車両の変速制御装置
US8568270B2 (en) Gear shift control device for hybrid vehicle drive system
WO2011052305A1 (ja) 車両用制御装置
WO2012160912A1 (ja) ハイブリッド車両の変速制御装置
JP6348340B2 (ja) ハイブリッド車両の駆動装置
JP6123518B2 (ja) 自動変速機制御装置
JP2002295529A (ja) クラッチのトルク点学習方法
US20140235405A1 (en) Vehicle drive system
JP5736885B2 (ja) 車両の変速制御装置
JP4557402B2 (ja) 車両用駆動制御装置
JP5835573B2 (ja) 自動変速機のクラッチ制御装置
JP2002286056A (ja) クラッチのトルク点学習方法
JP7436234B2 (ja) ハイブリッド車両システム
JP6020197B2 (ja) ハイブリッド車両のクラッチ制御装置
JP6766966B2 (ja) 制御装置
US20150266464A1 (en) Slow torque modulation performed by fast actuator
JP2014156141A (ja) ハイブリッド車両用駆動装置
JP2014020505A (ja) 車両駆動装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983479

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012760101

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE