WO2012117514A1 - 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液 - Google Patents

油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液 Download PDF

Info

Publication number
WO2012117514A1
WO2012117514A1 PCT/JP2011/054580 JP2011054580W WO2012117514A1 WO 2012117514 A1 WO2012117514 A1 WO 2012117514A1 JP 2011054580 W JP2011054580 W JP 2011054580W WO 2012117514 A1 WO2012117514 A1 WO 2012117514A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
precursor acrylic
ester compound
aromatic ester
oil agent
Prior art date
Application number
PCT/JP2011/054580
Other languages
English (en)
French (fr)
Inventor
宏実 麻生
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201180068742.2A priority Critical patent/CN103502519B/zh
Priority to US14/002,263 priority patent/US9752012B2/en
Priority to KR1020137025818A priority patent/KR101518160B1/ko
Priority to HUE11859873A priority patent/HUE029498T2/en
Priority to EP11859873.9A priority patent/EP2682506B1/en
Priority to JP2011512328A priority patent/JP5585579B2/ja
Priority to MX2013009962A priority patent/MX345718B/es
Priority to PT118598739T priority patent/PT2682506T/pt
Priority to PCT/JP2011/054580 priority patent/WO2012117514A1/ja
Publication of WO2012117514A1 publication Critical patent/WO2012117514A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3568Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing silicon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile

Definitions

  • the present invention relates to a carbon fiber precursor acrylic fiber bundle to which an oil agent composition is adhered, a method for producing the same, an oil composition for carbon fiber precursor acrylic fibers, and an oil composition dispersion for carbon fiber precursor acrylic fibers.
  • the carbon fiber precursor acrylic fiber bundle is heat-treated in an oxygen-existing atmosphere at 200 to 400 ° C. to convert it into a flame-resistant fiber bundle (flame-proofing step), and subsequently 1000 ° C. or higher.
  • a carbon fiber bundle is obtained by carbonizing under an inert atmosphere (carbonization step). Carbon fiber bundles obtained by this method are widely used industrially as reinforcing fibers for composite materials because of their excellent mechanical properties.
  • a silicone-based oil mainly containing silicone has been generally used.
  • a modified silicone having a reactive group such as amino, epoxy, or polyether is generally used from the viewpoint of easy compatibility with the carbon fiber precursor acrylic fiber bundle and fixability.
  • the modified silicone-based oil agent is used in a post-treatment process (such as a drying process) or a flame-proofing process of a carbon fiber precursor acrylic fiber bundle to which the oil agent composition has been adhered by progressing in a crosslinking reaction by heating to increase the viscosity.
  • Adhesives were easy to deposit on the surface of the fiber conveyance roller and guide.
  • process failure such as carbon fiber precursor acrylic fiber bundle or flameproof fiber bundle with oil agent composition attached to it is broken or bundled around fiber conveyance roller or guide, resulting in operability degradation.
  • silicone-based oil applied to the carbon fiber precursor acrylic fiber bundle easily generated silicon compounds such as silicon oxide, silicon carbide, and silicon nitride in the firing step. It is known that the generation of silicon compounds leads to a decrease in industrial productivity and product quality.
  • the oil agent composition which reduced the content rate of silicone is proposed for the purpose of reducing the silicon content of the carbon fiber precursor acrylic fiber bundle to which the oil agent composition adhered.
  • an oil agent composition containing 40 to 100% by weight of an emulsifier containing 50 to 100% by weight of a polycyclic aromatic compound to reduce the silicone content has been proposed (see Patent Document 1).
  • an oil agent composition has been proposed in which 80 to 95% by mass of a higher fatty acid esterified product of ethylene oxide and / or propylene oxide adduct of bisphenol A is contained (see Patent Document 2). .
  • an oil agent composition has been proposed in which a reaction product of a saturated aliphatic dicarboxylic acid and ethylene oxide of bisphenol A and / or a monoalkyl ester of a propylene oxide adduct is added to reduce the silicone content (patent) Reference 3).
  • the oil agent composition which combined the heat resistant resin whose residual rate after heating at 250 degreeC in the air for 2 hours is 80 mass% or more and silicone is proposed (refer patent document 4).
  • the oil agent composition contains 10% by mass or more of the compound having a reactive functional group and does not contain a silicone compound, or in the case of containing a silicone compound, the oil composition has a range not exceeding 2% by mass in terms of silicon mass. It has been proposed (see Patent Document 5).
  • the oil agent composition described in Patent Document 1 has a high emulsifier content, the stability of the emulsion is increased, but the carbon fiber precursor acrylic fiber bundle to which the oil agent composition is attached has a reduced convergence. However, it is not suitable for manufacturing with high production efficiency, and there is a problem that it is difficult to obtain a carbon fiber bundle excellent in mechanical properties.
  • the oil agent compositions described in Patent Documents 2 and 3 use bisphenol A aromatic ester as a heat-resistant resin, the heat resistance is extremely high, but the effect of preventing fusion between single fibers is not sufficient. However, there was a problem that a carbon fiber bundle excellent in mechanical properties was difficult to be obtained stably.
  • the oil composition described in Patent Document 4 forms a film on the fiber surface at 250 to 300 ° C., the diffusion of oxygen into the fiber in the flameproofing process is inhibited, and the flameproofing is not performed uniformly. As a result, there has been a problem that it is difficult to stably obtain a carbon fiber bundle excellent in mechanical properties. Furthermore, since the oil agent composition described in Patent Document 4 has high heat resistance, the oil agent composition or a modified product thereof accumulates in the furnace or the conveyance roller in the flameproofing process, which causes a problem in the process. was there.
  • the oil agent composition described in Patent Document 5 can increase the oil agent adhesion by increasing the oil agent viscosity at 100 to 145 ° C., since the viscosity is high, the carbon fiber precursor to which the oil agent composition is attached. Occasionally, the acrylic fiber bundle may cause a process failure such as wrapping around a fiber conveyance roller, and the operability may be lowered.
  • the compatibilizing agent is inferior in affinity to the silicone compound. It was necessary to contain at least mass%. Further, the decomposition product of the compatibilizing agent may become tarred during the firing process, which may impede the process.
  • the precursor fiber provided with the oil composition described in Patent Document 8 has stable operability, but the heat resistance of the oil composition is low, so that the fiber bundles are not sufficiently converged in the flameproofing process. It was.
  • the oil agent composition described in Patent Document 8 has a tendency that the mechanical properties of the obtained carbon fiber bundle are inferior to a silicone oil agent mainly composed of silicone.
  • the oil composition having a reduced silicone content may cause a decrease in the operability of the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered, or may be fused.
  • the prevention and convergence properties to decrease and for the mechanical properties of the carbon fiber bundle to be inferior. Therefore, it has been difficult to stably obtain a high-quality carbon fiber bundle.
  • silicone oils that have been widely used have been problematic in that the operability is reduced by increasing the viscosity and the industrial productivity is decreased by the formation of silicon compounds.
  • the problems of the convergence of the precursor acrylic fiber bundle and the deterioration of the mechanical properties of the carbon fiber bundle are in an integrated relationship, and the conventional technology has not solved all the problems.
  • the present invention has been made in view of the above circumstances, and an oil agent composition that effectively prevents fusion between single fibers in a carbon fiber bundle production process, suppresses operability deterioration, and has good convergence.
  • Carbon fiber precursor acrylic fiber bundle and carbon fiber precursor acrylic fiber oil composition capable of obtaining with good productivity a carbon fiber bundle excellent in mechanical properties, its dispersion, and carbon to which the oil composition is attached
  • An object is to provide a fiber precursor acrylic fiber bundle and a method for producing the same.
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is attached is composed of amino-modified silicone, an aromatic ester compound (1) having a structure represented by the following formula (1), and the following formula (2).
  • the aromatic ester compound (2) having the structure shown satisfies the following conditions (a) to (c).
  • (A) The adhesion amount of the amino-modified silicone is 0.01 to 0.2% by mass with respect to the dry fiber mass.
  • the total adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) is 0.4 to 1.2% by mass with respect to the dry fiber mass.
  • C The ratio of the adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) (aromatic ester compound (2) / aromatic ester compound (1)) is 0.25 to 6.5. is there.
  • R 1 and R 2 are each independently a hydrocarbon group having 7 to 21 carbon atoms, and “m” and “n” are each independently 1 to 5.
  • R 3 to R 5 are each independently a hydrocarbon group having 8 to 14 carbon atoms.
  • the amino-modified silicone is preferably an amino-modified silicone having a structure represented by the following formula (3).
  • the kinematic viscosity at 25 ° C. of the amino-modified silicone is preferably 50 to 500 mm 2 / s.
  • the block copolymer polyether having a structure represented by the following formula (4), comprising a propylene oxide unit and an ethylene oxide unit comprises the aromatic ester compound (1), the aromatic ester compound (2), and amino-modified It is preferable that 5 to 70 parts by mass further adhere to the total amount of adhesion of 100 parts by mass with respect to the dry fiber mass of silicone.
  • the carbon fiber precursor acrylic fiber oil composition of the present invention comprises an amino-modified silicone, an aromatic ester compound (1) having a structure represented by the following formula (1), and a structure represented by the following formula (2). And an aromatic ester compound (2), wherein the content of the amino-modified silicone includes the aromatic ester compound (1) and the aromatic ester compound (2). ) And a mass ratio of the aromatic ester compound (1) to the aromatic ester compound (2) (aromatic ester compound (2) / aromatic ester).
  • the compound (1)) is characterized by being from 0.25 to 6.5.
  • R 1 and R 2 are each independently a hydrocarbon group having 7 to 21 carbon atoms, and “m” and “n” are each independently 1 to 5.
  • R 3 to R 5 are each independently a hydrocarbon group having 8 to 14 carbon atoms.
  • the amino-modified silicone is preferably an amino-modified silicone having a structure represented by the following formula (3).
  • the kinematic viscosity at 25 ° C. of the amino-modified silicone is preferably 50 to 500 mm 2 / s. Furthermore, with respect to a total of 100 parts by mass of the amino-modified silicone, the aromatic ester compound (1), and the aromatic ester compound (2), the following formula (4) comprising a propylene oxide unit and an ethylene oxide unit: It is preferable to further contain 10 to 50 parts by mass of a block copolymer polyether having the structure shown.
  • the carbon fiber precursor acrylic fiber oil composition dispersion according to the present invention is characterized in that the carbon fiber precursor acrylic fiber oil composition is dispersed in water or a solvent.
  • the carbon fiber precursor acrylic fiber oil composition dispersion is an emulsion
  • the carbon fiber precursor acrylic fiber oil composition forms micelles having an average particle size of 0.01 to 0.50 ⁇ m. It is preferable.
  • the method for producing a carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is adhered is obtained by dispersing the carbon fiber precursor acrylic fiber oil agent composition in water or a solvent, and having an average particle size of 0.01 to A step of applying an oil composition dispersion for carbon fiber precursor acrylic fibers formed with 0.50 ⁇ m micelles to a carbon fiber precursor acrylic fiber bundle in a water-swelled state, and an oil composition dispersion for carbon fiber precursor acrylic fibers And a step of drying and densifying the carbon fiber precursor acrylic fiber bundle to which the liquid is applied.
  • a carbon fiber precursor acrylic that effectively prevents fusion between single fibers in a carbon fiber bundle manufacturing process, suppresses a decrease in operability, and adheres an oil agent composition with good convergence.
  • An oil composition for a carbon fiber precursor acrylic fiber that can obtain a fiber bundle and a carbon fiber bundle excellent in mechanical properties with good productivity, a dispersion thereof, and a carbon fiber precursor acrylic fiber bundle to which the oil composition is attached The manufacturing method can be provided.
  • the operability can be suppressed and the convergence of the carbon fiber precursor acrylic fiber bundle to which the oil agent composition is adhered is good, the industrial productivity of the carbon fiber bundle is increased, A stable and high-quality carbon fiber bundle can be obtained.
  • oil agent composition for carbon fiber precursor acrylic fibers of the present invention (hereinafter also referred to as “oil agent composition”) is given to the carbon fiber precursor acrylic fiber bundle described later, and has different structures. An ester compound is used in combination and an amino-modified silicone is contained.
  • carbon fiber precursor acrylic fiber bundle before the oil composition of the present invention is attached is referred to as “carbon fiber precursor acrylic fiber bundle” or “precursor fiber bundle”, and the oil composition of the present invention is referred to as “carbon fiber precursor acrylic fiber bundle”.
  • the adhered carbon fiber precursor acrylic fiber bundle is also referred to as “a carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered” or “precursor fiber bundle to which the oil composition is adhered”.
  • the aromatic ester compound is effective for preventing fusion and imparting bundling properties in the flame-proofing step of the carbon fiber precursor acrylic fiber bundle to which the oil agent composition described later is attached.
  • the aromatic ester compound (1) having the structure represented by the following formula (1) and the aromatic ester compound (2) having the structure represented by the following formula (2) are used in combination as the aromatic ester compound. .
  • R 1 and R 2 are each independently a hydrocarbon group having 7 to 21 carbon atoms. If the number of carbon atoms of the hydrocarbon group is 7 or more, the ester compound can maintain good heat resistance, so that a sufficient anti-fusing effect can be obtained in the flameproofing step. On the other hand, if the carbon number of the hydrocarbon group is 21 or less, an emulsion of the oil composition containing the aromatic ester compound (1) can be easily prepared, and the oil composition adheres uniformly to the precursor fiber bundle. . As a result, a sufficient anti-fusing effect can be obtained in the flameproofing process, and the convergence of the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered is improved.
  • the hydrocarbon group preferably has 9 to 15 carbon atoms.
  • R 1 and R 2 may have the same structure or may have independent structures.
  • hydrocarbon group a saturated hydrocarbon group is preferable, and among them, a saturated chain hydrocarbon group is particularly preferable.
  • the aromatic ester compound (1) has good heat resistance and can suppress fusion between single fibers in the flameproofing step.
  • the aromatic ester compound (1) represented by the formula (1) may be a mixture of a plurality of compounds, and therefore “m” and “n” may not be integers.
  • the hydrocarbon group forming R 1 and R 2 may be one kind or a mixture of plural kinds.
  • R 3 to R 5 are each independently a hydrocarbon group having 8 to 14 carbon atoms. If the number of carbon atoms of the hydrocarbon group is 8 or more, the aromatic ester compound (2) can maintain good heat resistance, so that a sufficient anti-fusing effect can be obtained in the flameproofing step. On the other hand, if the carbon number of the hydrocarbon group is 14 or less, an emulsion of the oil composition containing the aromatic ester compound (2) can be easily prepared, and the oil composition adheres uniformly to the precursor fiber bundle. . As a result, a sufficient anti-fusing effect can be obtained in the flameproofing process, and the convergence of the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered is improved.
  • R 3 to R 5 are preferably saturated hydrocarbon groups having 8 to 12 carbon atoms from the viewpoint of easy preparation of an emulsion of a uniform oil composition, and those having 10 to 14 carbon atoms from the viewpoint of excellent heat resistance in the presence of water vapor. Saturated hydrocarbon groups are preferred. R 3 to R 5 may have the same structure or may have independent structures.
  • the hydrocarbon group is preferably a saturated hydrocarbon group such as a saturated chain hydrocarbon group or a saturated cyclic hydrocarbon group.
  • Specific examples include alkyl groups such as octyl group, nonyl group, decyl group, undecyl group, lauryl group (dodecyl group), tridecyl group, and tetradecyl group.
  • the aromatic ester compound (1) having the structure represented by the above formula (1) has high heat resistance, and the carbon fiber precursor acrylic fiber bundle to which the oil agent composition is attached retains convergence until the flameproofing process is completed. It is effective to improve operability. However, since the aromatic ester compound (1) remains in the fiber bundle until the carbonization step, the mechanical properties of the carbon fiber may be lowered. On the other hand, since the aromatic ester compound (2) having the structure represented by the above formula (2) is easily pyrolyzed or scattered in the flameproofing process and hardly remains on the fiber bundle surface, the mechanical properties of the carbon fiber bundle are high quality. Can be maintained.
  • the aromatic ester compound (2) is slightly inferior in heat resistance, it is difficult for the carbon fiber precursor acrylic fiber bundle to which the oil agent composition adheres in the flameproofing process to maintain the bundling property only with this material. is there. Therefore, in the present invention, the aromatic ester compound (1) having the structure represented by the above formula (1) and the aromatic ester compound (2) having the structure represented by the above formula (2) are used in combination as the aromatic ester component. It is important to.
  • the mass ratio of the aromatic ester compound (1) having the structure represented by the above formula (1) and the aromatic ester compound (2) having the structure represented by the above formula (2) is from 0.25 to 6.5. If mass ratio is 0.25 or more, while being able to provide sufficient convergence to the carbon fiber precursor acrylic fiber bundle which the oil agent composition adhered, operativity improves. On the other hand, if the mass ratio is 6.5 or less, a carbon fiber bundle having good mechanical properties can be obtained. From the viewpoint of carbon fiber strength development, the mass ratio is more preferably 1.0 to 5, and still more preferably 1.2 to 3.
  • the content of the aromatic ester compound (1) is preferably 10 to 40% by mass in 100% by mass of the oil composition. If content is 10 mass% or more, while being able to provide sufficient convergence to the carbon fiber precursor acrylic fiber bundle which the oil agent composition adhered, operativity improves more. On the other hand, if the content is 40% by mass or less, a carbon fiber bundle having good mechanical properties can be obtained.
  • the content of the aromatic ester compound (1) having the structure represented by the above formula (1) is more preferably 15 to 30% by mass.
  • the content of the aromatic ester compound (2) having the structure represented by the above formula (2) is preferably 10 to 60% by mass in 100% by mass of the oil composition. If the content is 10% by mass or more, a carbon fiber bundle having good mechanical properties can be obtained. On the other hand, if the content is 60% by mass or less, sufficient convergence can be imparted to the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered.
  • the content of the aromatic ester compound (2) having the structure represented by the above formula (2) is more preferably 40 to 55% by mass. In particular, when the content exceeds 40% by mass, a carbon fiber bundle with improved mechanical properties can be obtained. Therefore, the content of the aromatic ester compound (2) having the structure represented by the above formula (2) is particularly preferably 45 to 50% by mass.
  • the oil agent composition of the present invention contains an amino-modified silicone.
  • the amino-modified silicone has good compatibility with the precursor fiber bundle and is effective in improving the affinity and heat resistance of the oil composition with the precursor fiber bundle.
  • an amino-modified silicone having a structure represented by the following formula (3) is preferable.
  • “o” is 5 to 300, and “p” is 1 to 5. If “o” and “p” are within the above ranges, the performance and heat resistance of the carbon fiber bundle will be good. In particular, when “o” is 5 or more, good heat resistance is obtained, and it becomes easy to prevent fusion between single fibers. Moreover, when “o” is 300 or less, the oil agent composition is well dispersed in water, and an emulsion can be easily prepared. Moreover, stability of an emulsion becomes favorable and it becomes easy to adhere to a precursor fiber bundle uniformly. On the other hand, when “p” is 1 or more, the affinity with the precursor fiber bundle is good, and it becomes easy to effectively prevent fusion between single fibers.
  • the amino-modified silicone having the structure represented by the formula (3) may be a mixture of a plurality of compounds. Thus, “o” and “p” may not each be an integer.
  • “O” and “p” in the formula (3) can be estimated as estimated values from the kinematic viscosity and amino equivalent of the amino-modified silicone described later.
  • the amino-modified silicone preferably has a kinematic viscosity at 25 ° C. of 50 to 500 mm 2 / s and an amino equivalent of 2000 to 6000 g / mol.
  • the kinematic viscosity is 50 mm 2 / s or more, the heat resistance of the oil composition is improved, and it becomes easy to prevent fusion between single fibers in the flameproofing step.
  • kinematic viscosity is 500 mm ⁇ 2 > / s or less, it will become easy to prepare the emulsion of an oil agent composition.
  • the stability of the emulsion of the oil agent composition becomes good, and the oil agent composition easily adheres uniformly to the precursor fiber bundle.
  • the kinematic viscosity at 25 ° C. is preferably 50 to 300 mm 2 / s.
  • the kinematic viscosity of the amino-modified silicone is a value measured according to JIS-Z-8803 or ASTM D 445-46T, and can be measured using, for example, a Ubbelohde viscometer.
  • the amino equivalent of the amino-modified silicone is preferably 2000 to 6000 g / mol, more preferably 4000 to 6000 g / mol, from the viewpoint of good compatibility with the precursor fiber bundle and the thermal stability of the silicone.
  • the amino equivalent is 2000 g / mol or more, the number of amino groups in one silicone molecule does not increase too much, the thermal stability of the amino-modified silicone becomes good, and process failures are easily prevented.
  • the amino equivalent is 6000 g / mol or less, the number of amino groups in one silicone molecule is sufficient, so the familiarity between the amino-modified silicone and the precursor fiber bundle is improved, and the oil agent composition adheres uniformly. Therefore, it becomes easy to obtain a carbon fiber precursor acrylic fiber bundle to which an oil agent composition having a good bundling property is attached with less fusion between single fibers.
  • the content of the amino-modified silicone is 100 parts by mass in total of the aromatic ester compound (1) having the structure represented by the above formula (1) and the aromatic ester compound (2) having the structure represented by the above formula (2). 1 to 25 parts by mass, preferably 8 to 15 parts by mass.
  • the content of the amino-modified silicone is 1 part by mass or more, a carbon fiber bundle having good mechanical properties can be obtained.
  • the content of the amino-modified silicone is 25 parts by mass or less, it is easy to suppress the problem of industrial productivity being lowered due to a process failure caused by a silicon compound generated in the flameproofing process.
  • oil agent composition of the present invention can be uniformly applied to the precursor fiber bundle, it is not necessary to add other components, but depending on the equipment and use environment for attaching to the precursor fiber bundle, the operability can be improved, Other components such as surfactants, compatibilizers, antistatic agents, antioxidants and antibacterial agents are inhibited by the present invention for the purpose of improving the stability and adhesion properties of the oil composition. It can further contain in the range which does not.
  • oil composition dispersion a liquid in which the oil composition is dispersed in water or a solvent is referred to as an oil composition dispersion for carbon fiber precursor acrylic fibers (hereinafter also referred to as “oil composition dispersion”).
  • nonionic surfactants include higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, aliphatic ethylene oxide adducts, polyhydric alcohol aliphatic ester ethylene oxide adducts, higher alkylamine ethylene oxide adducts, Polyethylene glycol type nonionic surfactants such as aliphatic amide ethylene oxide adducts, fat and oil ethylene oxide adducts, polypropylene glycol ethylene oxide adducts; aliphatic esters of glycerol, aliphatic esters of pentaerythritol, fats of sorbitol Polyhydric alcohols such as aliphatic esters, aliphatic esters of sorbitan, aliphatic esters of sucrose, alkyl ethers of polyhydric alcohols, fatty acid amides of
  • a block copolymer type polyether having a structure represented by the following formula (4) composed of a propylene oxide (PO) unit and an ethylene oxide (EO) unit is preferable. .
  • x”, “y”, and “z” are each independently 1 to 200, preferably 10 to 100. Further, the ratio (x + z: y) of the sum of “x” and “z” to “y” is preferably 90:10 to 50:50.
  • the block copolymer polyether preferably has a number average molecular weight of 2,000 to 10,000. When the number average molecular weight is within the above range, it is possible to have both thermal stability and water dispersibility required for an oil composition. Further, the block copolymer polyether preferably has a kinematic viscosity at 100 ° C. of 10 to 500 mm 2 / s. If the kinematic viscosity is within the above range, the oil agent composition is prevented from excessively penetrating into the fiber, and in the drying step after being applied to the precursor fiber bundle, the oil agent composition has a viscosity on the conveying roller or the like. It becomes difficult for process troubles, such as fiber being taken up and wound up. The kinematic viscosity of the block copolymer type polyether can be measured in the same manner as the kinematic viscosity of the amino-modified silicone.
  • the content of the block copolymer polyether having the structure represented by the above formula (4), which is composed of a PO unit and an EO unit, is determined based on the amino-modified silicone, the aromatic ester compound (1), the aromatic ester compound ( 10 to 50 parts by mass is preferable with respect to 100 parts by mass in total of 2).
  • the content of the block copolymer type polyether is 10 parts by mass or more, the oil agent composition can be easily dispersed in water or a solvent, and the oil agent composition dispersion becomes stable.
  • the addition amount of the block copolymer polyether is more preferably 15 to 40 parts by mass, and further preferably 20 to 35 parts by mass.
  • the compatibilizer examples include a compatibilizer having a polydimethylsiloxane structure.
  • the content of the compatibilizer is preferably 1 to 10 parts by mass, more preferably 100 parts by mass in total of the amino-modified silicone, aromatic ester compound (1), and aromatic ester compound (2). 1 to 5 parts by mass. If the content of the compatibilizer is 1 part by mass or more, the amino-modified silicone described above, the aromatic ester compounds (1) and (2) having the structure represented by the above formula (1) and the above formula (2), and
  • the oil agent composition can be uniformly attached to the fiber surface without being unevenly distributed when applied to the fiber.
  • the content of the compatibilizer is 10 parts by mass or less, there is little generation of silicon compounds derived from the polydimethylsiloxane structure of the compatibilizer in the firing step, and there is a problem of reducing industrial productivity. It becomes difficult to do.
  • At least one unit selected from the group consisting of units represented by the following formula (5), units represented by the following formulas (6), (7) and (8), and optionally the following A modified polydimethylsiloxane containing a unit represented by the formula (9) is preferable.
  • xa is 7 to 15.
  • ma is 0 to 3
  • ya is 5 to 15.
  • mb is 0 to 3
  • yb is 1 to 5.
  • mc is 0 to 3
  • yc + yd is 5 to 15, and ethylene oxide (EO) and propylene oxide (PO) are block copolymers or random copolymers.
  • na is 1 to 5, and za is 3 to 60.
  • the structure of the above-mentioned modified polydimethylsiloxane can be exemplified by the following three patterns, which are broadly divided into combinations of the above units, as a more preferable form.
  • the modified polydimethylsiloxane preferably has at least one unit represented by the above formulas (5), (6) and (9), and has a kinematic viscosity at 25 ° C. of 500 to 1000 mm 2 / s ( Hereinafter, it is referred to as modified polydimethylsiloxane 1).
  • the alkyl chain of the modified polydimethylsiloxane 1 is familiar with fats and oils, and due to the effect of this site, the modified polydimethylsiloxane 1 has an amino-modified silicone and a structure represented by the above formula (1) and the above formula (2). It dissolves in both aromatic ester compounds (1) and (2) and exhibits a compatibilizing effect.
  • xa 11.
  • the modified polydimethylsiloxane 1 has good solubility in fats and oils when xa is 7 or more, and good stability when the oil composition is dispersed in water or a solvent when xa is 15 or less.
  • the polyethylene oxide chain of the modified polydimethylsiloxane 1 is familiar with water and has a function of stabilizing micelles when the oil composition is dispersed in water.
  • ya 9.
  • the modified polydimethylsiloxane 1 having ya of 5 or more has good affinity with water and good stability when made into an emulsion.
  • the modified polydimethylsiloxane 1 which is 15 or less has good thermal stability.
  • there may be an alkyl group between polyethylene oxide and polydimethylsiloxane, and the range thereof is ma 0 to 3.
  • ma 0.
  • the modified polydimethylsiloxane 1 having a ma of 3 or less has good dispersibility in water, and the stability of the emulsion is good.
  • the modified polydimethylsiloxane 1 has a polydimethylsiloxyalkyl chain
  • the solubility in amino-modified silicone is increased.
  • the alkyl part of the polydimethylsiloxyalkyl chain is a saturated hydrocarbon having na of 1 to 5 in the above formula (9).
  • na 2.
  • Modified polydimethylsiloxane 1 having na of 5 or less has a good balance of solubility in aromatic ester and amino-modified silicone, and exhibits a compatibilizing effect.
  • the length of the polydimethylsiloxy part is determined by the overall balance, and za in the formula (9) is in the range of 3 to 60, and the kinematic viscosity at 25 ° C.
  • Modified polydimethylsiloxane 1 having a za of 3 or more has good solubility in amino-modified silicone and exhibits a compatibilizing effect. Further, the modified polydimethylsiloxane 1 having a za of 60 or less does not have too high solubility in amino-modified silicone, and the balance of compatibilization becomes good.
  • the number of units represented by the above formulas (5), (6) and (9) is preferably in the range of 2 to 5, respectively. If it exists in this range, the balance between each performance mentioned above about each unit will be good, and compatibilizing ability will become favorable.
  • the values of xa, ya, za, ma and na may be the same or different depending on each unit. Good.
  • the modified polydimethylsiloxane 1 preferably has a kinematic viscosity at 25 ° C. of 500 to 1000 mm 2 / s. More preferably, it is 600 to 800 mm 2 / s. Since the modified polydimethylsiloxane 1 having a kinematic viscosity of 500 mm 2 / s or more does not have a molecular weight that is too small, the polyethylene oxide chain and the alkyl chain can be uniformly placed in the structure and is thermally stable. Sexuality is improved.
  • the modified polydimethylsiloxane 1 having a kinematic viscosity of 1000 mm 2 / s or less is easy to emulsify, the emulsion obtained has good stability, and in the drying step after the oil agent composition is applied to the precursor fiber bundle, It becomes easy to suppress that a highly viscous substance precipitates on the drying roll and decreases operability.
  • the kinematic viscosity of the modified polydimethylsiloxane 1 can be measured in the same manner as the kinematic viscosity of the amino-modified silicone.
  • the modified polydimethylsiloxane preferably has 1 to 20 units represented by the above formulas (5), (7) and (9), and has a kinematic viscosity at 25 ° C. of 3000 to 5000 mm 2 / s. (Hereinafter referred to as modified polydimethylsiloxane 2).
  • the alkyl chain of the modified polydimethylsiloxane 2 is familiar with oils and fats, and due to the effect of this site, the modified polydimethylsiloxane 2 has an amino-modified silicone and a fragrance having the structure represented by the above formulas (1) and (2). It dissolves in both group ester compounds (1) and (2) and exhibits a compatibilizing effect.
  • xa 11.
  • the modified polydimethylsiloxane 2 has good solubility in fats and oils when xa is 7 or more, and suppresses a decrease in stability when the oil composition is dispersed in water or a solvent when xa is 15 or less. It becomes easy to do.
  • the polyglycerin chain of the modified polydimethylsiloxane 2 is familiar with water and has a function of stabilizing micelles when the oil composition is dispersed in water.
  • yb 3.
  • the modified polydimethylsiloxane 2 has good affinity with water when yb is 1 or more and good stability when formed into an emulsion, and good thermal stability when yb is 5 or less.
  • mb 0.
  • the modified polydimethylsiloxane 2 having an mb of 3 or less has good water dispersibility, and the emulsion has good stability.
  • the modified polydimethylsiloxane 2 has a polydimethylsiloxyalkyl chain
  • the solubility in amino-modified silicone is increased.
  • na 2.
  • the modified polydimethylsiloxane 2 having na of 5 or less has a good balance of solubility in the aromatic ester and amino-modified silicone, and has a good compatibilizing effect.
  • the length of the polydimethylsiloxy part is determined by the overall balance, and za in the formula (9) is in the range of 3 to 60, and the kinematic viscosity at 25 ° C.
  • the modified polydimethylsiloxane 2 has a good solubility in the amino-modified silicone when the za is 3 or more, and a good compatibilizing effect. If the za is 60 or less, the solubility in the amino-modified silicone does not become too high. The balance of solubilization becomes good.
  • the modified polydimethylsiloxane 2 preferably has a kinematic viscosity at 25 ° C. of 3000 to 5000 mm 2 / s. More preferably, it is 3500 to 4500 mm 2 / s. Since the modified polydimethylsiloxane 2 having a kinematic viscosity of 3000 mm 2 / s or more does not have a molecular weight that is too small, the polyglycerin chain and the alkyl chain can be uniformly placed in the structure, and the thermal stability is improved. It becomes good.
  • the modified polydimethylsiloxane 2 having a kinematic viscosity of 5000 mm 2 / s or less is easily emulsified and a stable emulsion is obtained, and the viscosity is high in the drying step after the oil composition is applied to the precursor fiber bundle. It becomes easy to prevent a substance from depositing on the drying roll and deteriorating operability.
  • the kinematic viscosity of the modified polydimethylsiloxane 2 can be measured in the same manner as the kinematic viscosity of the amino-modified silicone.
  • the modified polydimethylsiloxane 2 has 1 to 20 units each represented by the above formulas (5), (7) and (9).
  • the number is preferably 2-5. If it is in this range, the balance between the respective units will be improved, and the target compatibilizing ability will be good.
  • the values of xa, yb, za, mb, and na may be the same or different depending on each unit. Good.
  • the modified polydimethylsiloxane 2 may contain a unit represented by the following formula (10).
  • md is 0 to 3
  • ye is 1 to 5.
  • the modified polydimethylsiloxane preferably has 1 to 20 units represented by the above formulas (5) and (8), respectively, and preferably has a kinematic viscosity at 25 ° C. of 500 to 1500 mm 2 / s (hereinafter, modified).
  • the alkyl chain of the modified polydimethylsiloxane 3 is familiar with fats and oils, and due to the effect of this site, the modified polydimethylsiloxane 3 has an amino-modified silicone and a fragrance having a structure represented by the above formulas (1) and (2). It dissolves in both group ester compounds (1) and (2) and exhibits a compatibilizing effect.
  • xa 9-13.
  • the modified polydimethylsiloxane 3 has good solubility in fats and oils when xa is 7 or more, and good stability when the oil agent composition is dispersed in water or a solvent when xa is 15 or less.
  • the polyether chain of the modified polydimethylsiloxane 3 is familiar with water and has a function of stabilizing micelles when the oil composition is dispersed in water.
  • yc + yd 8-12.
  • the modified polydimethylsiloxane 3 has good affinity with water when yc + yd is 5 or more, and good stability when it is made into an emulsion, and good thermal stability when yc + yd is 15 or less.
  • the modified polydimethylsiloxane 3 having an mc of 3 or less has a good dispersibility in water, and the stability of the emulsion is good.
  • the modified polydimethylsiloxane 3 preferably has a kinematic viscosity at 25 ° C. of 500 to 1500 mm 2 / s. More preferably, it is 800 to 1200 mm 2 / s.
  • the modified polydimethylsiloxane 3 having a kinematic viscosity of 500 mm 2 / s or more does not have a too low molecular weight and can uniformly put the polyether chain and the alkyl chain into the structure, and has good thermal stability. It becomes.
  • the modified polydimethylsiloxane 3 having a kinematic viscosity of 1500 mm 2 / s or less is easy to emulsify, the stability of the resulting emulsion is good, and drying after applying the oil composition to the precursor fiber bundle In the process, it becomes easy to prevent a highly viscous substance from depositing on the drying roll and deteriorating operability.
  • the kinematic viscosity of the modified polydimethylsiloxane 3 can be measured in the same manner as the kinematic viscosity of the amino-modified silicone.
  • the modified polydimethylsiloxane 3 has 1 to 20 units represented by the above formulas (5) and (8).
  • the number is preferably 2-5. If it is in this range, the balance between the respective units will be improved, and the target compatibilizing ability will be good.
  • the values of xa, yc, yd and mc may be the same or different depending on each unit.
  • Antistatic agent A known substance can be used as the antistatic agent.
  • Antistatic agents are broadly classified into ionic types and nonionic types, and ionic types include anionic, cationic and amphoteric, and nonionic types include polyethylene glycol type and polyhydric alcohol type.
  • ionic type is preferable, among them aliphatic sulfonate, higher alcohol sulfate ester salt, higher alcohol ethylene oxide adduct sulfate ester, higher alcohol phosphate ester salt, higher alcohol ethylene oxide adduct sulfate phosphate ester salt, Quaternary ammonium salt type cationic surfactants, betaine type amphoteric surfactants, higher alcohol ethylene oxide adducts polyethylene glycol fatty acid esters, polyhydric alcohol fatty acid esters and the like are preferably used. These antistatic agents may be used alone or in combination of two or more.
  • the content of the antistatic agent is preferably 1.0 to 5.0 parts by mass with respect to 100 parts by mass in total of the amino-modified silicone, aromatic ester compound (1), and aromatic ester compound (2). 1.0 to 3.0 parts by mass is more preferable.
  • the content of the antistatic agent is 1.0 part by mass or more, an antistatic effect is easily obtained.
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition has adhered in the process after the oil agent composition has adhered, particularly in the baking process is charged and spreads, and merges with adjacent fiber bundles or is used as a transport roll. It becomes easy to prevent problems such as winding.
  • the oil agent composition dispersion liquid when the oil agent composition is applied to the precursor fiber bundle is easily foamed, or the antistatic agent is added in the firing step. It becomes easy to suppress that it decomposes
  • antioxidant Various known substances can be used as the antioxidant, and phenol-based and sulfur-based antioxidants are suitable.
  • Specific examples of the phenolic antioxidant include 2,6-di-t-butyl-p-cresol, 4,4′-butylidenebis- (6-t-butyl-3-methylphenol), 2,2′- Methylene bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene bis- (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-ethylphenol, 1, 1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene -3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, triethylene glycol bis [3
  • sulfur-based antioxidant examples include dilauryl thiodipropionate, distearyl thiodipropionate, dimyristyl thiodipropionate, and ditridecyl thiodipropionate. These antioxidants may be used alone or in combination of two or more.
  • antioxidant those acting on both the aromatic ester compounds (1) and (2) having the structures represented by the above formulas (1) and (2) and amino-modified silicones are preferable. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane and triethylene glycol bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate].
  • the content of the antioxidant is preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass in total of the amino-modified silicone, the aromatic ester compound (1), and the aromatic ester compound (2). 0.5 to 2.0 parts by mass is more preferable.
  • the content of the antioxidant is 0.5 parts by mass or more, an antioxidant effect is easily obtained. Therefore, as will be described in detail later, the amino-modified silicone in the oil composition adhering to the precursor fiber bundle in the dry densification treatment process and the secondary stretching treatment process is prevented from being heated to a resin by a hot roll or the like. It becomes easy to do.
  • the amino-modified silicone When the amino-modified silicone is converted into a resin, it easily deposits on the surface of a roll or the like, and the precursor fiber bundle to which the oil composition adheres is wound, causing a process failure, and the operability is lowered.
  • the content of the antioxidant is 3.0 parts by mass or less, the antioxidant is easily dispersed uniformly in the oil composition.
  • the oil agent composition of the present invention When the oil agent composition of the present invention is dispersed in water or a solvent to form an oil agent composition dispersion, it is preferable that the oil agent composition of the present invention contains an antibacterial agent because deterioration of the oil agent composition dispersion can be prevented. .
  • a known substance can be used as the antibacterial agent.
  • the addition amount of the antibacterial agent is preferably 100 to 10,000 ppm, more preferably 1000 to 5000 ppm in 100% by mass of the oil composition.
  • the added amount of the antibacterial agent is 100 ppm or more, the antibacterial effect is easily obtained.
  • the addition amount of the antibacterial agent is 10000 ppm or less, it becomes easy to prevent the antibacterial agent or the decomposition product of the antibacterial agent from damaging the fiber bundle in the baking step and deteriorating the quality of the obtained carbon fiber bundle. .
  • the oil agent composition of the present invention described above includes a specific amount of each of two types of aromatic ester compounds and amino-modified silicones having a specific structure. It is possible to effectively prevent fusion between single fibers while maintaining the convergence of the fibers. In addition, since the ratio of the silicone component can be reduced, the generation of silicon compounds can be reduced, and as a result, operability deterioration and process failure are reduced, and industrial productivity can be maintained. Therefore, it is possible to obtain a carbon fiber bundle having excellent mechanical properties by a stable continuous operation. Thus, according to the oil agent composition of the present invention, it is possible to solve both of the problems of conventional oil agent compositions mainly composed of silicone and the problem of oil agent compositions having a reduced silicone content.
  • an acrylic fiber bundle spun by a known technique can be used as the precursor fiber bundle used in the present invention.
  • an acrylic fiber bundle obtained by spinning an acrylonitrile polymer can be used.
  • the acrylonitrile-based polymer is a polymer obtained by polymerizing acrylonitrile as a main monomer.
  • the acrylonitrile-based polymer may be a homopolymer obtained only from acrylonitrile, or may be an acrylonitrile-based copolymer in which other monomers are used in addition to the main component acrylonitrile.
  • the content of acrylonitrile units in the acrylonitrile-based copolymer is 96.0 to 98.5% by mass to prevent fiber fusion in the firing process, heat resistance of the copolymer, stability of the spinning dope, and It is more preferable from the viewpoint of quality when carbon fibers are used.
  • the acrylonitrile unit is 96% by mass or more, it is preferable because excellent quality and performance of the carbon fiber can be maintained without causing fiber fusion in the firing step when converting to carbon fiber.
  • the heat resistance of the copolymer itself is not lowered, and adhesion between single fibers can be avoided in spinning the precursor fiber or in a process such as fiber drying or drawing with a heating roller or pressurized steam.
  • the acrylonitrile unit is 98.5% by mass or less, the solubility in the solvent is not lowered, the stability of the spinning stock solution can be maintained, and the precipitation solidification property of the copolymer is not increased. This is preferable because stable production of body fibers is possible.
  • a monomer other than acrylonitrile in the case of using a copolymer it can be appropriately selected from vinyl monomers copolymerizable with acrylonitrile, and acrylic acid or methacrylic acid having an action of promoting flameproofing reaction. , Itaconic acid, or an alkali metal salt or ammonium salt thereof, or a monomer such as acrylamide is preferable because flame resistance can be promoted.
  • the vinyl monomer copolymerizable with acrylonitrile carboxyl group-containing vinyl monomers such as acrylic acid, methacrylic acid and itaconic acid are more preferable.
  • the content of the carboxyl group-containing vinyl monomer unit in the acrylonitrile copolymer is preferably 0.5 to 2.0% by mass. These vinyl monomers may be used alone or in combination of two or more.
  • an acrylonitrile polymer is dissolved in a solvent to obtain a spinning dope.
  • the solvent used here can be appropriately selected from known solvents such as organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous inorganic compounds such as zinc chloride and sodium thiocyanate. Among these, dimethylacetamide, dimethylsulfoxide and dimethylformamide having a high coagulation rate are preferable from the viewpoint of improving productivity, and dimethylacetamide is more preferable.
  • the spinning dope In order to obtain a dense coagulated yarn, it is preferable to adjust the spinning dope so that the polymer concentration of the spinning dope becomes a certain level or more. Specifically, the polymer concentration in the spinning dope is preferably adjusted to 17% by mass or more, more preferably 19% by mass or more. Since the spinning dope requires proper viscosity and fluidity, the polymer concentration is preferably within a range not exceeding 25% by mass.
  • Spinning methods are known, such as a wet spinning method in which the above-mentioned spinning solution is directly spun into a coagulation bath, a dry spinning method in which the solution is coagulated in the air, and a dry and wet spinning method in which the solution is once coagulated in the air and then coagulated in the bath.
  • a spinning method can be appropriately employed, but a wet spinning method or a dry-wet spinning method is preferable for obtaining a carbon fiber bundle having higher performance.
  • the spinning shaping by the wet spinning method or the dry and wet spinning method can be performed by spinning the spinning solution into a coagulation bath from a nozzle having a hole having a circular cross section.
  • a coagulation bath it is preferable to use an aqueous solution containing a solvent used in the spinning dope from the viewpoint of easy solvent recovery.
  • the solvent concentration in the aqueous solution is such that there is no void and a dense structure can be formed to obtain a high-performance carbon fiber bundle, and stretchability can be ensured and productivity is excellent. Therefore, 50 to 85% by mass and the temperature of the coagulation bath is preferably 10 to 60 ° C.
  • a coagulated yarn obtained by dissolving a polymer or copolymer in a solvent and discharging into a coagulation bath as a spinning dope into a fiber can be stretched in a coagulation bath or in a stretching bath. . Alternatively, it may be partially stretched in the air and then stretched in a bath, and the precursor fiber bundle in a water-swelled state can be obtained by washing with water before or after stretching or simultaneously with stretching. Stretching in the bath is usually carried out in a water bath at 50 to 98 ° C. by dividing it into multiple stages of one or more times, and the coagulated yarn so that the total ratio of in-air stretching and in-bath stretching is 2 to 10 times. It is preferable from the viewpoint of the performance of the obtained carbon fiber bundle.
  • an oil agent composition dispersion in which the oil agent composition of the present invention is dispersed in water or a solvent is used.
  • the oil composition dispersion is an emulsion
  • the average particle diameter of micelles in the oil composition dispersion can be measured using a laser diffraction / scattering particle size distribution measuring apparatus (trade name: LA-910, manufactured by Horiba, Ltd.).
  • the oil agent composition dispersion can be prepared, for example, as follows. While mixing and stirring the aromatic ester compounds (1) and (2) and the amino-modified silicone, a nonionic surfactant is added and dispersed therein, and water or a solvent is further added to make the oil composition in water. A dispersed oil agent composition dispersion is obtained.
  • the solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol and isobutanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as methoxybutanol and butyl cellosolve, dimethylacetamide Amides such as dimethylformamide, dimethyl sulfoxide, and the like, or inorganic compound aqueous solutions such as zinc chloride and sodium thiocyanate.
  • alcohols such as methanol, ethanol, isopropyl alcohol and isobutanol
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • esters such as ethyl acetate and butyl acetate
  • ethers such as methoxybutanol and butyl cellosolve
  • dimethylacetamide Amides such as
  • an oil agent composition dispersion can also be prepared as follows. While stirring the amino-modified silicone and the nonionic surfactant, the aromatic ester compounds (1) and (2) are added and dispersed therein, and the oil composition is dispersed in water by adding water or a solvent. An oil composition dispersion is obtained. When the antioxidant is added, it is preferable to dissolve the antioxidant in amino-modified silicone in advance. Moreover, when adding an antistatic agent and / or an antibacterial agent, it is preferable to add and stir after adding ion-exchange water to an oil agent composition to make an oil agent composition dispersion. Each component can be mixed or dispersed in water using a propeller, a homomixer, a homogenizer or the like. In particular, it is preferable to use an ultrahigh pressure homogenizer that can pressurize to 150 MPa or more.
  • the concentration of the oil agent composition in the oil agent composition dispersion is preferably 2 to 40% by mass, more preferably 10 to 30% by mass, and particularly preferably 20 to 30% by mass. If the concentration of the oil agent composition is 2% by mass or more, the oil agent composition can be diluted to a predetermined concentration, and the storage amount and the transport amount of the oil agent composition dispersion can be reduced. On the other hand, if the density
  • the oil agent composition dispersion is preferably further diluted with ion-exchanged water to a predetermined concentration.
  • the “predetermined concentration” is a concentration that is adjusted according to the state of the precursor fiber bundle at the time of application of the oil agent composition so that an appropriate amount of the oil agent composition adheres to the precursor fiber bundle.
  • a liquid obtained by diluting the oil composition dispersion to be given to the precursor fiber bundle to a predetermined concentration is referred to as “oil”.
  • the oil agent composition can be applied to the precursor fiber bundle by applying an oil agent to the precursor fiber bundle in the water-swollen state after stretching in the bath described above.
  • an oil agent can also be applied to the water-swelled fiber bundle obtained after stretching and washing in the bath.
  • the oil agent composition dispersion liquid in which the oil agent composition is dispersed in water is further diluted with ion-exchanged water to a predetermined concentration to obtain the oil agent and After that, a technique of adhering to the precursor fiber bundle in a water-swollen state can be used.
  • a method of attaching the oil agent to the precursor fiber bundle in the water-swollen state the lower part of the roller is immersed in the oil agent, the roller attachment method in which the precursor fiber bundle is brought into contact with the upper part of the roller, and a fixed amount of oil agent is guided by the pump.
  • a guide adhesion method in which a precursor fiber bundle is discharged from the guide surface and a precursor fiber bundle is brought into contact with the guide surface, a spray adhesion method in which a predetermined amount of oil agent is sprayed onto the precursor fiber bundle from a nozzle, and a roller after the precursor fiber bundle is immersed in the oil agent It is possible to use a known method such as a dip adhesion method in which excess oil is removed by squeezing or the like. Among these methods, from the viewpoint of uniform adhesion, the dip adhesion method in which the oil agent is sufficiently infiltrated into the precursor fiber bundle and the excess treatment liquid is removed is preferable. In order to adhere more uniformly, it is also effective to apply the oil agent application step in two or more stages and repeatedly apply it.
  • drying densification process The precursor fiber bundle to which the oil agent is applied is dried and densified in a subsequent drying step.
  • the temperature for drying and densification needs to be performed at a temperature exceeding the glass transition temperature of the fiber, but may be substantially different depending on the dry state from the water-containing state.
  • drying and densification are preferably performed by a method using a heating roller having a temperature of about 100 to 200 ° C. At this time, the number of heating rollers may be one or plural.
  • the precursor fiber bundle that has been dried and densified and to which the oil agent composition is adhered is preferably further subjected to a stretching treatment.
  • a stretching method a known stretching technique such as steam stretching using pressurized or atmospheric steam, hot plate stretching, stretching using a heating roller, or the like can be used.
  • a stretching process using a heating roller capable of stable uniform stretching is preferable.
  • the stretching treatment it is possible to further increase the denseness and the degree of orientation of the carbon fiber precursor acrylic fiber bundle to which the obtained oil agent composition is attached.
  • the denseness and orientation degree of the carbon fiber precursor acrylic fiber bundle to which the product is attached can be further improved.
  • the temperature of the heating roller is preferably about 150 to 200 ° C. When the temperature of the heating roller is 150 ° C. or higher, it is easy to suppress the occurrence of fluff when stretched, and it is easy to suppress a decrease in operability due to a process failure in which the fiber bundle is wound around the roller in the subsequent carbonization process. . On the other hand, when the temperature of the heating roller is 200 ° C. or less, the oxidation reaction and the decomposition reaction are easily suppressed, and the quality of the carbon fiber bundle obtained by firing the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered is improved. It becomes easy to suppress the decrease.
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition obtained through the dry densification treatment and the secondary stretching treatment is attached is passed through a roll at room temperature and cooled to room temperature, and then wound around a bobbin with a winder, or It is transferred and stored. And the carbon fiber precursor acrylic fiber bundle to which the oil agent composition adheres is transferred to the firing step to become a carbon fiber bundle.
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention thus obtained is attached is composed of amino-modified silicone, aromatic ester compound (1), and aromatic ester compound (2). It adheres satisfying the conditions (a) to (c).
  • (A) The adhesion amount of the amino-modified silicone is 0.01 to 0.2% by mass with respect to the dry fiber mass.
  • (B) The total adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) is 0.4 to 1.2% by mass with respect to the dry fiber mass.
  • the ratio of the adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) (aromatic ester compound (2) / aromatic ester compound (1)) is 0.25 to 6.5. is there.
  • the “dry fiber mass” is the dry fiber mass of the precursor fiber bundle to which the oil agent composition after the dry densification treatment is attached.
  • the adhesion amount of the amino-modified silicone is 0.01 to 0.2% by mass with respect to the dry fiber mass, and preferably 0.05 to 0.15% by mass.
  • the adhesion amount of the amino-modified silicone is 0.01% by mass or more, the original function of the amino-modified silicone is easily developed.
  • the adhesion amount of the amino-modified silicone is 0.2% by mass or less, it is easy to suppress the adhering amino-modified silicone from being polymerized in the firing step and causing the adhesion between the single fibers.
  • the total adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) is 0.4 to 1.2% by mass with respect to the dry fiber mass, and 0.5 to 1.1% by mass. Preferably, 0.5 to 0.9% by mass is more preferable. If the total adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) is within the above range, a carbon fiber having high strength can be obtained.
  • the ratio of the adhesion amount of the aromatic ester compound (1) and the aromatic ester compound (2) is 0.25 to 6.5. If the ratio of the adhesion amount is within the above range, a carbon fiber having high strength can be obtained. In particular, if the ratio of the amount of adhesion is 1 or more, sufficient convergence can be imparted to the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered, and the operability is improved. On the other hand, if the ratio of the adhesion amount is 6.5 or less, it becomes easy to prevent fusion between the fibers, and a carbon fiber having good mechanical properties can be obtained. From the standpoint of carbon fiber strength development, the adhesion amount ratio is preferably 1.0 to 5, and more preferably 1.2 to 3.
  • the adhesion amount of each component contained in the oil agent composition adhered to the carbon fiber precursor acrylic fiber bundle to which the oil agent composition is adhered is calculated from the adhesion amount of the oil agent and the composition ratio of the oil agent composition in the oil agent.
  • the structure of the oil agent composition adhering to the carbon fiber precursor acrylic fiber bundle to which the oil agent composition adheres is the same as the adjusted oil agent composition from the balance of the oil agent in the oil agent treatment tank. .
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is attached preferably has an amino-modified silicone having a structure represented by the above formula (3) as the amino-modified silicone.
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is attached includes a block copolymer polyether having a structure represented by the above formula (4) composed of a PO unit and an EO unit. It is preferable that 5 to 70 parts by mass of the compound (1), the aromatic ester compound (2), and the amino-modified silicone are further adhered to the total mass of 100 parts by mass with respect to the dry fiber mass. 28 to 43 parts by mass is more preferable from the viewpoint of mechanical characteristics. If it is 5 mass parts or more, the oil agent composition can be adhered uniformly and the mechanical properties will be good. On the other hand, if it is 70 mass parts or less, it will become difficult to reduce a mechanical characteristic.
  • the method for producing the carbon fiber precursor acrylic fiber bundle to which the oil composition of the present invention is attached uses the oil composition of the present invention, and therefore the carbon fiber to which the oil composition having excellent sizing properties is attached.
  • the precursor acrylic fiber bundle can be produced with high productivity.
  • the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is attached has a specific amount of amino-modified silicone, aromatic ester compound (1), and aromatic ester compound (2) attached thereto. Excellent convergence. Furthermore, since adhesion between single fibers can be prevented in the firing process, and generation of silicon compounds and scattering of silicone degradation products can be suppressed, operability and processability are remarkably improved.
  • the carbon fiber bundle obtained by firing the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is attached is excellent in mechanical properties, high quality, and fiber reinforced resin used for various structural materials. It is suitable as a reinforcing fiber used for a composite material.
  • A-1 Polyoxyethylene bisphenol A dilaurate having a structure of the above formula (1), wherein R 1 and R 2 are both lauryl groups and m and n are both about 1 (trade name: EXCEPARL BP -DL)
  • A-2 Triisodecyl trimellitate with the structure of the above formula (2), wherein R 3 to R 5 are all isodecyl groups (trade name: Trimex T-10, manufactured by Kao Corporation)
  • A-3 Pentaerythritol tetrastearate (manufactured by NOF Corporation, product name: Unistar H-476)
  • (Amino-modified silicone) B-1 an amino-modified silicone (Gelest) having the structure of the above formula (3), o of about 80, p of about 2, kinematic viscosity at 25 ° C. of 90 mm 2 / s, and amino equivalent of 2500 g / mol , Inc., trade name: AMS-132)
  • B-2 an amino-modified silicone having the structure of the above formula (3), having o of about 90, p of about 1, kinematic viscosity at 25 ° C.
  • C-1 PO / EO block copolymer polyether having a structure of the above formula (4), wherein x is about 75, y is about 30, and z is about 75 (trade name: Pluronic, manufactured by BASF Japan Ltd.) PE6800)
  • C-2 PO / EO block copolymer polyether having the structure of the above formula (4), wherein x is about 10, y is about 20, and z is about 10 (product name: Adeka Pluronic, manufactured by ADEKA Corporation) L-44)
  • C-3 Nonaethylene glycol dodecyl ether (Nikko Chemicals Corporation, trade name: NIKKOL BL-9EX)
  • D-1 Lauryl PEG-9 polydimethylsiloxyethyl dimethicone composed of units of the above formulas (5), (6), (9) (trade name: KF-6038, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • D-2 Lauryl polyglyceryl-3 polydimethylsiloxyethyl dimethicone composed of units of the above formulas (5), (7), (9) (trade name: KF-6105, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • D-3 modified silicone having a random copolymer side chain of ethylene oxide and propylene oxide and an alkyl side chain, comprising units of the above formulas (5) and (8) (manufactured by Momentive Performance Materials Japan GK) (Product name: TSF4450)
  • a carbon fiber bundle is cut to a length of 3 mm, dispersed in acetone, stirred for 10 minutes, and the total number of single fibers and the number of single fibers fused together (number of fusions) are calculated.
  • the number of fusions per 100 pieces was calculated and evaluated according to the following evaluation criteria. ⁇ : Number of fusions (pieces / 100 pieces) ⁇ 1 ⁇ : Number of fusions (pieces / 100 pieces)> 1
  • the measurement of the amount of silica compound scattering from the silicone compound is carried out by measuring the silicon (Si) content (A 1 ) of the carbon fiber precursor acrylic fiber bundle to which the oil agent composition is adhered, and the Si content (A 2 ) of the flameproof fiber bundle.
  • the change in the amount of Si calculated from the difference between the values was taken as the amount of Si scattering and used as an evaluation index.
  • 50 mg of a sample obtained by finely pulverizing the carbon fiber precursor acrylic fiber bundle and the flame-resistant fiber bundle to which the oil agent composition was adhered was each weighed in a sealed crucible, and NaOH and KOH in powder form were each added in an amount of 0.00.
  • Example 1 (Preparation of oil)
  • the aromatic ester compound was added to the amino-modified silicone while mixing and stirring the surfactant, and ion-exchanged water was further added so that the concentration of the oil composition was 30% by mass, followed by emulsification with a homomixer.
  • the average particle size of the micelles in this state was measured by using a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd., apparatus name: LA-910), and was about 3 ⁇ m. Thereafter, the mixture was dispersed with a high-pressure homogenizer until the average particle size of micelles was 0.3 ⁇ m or less to obtain an oil composition dispersion (emulsion).
  • the oil agent was adjusted by adding ion-exchanged water so that the concentration of the oil agent composition dispersion was 1.7% by mass. Table 1 shows the types and blending amounts (parts by mass) of each component constituting the oil composition.
  • a precursor fiber bundle to which the oil agent composition was adhered was prepared by the following method.
  • a spinning dope with a concentration of 60% by mass
  • the coagulated yarn was desolvated in a water washing tank and stretched 5.5 times to obtain a precursor fiber bundle in a water swollen state.
  • the water-swelled precursor fiber bundle was introduced into an oil agent treatment tank filled with the previously prepared oil agent, and the oil agent was imparted thereto. Thereafter, the precursor fiber bundle to which the oil agent is applied is dried and densified with a roll having a surface temperature of 180 ° C., and then stretched 1.5 times using a roll having a surface temperature of 190 ° C. to which the oil agent composition adheres.
  • a body acrylic fiber bundle was obtained.
  • the oil agent adhesion amount of the carbon fiber precursor acrylic fiber bundle to which the obtained oil agent composition adhered was measured, and the operability during production was evaluated. The results are shown in Table 1.
  • the obtained carbon fiber precursor acrylic fiber bundle to which the oil agent composition was adhered was passed through a flame-proofing furnace having a temperature gradient of 220 to 260 ° C. to make the flame-resistant fiber bundle.
  • the convergence of the obtained flame resistant fiber bundle was evaluated, and the amount of Si scattering in the flame resistance process was measured.
  • the results are shown in Table 1.
  • the flame-resistant fiber bundle was baked in a carbonization furnace having a temperature gradient of 400 to 1400 ° C. in a nitrogen atmosphere to obtain a carbon fiber bundle.
  • the number of fusions between single fibers and the strand strength of the obtained carbon fiber bundle were measured. The results are shown in Table 1.
  • Examples 2 to 18 A carbon fiber precursor acrylic prepared by preparing an oil in the same manner as in Example 1 except that the types and blending amounts of the components constituting the oil composition were changed as shown in Tables 1 and 2. A fiber bundle and a carbon fiber bundle were produced, and each measurement and evaluation was performed. The results are shown in Tables 1 and 2. In Examples 2 to 6, 9 and 13, the compatibilizer was dispersed in amino-modified silicone in advance, and then an oil was prepared in the same manner as in Example 1.
  • “content of amino-modified silicone” is the amount when the total of the aromatic ester compound (A-1) and the aromatic ester compound (A-2) is converted to 100 parts by mass. is there.
  • the amount of oil agent adhered was an appropriate amount. Moreover, the operativity of the manufacturing process of the carbon fiber precursor acrylic fiber bundle which the oil agent composition adhered was favorable. Further, the convergence after the flameproofing process in each example was as good as 19 to 23 mm. Furthermore, the amount of Si scattered in the flameproofing process was small, and the operability in the firing process was good.
  • the carbon fiber bundles obtained in each example had substantially no number of fusions between single fibers, showed a high strand strength, and were excellent in mechanical properties.
  • the amount of Si scattered in the flameproofing process was larger than that in each of the other examples, but to the extent that would cause a problem in industrial continuous operation. There was no.
  • Comparative Examples 1 and 3 in which polyoxyethylene bisphenol A dilaurate (A-1) and triisodecyl trimellitate (A-2) were mixed, the mass ratio of A-1 to A-2 was 7 Comparative Example 1 in which the content of A-2 was .25 and the content of A-2 was extremely high, and Comparative Example 3 in which the mass ratio of A-1 and A-2 was 0.11 and contained more A-1 than A-2
  • the operability, flame resistance and convergence, the amount of Si scattering, and the number of fusions were the same as in each example, but the value of the strand strength was lower than in each example.
  • Comparative Example 2 containing an appropriate amount of polyoxyethylene bisphenol A dilaurate (A-1) and triisodecyl trimellitate (A-2), but containing no amino-modified silicone, is a carbon fiber precursor to which an oil composition is adhered.
  • A-1 polyoxyethylene bisphenol A dilaurate
  • A-2 triisodecyl trimellitate
  • Comparative Example 4 in which polyoxyethylene bisphenol A dilaurate (A-1) and pentaerythritol tetrastearate (A-3) were used as aromatic ester components, the operability, flameproofing convergence, and Si scattering amount were measured. Although it was the same as the example, the carbon fiber bundle had a large number of fusions, and the strand strength was not at a satisfactory level.
  • amino-modified silicone has a viscosity of 10,000 mm 2 / s and an amino equivalent of 7000 g / mol.
  • the single yarn is wound around the transport roll many times in the 24-hour continuous operation of the carbon fiber precursor acrylic fiber bundle to which the oil agent composition is adhered. The phenomenon was seen and the operability was remarkably bad. Further, the obtained carbon fiber bundle had a large number of fusions, and the strand strength was not satisfactory.
  • Comparative Example 9 which uses only pentaerythritol tetrastearate (A-3) as an aromatic ester component, does not contain amino-modified silicone, and does not contain PO / EO block copolymer type polyether, contains amino-modified silicone. Therefore, the amount of Si scattering in the flameproofing process was substantially absent, but all other evaluation items were significantly inferior to those of the examples.
  • Comparative Example 10 which did not contain an aromatic ester component and contained amino-modified silicone, the operability, flame resistance and convergence, the number of fusions, and the strand strength were the same as in each Example, but Si scattering The amount was so large that it became an obstacle to industrial continuous baking.
  • “Content of amino-modified silicone” is an amount when the total of the aromatic ester compound (A-1) and the aromatic ester compound (A-2) is converted to 100 parts by mass.
  • Test Examples 2 to 4 have higher values of strand strength than the carbon fiber bundles obtained in Test Examples 1 and 5, and are excellent in mechanical properties. It was.
  • Test Example 1 in which the total adhesion amount of polyoxyethylene bisphenol A dilaurate (A-1) and triisodecyl trimellitate (A-2) is 0.26% by mass is the strand strength of the carbon fiber bundle. The value was low compared with each test example.
  • the oil composition for carbon fiber precursor acrylic fibers of the present invention can effectively suppress fusion between single fibers in the firing step. Furthermore, it is possible to obtain a carbon fiber precursor acrylic fiber bundle that can suppress a decrease in operability that occurs when an oil agent composition containing silicone as a main component is used, and to which an oil agent composition with good converging properties is attached. . A carbon fiber bundle excellent in mechanical properties can be produced with high productivity from the carbon fiber precursor acrylic fiber bundle to which the oil composition is adhered.
  • the carbon fiber bundle obtained from the carbon fiber precursor acrylic fiber bundle to which the oil agent composition of the present invention is attached can be formed into a composite material after prepreg.
  • the composite material using the carbon fiber bundle can be suitably used for sports applications such as golf shafts and fishing rods, and as a structural material for automobiles, aerospace applications, and various gas storage tank applications. .

Abstract

 アミノ変性シリコーンと、下記式(1)で示される構造の芳香族エステル化合物(1)と、下記式(2)で示される構造の芳香族エステル化合物(2)とが特定の条件を満たした、油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、およびこれらを特定の割合で含有する炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液。

Description

油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液
 本発明は、油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液に関する。
 従来、炭素繊維束の製造方法として、炭素繊維前駆体アクリル繊維束を200~400℃の酸素存在雰囲気下で加熱処理して耐炎化繊維束に転換し(耐炎化工程)、引き続いて1000℃以上の不活性雰囲気下で炭素化して(炭素化工程)、炭素繊維束を得る方法が知られている。この方法で得られた炭素繊維束は、優れた機械的物性により、特に複合材料用の強化繊維として工業的に広く利用されている。
 しかし、炭素繊維束の製造過程において、耐炎化工程では単繊維間に融着が発生し、耐炎化工程およびそれに続く炭素化工程(以下、耐炎化工程と炭素化工程を総合して「焼成工程」とも表記する。)では繊維束の毛羽発生や束切れといった工程障害が発生する場合があった。耐炎化工程での単繊維間の融着を防止する方法としては、炭素繊維前駆体アクリル繊維束の表面に油剤組成物を付与する方法(油剤組成物付与処理)が知られており、多くの油剤組成物が検討されてきた。
 油剤組成物としては、これまでシリコーンを主成分とするシリコーン系油剤が一般的に用いられている。シリコーンとしては、炭素繊維前駆体アクリル繊維束との馴染み易さ、定着性の観点から、アミノやエポキシ、ポリエーテル等の反応性基を有する変性シリコーンが一般的に用いられている。
 しかし、変性シリコーン系油剤は加熱により架橋反応が進行して高粘度化し、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の後処理工程(乾燥工程など)や、耐炎化工程で使用される繊維搬送ローラーやガイドなどの表面に粘着物が堆積しやすかった。そのため、油剤組成物が付着した炭素繊維前駆体アクリル繊維束や耐炎化繊維束が繊維搬送ローラーやガイドに巻き付いたり引っかかったりして束切れするなどの工程障害が発生し、操業性低下を招くことがあった。
 また、炭素繊維前駆体アクリル繊維束に付与されたシリコーン系油剤は、焼成工程において酸化ケイ素、炭化ケイ素、窒化ケイ素などのケイ素化合物を生成しやすかった。ケイ素化合物が生成すると、工業的な生産性や製品の品質の低下につながることが知られている。
 そこで、油剤組成物が付着した炭素繊維前駆体アクリル繊維束のケイ素含有量を軽減することを目的として、シリコーンの含有率を低減した油剤組成物が提案されている。例えば、多環芳香族化合物を50~100重量%含有する乳化剤を40~100重量%含有させ、シリコーン含有量を低減させた油剤組成物が提案されている(特許文献1参照)。
 また、ビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物を80~95質量%含有させ、シリコーン含有量を低減させた油剤組成物が提案されている(特許文献2参照)。また、飽和脂肪族ジカルボン酸とビスフェノールAの酸化エチレンおよび/または酸化プロピレン付加物のモノアルキルエステルとの反応生成物を含有させ、シリコーン含有量を低減させた油剤組成物が提案されている(特許文献3参照)。
 また、空気中250℃で2時間加熱した後の残存率が80質量%以上である耐熱樹脂と、シリコーンとを組み合わせた油剤組成物が提案されている(特許文献4参照)。
 さらに、反応性官能基を有する化合物を10質量%以上含み、シリコーン化合物を含有しないか、またはシリコーン化合物を含有する場合はケイ素質量に換算して2質量%を超えない範囲とする油剤組成物が提案されている(特許文献5参照)。
 また一方で、シリコーン含有量を低減させた油剤組成物において、シリコーン系化合物と非シリコーン系化合物とに親和性を持たせて混和することを目的として相溶化剤を含有した油剤組成物が提案されている(特許文献6および7参照)。
 近年では、分子内に3個以上のエステル基を有するエステル化合物とシリコーン系化合物とを必須成分とした油剤組成物が提案されている(特許文献8参照)。該油剤組成物によれば、エステル化合物によってシリコーン含有量を低減させ、かつ炭素繊維製造における単繊維間の融着防止と安定した操業性とを両立させることができる。
特開2005-264384号公報 特開2002-266239号公報 特開2003-55881号公報 特開2000-199183号公報 特開2005-264361号公報 特開2004-149937号公報 特開2004-169198号公報 国際公開第07/066517号パンフレット
 しかしながら、特許文献1に記載の油剤組成物は、乳化剤の含有量が多いため乳化物の安定性は高くなるものの、この油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、集束性が低下しやすく、高い生産効率で製造するには適しておらず、機械的物性に優れた炭素繊維束が得られにくいという問題があった。
 また、特許文献2、3に記載の油剤組成物は、耐熱樹脂としてビスフェノールA系の芳香族エステルを用いているので耐熱性は極めて高いものの、単繊維間の融着を防止する効果が十分ではなく、機械的物性に優れた炭素繊維束が安定して得られにくいという問題があった。
 また、特許文献4に記載の油剤組成物は、250~300℃において、繊維表面に皮膜を形成するため、耐炎化工程における繊維内部への酸素の拡散が阻害され、耐炎化が均一に行われず、その結果機械的物性に優れた炭素繊維束が安定して得られにくいという問題があった。さらに、特許文献4に記載の油剤組成物は、耐熱性が高いことにより、耐炎化工程において炉内や搬送ローラーへ油剤組成物、あるいはこれらの変性物が堆積するなどして工程障害となる問題があった。
 さらに、特許文献5に記載の油剤組成物は、100~145℃における油剤粘度を上げることで油剤付着性を高めることができるが、粘度が高いがため、油剤組成物が付着した炭素繊維前駆体アクリル繊維束が繊維搬送ローラー等に巻き付くなどの工程障害を引き起こし、操業性が低下することがあった。
 また一方で、特許文献6、7に記載の相溶化剤を用いた油剤組成物では、一定の相溶化効果は得られるものの、該相溶化剤はシリコーン系化合物への親和性に劣るため、10質量%以上含有させる必要があった。さらには焼成行程において相溶化剤の分解生成物がタール化するなどして行程障害となる場合があった。
 また、特許文献8に記載の油剤組成物を付与した前駆体繊維は、操業性は安定するものの、油剤組成物の耐熱性が低いために耐炎化工程において繊維束の集束性が不十分であった。また、特許文献8に記載の油剤組成物は、シリコーンを主成分とするシリコーン系油剤に比べて、得られる炭素繊維束の機械的物性が劣る傾向にあった。
 このように、シリコーンの含有率を低減した上記油剤組成物は、シリコーン系油剤に比べて、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の操業性低下を招くことがあったり、融着防止性、集束性が低下したり、炭素繊維束の機械的物性が劣ったりする傾向にあった。そのため、高品質な炭素繊維束を安定して得ることが困難であった。
 一方、従来から広く利用されているシリコーン系油剤は、高粘度化による操業性の低下や、ケイ素化合物の生成による工業的な生産性の低下が問題であった。
 つまり、シリコーンを主成分とする油剤組成物による操業性や工業的な生産性の低下の問題と、シリコーンの含有率を低減した油剤組成物による融着防止性、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の集束性、炭素繊維束の機械的物性の低下の問題とは表裏一体の関係にあり、従来技術では両者の課題を全て解決できていない。
 本発明は上記事情に鑑みてなされたもので、炭素繊維束製造工程における単繊維間の融着を効果的に防止すると共に、操業性低下を抑制し、かつ集束性が良好な油剤組成物が付着した炭素繊維前駆体アクリル繊維束および機械的物性に優れた炭素繊維束を生産性よく得ることができる炭素繊維前駆体アクリル繊維用油剤組成物とその分散液、および油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法の提供を課題とする。
 本発明者が鋭意検討した結果、構造の異なる芳香族エステル化合物を併用し、かつその構造と割合を特定することによって、上述したシリコーンを主成分とする油剤組成物の問題と、シリコーンの含有率を低減した油剤組成物の問題を共に解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、アミノ変性シリコーンと、下記式(1)で示される構造の芳香族エステル化合物(1)と、下記式(2)で示される構造の芳香族エステル化合物(2)とが、以下の条件(a)~(c)を満たしたことを特徴とする。
 (a)アミノ変性シリコーンの付着量が、乾燥繊維質量に対して0.01~0.2質量%である。
 (b)芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の合計が、乾燥繊維質量に対して0.4~1.2質量%である。
 (c)芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の比率(芳香族エステル化合物(2)/芳香族エステル化合物(1))が、0.25~6.5である。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、RおよびRはそれぞれ独立して炭素数7~21の炭化水素基、“m”および“n”はそれぞれ独立して1~5である。
Figure JPOXMLDOC01-appb-C000010
 式(2)において、R~Rはそれぞれ独立して炭素数8~14の炭化水素基である。
 ここで、前記アミノ変性シリコーンが、下記式(3)で示される構造のアミノ変性シリコーンであることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(3)において、“o”は5~300、“p”は1~5である。
 また、前記アミノ変性シリコーンの25℃における動粘度が、50~500mm/sであることが好ましい。
 さらに、プロピレンオキサイドユニットとエチレンオキサイドユニットとからなる、下記式(4)で示される構造のブロック共重合型ポリエーテルが、前記芳香族エステル化合物(1)と芳香族エステル化合物(2)とアミノ変性シリコーンの乾燥繊維質量に対する付着量の合計100質量部に対して、5~70質量部さらに付着したことが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(4)において“x”、“y”、“z”はそれぞれ独立して1~200である。
 また、本発明の炭素繊維前駆体アクリル繊維用油剤組成物は、アミノ変性シリコーンと、下記式(1)で示される構造の芳香族エステル化合物(1)と、下記式(2)で示される構造の芳香族エステル化合物(2)とを含有する炭素繊維前駆体アクリル繊維用油剤組成物であって、前記アミノ変性シリコーンの含有量が、前記芳香族エステル化合物(1)と芳香族エステル化合物(2)の合計100質量部に対して1~25質量部であり、かつ、前記芳香族エステル化合物(1)と芳香族エステル化合物(2)の質量比(芳香族エステル化合物(2)/芳香族エステル化合物(1))が0.25~6.5であることを特徴とする。
Figure JPOXMLDOC01-appb-C000013
 式(1)において、RおよびRはそれぞれ独立して炭素数7~21の炭化水素基、“m”および“n”はそれぞれ独立して1~5である。
Figure JPOXMLDOC01-appb-C000014
 式(2)において、R~Rはそれぞれ独立して炭素数8~14の炭化水素基である。
 ここで、前記アミノ変性シリコーンが、下記式(3)で示される構造のアミノ変性シリコーンであることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(3)において、“o”は5~300、“p”は1~5である。
 また、前記アミノ変性シリコーンの25℃における動粘度が、50~500mm/sであることが好ましい。
 さらに、前記アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)の合計100質量部に対して、プロピレンオキサイドユニットとエチレンオキサイドユニットとからなる、下記式(4)で示される構造のブロック共重合型ポリエーテルを10~50質量部さらに含有することが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(4)において“x”、“y”、“z”はそれぞれ独立して1~200である。
 また、本発明の炭素繊維前駆体アクリル繊維用油剤組成物分散液は、前記炭素繊維前駆体アクリル繊維用油剤組成物が、水または溶剤に分散していることを特徴とする。
 ここで、前記炭素繊維前駆体アクリル繊維用油剤組成物分散液がエマルションである場合、前記炭素繊維前駆体アクリル繊維用油剤組成物が、平均粒子径0.01~0.50μmのミセルを形成していることが好ましい。
 また、本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造方法は、前記炭素繊維前駆体アクリル繊維用油剤組成物を水または溶剤に分散させて、平均粒子径0.01~0.50μmのミセルを形成させた炭素繊維前駆体アクリル繊維用油剤組成物分散液を水膨潤状態の炭素繊維前駆体アクリル繊維束に付与する工程と、炭素繊維前駆体アクリル繊維用油剤組成物分散液が付与された炭素繊維前駆体アクリル繊維束を乾燥緻密化する工程とを有することを特徴とする。
 本発明によれば、炭素繊維束製造工程における単繊維間の融着を効果的に防止すると共に、操業性低下を抑制し、かつ集束性が良好な油剤組成物が付着した炭素繊維前駆体アクリル繊維束および機械的物性に優れた炭素繊維束を生産性よく得ることができる炭素繊維前駆体アクリル繊維用油剤組成物とその分散液、および油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法を提供できる。
 また、本発明によれば、操業性低下を抑制でき、かつ油剤組成物が付着した炭素繊維前駆体アクリル繊維束の集束性が良好であるので、炭素繊維束の工業的な生産性を高め、安定して高品質な炭素繊維束を得ることができる。
 以下、本発明を詳細に説明する。
<炭素繊維前駆体アクリル繊維用油剤組成物>
 本発明の炭素繊維前駆体アクリル繊維用油剤組成物(以下、「油剤組成物」とも表記する。)は、後述の炭素繊維前駆体アクリル繊維束へ付与されるものであり、構造の異なる芳香族エステル化合物を併用し、かつアミノ変性シリコーンを含有して成る。
 以下、本明細書において、本発明油剤組成物が付着する前の炭素繊維前駆体アクリル繊維束を「炭素繊維前駆体アクリル繊維束」または「前駆体繊維束」と称し、本発明油剤組成物が付着した炭素繊維前駆体アクリル繊維束を「油剤組成物が付着した炭素繊維前駆体アクリル繊維束」または「油剤組成物が付着した前駆体繊維束」とも称する。
 芳香族エステル化合物は、後述の油剤組成物が付着した炭素繊維前駆体アクリル繊維束の耐炎化工程において、融着防止、集束性付与に有効である。
 本発明においては、芳香族エステル化合物として、下記式(1)で示される構造の芳香族エステル化合物(1)と、下記式(2)で示される構造の芳香族エステル化合物(2)を併用する。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(1)中、RおよびRはそれぞれ独立して炭素数7~21の炭化水素基である。炭化水素基の炭素数が7以上であれば、当該エステル化合物は、耐熱性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が21以下であれば、当該芳香族エステル化合物(1)を含有する油剤組成物のエマルションを容易に調製でき、油剤組成物が前駆体繊維束に均一に付着する。その結果、耐炎化工程において十分な融着防止効果が得られるとともに、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の集束性が向上する。炭化水素基の炭素数は9~15が好ましい。
 RおよびRは、同じ構造であってもよいし、個々に独立した構造であってもよい。
 炭化水素基としては、飽和炭化水素基が好ましく、その中でも特に飽和鎖式炭化水素基が好ましい。具体的には、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基(ドデシル基)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル、ノナデシル基、イコシル基(エイコシル基)、ヘンイコシル基(ヘンエイコシル基)等のアルキル基などが挙げられる。
 また、式(1)中、“m”および“n”はそれぞれ独立して1~5である。“m”および“n”の値が上述の範囲であると、当該芳香族エステル化合物(1)は耐熱性が良く、耐炎化工程で単繊維間の融着を抑制することができる。
 なお、式(1)で示される芳香族エステル化合物(1)は、複数の化合物の混合物である場合もあり、従って、“m”および“n”は整数でない場合もあり得る。また、RおよびRを形成する炭化水素基は1種類であっても複数の種類の混合物であっても差し支えない。
 一方、式(2)中、R~Rはそれぞれ独立して炭素数8~14の炭化水素基である。炭化水素基の炭素数が8以上であれば、当該芳香族エステル化合物(2)は、耐熱性を良好に維持できるので、耐炎化工程において十分な融着防止効果が得られる。一方、炭化水素基の炭素数が14以下であれば、当該芳香族エステル化合物(2)を含有する油剤組成物のエマルションを容易に調製でき、油剤組成物が前駆体繊維束に均一に付着する。その結果、耐炎化工程において十分な融着防止効果が得られるとともに、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の集束性が向上する。R~Rは、均一な油剤組成物のエマルションを調製しやすい点で炭素数8~12の飽和炭化水素基が好ましく、水蒸気存在下での耐熱性に優れる点で炭素数10~14の飽和炭化水素基が好ましい。
 R~Rは、同じ構造であってもよいし、個々に独立した構造であってもよい。
 炭化水素基としては、飽和鎖式炭化水素基や飽和環式炭化水素基等の飽和炭化水素基が好ましい。具体的には、オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基(ドデシル基)、トリデシル基、テトラデシル基等のアルキル基などが挙げられる。
 上記式(1)で示される構造の芳香族エステル化合物(1)は、耐熱性が高く、耐炎化工程が終了するまで油剤組成物が付着した炭素繊維前駆体アクリル繊維束が集束性を保持するのに有効であり、操業性を向上させる働きがある。しかしながら、前記芳香族エステル化合物(1)は、炭素化工程に至るまで繊維束に残存するため、炭素繊維の機械的物性を低下させる場合がある。
 一方、上記式(2)で示される構造の芳香族エステル化合物(2)は、耐炎化工程において熱分解あるいは飛散しやすく、繊維束表面に残りにくいため、炭素繊維束の機械的物性を高品質に維持することが可能となる。しかしながら、前記芳香族エステル化合物(2)は、耐熱性にやや劣るため、この物質だけでは耐炎化工程において油剤組成物が付着した炭素繊維前駆体アクリル繊維束が集束性を保持することは困難である。
 従って、本発明においては、芳香族エステル成分として上記式(1)で示される構造の芳香族エステル化合物(1)と、上記式(2)で示される構造の芳香族エステル化合物(2)を併用することが重要である。
 油剤組成物中における、上記式(1)で示される構造の芳香族エステル化合物(1)と上記式(2)で示される構造の芳香族エステル化合物(2)の質量比(芳香族エステル化合物(2)/芳香族エステル化合物(1))は、0.25~6.5である。質量比が0.25以上であれば、油剤組成物が付着した炭素繊維前駆体アクリル繊維束へ十分な集束性を付与できるとともに、操業性が向上する。一方、質量比が6.5以下であれば、機械的物性が良好な炭素繊維束が得られる。炭素繊維強度発現性の点から、質量比は、1.0~5がより好ましく、1.2~3がさらに好ましい。
 また、上記式(1)で示される構造の芳香族エステル化合物(1)と、上記式(2)で示される構造の芳香族エステル化合物(2)の油剤組成物中の含有量については、両者の質量比が上記範囲内であれば特に制限されないが、芳香族エステル化合物(1)の含有量は、油剤組成物100質量%中、10~40質量%であることが好ましい。含有量が10質量%以上であれば、油剤組成物が付着した炭素繊維前駆体アクリル繊維束へ十分な集束性を付与できるとともに、操業性がより向上する。一方、含有量が40質量%以下であれば、機械的物性が良好な炭素繊維束が得られる。上記式(1)で示される構造の芳香族エステル化合物(1)の含有量は15~30質量%がより好ましい。
 一方、上記式(2)で示される構造の芳香族エステル化合物(2)の含有量は、油剤組成物100質量%中、10~60質量%であることが好ましい。含有量が10質量%以上であれば、機械的物性が良好な炭素繊維束が得られる。一方、含有量が60質量%以下であれば、油剤組成物が付着した炭素繊維前駆体アクリル繊維束へ十分な集束性を付与できる。上記式(2)で示される構造の芳香族エステル化合物(2)の含有量は40~55質量%がより好ましい。特に含有量が40質量%超であれば、機械的物性がより向上した炭素繊維束が得られる。よって、上記式(2)で示される構造の芳香族エステル化合物(2)の含有量は45~50質量%が特に好ましい。
 本発明の油剤組成物は、アミノ変性シリコーンを含有する。アミノ変性シリコーンは、前駆体繊維束との馴染みが良く、油剤組成物の前駆体繊維束との親和性および耐熱性の向上に有効である。
 アミノ変性シリコーンとしては、下記式(3)で示される構造のアミノ変性シリコーンが好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(3)中、“o”は5~300、“p”は1~5である。“o”および“p”が上記範囲内であれば、炭素繊維束の性能発現性や耐熱性が良好となる。特に“o”が5以上であると、良好な耐熱性が得られ単繊維間の融着を防止しやすくなる。また、“o”が300以下であると、油剤組成物の水への分散が良好となりエマルションが調製しやすくなる。また、エマルションの安定性が良好となり、前駆体繊維束に均一に付着しやすくなる。 
 一方、“p”が1以上であると、前駆体繊維束との親和性が良好となるため、単繊維間の融着を効果的に防止しやすくなる。また、“p”が5以下であると、油剤組成物そのものの耐熱性が良好となり、やはり単繊維間の融着を防止しやすくなる。
 “o”は10~200が好ましく、“p”は1~3が好ましい。
 なお、式(3)で示される構造のアミノ変性シリコーンは、複数の化合物の混合物である場合もある。従って、“o”および“p”はそれぞれ整数でない場合もあり得る。
 式(3)中の“o”および“p”は後述するアミノ変性シリコーンの動粘度およびアミノ当量からの推算値として概算することができる。
 “o”および“p”を求める手順は、まずアミノ変性シリコーンの動粘度を測定し、測定された動粘度の値からA.J.Barryの式(logη=1.00+0.0123M0.5、(η:25℃における動粘度、M:分子量))により分子量を算出する。ついで、この分子量とアミノ当量から、1分子あたりの平均のアミノ基数“p”が求まる。分子量および“p”が定まることで“o”の値を決定することができる。
 アミノ変性シリコーンは、25℃における動粘度が50~500mm/s、アミノ当量が2000~6000g/molであることが好ましい。
 動粘度が50mm/s以上であれば、油剤組成物の耐熱性が良好となり、耐炎化工程での単繊維間の融着を防止しやすくなる。一方、動粘度が500mm/s以下であれば、油剤組成物のエマルションの調製がしやすくなる。また、油剤組成物のエマルションの安定性が良好となり、油剤組成物が前駆体繊維束に均一に付着しやすくなる。その結果、耐炎化工程での単繊維間の融着を防止しやすくなり、集束性が良好な油剤組成物が付着した炭素繊維前駆体アクリル繊維束を得やすくなる。
 25℃における動粘度は、50~300mm/sであることが好ましい。
 アミノ変性シリコーンの動粘度は、JIS-Z-8803、あるいはASTM D 445-46Tに準拠して測定される値であり、例えばウッベローデ粘度計を用いて測定できる。
 アミノ変性シリコーンのアミノ当量は、前駆体繊維束との馴染み良さ、シリコーンの熱安定性から、好ましくは2000~6000g/mol、より好ましくは4000~6000g/molである。アミノ当量が2000g/mol以上であると、シリコーン1分子中のアミノ基の数が多くなりすぎず、アミノ変性シリコーンの熱安定性が良好となり、工程障害を防止しやすくなる。一方、アミノ当量が6000g/mol以下であると、シリコーン1分子中のアミノ基の数が十分であるので、アミノ変性シリコーンと前駆体繊維束との馴染みが良くなり、油剤組成物が均一に付着しやすくなるため、単繊維間の融着が少なく、集束性が良好な油剤組成物が付着した炭素繊維前駆体アクリル繊維束が得やすくなる。
 アミノ変性シリコーンの含有量は、上記式(1)で示される構造の芳香族エステル化合物(1)および上記式(2)で示される構造の芳香族エステル化合物(2)の合計100質量部に対して、1~25質量部であり、8~15質量部が好ましい。アミノ変性シリコーンの含有量が1質量部以上であれば、機械的特性が良好な炭素繊維束が得られる。一方、アミノ変性シリコーンの含有量が25質量部以下であれば、耐炎化工程で発生するケイ素化合物による工程障害により工業的な生産性が低下する問題を抑制しやすくなる。
 本発明の油剤組成物は、前駆体繊維束に均一に付与できれば、他の成分を加える必要はないが、前駆体繊維束に付着させるための設備や使用環境によって、操業性を向上させたり、油剤組成物の安定性や付着特性を向上させたりすることを目的として、界面活性剤、相溶化剤、帯電防止剤、酸化防止剤および抗菌剤などの他の成分を、本発明の効果を阻害しない範囲でさらに含有することができる。
 油剤組成物が界面活性剤を含有すれば、油剤組成物が水または溶剤に容易に分散でき、前駆体繊維束に均一に付与し易くなる。
 なお、本発明において、油剤組成物が水または溶剤に分散した液を炭素繊維前駆体アクリル繊維用油剤組成物分散液(以下、「油剤組成物分散液」とも表記する。)と呼ぶ。
界面活性剤;
 界面活性剤としては、公知の様々な物質を用いることができるが、非イオン系の界面活性剤が好ましい。
 非イオン系の界面活性剤としては、例えば高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪族エチレンオキサイド付加物、多価アルコール脂肪族エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪族アミドエチレンオキサイド付加物、油脂のエチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物などのポリエチレングリコール型非イオン性界面活性剤;グリセロールの脂肪族エステル、ペンタエリストールの脂肪族エステル、ソルビトールの脂肪族エステル、ソルビタンの脂肪族エステル、ショ糖の脂肪族エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどの多価アルコール型非イオン性界面活性剤等が挙げられる。
 これら界面活性剤は1種単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、非イオン系の界面活性剤としては、プロピレンオキサイド(PO)ユニットと、エチレンオキサイド(EO)ユニットとからなる、下記式(4)で示される構造のブロック共重合型ポリエーテルが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(4)中、 “x”、“y”、“z”はそれぞれ独立して1~200であり、10~100が好ましい。
 また、“x”および“z”の合計と、“y”との比(x+z:y)が90:10~50:50であることが好ましい。
 また、ブロック共重合型ポリエーテルは、数平均分子量が2000~10000であることが好ましい。数平均分子量が上記範囲内であれば、油剤組成物として要求される熱的安定性と水への分散性を共に有することが可能となる。
 さらに、ブロック共重合型ポリエーテルは、100℃における動粘度が10~500mm/sであることが好ましい。前記動粘度が上記範囲内であれば、油剤組成物の過剰な繊維内部への浸透を防ぎ、かつ前駆体繊維束に付与した後の乾燥工程において、油剤組成物の粘性により搬送ローラー等に単繊維が取られて巻き付くなどの工程障害が起こりにくくなる。
 ブロック共重合型ポリエーテルの動粘度は、アミノ変性シリコーンの動粘度と同様にして測定できる。
 POユニットとEOユニットとからなる、上記式(4)で示される構造のブロック共重合型ポリエーテルの含有量は、前記アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)の合計100質量部に対して、10~50質量部が好ましい。ブロック共重合型ポリエーテルの含有量が10質量部以上であれば、油剤組成物を水または溶剤中に分散させることが容易となり、油剤組成物分散液が安定なものとなる。一方、ブロック共重合型ポリエーテルの含有量が50質量部以下であれば、炭素繊維束の機械的特性を低下させることなく、さらに油剤組成物分散液が泡立つなどして繊維束への付着斑が起こるのを抑制しやすくなる。炭素繊維の強度発現性の点より、ブロック共重合型ポリエーテルの添加量は、15~40質量部がより好ましく、20~35質量部がさらに好ましい。
相溶化剤;
 相溶化剤としては、ポリジメチルシロキサン構造を有する相溶化剤が挙げられる。
 相溶化剤の含有量は、前記アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)の合計100質量部に対して、1~10質量部が好ましく、より好ましくは1~5質量部である。相溶化剤の含有量が1質量部以上であれば、上述したアミノ変性シリコーンと、上記式(1)および上記式(2)で示される構造の芳香族エステル化合物(1)、(2)とが馴染みやすくなり、繊維に付与する際にそれぞれの油剤組成物が偏在化することなく繊維表面により均一に付着することが可能となる。一方、相溶化剤の含有量が10質量部以下であれば、焼成工程での相溶化剤のポリジメチルシロキサン構造に由来するケイ素化合物の発生が少なく、工業的な生産性を低下させる問題が発生しにくくなる。
 相溶化剤としては、下記式(5)で示されるユニットと、下記式(6)、(7)及び(8)で示されるユニットからなる群より選択される少なくとも1つのユニットと、任意で下記式(9)で示されるユニットとを含む変性ポリジメチルシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式(5)中、xaは7~15である。
 式(6)中、maは0~3、yaは5~15である。
 式(7)中、mbは0~3、ybは1~5である。
 式(8)中、mcは0~3、yc+ydは5~15であり、エチレンオキサイド(EO)とプロピレンオキサイド(PO)はブロック共重合体又はランダム共重合体である。
 式(9)中、naは1~5、zaは3~60である。
 上述の変性ポリジメチルシロキサンの構造は、より好ましい形態として、上記各ユニットの組み合わせを大別した以下に示す3パターン挙げることができる。
(組み合わせ1)
 前記変性ポリジメチルシロキサンは、上記式(5)、(6)及び(9)で示されるユニットをそれぞれ1つ以上有し、25℃における動粘度が500~1000mm/sであることが好ましい(以下、変性ポリジメチルシロキサン1と示す)。
 変性ポリジメチルシロキサン1のアルキル鎖は油脂類と馴染みが良く、この部位の効果により、前記変性ポリジメチルシロキサン1はアミノ変性シリコーンと、上記式(1)および上記式(2)で示される構造の芳香族エステル化合物(1)、(2)の両方に溶解し、相溶化効果を発揮する。このアルキル鎖は上記式(5)においてxa=7~15とする。好ましくは、xa=11である。変性ポリジメチルシロキサン1は、xaが7以上であると、油脂類への溶解性が良好であり、15以下であれば油剤組成物を水または溶剤に分散した際に安定性が良好となる。
 変性ポリジメチルシロキサン1のポリエチレンオキサイド鎖は水と馴染みが良く、油剤組成物を水中に分散した際にミセルを安定化させる働きがある。ポリエチレンオキサイド鎖のエチレンオキサイド数は上記式(6)においてya=5~15とする。好ましくはya=9である。yaが5以上である変性ポリジメチルシロキサン1は、水との親和性がよくエマルションにした時の安定性が良好となる。また15以下である変性ポリジメチルシロキサン1は熱的安定性がよい。また、ポリエチレンオキサイドとポリジメチルシロキサンとの間にアルキル基があっても差し支え無く、その範囲はma=0~3である。好ましくはma=0である。maが3以下である変性ポリジメチルシロキサン1は水への分散性がよく、エマルションの安定性が良好となる。
 また、変性ポリジメチルシロキサン1がポリジメチルシロキシアルキル鎖を有することにより、アミノ変性シリコーンへの溶解性が高くなる。ポリジメチルシロキシアルキル鎖のアルキル部は、上記式(9)においてnaが1~5の飽和炭化水素である。好ましくはna=2である。naが5以下である変性ポリジメチルシロキサン1は、芳香族エステルとアミノ変性シリコーンへの溶解性のバランスがよく、相溶化効果が発揮される。ポリジメチルシロキシ部の長さは、全体のバランスで決定され、前記式(9)のzaは3~60の範囲で、25℃における動粘度が500~1000mm/sの範囲を満たす値である。好ましくは5~30である。zaが3以上である変性ポリジメチルシロキサン1はアミノ変性シリコーンへの溶解性がよく相溶化効果が発揮される。またzaが60以下である変性ポリジメチルシロキサン1はアミノ変性シリコーンへの溶解性が高くなり過ぎず、相溶化のバランスが良好となる。
 また、上記式(5)、(6)及び(9)で示されるユニットの数は、それぞれ2~5の範囲であることが好ましい。この範囲内であれば、それぞれのユニットについて上述した各性能間のバランスが良く、相溶化能が良好となる。上記式(5)、(6)及び(9)で示されるユニットがそれぞれ2つ以上存在する場合、xa、ya、za、ma、naの値は各々のユニットによって同じであっても異なってもよい。
 前記変性ポリジメチルシロキサン1は、25℃における動粘度が500~1000mm/sであることが好ましい。より好ましくは600~800mm/sである。動粘度が500mm/s以上である変性ポリジメチルシロキサン1は、分子量が小さくなり過ぎることがないので、前記ポリエチレンオキサイド鎖、アルキル鎖を構造内に均一に入れることができ、かつ熱的な安定性がよくなる。一方、動粘度が1000mm/s以下である変性ポリジメチルシロキサン1は、乳化し易く、得られるエマルションの安定性も良い上、油剤組成物を前駆体繊維束に付与した後の乾燥工程において、粘性の高い物質が乾燥ロール上に析出して操業性が低下することを抑制しやすくなる。
 変性ポリジメチルシロキサン1の動粘度は、アミノ変性シリコーンの動粘度と同様にして測定できる。
(組み合わせ2)
 前記変性ポリジメチルシロキサンは、上記式(5)、(7)及び(9)で示されるユニットをそれぞれ1~20個有し、25℃における動粘度が3000~5000mm/sであることが好ましい(以下、変性ポリジメチルシロキサン2と示す)。
 変性ポリジメチルシロキサン2のアルキル鎖は油脂類と馴染みが良く、この部位の効果により、変性ポリジメチルシロキサン2はアミノ変性シリコーンと、上記式(1)および上記式(2)で示される構造の芳香族エステル化合物(1)、(2)の両方に溶解し、相溶化効果を発揮する。このアルキル鎖は上記式(5)においてxa=7~15とする。好ましくはxa=11である。変性ポリジメチルシロキサン2は、xaが7以上であると油脂類への溶解性が良好であり、15以下であると油剤組成物を水または溶剤に分散した際に安定性が低下することを抑制しやすくなる。
 変性ポリジメチルシロキサン2のポリグリセリン鎖は水と馴染みが良く、油剤組成物を水中に分散した際にミセルを安定化させる働きがある。ポリグリセリン鎖は上記式(7)においてyb=1~5とする。好ましくはyb=3である。変性ポリジメチルシロキサン2は、ybが1以上であると水との親和性が良くエマルションにした時の安定性が良好であり、5以下であると熱的安定性が良好となる。また、ポリグリセリンとポリジメチルシロキサンとの間にアルキルがあっても差し支え無く、その範囲はmb=0~3とする。好ましくはmb=0である。mbが3以下である変性ポリジメチルシロキサン2は水への分散性が良く、エマルションの安定性が良好となる。
 また、変性ポリジメチルシロキサン2がポリジメチルシロキシアルキル鎖を有することにより、アミノ変性シリコーンへの溶解性が高くなる。ポリジメチルシロキシアルキル鎖のアルキル部は、上記式(9)においてna=1~5の飽和炭化水素とする。好ましくはna=2である。naが5以下である変性ポリジメチルシロキサン2は芳香族エステルとアミノ変性シリコーンへの溶解性のバランスが良く、相溶化効果が良好となる。ポリジメチルシロキシ部の長さは、全体のバランスで決定され、上記式(9)のzaは3~60の範囲で、25℃における動粘度が3000~5000mm/sの範囲を満たす値である。好ましくは5~30である。変性ポリジメチルシロキサン2は、zaが3以上であるとアミノ変性シリコーンへの溶解性が良く相溶化効果が良好であり、60以下であるとアミノ変性シリコーンへの溶解性が高くなりすぎず、相溶化のバランスが良好となる。
 前記変性ポリジメチルシロキサン2は、25℃における動粘度が3000~5000mm/sが好ましい。より好ましくは3500~4500mm/sである。動粘度が3000mm/s以上である変性ポリジメチルシロキサン2は、分子量が小さくなり過ぎないので、前記のポリグリセリン鎖、アルキル鎖を構造内に均一に入れることができ、熱的な安定性が良好となる。また、動粘度が5000mm/s以下である変性ポリジメチルシロキサン2は、乳化が容易で、安定したエマルションが得られ、油剤組成物を前駆体繊維束に付与した後の乾燥工程において粘性の高い物質が乾燥ロール上に析出して操業性が低下することを防止しやすくなる。
 変性ポリジメチルシロキサン2の動粘度は、アミノ変性シリコーンの動粘度と同様にして測定できる。
 前記変性ポリジメチルシロキサン2は、上記式(5)、(7)及び(9)で示されるユニットをそれぞれ1~20個有する。好ましくは2~5個である。この範囲内であれば、それぞれのユニット間のバランスが良くなり、目的である相溶化能が良好となる。上記式(5)、(7)及び(9)で示されるユニットがそれぞれ2つ以上存在する場合、xa、yb、za、mb、naの値は各々のユニットによって同じであっても異なってもよい。
 また、変性ポリジメチルシロキサン2は、下記式(10)で示されるユニットを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000026
 式(10)中、mdは0~3、yeは1~5である。
(組み合わせ3)
 前記変性ポリジメチルシロキサンは、上記式(5)及び(8)で示されるユニットをそれぞれ1~20個有し、25℃における動粘度が500~1500mm/sであることが好ましい(以下、変性ポリジメチルシロキサン3と示す)。
 変性ポリジメチルシロキサン3のアルキル鎖は油脂類と馴染みが良く、この部位の効果により、変性ポリジメチルシロキサン3はアミノ変性シリコーンと、上記式(1)および上記式(2)で示される構造の芳香族エステル化合物(1)、(2)の両方に溶解し、相溶化効果を発揮する。このアルキル鎖は上記式(5)においてxa=7~15とする。好ましくはxa=9~13である。変性ポリジメチルシロキサン3は、xaが7以上であると、油脂類への溶解性が良く、xaが15以下であると油剤組成物を水または溶剤に分散した際に安定性が良好となる。
 変性ポリジメチルシロキサン3のポリエーテル鎖は水と馴染みが良く、油剤組成物を水中に分散した際にミセルを安定化させる働きがある。ポリエーテル鎖のエチレンオキサイド及びプロピレンオキサイドの数は、上記式(8)においてyc+yd=5~15の範囲とする。好ましくはyc+yd=8~12である。変性ポリジメチルシロキサン3は、yc+ydが5以上であると水との親和性が良くエマルションにした時の安定性が良好であり、yc+ydが15以下であると熱的安定性が良好である。また、ポリエーテル鎖とポリジメチルシロキサンとの間にアルキルがあっても差し支え無く、その範囲はmc=0~3とする。好ましくはmc=0である。mcが3以下である変性ポリジメチルシロキサン3は水への分散性が良く、エマルションの安定性が良好となる。
 前記変性ポリジメチルシロキサン3は、25℃における動粘度が500~1500mm/sが好ましい。より好ましくは800~1200mm/sである。動粘度が500mm/s以上である変性ポリジメチルシロキサン3は、分子量が小さくなり過ぎず、前記のポリエーテル鎖、アルキル鎖を構造内に均一に入れることができ、熱的な安定性が良好となる。また、動粘度が1500mm/s以下である変性ポリジメチルシロキサン3は、乳化が容易で、得られるエマルションの安定性も良好であるうえ、油剤組成物を前駆体繊維束に付与した後の乾燥工程において粘性の高い物質が乾燥ロール上に析出して操業性が低下することを防止しやすくなる。
 変性ポリジメチルシロキサン3の動粘度は、アミノ変性シリコーンの動粘度と同様にして測定できる。
 また、前記変性ポリジメチルシロキサン3は、上記式(5)及び(8)で示されるユニットをそれぞれ1~20個有する。好ましくは2~5個である。この範囲内であれば、それぞれのユニット間のバランスが良くなり、目的である相溶化能が良好となる。上記式(5)、(8)で示されるユニットがそれぞれ2つ以上存在する場合、xa、yc、yd、mcの値は各々のユニットによって同じであっても異なっていてもよい。
帯電防止剤;
 帯電防止剤としては、公知の物質を用いることができる。帯電防止剤はイオン型と非イオン型に大別され、イオン型としてはアニオン系、カチオン系及び両性系があり、非イオン型ではポリエチレングリコール型及び多価アルコール型がある。帯電防止の観点からイオン型が好ましく、中でも脂肪族スルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールリン酸エステル塩、高級アルコールエチレンオキシド付加物硫酸リン酸エステル塩、第4級アンモニウム塩型カチオン界面活性剤、ベタイン型両性界面活性剤、高級アルコールエチレンオキシド付加物ポリエチレングリコール脂肪酸エステル、多価アルコール脂肪酸エステルなどが好ましく用いられる。
 これら帯電防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 帯電防止剤の含有量は、前記アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)の合計100質量部に対して、1.0~5.0質量部が好ましく、1.0~3.0質量部がより好ましい。帯電防止剤の含有量が1.0質量部以上であると、帯電防止効果が得られやすくなる。その結果、油剤組成物が付着した後の工程、特に焼成工程において油剤組成物が付着した炭素繊維前駆体アクリル繊維束が帯電して広がり、隣接する繊維束とマージングしたり、搬送用のロールに巻き付いたりするなどの問題を防止しやすくなる。一方、帯電防止剤の含有量が5.0質量部以下であると、前駆体繊維束に油剤組成物を付与する際の油剤組成物分散液が泡立ちやすくなったり、焼成工程において帯電防止剤が分解し、その分解生成物が焼成工程において炉内に堆積したりするなどして工程障害となることを抑制しやすくなる。
酸化防止剤;
 酸化防止剤としては公知の様々な物質を用いることができるが、フェノール系や硫黄系の酸化防止剤が好適である。
 フェノール系酸化防止剤の具体例としては、2,6-ジ-t-ブチル-p-クレゾール、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチル-4-エチルフェノール、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート等が挙げられる。
 硫黄系の酸化防止剤の具体例としては、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジトリデシルチオジプロピオネート等が挙げられる。
 これら酸化防止剤は1種単独で用いてもよく、2種以上を併用してもよい。
 酸化防止剤は、上記式(1)および上記式(2)で示される構造の芳香族エステル化合物(1)、(2)と、アミノ変性シリコーンの両方に作用するものが好ましく、上記の中では、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンと、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]が好ましい。
 酸化防止剤の含有量は、前記アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)の合計100質量部に対して、0.5~3.0質量部が好ましく、0.5~2.0質量部がより好ましい。酸化防止剤の含有量が0.5質量部以上であると、酸化防止効果が得られやすくなる。そのため、詳しくは後述するが、乾燥緻密化処理工程や二次延伸処理工程において前駆体繊維束に付着した油剤組成物中のアミノ変性シリコーンが、熱ロール等により加熱されて樹脂化することを抑制しやすくなる。アミノ変性シリコーンが樹脂化するとロール等の表面に堆積しやすくなり、油剤組成物が付着した前駆体繊維束が巻き付いて工程障害を招き、操業性が低下する。一方、酸化防止剤の含有量が3.0質量部以下であると、酸化防止剤が油剤組成物中に均一に分散しやすくなる。
抗菌剤;
 本発明の油剤組成物を水または溶剤に分散し油剤組成物分散液とした際は、本発明の油剤組成物が抗菌剤を含有すると、油剤組成物分散液の劣化を防止することができ好ましい。
 抗菌剤としては、公知の物質を用いることができる。例えば5-クロロ-2-メチル-4-イソチアゾリン-3-オン、2-メチル-4-イソチアゾリン-3-オン、1,2-ベンズイソチアゾリン-3-オン、N-n-ブチル-1,2-ベンズイソチアゾリン-3-オン、2-n-オクチル-4-イソチアゾリン-3-オン、4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン、2-メチル-4,5-トリメチレン-4-イソチアゾリン-3-オンなどのイソチアゾリン系化合物;2-ブロモ-2-ニトロプロパン-1,3-ジオール、2,2-ジブロモ-2-ニトロエタノール、2,2-ジブロモ-3-ニトリロプロピオンアミド、1,2-ジブロモ-2,4-ジシアノブタン、ヘキサブロモジメチルスルホンなどの有機臭素系化合物;ホルムアルデヒド、グルタルアルデヒド、o-フタルアルデヒドなどのアルデヒド系化合物;3-メチル-4-イソプロピルフェノール、2-イソプロピル-5-メチルフェノール、o-フェニルフェノール、4-クロロ-3,5-ジメチルフェノール、2,4,4’-トリクロロ-2’-ヒドロキシジフェニルエーテル、4,4’-ジクロロ-2’-ヒドロキシジフェニルエーテルなどのフェノール系化合物;8-オキシキノリン、2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、ビス(2-ピリジルチオ-1-オキシド)亜鉛、(2-ピリジルチオ-1-オキシド)ナトリウムなどのピリジン系化合物;N,N',N''-トリスヒドロキシエチルヘキサヒドロ-S-トリアジン、N,N',N''-トリスエチルヘキサヒドロ-S-トリアジンなどのトリアジン系化合物;3,4,4’-トリクロロカルバニリド、3-トリフルオロメチル-4,4’-ジクロロカルバニリドなどのアニリド系化合物;2-(4-チオシアノメチルチオ)ベンズイミダゾールなどのチアゾール系化合物;2-(4-チアゾリル)-ベンズイミダゾール、2-ベンズイミダゾールカルバミン酸メチルなどのイミダゾール系化合物;1-[[2-(2,4-ジクロロフェニル)-4-n-プロピル-1,3-ジオキソラン-2-イル]メチル]-1H-1,2,4-トリアゾール、(RS)-2-(2,4-ジクロロフェニル)-1-(1H-1,2,4-トリアゾールー1-イル)ヘキサン-2-オール、α-[2-(4-クロロフェニル)エチル]-α-(1,1-ジメチルエチル)-1H-1,2,4-トリアゾール-1-エタノール、α-(クロロフェニル)-α-(1-シクロプロピルエチル)-1H-1,2,4-トリアゾール-1-エタノール、1-[[2-(2,4-ジクロロフェニル)-1,3-ジオキソラン-2-イル]メチル-1H-1,2,4-トリアゾールなどのトリアゾール系化合物;2,4,5,6-テトラクロロイソフタロニトリル、5-クロロ-2,4,6-トリフルオロイソフタロニトリルなどのニトリル系化合物;4,5-ジクロロ-1,2-ジチオラン-3-オン、3,3,4,4-テトラクロロテトラヒドロチオフェン-1,1-ジオキシドなどの有機塩素系化合物;3-ヨード-2-プロピニルブチルカーバメート、ジヨードメチル-p-トリルスルホン、2,3,3-トリヨードアリルアルコールなどの有機ヨード系化合物等が挙げられる。これらの中でもイソチアゾリン系の抗菌剤が好ましい。
 これら抗菌剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 抗菌剤の添加量は、油剤組成物100質量%中、100~10000ppmが好ましく、1000~5000ppmがより好ましい。抗菌剤の添加量が100ppm以上であると、抗菌効果が得られやすくなる。一方、抗菌剤の添加量が10000ppm以下であると、焼成工程において抗菌剤、あるいは抗菌剤の分解物が繊維束に損傷を与え、得られる炭素繊維束の品質を低下させることを抑制しやすくなる。
 以上説明した本発明の油剤組成物は、2種類の特定の構造を有する芳香族エステル化合物およびアミノ変性シリコーンを、それぞれ特定量含有することにより、シリコーン成分の割合を減らしても、耐炎化工程での集束性を維持しつつ、単繊維間の融着を効果的に防止できる。加えて、シリコーン成分の割合を減らせるのでケイ素化合物の発生も軽減でき、その結果、操業性低下や工程障害が低減され、工業的な生産性を維持できる。よって、機械的物性に優れた炭素繊維束を、安定な連続操業によって得ることを可能とする。
 このように、本発明の油剤組成物によれば、従来のシリコーンを主成分とする油剤組成物の問題と、シリコーンの含有率を低減した油剤組成物の問題を共に解決できる。
<油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造方法>
 本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造方法においては、上述した本発明の油剤組成物を、水膨潤状態の前駆体繊維束に付与する工程(油剤組成物付与処理)を行い、ついで油剤組成物付与処理された前駆体繊維束を乾燥緻密化する工程を行う。
 以下、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造方法における各工程について詳しく説明する。
(紡糸)
 本発明に用いる、前駆体繊維束としては、公知技術により紡糸されたアクリル繊維束を用いることができる。具体的には、アクリロニトリル系重合体を紡糸して得られるアクリル繊維束が挙げられる。
 アクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル系重合体は、アクリロニトリルのみから得られるホモポリマーであってもよく、主成分であるアクリロニトリルに加えて他の単量体を併用したアクリロニトリル系共重合体であってもよい。
 アクリロニトリル系共重合体におけるアクリロニトリル単位の含有量は、96.0~98.5質量%であることが焼成工程での繊維の融着防止、共重合体の耐熱性、紡糸原液の安定性、および炭素繊維にした際の品質の観点でより好ましい。アクリロニトリル単位が96質量%以上の場合は、炭素繊維に転換する際の焼成工程で繊維の融着を招くことなく、炭素繊維の優れた品質および性能を維持できるので好ましい。また、共重合体自体の耐熱性が低くなることもなく、前駆体繊維を紡糸する際、繊維の乾燥あるいは加熱ローラーや加圧水蒸気による延伸のような工程において、単繊維間の接着を回避できる。一方、アクリロニトリル単位が98.5質量%以下の場合には、溶剤への溶解性が低下することもなく、紡糸原液の安定性を維持できると共に共重合体の析出凝固性が高くならず、前駆体繊維の安定した製造が可能となるので好ましい。
 共重合体を用いる場合のアクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、耐炎化反応を促進する作用を有するアクリル酸、メタクリル酸、イタコン酸、または、これらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド等の単量体から選択すると、耐炎化を促進できるので好ましい。
 アクリロニトリルと共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸等のカルボキシル基含有ビニル系単量体がより好ましい。アクリロニトリル系共重合体におけるカルボキシル基含有ビニル系単量体単位の含有量は0.5~2.0質量%が好ましい。
 これらビニル系単量体は、1種単独で用いても良よく、2種以上を併用してもよい。
 紡糸の際には、アクリロニトリル系重合体を、溶剤に溶解し紡糸原液とする。このときの溶剤には、ジメチルアセトアミドあるいはジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、または塩化亜鉛やチオシアン酸ナトリウム等の無機化合物水溶液等、公知のものから適宜選択して使用することができる。これらの中でも、生産性向上の観点から凝固速度が早いジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミドが好ましく、ジメチルアセトアミドがより好ましい。
 また、緻密な凝固糸を得るためには、紡糸原液の重合体濃度がある程度以上になるように紡糸原液を調整することが好ましい。具体的には、紡糸原液中の重合体濃度が17質量%以上になるように調整することが好ましく、より好ましくは19質量%以上である。
 なお、紡糸原液は適正な粘度・流動性を必要とするため、重合体濃度は25質量%を超えない範囲が好ましい。
 紡糸方法は、上述した紡糸原液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できるが、より高い性能を有する炭素繊維束を得るには湿式紡糸法または乾湿式紡糸法が好ましい。
 湿式紡糸法または乾湿式紡糸法による紡糸賦形は、紡糸原液を円形断面の孔を有するノズルより凝固浴中に紡出することで行うことができる。凝固浴としては、紡糸原液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。
 凝固浴として溶剤を含む水溶液を用いる場合、水溶液中の溶剤濃度は、ボイドがなく緻密な構造を形成させ高性能な炭素繊維束を得られ、かつ延伸性が確保でき生産性に優れる等の理由から、50~85質量%、凝固浴の温度は10~60℃が好ましい。
(延伸処理)
 重合体あるいは共重合体を溶剤に溶解し、紡糸原液として凝固浴中に吐出して繊維化して得た凝固糸には、凝固浴中または延伸浴中で延伸する浴中延伸を行うことができる。あるいは、一部空中延伸した後に、浴中延伸してもよく、延伸の前後あるいは延伸と同時に水洗を行って水膨潤状態の前駆体繊維束を得ることができる。
 浴中延伸は、通常50~98℃の水浴中で1回あるいは2回以上の多段に分割するなどして行い、空中延伸と浴中延伸の合計倍率が2~10倍になるように凝固糸を延伸するのが、得られる炭素繊維束の性能の点から好ましい。
(油剤組成物付与処理)
 前駆体繊維束への油剤組成物の付与には、本発明の油剤組成物を水または溶剤に分散させた油剤組成物分散液を用いる。油剤組成物分散液がエマルションである場合、油剤組成物が平均粒子径0.01~0.50μmのミセルを形成している油剤組成物分散液を用いるのが好ましい。
 ミセルの平均粒子径が上記範囲内であれば、前駆体繊維束の表面に油剤組成物を均一に付与できる。
 なお、油剤組成物分散液中のミセルの平均粒子径は、レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA-910)を用いて測定することができる。
 油剤組成物分散液の調整方法は、芳香族エステル化合物(1)、(2)と、アミノ変性シリコーンが分散できれば公知の手法を用いることができる。
 油剤組成物分散液は、例えば以下のようにして調製できる。芳香族エステル化合物(1)、(2)とアミノ変性シリコーンとを混合攪拌しながら、そこに非イオン系界面活性剤を加えて分散し、さらに水または溶剤を加えることで油剤組成物が水中に分散した油剤組成物分散液が得られる。
 溶剤としては、例えばメタノール、エタノール、イソプロピルアルコール、イソブタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メトキシブタノール、ブチルセロソルブ等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等、または塩化亜鉛やチオシアン酸ナトリウム等の無機化合物水溶液などが挙げられる。
 また、油剤組成物分散液は、以下のようにしても調製できる。アミノ変性シリコーンと非イオン系界面活性剤とを攪拌しながら、そこに芳香族エステル化合物(1)、(2)を加えて分散し、さらに水または溶剤を加えることで油剤組成物が水中に分散した油剤組成物分散液が得られる。
 酸化防止剤を添加させる場合は、酸化防止剤を予めアミノ変性シリコーンに溶かしておくことが好ましい。また、帯電防止剤および/または抗菌剤を添加させる場合は、油剤組成物にイオン交換水を加えて油剤組成物分散液とした後に添加攪拌することが好ましい。
 各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使って行うことができる。特に、150MPa以上に加圧可能な超高圧ホモジナイザーを用いることが好ましい。
 油剤組成物分散液中の油剤組成物の濃度は、2~40質量%が好ましく、10~30質量%がより好ましく、20~30質量%が特に好ましい。油剤組成物の濃度が2質量%以上であれば、油剤組成物を所定の濃度に希釈することが可能であり、油剤組成物分散液の保管量、輸送量が少なくてすむ。一方、油剤組成物の濃度が40質量%以下であれば、油剤組成物分散液が安定となりミセルの破壊が起こりにくくなる。
 本発明の油剤組成物を水膨潤状態の前駆体繊維束に付与する際、前記油剤組成物分散液は、さらにイオン交換水を加えて所定の濃度に希釈して用いることが好ましい。
 なお、「所定の濃度」とは油剤組成物が前駆体繊維束に適正量付着させるために油剤組成物付与時の前駆体繊維束の状態によって調整される濃度である。
 本発明において、前駆体繊維束に付与する、油剤組成物分散液を所定の濃度に希釈した液を「油剤」と呼ぶ。
 油剤組成物の前駆体繊維束への付与は、上述した浴中延伸後の水膨潤状態の前駆体繊維束に、油剤を付与することにより行うことができる。
 浴中延伸の後に洗浄を行う場合は、浴中延伸および洗浄を行った後に得られる水膨潤状態の繊維束に油剤を付与することもできる。
 油剤組成物を水膨潤状態の前駆体繊維束に付与する方法としては、油剤組成物が水中に分散した油剤組成物分散液を、さらにイオン交換水を加えて所定の濃度に希釈して油剤とした後、水膨潤状態の前駆体繊維束に付着させる手法を用いることができる。
 油剤を水膨潤状態の前駆体繊維束に付着させる方法としては、ローラーの下部を油剤に浸漬させ、そのローラーの上部に前駆体繊維束を接触させるローラー付着法、ポンプで一定量の油剤をガイドから吐出し、そのガイド表面に前駆体繊維束を接触させるガイド付着法、ノズルから一定量の油剤を前駆体繊維束に噴射するスプレー付着法、油剤の中に前駆体繊維束を浸漬した後にローラー等で絞って余分な油剤を除去するディップ付着法等の公知の方法を用いることができる。
 これらの方法の中でも、均一付着の観点から、前駆体繊維束に十分に油剤を浸透させ、余分な処理液を除去するディップ付着法が好ましい。より均一に付着するためには油剤付与工程を2つ以上の多段にし、繰り返し付与することも有効である。
(乾燥緻密化処理)
 油剤が付与された前駆体繊維束は、続く乾燥工程で乾燥緻密化される。
 乾燥緻密化の温度は、繊維のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもある。例えば温度が100~200℃程度の加熱ローラーによる方法にて乾燥緻密化するのが好ましい。このとき加熱ローラーの個数は、1個でもよく、複数個でもよい。
(二次延伸処理)
 乾燥緻密化し、油剤組成物が付着した前駆体繊維束には、更に延伸処理を施すのが好ましい。延伸方法としては、加圧あるいは常圧水蒸気による水蒸気延伸、熱盤延伸、加熱ローラーによる延伸等、公知の延伸技術を用いることができる。
 上記の中でも、安定した均一延伸が可能な加熱ローラーによる延伸処理が好ましい。該延伸処理により、得られる油剤組成物が付着した炭素繊維前駆体アクリル繊維束の緻密性や配向度をさらに高めることができる。特に、加熱ローラーにより、乾燥緻密化し、油剤組成物が付着した前駆体繊維束を搬送させながら、ローラー速度を変えることで、1.1~4.0倍に延伸することで、得られる油剤組成物が付着した炭素繊維前駆体アクリル繊維束の緻密性や配向度をより向上できる。
 加熱ローラーの温度としては150~200℃程度が好ましい。加熱ローラーの温度が150℃以上であると、延伸をかけた際に毛羽の発生を抑制しやすく、続く炭素化工程で繊維束がローラーに巻き付く工程障害による操業性の低下を抑制しやすくなる。一方、加熱ローラーの温度が200℃以下であると、酸化反応や分解反応などが抑制しやすく、油剤組成物が付着した炭素繊維前駆体アクリル繊維束を焼成して得られる炭素繊維束の品質の低下を抑制しやすくなる。
 乾燥緻密化処理および二次延伸処理を経て得られる油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、室温のロールを通し、室温まで冷却した後にワインダーでボビンに巻き取られる、あるいはケンスに振込まれて収納される。
 そして、油剤組成物が付着した炭素繊維前駆体アクリル繊維束は焼成工程に移され、炭素繊維束となる。
<油剤組成物が付着した炭素繊維前駆体アクリル繊維束>
 このようにして得られる本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)とが、以下の条件(a)~(c)を満たして付着している。
 (a)アミノ変性シリコーンの付着量が、乾燥繊維質量に対して0.01~0.2質量%である。
 (b)芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の合計が、乾燥繊維質量に対して0.4~1.2質量%である。
 (c)芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の比率(芳香族エステル化合物(2)/芳香族エステル化合物(1))が、0.25~6.5である。
 なお、「乾燥繊維質量」とは、乾燥緻密化処理された後の油剤組成物が付着した前駆体繊維束の乾燥繊維質量のことである。
条件(a);
 アミノ変性シリコーンの付着量は、乾燥繊維質量に対して0.01~0.2質量%であり、0.05~0.15質量%が好ましい。アミノ変性シリコーンの付着量が0.01質量%以上であると、アミノ変性シリコーン本来の機能が発現しやすくなる。一方、アミノ変性シリコーンの付着量が0.2質量%以下であると、付着したアミノ変性シリコーンが、焼成工程において高分子化して単繊維間の接着の誘因となることを抑制しやすくなる。
条件(b);
 芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の合計は、乾燥繊維質量に対して0.4~1.2質量%であり、0.5~1.1質量%が好ましく、0.5~0.9質量%がより好ましい。芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の合計が上記範囲内であれば、高い強度を有する炭素繊維が得られる。
条件(c);
 芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の比率(芳香族エステル化合物(2)/芳香族エステル化合物(1))は、0.25~6.5である。付着量の比率が上記は範囲内であれば、高い強度を有する炭素繊維が得られる。特に、付着量の比率が1以上であれば、油剤組成物が付着した炭素繊維前駆体アクリル繊維束へ十分な集束性を付与できると共に、操業性が向上する。一方、付着量の比率が6.5以下であれば、繊維間の融着を防止しやすくなり、機械的物性が良好な炭素繊維が得られる。炭素繊維強度発現性の点から、付着量の比率は1.0~5が好ましく、1.2~3がより好ましい。
 油剤組成物に含まれる各成分の付着量は、次のようにして求められる。
 まず、油剤を付与し、乾燥緻密化、延伸して得た油剤組成物が付着した炭素繊維前駆体アクリル繊維束を約2g採取し、105℃で1時間乾燥した乾燥繊維質量wを測定する。その後、メチルエチルケトンによるソックスレー抽出法に準拠し、90℃のメチルエチルケトンに油剤組成物が付着した炭素繊維前駆体アクリル繊維束を8時間浸漬させて付着した油剤を溶媒抽出した後、105℃で1時間乾燥した乾燥繊維質量wを測定し、下記式(i)により油剤の付着量を求める。
 油剤の付着量[質量%]=(w-w)/w×100 ・・・(i)
 油剤組成物が付着した炭素繊維前駆体アクリル繊維束に付着した油剤組成物に含まれる各成分の付着量は、油剤の付着量と油剤中の油剤組成物の組成割合から算出する。
 なお、油剤組成物が付着した炭素繊維前駆体アクリル繊維束に付着した油剤組成物の構成は、油剤処理槽中の油剤の収支バランスから、調整した油剤組成物の構成と同じであることが分かる。
 本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、アミノ変性シリコーンとして、上記式(3)で示される構造のアミノ変性シリコーンが付着していることが好ましい。
 また、本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、POユニットとEOユニットとからなる上記式(4)で示される構造のブロック共重合型ポリエーテルが、前記芳香族エステル化合物(1) 、前記芳香族エステル化合物(2)、及び前記アミノ変性シリコーンの乾燥繊維質量に対する付着量の合計100質量部に対して、5~70質量部さらに付着していることが好ましく、機械的特性の点から28~43質量部がより好ましい。5質量部以上あれば、油剤組成物が均一に付着できており、機械的特性が良好となる。一方、70質量部以下であれば、機械的特性を低下させにくくなる。
 以上説明したように、本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造方法は、本発明の油剤組成物を用いるので、集束性に優れた油剤組成物が付着した炭素繊維前駆体アクリル繊維束を生産性よく製造できる。
 また、本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束は、アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)とが特定量付着しているので、集束性に優れる。さらに、焼成工程において単繊維間の接着を防止し、かつケイ素化合物の生成やシリコーン分解物の飛散を抑制できるので、操業性、工程通過性が著しく改善される。
 また、本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束を焼成して得られる炭素繊維束は、機械的物性に優れ、高品質であり、様々な構造材料に用いられる繊維強化樹脂複合材料に用いる強化繊維として好適である。
 以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
 本実施例に用いた各成分、および各種測定方法、評価方法は以下の通りである。
<成分>
(芳香族エステル化合物)
・A-1:上記式(1)の構造で、R,Rが共にラウリル基、m,nが共に約1であるポリオキシエチレンビスフェノールAジラウレート(花王株式会社製、商品名:エキセパール BP-DL)
・A-2:上記式(2)の構造で、R~Rが全てイソデシル基であるトリイソデシルトリメリテート(花王株式会社製、商品名:トリメックス T-10)
・A-3:ペンタエリスリトールテトラステアレート(日本油脂株式会社製、製品名:ユニスター H-476)
(アミノ変性シリコーン)
・B-1:上記式(3)の構造で、oが約80、pが約2であり、25℃における動粘度が90mm/s、アミノ当量が2500g/molであるアミノ変性シリコーン(Gelest,Inc.製、商品名:AMS-132)
・B-2:上記式(3)の構造で、oが約90、pが約1であり、25℃における動粘度が110mm/s、アミノ当量が5000g/molであるアミノ変性シリコーン(信越化学工業株式会社製、商品名:KF-868)
・B-3:上記式(3)の構造で、oが約240、pが約3であり、25℃における動粘度が450mm/s、アミノ当量が5700g/molであるアミノ変性シリコーン(信越化学工業株式会社製、商品名:KF-8008)
・B-4:25℃における動粘度が10000mm/s、アミノ当量が7000g/molである1級及び1、2級アミンを側鎖に持つアミノ変性シリコーン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:TSF4707)
(界面活性剤)
・C-1:上記式(4)の構造で、xが約75、yが約30、zが約75であるPO/EOブロック共重合型ポリエーテル(BASFジャパン株式会社製、商品名:Pluronic PE6800)
・C-2:上記式(4)の構造で、xが約10、yが約20、zが約10であるPO/EOブロック共重合型ポリエーテル(株式会社ADEKA製、商品名:アデカプルロニック L-44)
・C-3:ノナエチレングリコールドデシルエーテル(日光ケミカルズ株式会社、商品名:NIKKOL BL-9EX)
(相溶化剤)
・D-1:上記式(5)、(6)、(9)のユニットから成るラウリルPEG-9ポリジメチルシロキシエチルジメチコン(信越化学工業株式会社製、商品名:KF-6038)
・D-2:上記式(5)、(7)、(9)のユニットから成るラウリルポリグリセリル-3ポリジメチルシロキシエチルジメチコン(信越化学工業株式会社製、商品名:KF-6105)
・D-3:上記式(5)、(8)のユニットから成る、エチレンオキサイドとプロピレンオキサイドのランダム共重合側鎖とアルキル側鎖を持つ変性シリコーン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、商品名:TSF4450)
<測定・評価>
(油剤付着量の測定)
 油剤を付与し、乾燥緻密化、延伸して得た油剤組成物が付着した炭素繊維前駆体アクリル繊維束を約2g採取し、105℃で1時間乾燥した乾燥繊維質量wを測定した。その後、メチルエチルケトンによるソックスレー抽出法に準拠し、90℃のメチルエチルケトンに油剤組成物が付着した炭素繊維前駆体アクリル繊維束を8時間浸漬して付着した油剤を溶媒抽出し、105℃で1時間乾燥した乾燥繊維質量wを測定し、下記式(i)により油剤の付着量を求めた。
 油剤付着量[質量%]=(w-w)/w×100 ・・・(i)
(操業性の評価)
 油剤組成物が付着した炭素繊維前駆体アクリル繊維束を24時間連続して製造した時に、搬送ロールへ単糸が巻き付き、除去した頻度により、操業性の評価をした。評価基準は次の通りとした。
○:除去回数(回/24時間)≦1
△:除去回数(回/24時間)2~5
×:除去回数(回/24時間)>5
(耐炎化糸の集束性の評価)
 耐炎化工程直後のロール上での耐炎化繊維束の幅を、デジタルノギスにて測定し評価の対象とした。
(単繊維間融着数の測定)
 炭素繊維束を長さ3mmに切断し、アセトン中に分散させ、10分間攪拌した後の全単繊維数と、単繊維同士が融着している数(融着数)を計算し、単繊維100本当たりの融着数を算出し、以下の評価基準にて評価した。
○:融着数(個/100本)≦1
×:融着数(個/100本)>1
(ストランド強度の測定)
 炭素繊維束の製造を開始し、定常安定化した状態で炭素繊維束のサンプリングを行い、JIS-R-7608に規定されているエポキシ樹脂含浸ストランド法に準じて、炭素繊維束のストランド強度を測定した。なお、測定回数は10回とし、その平均値を評価の対象とした。
(Si飛散量の測定)
 シリコーン系化合物由来のシリカ化合物飛散量の測定は、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の珪素(Si)含有量(A)、耐炎化繊維束のSi含有量(A)との差から計算されるSi量の変化をSi飛散量とし、評価の指標とした。
 具体的には、油剤組成物が付着した炭素繊維前駆体アクリル繊維束および耐炎化繊維束をそれぞれ鋏で細かく粉砕した試料を密閉るつぼに50mg秤量し、粉末状としたNaOH、KOHを各0.25g加え、マッフル炉にて210℃で150分間加熱分解した。これを蒸留水で溶解し100mLに定容したものを測定試料として、ICP発光分析装置(サーモエレクトロン株式会社製、装置名:IRIS Advantage AP)にて各測定試料のSi含有量を求め、下記式(ii)によりSi飛散量を算出した。
 Si飛散量[mg/kg]=A-A ・・・(ii)
<実施例1>
(油剤の調製)
 アミノ変性シリコーンに、界面活性剤を混合攪拌しながら、そこに芳香族エステル化合物を加え、油剤組成物の濃度が30質量%になるようにイオン交換水をさらに加え、ホモミキサーで乳化した。この状態でのミセルの平均粒子径をレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製、装置名:LA-910)を用いて測定したところ、3μm程度であった。
 その後、高圧ホモジナイザーにより、ミセルの平均粒子径が0.3μm以下になるまで分散し、油剤組成物分散液(エマルション)を得た。さらに、イオン交換水を加えて油剤組成物分散液の濃度が1.7質量%になるように油剤を調整した。
 油剤組成物を構成する各成分の種類と配合量(質量部)を表1に示す。
(油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造)
 油剤組成物を付着させる前駆体繊維束は、次の方法で調製した。アクリロニトリル系共重合体(組成比:アクリロニトリル/アクリルアミド/メタクリル酸=96.5/2.7/0.8(質量比))をジメチルアセトアミドに溶解し、紡糸原液を調製し、濃度60質量%、温度35℃のジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)50μm、孔数50000の紡糸ノズルより吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5.5倍に延伸して水膨潤状態の前駆体繊維束とした。
 先に調整した油剤を満たした油剤処理槽に、前記水膨潤状態の前駆体繊維束を導き、油剤を付与させた。
 その後、油剤が付与された前駆体繊維束を表面温度180℃のロールにて乾燥緻密化した後に、表面温度190℃のロールを用い1.5倍延伸を施し油剤組成物が付着した炭素繊維前駆体アクリル繊維束を得た。
 得られた油剤組成物が付着した炭素繊維前駆体アクリル繊維束の油剤付着量を測定し、製造中の操業性を評価した。結果を表1に示す。
(炭素繊維束の製造)
 得られた油剤組成物が付着した炭素繊維前駆体アクリル繊維束を、220~260℃の温度勾配を有する耐炎化炉に通して耐炎化し、耐炎化繊維束とした。得られた耐炎化繊維束の集束性を評価し、耐炎化工程におけるSi飛散量を測定した。結果を表1に示す。
 引き続き、該耐炎化繊維束を窒素雰囲気中で400~1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維束とした。得られた炭素繊維束の単繊維間融着数、ストランド強度を測定した。結果を表1に示す。
<実施例2~18>
 油剤組成物を構成する各成分の種類と配合量を表1、2に示すように変えた以外は、実施例1と同様にして油剤を調製し、油剤組成物が付着した炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表1、2に示す。
 なお、実施例2~6、9および13において、相溶化剤は予めアミノ変性シリコーンに分散させた後に、実施例1と同様にして油剤を調製した。
<比較例1~10>
 油剤組成物を構成する各成分の種類と配合量を表3に示すように変えた以外は、実施例1と同様にして油剤を調製し、油剤組成物が付着した炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、各測定および評価を実施した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 なお、表1~3中、「アミノ変性シリコーンの含有量」は、芳香族エステル化合物(A-1)と芳香族エステル化合物(A-2)の合計を100質量部に換算したときの量である。
 表1、2から明らかなように、各実施例の場合、油剤付着量は適正な量であった。また、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造過程の操業性は良好であった。
 また、各実施例における耐炎化工程後の集束性は19~23mmと良好であった。更に耐炎化工程におけるSi飛散量も少なく、焼成工程における操業性が良好であった。
 各実施例で得られた炭素繊維束は、単繊維間の融着数が実質的に無く、ストランド強度が高い数値を示し、機械的物性に優れていた。
 なお、実施例3、5、9および12は耐炎化工程でのSi飛散量が他の各実施例と比較して多い状況にあったが、工業的に連続操業するうえで問題となる程度では無かった。
 一方、ポリオキシエチレンビスフェノールAジラウレート(A-1)とトリイソデシルトリメリテート(A-2)を混合して用いた比較例1、3において、A-1とA-2の質量比が7.25でありA-2の含有量が極端に多い比較例1、A-1とA-2の質量比が0.11でありA-2よりもA-1を多く含有した比較例3は、操業性、耐炎化集束性、Si飛散量、融着数は各実施例と比較して同等であったが、ストランド強度の値が各実施例と比較して低かった。
 ポリオキシエチレンビスフェノールAジラウレート(A-1)とトリイソデシルトリメリテート(A-2)を適正量配合したが、アミノ変性シリコーンを含有しない比較例2は、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の24時間の連続操業において数回、搬送ロールに単糸が巻き付く現象が見られ、各実施例と比較すると操業性に劣っていた。また、得られた炭素繊維束の融着数が多く、ストランド強度の値が各実施例と比較して低かった。
 ポリオキシエチレンビスフェノールAジラウレート(A-1)とペンタエリスリトールテトラステアレート(A-3)を芳香族エステル成分として用いた比較例4では、操業性、耐炎化集束性、Si飛散量においては各実施例と同等であったが、炭素繊維束は融着数が多いうえに、ストランド強度が満足できるレベルでは無かった。
 ポリオキシエチレンビスフェノールAジラウレート(A-1)のみを芳香族エステル成分として用い、アミノ変性シリコーンとして粘度が10000mm/s、アミノ当量が7000g/molである1級及び1、2級アミンを側鎖に持つアミノ変性シリコーン(B-4)を用いた比較例5の場合、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の24時間の連続操業において多数回、搬送ロールに単糸が巻き付く現象が見られ、操業性は著しく悪かった。また、得られた炭素繊維束は融着数が多く、ストランド強度も満足できるレベルのものではなかった。
 トリイソデシルトリメリテート(A-2)とペンタエリスリトールテトラステアレート(A-3)を芳香族エステル成分として用いた比較例6では、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の24時間の連続操業において数回、搬送ロールに単糸が巻き付く現象が見られ、各実施例と比較すると操業性に劣っていた。また、得られた炭素繊維束の融着数が多く、ストランド強度の値が各実施例と比較して低かった。
 トリイソデシルトリメリテート(A-2)のみを芳香族エステル成分に用い、アミノ変性シリコーンとして粘度が10000mm/s、アミノ当量が7000g/molである1級及び1、2級アミンを側鎖に持つアミノ変性シリコーン(B-4)を用いた比較例7においても、操業性に劣り、得られた炭素繊維束には融着が確認され、ストランド強度の値が各実施例と比較して低かった。
 ペンタエリスリトールテトラステアレート(A-3)のみを芳香族エステル成分として用いた比較例8の場合、油剤付着量が適性であったにも拘わらず、操業性がやや悪く、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の24時間の連続生産において数回、搬送ロールに単糸が巻き付く状況であった。さらに耐炎化集束性も悪く、得られた炭素繊維束には融着が多数確認され、ストランド強度は各実施例と比較して低いものであった。
 ペンタエリスリトールテトラステアレート(A-3)のみを芳香族エステル成分として用い、アミノ変性シリコーンを含有せず、PO/EOブロック共重合型ポリエーテルを含有しない比較例9においては、アミノ変性シリコーンを含有しないため、耐炎化工程のSi飛散量は実質的に無いが、その他の評価項目はいずれも各実施例と比較して著しく劣っていた。
 芳香族エステル成分を含有せず、アミノ変性シリコーンを含有する比較例10では、操業性、耐炎化集束性、融着数、ストランド強度は各実施例と比較して同等であったが、Si飛散量が極めて多く、工業的に連続して焼成を行うには障害となった。
<試験例1~5>
 油剤組成物を構成する各成分の種類と配合量を表4に示すように変更し、かつ、予めアミノ変性シリコーンに酸化防止剤(テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタンと、ジトリデシルチオジプロピオネートとの質量比2:1の混合物)3質量部を分散させた後に、芳香族エステルと界面活性剤を加えて攪拌し、そこに水を加えて乳化して油剤組成物分散液とした後に、更に帯電防止剤(オレイルジメチルエチルアンモニウムエトサルフェート)4質量部を分散させた以外は、実施例1と同様にして油剤を調製した。
 得られた油剤を用い、油剤付着量が表4に示す値になるように変更した以外は、実施例1と同様にして油剤組成物が付着した炭素繊維前駆体アクリル繊維束および炭素繊維束を製造し、炭素繊維束のストランド強度を測定した。結果を表4に示す。
 なお、試験例2~4は実施例に相当し、試験例1、5は比較例に相当する。
Figure JPOXMLDOC01-appb-T000030
 なお、表4中、「アミノ変性シリコーンの含有量」は、芳香族エステル化合物(A-1)と芳香族エステル化合物(A-2)の合計を100質量部に換算したときの量である。
 表4から明らかなように、試験例2~4で得られた炭素繊維束は、試験例1、5で得られた炭素繊維束に比べてストランド強度が高い数値を示し、機械的物性に優れていた。
 特に、ポリオキシエチレンビスフェノールAジラウレート(A-1)とトリイソデシルトリメリテート(A-2)の付着量の合計が0.26質量%である試験例1は、炭素繊維束のストランド強度の値が各試験例と比較して低かった。
 本発明の炭素繊維前駆体アクリル繊維用油剤組成物は、焼成工程での単繊維間の融着を効果的に抑制できる。さらに、シリコーンを主成分とする油剤組成物を使用する場合に発生する操業性低下を抑制でき、かつ、集束性が良好な油剤組成物が付着した炭素繊維前駆体アクリル繊維束を得ることができる。該油剤組成物が付着した炭素繊維前駆体アクリル繊維束からは、機械的物性に優れた炭素繊維束を生産性よく製造できる。
 本発明の油剤組成物が付着した炭素繊維前駆体アクリル繊維束から得られた炭素繊維束は、プリプレグ化したのち複合材料に成形することもできる。また、炭素繊維束を用いた複合材料は、ゴルフシャフトや釣り竿などのスポーツ用途、さらには構造材料として自動車や航空宇宙用途、また各種ガス貯蔵タンク用途などに好適に用いることができ、有用である。

Claims (11)

  1.  アミノ変性シリコーンと、下記式(1)で示される構造の芳香族エステル化合物(1)と、下記式(2)で示される構造の芳香族エステル化合物(2)とが、以下の条件(a)~(c)を満たした、油剤組成物が付着した炭素繊維前駆体アクリル繊維束。
     (a)アミノ変性シリコーンの付着量が、乾燥繊維質量に対して0.01~0.2質量%である。
     (b)芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の合計が、乾燥繊維質量に対して0.4~1.2質量%である。
     (c)芳香族エステル化合物(1)と芳香族エステル化合物(2)の付着量の比率(芳香族エステル化合物(2)/芳香族エステル化合物(1))が、0.25~6.5である。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、RおよびRはそれぞれ独立して炭素数7~21の炭化水素基、“m”および“n”はそれぞれ独立して1~5である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R~Rはそれぞれ独立して炭素数8~14の炭化水素基である。)
  2.  前記アミノ変性シリコーンが、下記式(3)で示される構造のアミノ変性シリコーンである、請求項1に記載の油剤組成物が付着した炭素繊維前駆体アクリル繊維束。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)において、“o”は5~300、“p”は1~5である。)
  3.  前記アミノ変性シリコーンの25℃における動粘度が、50~500mm/sである、請求項1または2に記載の油剤組成物が付着した炭素繊維前駆体アクリル繊維束。
  4.  プロピレンオキサイドユニットとエチレンオキサイドユニットとからなる、下記式(4)で示される構造のブロック共重合型ポリエーテルが、前記芳香族エステル化合物(1)と芳香族エステル化合物(2)とアミノ変性シリコーンの乾燥繊維質量に対する付着量の合計100質量部に対して、5~70質量部さらに付着した、請求項1~3のいずれか一項に記載の油剤組成物が付着した炭素繊維用前駆体アクリル繊維束。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)において“x”、“y”、“z”はそれぞれ独立して1~200である。)
  5.  アミノ変性シリコーンと、下記式(1)で示される構造の芳香族エステル化合物(1)と、下記式(2)で示される構造の芳香族エステル化合物(2)とを含有する炭素繊維前駆体アクリル繊維用油剤組成物であって、
     前記アミノ変性シリコーンの含有量が、前記芳香族エステル化合物(1)と芳香族エステル化合物(2)の合計100質量部に対して1~25質量部であり、
     かつ、前記芳香族エステル化合物(1)と芳香族エステル化合物(2)の質量比(芳香族エステル化合物(2)/芳香族エステル化合物(1))が0.25~6.5である、炭素繊維前駆体アクリル繊維用油剤組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)において、RおよびRはそれぞれ独立して炭素数7~21の炭化水素基、“m”および“n”はそれぞれ独立して1~5である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(2)において、R~Rはそれぞれ独立して炭素数8~14の炭化水素基である。)
  6.  前記アミノ変性シリコーンが、下記式(3)で示される構造のアミノ変性シリコーンである、請求項5に記載の炭素繊維前駆体アクリル繊維用油剤組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(3)において、“o”は5~300、“p”は1~5である。)
  7.  前記アミノ変性シリコーンの25℃における動粘度が、50~500mm/sである、請求項5または6に記載の炭素繊維前駆体アクリル繊維用油剤組成物。
  8.  前記アミノ変性シリコーンと、芳香族エステル化合物(1)と、芳香族エステル化合物(2)の合計100質量部に対して、プロピレンオキサイドユニットとエチレンオキサイドユニットとからなる、下記式(4)で示される構造のブロック共重合型ポリエーテルを10~50質量部さらに含有する、請求項5~7のいずれか一項に記載の炭素繊維前駆体アクリル繊維用油剤組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式(4)において“x”、“y”、“z”はそれぞれ独立して1~200である。)
  9.  請求項5~8のいずれか一項に記載の炭素繊維前駆体アクリル繊維用油剤組成物が、水または溶剤に分散している、炭素繊維前駆体アクリル繊維用油剤組成物分散液。
  10.  前記炭素繊維前駆体アクリル繊維用油剤組成物が、平均粒子径0.01~0.50μmのミセルを形成している、請求項9に記載の炭素繊維前駆体アクリル繊維用油剤組成物分散液。
  11.  請求項5~8のいずれか一項に記載の炭素繊維前駆体アクリル繊維用油剤組成物を水または溶剤に分散させて、平均粒子径0.01~0.50μmのミセルを形成させた炭素繊維前駆体アクリル繊維用油剤組成物分散液を水膨潤状態の炭素繊維前駆体アクリル繊維束に付与する工程と、炭素繊維前駆体アクリル繊維用油剤組成物分散液が付与された炭素繊維前駆体アクリル繊維束を乾燥緻密化する工程とを有する、油剤組成物が付着した炭素繊維前駆体アクリル繊維束の製造方法。
PCT/JP2011/054580 2011-03-01 2011-03-01 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液 WO2012117514A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201180068742.2A CN103502519B (zh) 2011-03-01 2011-03-01 附着有油剂组合物的碳纤维前体丙烯腈系纤维束及其制造方法、以及碳纤维前体丙烯腈系纤维用油剂组合物和碳纤维前体丙烯腈系纤维用油剂组合物分散液
US14/002,263 US9752012B2 (en) 2011-03-01 2011-03-01 Carbon-fiber-precursor acrylic fiber bundle with oil composition adhering thereto, process for producing the same, oil composition for carbon-fiber-precursor acrylic fiber, and oil composition dispersion for carbon-fiber-precursor acrylic fiber
KR1020137025818A KR101518160B1 (ko) 2011-03-01 2011-03-01 유제 조성물이 부착된 탄소 섬유 전구체 아크릴 섬유속과 그의 제조방법, 및 탄소 섬유 전구체 아크릴 섬유용 유제 조성물과 탄소 섬유 전구체 아크릴 섬유용 유제 조성물 분산액
HUE11859873A HUE029498T2 (en) 2011-03-01 2011-03-01 Carbon Fiber Precursor Acrylic Fiber Veil Adhesive Oil Composition, Method for its Preparation, Oil Composition Carbon Fiber Precursor for Acrylic Fiber, and Oil Composition Dispersion for Carbon Fiber Precursor Acrylic Fiber
EP11859873.9A EP2682506B1 (en) 2011-03-01 2011-03-01 Carbon-fiber-precursor acrylic fiber bundle with oil composition adhering thereto, process for producing same, oil composition for carbon-fiber-precursor acrylic fiber, and oil composition dispersion for carbon-fiber-precursor acrylic fiber
JP2011512328A JP5585579B2 (ja) 2011-03-01 2011-03-01 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液
MX2013009962A MX345718B (es) 2011-03-01 2011-03-01 Conjunto de fibra acrilica de precursor de fibra de carbono con la composicion de aceite que se adhiere al mismo, proceso para producir el mismo, composicion de aceite para la fibra acrilica de precursor de fibra de carbono, y dispersion de la composicion de aceite para la fibra acrilica de precursor de fibra de carbono.
PT118598739T PT2682506T (pt) 2011-03-01 2011-03-01 Feixe de fibra acrílica precursor da fibra de carbono com composição em óleo aderente à mesma, processo para produzir os mesmos, composição em óleo para fibra acrílica percursora de fibra de carbono, e dispersão de composição em óleo para fibra acrílica precursora de fibra de carbono
PCT/JP2011/054580 WO2012117514A1 (ja) 2011-03-01 2011-03-01 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054580 WO2012117514A1 (ja) 2011-03-01 2011-03-01 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液

Publications (1)

Publication Number Publication Date
WO2012117514A1 true WO2012117514A1 (ja) 2012-09-07

Family

ID=46757476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054580 WO2012117514A1 (ja) 2011-03-01 2011-03-01 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液

Country Status (9)

Country Link
US (1) US9752012B2 (ja)
EP (1) EP2682506B1 (ja)
JP (1) JP5585579B2 (ja)
KR (1) KR101518160B1 (ja)
CN (1) CN103502519B (ja)
HU (1) HUE029498T2 (ja)
MX (1) MX345718B (ja)
PT (1) PT2682506T (ja)
WO (1) WO2012117514A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201851A (ja) * 2013-04-04 2014-10-27 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法
JP2016056497A (ja) * 2014-09-11 2016-04-21 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維用油剤処理液
JP2016056496A (ja) * 2014-09-11 2016-04-21 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維束
KR20170049578A (ko) 2014-09-11 2017-05-10 미쯔비시 케미컬 주식회사 탄소 섬유 전구체 아크릴 섬유용 유제, 탄소 섬유 전구체 아크릴 섬유용 유제 조성물, 탄소 섬유 전구체 아크릴 섬유용 유제 처리액, 및 탄소 섬유 전구체 아크릴 섬유속
JP7199123B1 (ja) 2022-06-07 2023-01-05 竹本油脂株式会社 炭素繊維前駆体用処理剤及び炭素繊維前駆体
WO2023140212A1 (ja) * 2022-01-24 2023-07-27 東レ株式会社 炭素繊維束

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414841B (zh) * 2014-08-12 2018-08-28 松本油脂制药株式会社 丙烯酸纤维处理剂及其用途
EP3313928B1 (de) * 2015-06-26 2020-01-08 Schill + Seilacher "Struktol" GmbH Mit amin vernetzbare kautschukzusammensetzung mit hellem füllstoff
US10808047B2 (en) 2015-08-21 2020-10-20 G&P Holding, Inc. Silver and copper itaconates and poly itaconates
CN105297446B (zh) * 2015-10-23 2017-03-08 威海新元化工有限公司 一种非硅油剂/含硅油剂复配使用的碳纤维油剂及其制备方法
KR101858875B1 (ko) * 2016-12-29 2018-06-29 주식회사 효성 유기 항균제를 사용한 항균성 스판덱스
JP2021038478A (ja) * 2019-08-30 2021-03-11 帝人株式会社 炭素繊維束の製造方法
CN110670350B (zh) * 2019-09-18 2022-01-25 江苏恒神股份有限公司 一种碳纤维原丝用无硅油剂
CN114232139A (zh) * 2021-12-16 2022-03-25 连云港神鹰复合材料科技有限公司 一种干喷湿纺原丝用碳纤维油剂的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199183A (ja) 1999-01-04 2000-07-18 Toho Rayon Co Ltd 炭素繊維製造用アクリロニトリル繊維
JP2002266239A (ja) 2001-03-12 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維とその製造方法および油剤組成物
JP2003055881A (ja) 2001-06-06 2003-02-26 Toray Ind Inc 炭素繊維用プリカーサー、その製造方法および炭素繊維の製造方法
JP2004149937A (ja) 2002-10-29 2004-05-27 Toray Ind Inc 炭素繊維用前駆体繊維束およびその製造方法
JP2004169198A (ja) 2002-11-18 2004-06-17 Toray Ind Inc 炭素繊維用前駆体繊維束およびその製造方法
JP2005264361A (ja) 2004-03-17 2005-09-29 Toray Ind Inc 炭素繊維前駆体用油剤
JP2005264384A (ja) 2004-03-19 2005-09-29 Toray Ind Inc 合成繊維処理油剤および炭素繊維製造用前駆体繊維の製造方法。
WO2007066517A1 (ja) 2005-12-09 2007-06-14 Matsumoto Yushi-Seiyaku Co., Ltd. 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2008063705A (ja) * 2006-09-11 2008-03-21 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維用油剤
JP2008196097A (ja) * 2007-01-18 2008-08-28 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維束およびその製造方法
WO2009060834A1 (ja) * 2007-11-07 2009-05-14 Mitsubishi Rayon Co., Ltd. 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束及びその製造方法
JP2010053467A (ja) * 2008-08-27 2010-03-11 Toray Ind Inc 炭素繊維前駆体繊維用油剤
JP2011042916A (ja) * 2009-07-24 2011-03-03 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維束とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102870B2 (ja) * 1987-06-16 1994-12-14 竹本油脂株式会社 炭素繊維用サイジング剤
US5783305A (en) * 1995-09-06 1998-07-21 Matsumoto Yushi-Seiyaku Co. Ltd. Finish for carbon fiber precursors
US6641915B1 (en) * 2000-05-09 2003-11-04 Mitsubishi Rayon Co., Ltd. Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
JP4046605B2 (ja) * 2002-12-19 2008-02-13 竹本油脂株式会社 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法
JP2004211240A (ja) 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd 炭素繊維、炭素繊維用アクリロニトリル系前駆体繊維、およびそれらの製造方法
KR101562116B1 (ko) * 2011-06-06 2015-10-20 미쯔비시 레이온 가부시끼가이샤 탄소 섬유 전구체 아크릴 섬유용 유제, 탄소 섬유 전구체 아크릴 섬유용 유제 조성물, 탄소 섬유 전구체 아크릴 섬유용 유제 처리액, 및 탄소 섬유 전구체 아크릴 섬유속과 그것을 이용한 탄소 섬유속의 제조 방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199183A (ja) 1999-01-04 2000-07-18 Toho Rayon Co Ltd 炭素繊維製造用アクリロニトリル繊維
JP2002266239A (ja) 2001-03-12 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維とその製造方法および油剤組成物
JP2003055881A (ja) 2001-06-06 2003-02-26 Toray Ind Inc 炭素繊維用プリカーサー、その製造方法および炭素繊維の製造方法
JP2004149937A (ja) 2002-10-29 2004-05-27 Toray Ind Inc 炭素繊維用前駆体繊維束およびその製造方法
JP2004169198A (ja) 2002-11-18 2004-06-17 Toray Ind Inc 炭素繊維用前駆体繊維束およびその製造方法
JP2005264361A (ja) 2004-03-17 2005-09-29 Toray Ind Inc 炭素繊維前駆体用油剤
JP2005264384A (ja) 2004-03-19 2005-09-29 Toray Ind Inc 合成繊維処理油剤および炭素繊維製造用前駆体繊維の製造方法。
WO2007066517A1 (ja) 2005-12-09 2007-06-14 Matsumoto Yushi-Seiyaku Co., Ltd. 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2008063705A (ja) * 2006-09-11 2008-03-21 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維用油剤
JP2008196097A (ja) * 2007-01-18 2008-08-28 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維束およびその製造方法
WO2009060834A1 (ja) * 2007-11-07 2009-05-14 Mitsubishi Rayon Co., Ltd. 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束及びその製造方法
JP2010053467A (ja) * 2008-08-27 2010-03-11 Toray Ind Inc 炭素繊維前駆体繊維用油剤
JP2011042916A (ja) * 2009-07-24 2011-03-03 Mitsubishi Rayon Co Ltd 炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維束とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682506A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201851A (ja) * 2013-04-04 2014-10-27 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法
JP2016056497A (ja) * 2014-09-11 2016-04-21 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維用油剤処理液
JP2016056496A (ja) * 2014-09-11 2016-04-21 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維束
KR20170049578A (ko) 2014-09-11 2017-05-10 미쯔비시 케미컬 주식회사 탄소 섬유 전구체 아크릴 섬유용 유제, 탄소 섬유 전구체 아크릴 섬유용 유제 조성물, 탄소 섬유 전구체 아크릴 섬유용 유제 처리액, 및 탄소 섬유 전구체 아크릴 섬유속
CN107075789A (zh) * 2014-09-11 2017-08-18 三菱化学株式会社 碳纤维前体丙烯腈系纤维用油剂、碳纤维前体丙烯腈系纤维用油剂组合物、碳纤维前体丙烯腈系纤维用油剂处理液、及碳纤维前体丙烯腈系纤维束
CN107075789B (zh) * 2014-09-11 2020-01-07 三菱化学株式会社 碳纤维前体丙烯腈系纤维用油剂、其组合物和处理液、碳纤维前体丙烯腈系纤维束
US10550512B2 (en) 2014-09-11 2020-02-04 Mitsubishi Chemical Corporation Oil agent for carbon-fiber-precursor acrylic fiber, oil agent composition for carbon-fiber-precursor acrylic fiber, oil-treatment-liquid for carbon-fiber-precursor acrylic fiber, and carbon-fiber-precursor acrylic fiber bundle
WO2023140212A1 (ja) * 2022-01-24 2023-07-27 東レ株式会社 炭素繊維束
JP7199123B1 (ja) 2022-06-07 2023-01-05 竹本油脂株式会社 炭素繊維前駆体用処理剤及び炭素繊維前駆体
WO2023238500A1 (ja) * 2022-06-07 2023-12-14 竹本油脂株式会社 炭素繊維前駆体用処理剤及び炭素繊維前駆体
JP2023179076A (ja) * 2022-06-07 2023-12-19 竹本油脂株式会社 炭素繊維前駆体用処理剤及び炭素繊維前駆体

Also Published As

Publication number Publication date
EP2682506B1 (en) 2016-05-25
PT2682506T (pt) 2016-07-08
KR101518160B1 (ko) 2015-05-06
KR20130124581A (ko) 2013-11-14
EP2682506A4 (en) 2014-01-22
EP2682506A1 (en) 2014-01-08
JP5585579B2 (ja) 2014-09-10
CN103502519B (zh) 2015-08-12
MX345718B (es) 2017-02-13
US9752012B2 (en) 2017-09-05
CN103502519A (zh) 2014-01-08
MX2013009962A (es) 2014-09-12
HUE029498T2 (en) 2017-02-28
JPWO2012117514A1 (ja) 2014-07-07
US20130338281A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5585579B2 (ja) 油剤組成物が付着した炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液
JP5659597B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維束とその製造方法
JP4856724B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束及びその製造方法
JP6017109B2 (ja) 炭素繊維前駆体アクリル繊維束とその製造方法
JP5712480B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維束とその製造方法
JP5707690B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維束とその製造方法
JP5103068B2 (ja) 炭素繊維前駆体アクリル繊維束およびその製造方法
WO2016039478A1 (ja) 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維用油剤処理液、および炭素繊維前駆体アクリル繊維束
JP2015221957A (ja) 炭素繊維前駆体アクリル繊維束とその製造方法
JP4917991B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物
JP5741841B2 (ja) 炭素繊維前駆体アクリル繊維束
JP6167735B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法
JP2018159138A (ja) 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束、炭素繊維、及び、炭素繊維前駆体アクリル繊維束と炭素繊維の製造方法
TWI461586B (zh) 附著油劑組成物的碳纖維前驅物丙烯酸纖維束及其製造方法、及碳纖維前驅物丙烯酸纖維用油劑組成物與碳纖維前驅物丙烯酸纖維用油劑組成物分散液
JP6314369B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法
JP2014163008A (ja) 炭素繊維前駆体アクリル繊維束とその製造方法、および炭素繊維束
JP2016056496A (ja) 炭素繊維前駆体アクリル繊維束
JP2014167175A (ja) 炭素繊維前駆体アクリル繊維束とその製造方法
JP5960943B2 (ja) 炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維束とその製造方法、ならびに炭素繊維束の製造方法
JP2013209771A (ja) 炭素繊維前駆体アクリル繊維束
JP5866752B2 (ja) アクリル繊維束およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011512328

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011859873

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14002263

Country of ref document: US

Ref document number: MX/A/2013/009962

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025818

Country of ref document: KR

Kind code of ref document: A