WO2012114673A1 - チップ抵抗器およびその製造方法 - Google Patents

チップ抵抗器およびその製造方法 Download PDF

Info

Publication number
WO2012114673A1
WO2012114673A1 PCT/JP2012/000951 JP2012000951W WO2012114673A1 WO 2012114673 A1 WO2012114673 A1 WO 2012114673A1 JP 2012000951 W JP2012000951 W JP 2012000951W WO 2012114673 A1 WO2012114673 A1 WO 2012114673A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
surface electrode
chip resistor
silver
Prior art date
Application number
PCT/JP2012/000951
Other languages
English (en)
French (fr)
Inventor
孝志 大林
白石 誠吾
和範 酒井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280010156.7A priority Critical patent/CN103392212B/zh
Priority to JP2013500865A priority patent/JP5360330B2/ja
Publication of WO2012114673A1 publication Critical patent/WO2012114673A1/ja
Priority to US13/960,749 priority patent/US9245672B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/012Mounting; Supporting the base extending along and imparting rigidity or reinforcement to the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • H01C17/283Precursor compositions therefor, e.g. pastes, inks, glass frits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/028Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Definitions

  • the present invention relates to a chip resistor used in various electronic devices and a manufacturing method thereof.
  • Patent Document 1 As a conventional chip resistor, the one disclosed in Patent Document 1 is known.
  • FIG. 1 shows a cross-sectional view of a conventional chip resistor (Patent Document 1).
  • This resistor has an insulating substrate 1, a resistance layer 3, and a top electrode layer 2.
  • the resistance layer 3 is provided on the upper surface of the insulating substrate 1.
  • the upper electrode layer 2 is provided on both the left and right ends of the resistance layer 3 so as to be in contact with the resistance layer 3 on the upper surface of the insulating substrate 1.
  • the resistance layer 3 is provided with trimming grooves 4 for correcting the resistance value.
  • the resistor shown in FIG. 1 further includes a protective layer 5, a side electrode layer 6, a nickel plating layer 7, and a solder plating layer 8.
  • the protective layer 5 is provided so as to cover the resistance layer 3.
  • the side electrode layer 6 is provided on the side surface of the insulating substrate 1 and is electrically connected to the upper surface electrode layer 2.
  • the nickel plating layer 7 and the solder plating layer 8 are provided on the surfaces of the upper surface electrode layer 2 and the side surface electrode layer 6.
  • soldering is performed when the chip resistor is soldered and mounted on the printed circuit board of the electronic device at the boundary between the protective layer 5 and the solder plating layer 8 and the nickel plating layer 7.
  • a gap was generated due to heat stress at the time.
  • an electronic device mounted with this chip resistor contains a sulfide gas such as a hot spring resort and is used in a humid atmosphere, the sulfide gas enters through this gap and reacts with the upper electrode layer 2 to remove silver sulfide. Form.
  • this silver sulfide has growth property, it continued to precipitate on the upper surface of the protective layer 5 and the plating layer, and this had the subject of causing a disconnection in the boundary part of the upper surface electrode layer 2 of a chip resistor.
  • the upper electrode layer 2 is made of a silver-palladium alloy electrode, the time until disconnection increases, but it is not perfect. If the upper electrode layer 2 is made of a gold electrode, it will not be disconnected, but the gold electrode is damaged by a checker when trimming to obtain a predetermined resistance value. Furthermore, when soldering is performed, there is a problem that gold is eroded by the solder and disconnected.
  • a carbon-based conductive material is used for the second upper surface electrode layer as disclosed in Japanese Patent Application Laid-Open No. 2004-259864, or silver and carbon as used in the side surface electrode layer of Japanese Patent Application Laid-Open No. 2004-28895 are included.
  • Materials can be used. However, these materials are made of carbon and have electrical conductivity, and the nickel plating layer on the side electrode layer adheres because the amount of silver is small. It has a problem of easy peeling.
  • An object of the present invention is to provide a chip resistor that solves the above-described conventional problems and that does not break even in a sulfide gas atmosphere and that silver sulfide does not deposit on the surface.
  • a chip resistor of the present invention includes a substrate having an upper surface, a resistance layer provided on the upper surface of the substrate, an upper surface of the substrate, and at both ends of the resistance layer.
  • a first upper surface electrode layer provided in electrical connection with the resistance layer; and a second upper surface electrode layer provided on the first upper surface electrode layer.
  • the second upper surface electrode layer comprises 75% by weight or more and 85% by weight or less of silver particles having an average particle diameter of 0.3 ⁇ m to 2 ⁇ m, 1% by weight or more and 10% by weight or less of carbon, and resin.
  • FIG. 1 is a cross-sectional view of a conventional chip resistor.
  • FIG. 2 is a perspective view of the chip resistor according to the embodiment of the present invention.
  • 3 is a cross-sectional view of the chip resistor according to the embodiment of the present invention, taken along the line II in FIG.
  • FIG. 4A is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the first upper surface electrode layer is formed.
  • FIG. 4B is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the formation of the resistance layer.
  • FIG. 4C shows a method for manufacturing the chip resistor according to the embodiment of the present invention, after the trimming groove is formed.
  • FIG. 4A is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the first upper surface electrode layer is formed.
  • FIG. 4B is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present
  • FIG. 5A is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the second upper surface electrode layer is formed.
  • FIG. 5B is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the protective layer is formed.
  • FIG. 6A shows a method for manufacturing a chip resistor according to an embodiment of the present invention, and is a view after a substrate is divided into strips along a horizontal dividing groove.
  • FIG. 6B is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the side electrode layer is formed.
  • FIG. 6C is a diagram illustrating a method for manufacturing the chip resistor according to the embodiment of the present invention, after the substrate is divided along the longitudinal dividing grooves.
  • FIG. 7 is a diagram showing a state of silver sulfide of a conventional silver electrode.
  • FIG. 8 is a view showing the state of silver sulfide of the silver-carbon electrode of the present invention.
  • FIG. 2 is a perspective view of the chip resistor 100 of the present embodiment.
  • the chip resistor of this embodiment is a square.
  • 3 is a cross-sectional view of the resistor 100 taken along the line II of FIG.
  • the resistor 100 includes a substrate 31, a resistance layer 33, a first upper surface electrode layer 32, and a second upper surface electrode layer.
  • the substrate 31 is an insulating substrate.
  • the resistance layer 33 is provided on the upper surface of the substrate 31.
  • the first upper surface electrode layer 32 is provided on the upper and lower ends of the resistance layer 33 on the upper surface of the substrate 31 so as to be in contact with the resistance layer 33.
  • the second upper surface electrode layer 34 is provided on the first upper surface electrode layer.
  • the resistance layer 33 is provided with a trimming groove 39 for correcting the resistance value.
  • the resistor 100 of the present embodiment further includes a protective layer 35, a side electrode layer 36, a nickel plating layer 37, and a solder plating layer 38.
  • the protective layer 35 is provided so as to cover a part of the resistance layer 33 and the second upper surface electrode layer 34.
  • the side electrode layer 36 is provided on the side surface of the substrate 31 and is electrically connected to the second upper surface electrode layer 34.
  • the nickel plating layer 37 is provided on the surfaces of the second upper surface electrode layer 34 and the side electrode layer 36.
  • the solder plating layer 38 is provided on the surface of the nickel plating layer 37.
  • the nickel plating layer 37 and the solder plating layer 38 are also collectively referred to as plating layers.
  • the second upper surface electrode layer 34 includes silver particles, carbon, and a resin.
  • the composition of silver is 75% by weight or more and 85% by weight or less.
  • the composition of carbon is 1% by weight or more and 10% by weight or less.
  • the average particle diameter of silver particles is 0.3 micrometer or more and 2 micrometers or less.
  • the side electrode layer 36 since the optimal amount of silver is contained in the second upper surface electrode layer 34, the side electrode layer 36 has good adhesion between the nickel plating layer 37 and silver and does not peel off. .
  • FIG. 7 is a view showing a state of silver sulfide of a conventional silver electrode.
  • 101 represents silver particles
  • 102 represents silver sulfide.
  • the conductivity is ensured only by the silver particles 101, since the silver is continuously supplied, the crystal of the silver sulfide 102 continues to grow.
  • FIG. 8 is a diagram showing the state of silver sulfide of the silver-carbon electrode of the present invention.
  • 101 indicates silver particles
  • 102 indicates silver sulfide
  • 103 indicates carbon particles.
  • silver and carbon are uniformly dispersed, and silver particles 101 exist independently. Even if the silver particles 101 become the silver sulfide 102 by the sulfide gas, the silver is not continuously supplied, so that the silver sulfide does not precipitate from the boundary between the protective layer 35 and the plating layer.
  • the thickness of the nickel plating layer 37 and the solder plating layer 38 is 10 ⁇ m and the particle size is 2 ⁇ m or less when calculated from the volume of silver sulfide, it cannot grow to silver sulfide of 10 ⁇ m or more. None come out. Further, regarding the plating property of the side electrode layer 36, since carbon is blended in the second upper surface electrode layer 34, the conductivity can be secured and the plating property can be improved.
  • the average particle diameter of the silver particles of the second upper surface electrode layer 34 is 0.3 ⁇ m to 2 ⁇ m. If the silver particles are smaller than this, the conductivity becomes low and the resistance value of the second upper surface electrode layer 34 becomes high. If the particle size is larger than this, even if one silver particle is present, the crystal length as silver sulfide grows to 10 ⁇ m or more, and silver sulfide is deposited from the gap between the protective layer 35 and the plating layer.
  • the amount of silver is 75% to 85% by weight. If the amount of silver is less than this, the adhesion between the side electrode layer 36 and the nickel plating layer 37 is poor and peeling occurs. If the amount of silver is more than this, contact between silver particles occurs because of the large amount of silver, and silver Since the supply continues, the precipitation of silver sulfide in the sulfide gas becomes longer and comes out to the surface through the gap between the protective layer 35 and the plating layer.
  • conductive powder obtained by coating silver particles with copper particles having an average particle diameter of 0.3 ⁇ m to 2 ⁇ m can be used as the conductive powder of the second upper surface electrode layer 34.
  • Carbon amount is 1 to 10% by weight. If the amount of carbon is less than this, the conductivity becomes low and the resistance value of the second upper surface electrode layer 34 becomes high. If the amount of carbon is larger than this, the viscosity of the electrode material containing silver and carbon increases, and the printability deteriorates.
  • a method for producing the electrode material of the second upper surface electrode layer 34 is as follows. First, silver, carbon, and epoxy resin are sampled in respective amounts. Next, they are kneaded with a kneader (Sinky AR-250). Thereafter, the kneaded material is kneaded three times with a three-roll kneader (EXAKT M50) to sufficiently disperse the silver and carbon.
  • a kneader Tinky AR-250
  • EXAKT M50 three-roll kneader
  • a coupling agent or the like may be added to the electrode material of the second upper surface electrode layer 34 in order to improve the adhesion with the electrode material of the first upper surface electrode layer 32.
  • the resistance layer 33 is formed so as to cover a part of the first upper surface electrode layer 32.
  • the resistance layer 33 is formed after the first upper surface electrode layer 32 is formed, and then the second upper surface electrode layer 34 is provided so as to cover a part of the resistance layer 33. Also good.
  • FIGS. 4A to 4C an example of a manufacturing method of the chip resistor of the present embodiment will be described with reference to FIGS. 4A to 4C, FIGS. 5A and 5B, and FIGS. 6A to 6C.
  • a sheet-like substrate 42 made of an alumina substrate or the like having vertical and horizontal dividing grooves 41a and 41b is prepared.
  • a mixed paste material of gold and glass is screen-printed on the upper surface of the substrate 42 so as to straddle the horizontal dividing grooves 41b and dried.
  • a plurality of pairs of first upper surface electrode layers 43 are formed by baking at a temperature of about 850 ° C. for about 45 minutes in a belt-type continuous baking furnace.
  • a resistance layer 44 that is electrically connected between the first upper surface electrode layers 43 is formed.
  • a mixed paste material of ruthenium oxide and glass is screen-printed so as to overlap a part of the first upper surface electrode layer 43 and dried.
  • a plurality of resistance layers 44 are formed by baking for about 45 minutes at a temperature of about 850 ° C. in a belt-type continuous baking furnace.
  • trimming grooves 45 are formed by trimming with a laser or the like.
  • the precoat and the resistance layer 44 may be trimmed to form the trimming groove 45.
  • the material of the second upper surface electrode layer is screen printed on the upper surface of the plurality of pairs of first upper surface electrode layers 43 and dried. Then, a plurality of pairs of second upper surface electrode layers 46 are formed by curing at a temperature of about 200 ° C. for about 30 minutes.
  • lead borosilicate glass paste is screen-printed and dried so as to cover a part of the plurality of resistance layers 44 and the plurality of pairs of second upper surface electrode layers 46.
  • a plurality of protective layers 47 are formed by baking for 45 minutes at a temperature of about 600 ° C. in a belt-type continuous baking furnace.
  • the strip-shaped substrate 48 is formed by dividing along 41b.
  • a plurality of pairs of side electrode layers 49 are formed so as to be electrically connected to the plurality of pairs of first and second upper surface electrode layers 43 and 46.
  • a silver-based resin paste material is printed on the side surface of the strip-shaped substrate 48 by roller transfer and dried. Then, a plurality of pairs of side electrode layers 49 are formed by curing at a temperature of about 165 ° C. for about 45 minutes.
  • the strip-shaped substrate 48 on which a plurality of pairs of side electrode layers 49 are formed is divided along the vertical dividing grooves 41a, thereby forming the individual substrate 50.
  • a first plating layer made of nickel plating or the like is formed so as to cover the second upper electrode layer 46 and the side electrode layer 49.
  • a second plating layer (not shown) that is an alloy plating of tin and lead is formed so as to cover the first plating layer, and a chip resistor is manufactured.
  • Example 1 In the chip resistor of this embodiment, an alumina substrate is used as the substrate 31 in FIG. 3, and the first upper surface electrode layer 32 is made of a mixed material of gold and glass.
  • the resistance layer 33 is made of a mixed material of ruthenium oxide and glass.
  • the second upper surface electrode layer 34 is made of silver powder having an average particle diameter of 1 ⁇ m, carbon, and an epoxy resin material. The composition is 78% by weight of silver particles and 5% by weight of carbon.
  • the protective layer 35 is a lead borosilicate glass material.
  • the side electrode layer 36 is made of silver and an epoxy resin material. Further, the resistor 100 is provided with a nickel plating layer 37 and an alloy plating layer 38 of tin and lead.
  • the manufacturing method of the electrode material of the second upper surface electrode layer 34 is as follows.
  • silver powder (Fellow: S7000-14, average particle size is 1 ⁇ m) 45 g, carbon (Lion: EC600JD) 2.9 g, epoxy resin (Mitsubishi Chemical: JER1010 butyl carbitol acetate, solid content 33 wt% 30 g of resin dissolved in 1), 0.7 g of a curing agent (manufactured by Mitsubishi Chemical: Dicy7), and 0.2 g of a curing catalyst (manufactured by San Apro: Ucat-3502T).
  • This raw material is first kneaded by a kneading machine (AR-250 manufactured by Sinky). Thereafter, the mixture was kneaded three times with a three-roll kneader (EXAKT M50) to sufficiently disperse silver and carbon.
  • Example 2 The configuration of the chip resistor of the second embodiment is basically the same as that of the first embodiment. However, only the composition of the second upper surface electrode layer 34 and the materials of the protective layer 35 and the plating layer 38 are different.
  • the composition of the second upper surface electrode layer 34 in this example is 83% by weight of silver particles and 2.5% by weight of carbon.
  • the protective layer 35 is made of lead borosilicate glass paste, but in this example, epoxy resin paste is used.
  • an alloy of tin and lead is used as the plating layer 38, but in this example, only tin is used.
  • the manufacturing process is the same as in Example 1 except for the raw materials.
  • the raw materials are 61 g of silver powder (Fellow: S7000-14, average particle size is 1 ⁇ m), 1.8 g of carbon (Lion: ECP), epoxy resin (Inchem: PKHH to a solid content of 33 wt% with butyl carbitol acetate. 30 g of dissolved resin) and 0.5 g of a coupling agent (manufactured by Toray Dow: SH6040).
  • the manufacturing method of the entire chip resistor is basically the same as that of the first embodiment. However, since an epoxy resin paste is used, the temperature of the belt-type continuous firing furnace is 200 ° C., and the curing time is 30 minutes.
  • Reference Example 1 The configuration of the chip resistor of Reference Example 1 is basically the same as that of Example 2. However, only the composition of the second upper surface electrode layer 34 is different from that of Example 2. The composition of the second upper surface electrode layer 34 in this example is 73% by weight of silver particles and 2.5% by weight of carbon.
  • the manufacturing method of the electrode material of the second upper surface electrode layer 34 is the same as that of Example 1 except for the raw materials.
  • the raw materials are silver powder (Fellow: S7000-14, average particle size is 1 ⁇ m) 29.5 g, carbon (Lion: EC600JD) 1 g, epoxy resin (Mitsubishi Chemical: JER1010 with butyl carbitol acetate, solid content 33 wt% 30 g of resin dissolved in 1), 0.7 g of curing agent (manufactured by Mitsubishi Chemical: Dicy7), and 0.2 g of curing catalyst (manufactured by San Apro: Ucat-3502T).
  • the manufacturing method of the entire chip resistor is also the same as that of the second embodiment.
  • Reference Example 2 The configuration of the chip resistor of Reference Example 2 is basically the same as that of Example 2. However, only the composition of the second upper surface electrode layer 34 is different from that of Example 2.
  • the composition of the second top electrode layer 34 in this example is 75% by weight of silver particles and 0.5% by weight of carbon.
  • the manufacturing method of the electrode material of the second upper surface electrode layer 34 is the same as that of Example 1 except for the raw materials.
  • the raw materials are silver powder (Fellow: S7000-14, average particle size is 1 ⁇ m) 30.3 g, carbon (Lion: EC600JD) 0.2 g, epoxy resin (Mitsubishi Chemical: JER1010 with butyl carbitol acetate as a solid content 30 g of resin dissolved in 33 wt%, 0.7 g of a curing agent (Mitsubishi Chemical: Dicy7), and 0.2 g of a curing catalyst (San Apro: Ucat-3502T).
  • the manufacturing method of the entire chip resistor is also the same as that of the second embodiment.
  • the configuration of the chip resistor of Reference Example 3 is basically the same as that of Example 2. However, only the composition of the second upper surface electrode layer 34 is different from that of Example 2.
  • the composition of the second upper surface electrode layer 34 of this example is 87% by weight of silver particles and 2% by weight of carbon.
  • the manufacturing method of the electrode material of the second upper surface electrode layer 34 is the same as that of Example 1 except for the raw materials.
  • the raw materials are 78.3 g of silver powder (Fellow: S7000-14, average particle size is 1 ⁇ m), 1.8 g of carbon (Lion: EC600JD), epoxy resin (Mitsubishi Chemical: JER1010) with butyl carbitol acetate as a solid content 30 g of resin dissolved in 33 wt%, 0.7 g of a curing agent (Mitsubishi Chemical: Dicy7), and 0.2 g of a curing catalyst (San Apro: Ucat-3502T).
  • the manufacturing method of the entire chip resistor is also the same as that of the second embodiment.
  • Reference Example 4 The configuration of the chip resistor of Reference Example 4 is the same as that of Example 2 except for the silver particle size of the second upper surface electrode layer 34. Unlike Example 2, the silver particle diameter of the second upper surface electrode layer 34 is 5 ⁇ m.
  • the manufacturing method of the electrode material of the second upper surface electrode layer 34 is the same as that of Example 1 except for the raw materials.
  • the raw materials are 61 g of silver powder (made by Fukuda Metal: HWQ-5 ⁇ m, average particle size is 5 ⁇ m), 1.8 g of carbon (made by Lion: ECP), epoxy resin (made by Inchem: PKHH with butyl carbitol acetate, solid content 33 wt% 30 g of a resin dissolved in 1) and 0.5 g of a coupling agent (manufactured by Toray Dow: SH6040).
  • the manufacturing method of the entire chip resistor is also the same as that of the second embodiment.
  • Reference Example 5 The configuration of the chip resistor of Reference Example 5 is the same as that of Example 2 except for the silver particles of the second upper surface electrode layer 34. Unlike Example 2, the silver particle of the 2nd upper surface electrode layer 34 is a flaky powder, and a particle size is about 7 micrometers.
  • the manufacturing method of the electrode material of the second upper surface electrode layer 34 is the same as that of Example 1 except for the raw materials.
  • the raw materials are 61 g of silver powder (Tokuriku Main Store: TC-25A, flake particle size: 7 ⁇ m), carbon (Lion: ECP) 1.8 g, epoxy resin (Inchem: PKHH with butyl carbitol acetate, solid content 33 wt% 30 g of a resin dissolved in 1) and 0.5 g of a coupling agent (manufactured by Toray Dow: SH6040).
  • the manufacturing method of the entire chip resistor is also the same as that of the second embodiment.
  • sample evaluation The sample prepared in this example was subjected to a sulfide gas test, a plating adhesion test, and conductivity evaluation.
  • the sulfide gas test was conducted as follows. As the sample, the chip resistor of each example was flow soldered to a printed board. This sample was exposed to sulfurized gas. The conditions for the sulfidation gas test were to stand in an atmosphere of 40 ° C., 95% RH, and sulfidation gas concentration of 3 ppm for 2000 hours. After holding the sample under these conditions, it was confirmed whether silver sulfide was deposited on the surfaces of the protective layer 35 and the plating layer.
  • the chip resistor itself of each example was used as a sample.
  • Cellophane tape was affixed to the plated part of the chip resistor and peeled off. At this time, it was evaluated whether the plating layer peeled off from the second upper surface electrode layer 34.
  • the conductivity of the second upper surface electrode layer 34 was evaluated by printing the material of the second upper surface electrode layer 34 of each example in a 3 mm ⁇ 70 mm width on a glass substrate instead of using the chip resistor itself as a sample. A cured product was used. The resistance value of the sheet resistance which converted this sample into 10 micrometers thickness was calculated.
  • Table 1 summarizes the evaluation results of the above samples. Table 1 shows the following.
  • the present invention is useful as a chip resistor that does not break even in a sulfur gas atmosphere and that silver sulfide does not deposit on the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

 硫化ガス雰囲気中でも断線することが無く、硫化銀が表面に析出することがないチップ抵抗器を提供することを目的とする。本発明のチップ抵抗器は、基板の上面に設けられた抵抗層と、抵抗層の両端部に、電気的に接続して設けられた第1の上面電極層と、第1の上面電極層の上に設けられ、75重量%以上85重量%以下で、かつ、平均粒径が0.3μmから2μmの間の銀粒子と、1重量%以上10重量%以下のカーボンと、樹脂を含む第2の上面電極層とを備えている。

Description

チップ抵抗器およびその製造方法
 本発明は、各種電子機器に使用されるチップ抵抗器およびその製造方法に関するものである。
 従来のチップ抵抗器としては、特許文献1に開示されたものが知られている。
 以下、従来のチップ抵抗器およびその製造方法について、図面を参照しながら説明する。
 図1は、従来のチップ抵抗器の断面図を示したものである(特許文献1)。この抵抗器は、絶縁基板1と、抵抗層3と、上面電極層2と、を有している。抵抗層3は、絶縁基板1の上面に設けられている。上面電極層2は、絶縁基板1の上面で、抵抗層3に接触するように、抵抗層3の左右両端部に設けられている。また、抵抗層3には、抵抗値を修正するためにトリミング溝4が設けられている。図1の抵抗器は、更に、保護層5、側面電極層6、ニッケルめっき層7、及びはんだめっき層8を有している。保護層5は、抵抗層3を覆うように設けられている。側面電極層6は、絶縁基板1の側面に設けられ、上面電極層2に電気的に接続されている。ニッケルめっき層7、及びはんだめっき層8は、前記上面電極層2および側面電極層6の表面に設けられている。
特開昭56-148804号公報 特開2002-184602号公報 特開2004-259864号公報 特開2004-288956号公報
 しかしながら、上記従来のチップ抵抗器の構成においては、保護層5とはんだめっき層8およびニッケルめっき層7との境界において、チップ抵抗器を電子機器のプリント基板にはんだ付け実装したときに、はんだ付け時の熱ストレス等により隙間が生じる場合があった。そしてこのチップ抵抗器を実装した電子機器を温泉地等の硫化ガスを含み、かつ湿度の高い雰囲気中で使用した場合、硫化ガスがこの隙間から入り込み、上面電極層2と反応して硫化銀を形成する。そしてこの硫化銀は成長性があるため、保護層5の上面およびめっき層上に析出し続け、これによりチップ抵抗器の上面電極層2の境界部で断線を起こすという課題を有していた。
 この課題を解決するためには、上面電極層2を銀パラジウム合金電極にすれば、断線されるまでの時間は長くなるが完全ではない。また上面電極層2を金電極にすると断線することはないが、所定の抵抗値にするためトリミングする際にチェッカーで金電極を損傷させる。さらにはんだ付けを行ったときに金がはんだに溶食され断線する課題がある。
 そのため、特開2002-184602号公報のように第2の上面電極層にニッケル系樹脂を用いる手法もあるが、この場合、側面電極めっきのニッケル層が付いているか識別するときに同じ材料系であるため識別し難いという課題がある。
 また特開2004-259864号公報のように第2の上面電極層にカーボン系導電性材料を用いたり、特開2004-288956号公報の側面電極層に用いているような銀とカーボンを含んだ材料を用いることはできる。しかし、これらの材料はカーボンで導電性を確保しており、銀量が少ないため側面電極層のニッケルめっき層は付着するが、ニッケルめっき層の密着力が弱いため、次工程中や熱ストレスで剥離し易いという課題を有している。
 本発明では、従来の上記問題を解決したものであって、硫化ガス雰囲気中でも断線することが無く、硫化銀が表面に析出することがないチップ抵抗器を提供することを目的とする。
 上記課題を解決するために、本発明のチップ抵抗器は、上面を有する基板と、前記基板の上面に設けられた抵抗層と、前記基板の上面であって、前記抵抗層の両端部に、前記抵抗層と電気的に接続して設けられた第1の上面電極層と、前記第1の上面電極層の上に設けられた第2の上面電極層とを備えている。第2の上面電極層は、75重量%以上85重量%以下で、かつ、平均粒径が0.3μmから2μmの間の銀粒子と、1重量%以上10重量%以下のカーボンと、樹脂を含んでいる。
 本発明では、硫化ガス雰囲気中でも断線することが無く、硫化銀が表面に析出することがないチップ抵抗器を提供することができる。
図1は、従来のチップ抵抗器の断面図である。 図2は、本発明の実施形態のチップ抵抗器の斜視図である。 図3は、本発明の実施形態のチップ抵抗器の図2のI-I断面における断面図である。 図4Aは、本発明の実施形態のチップ抵抗器の製造方法を示し、第1の上面電極層形成後を示す図である。 図4Bは、本発明の実施形態のチップ抵抗器の製造方法を示し、抵抗層形成後を示す図である。 図4Cは、本発明の実施形態のチップ抵抗器の製造方法を示し、トリミング溝形成後を示す図である。 図5Aは、本発明の実施形態のチップ抵抗器の製造方法を示し、第2の上面電極層形成後を示す図である。 図5Bは、本発明の実施形態のチップ抵抗器の製造方法を示し、保護層形成後を示す図である。 図6Aは、本発明の実施形態のチップ抵抗器の製造方法を示し、横方向分割溝に沿って基板を分割し短冊状にした後の図である。 図6Bは、本発明の実施形態のチップ抵抗器の製造方法を示し、側面電極層形成後を示す図である。 図6Cは、本発明の実施形態のチップ抵抗器の製造方法を示し、縦方向分割溝に沿って基板を分割した後を示す図である。 図7は、従来の銀電極の硫化銀の状態を示す図である。 図8は、本発明の銀-カーボン電極の硫化銀の状態を示す図である。
 以下本発明の実施の形態について、図面を用いて説明する。図2は、本実施形態のチップ抵抗器100の斜視図である。本実施形態のチップ抵抗器は、角形である。図3は、抵抗器100を図2のI-Iで切断したときの断面図である。
 本実施形態の抵抗器100は、図2、図3に示すように、基板31と、抵抗層33と、第1の上面電極層32と、第2の上面電極層34を有している。基板31は絶縁基板である。抵抗層33は、基板31の上面に設けられている。第1の上面電極層32は、基板31の上面で、抵抗層33に接触するように、抵抗層33の左右両端部に設けられている。第2の上面電極層34は、第1の上面電極層の上に設けられている。また、抵抗層33には、抵抗値を修正するためにトリミング溝39が設けられている。
 本実施形態の抵抗器100は、さらに、保護層35、側面電極層36、ニッケルめっき層37、及びはんだめっき層38を有している。保護層35は、抵抗層33と第2の上面電極層34の一部を覆うように設けられている。側面電極層36は、基板31の側面に設けられ、第2の上面電極層34に電気的に接続されている。ニッケルめっき層37は、前記第2の上面電極層34および側面電極層36の表面に設けられている。はんだめっき層38は、ニッケルめっき層37の表面に設けられている。なお、以下では、ニッケルめっき層37およびはんだめっき層38を、めっき層とも総称する。
 第2の上面電極層34は、銀粒子と、カーボンと、樹脂を含む。銀の組成は、75重量%以上85重量%以下である。カーボンの組成は、1重量%以上10重量%以下である。また、銀粒子の平均粒径は、0.3μm以上、2μm以下である。
 本実施形態の抵抗器100は、第2の上面電極層34に銀が最適量含有されているため、側面電極層36はニッケルめっき層37と銀との密着性が良く、剥離することがない。
 図7は、従来の銀電極の硫化銀の状態を示す図である。101は銀粒子、102は硫化銀を示す。図7の様に、銀粒子101だけで導電性を確保している場合、銀が供給され続けるため、硫化銀102の結晶は成長し続ける。
 図8は、本発明の銀-カーボン電極の硫化銀の状態を示す図である。101は銀粒子、102は硫化銀、103はカーボン粒子を示す。
 本実施形態では図8に示すように、銀とカーボンが均一に分散されており、銀粒子101が独立して存在する。硫化ガスにより銀粒子101が硫化銀102となっても、続けて銀が供給されることがないため、保護層35とめっき層の境界から硫化銀が析出して出てくることはない。
 ニッケルめっき層37と、はんだめっき層38の厚みが10μmであり、硫化銀の体積から計算すると2μm以下の粒子であれば、10μm以上の硫化銀に成長することは出来ないため、表面に硫化銀が出てくることはない。さらに側面電極層36のめっき付け性については、第2の上面電極層34にカーボンが配合されているため、導電性は確保された上で、めっき付け性を高めることができる。
 これにより、チップ抵抗器を電子機器のプリント配線基板にはんだ付け実装した際に、はんだ付け時の熱ストレス等により保護層35とめっき層の境界に隙間が生じることはない。そしてこのチップ抵抗器を実装した電子機器が硫化ガス雰囲気中で使用されても、この硫化ガスで断線を起こすことはなく、保護層35とめっき層の隙間から硫化銀が表面に析出することはないという作用を有するものである。
 第2の上面電極層34の銀粒子の平均粒径としては0.3μmから2μmである。銀粒子がこれより小さい粒子であれば、導電性が低くなり第2の上面電極層34の抵抗値が高くなる。またこれより大きい粒子であれば、銀粒子が1つでも硫化銀としての結晶長さは10μm以上に成長し、保護層35とめっき層の隙間から硫化銀が析出してくる。
 さらに銀量は75重量%から85重量%である。銀量がこれより少なければ、側面電極層36とニッケルめっき層37との密着が悪く剥離が発生し、銀量がこれより多ければ、銀量が多いため銀粒子同士の接触が起こり、銀が共給し続けられるため硫化ガスでの硫化銀の析出が長くなり、保護層35とめっき層の隙間から表面に出てきてしまう。
 なお、コスト削減のため、第2の上面電極層34の導電粉として平均粒径0.3μmから2μmの銅粒子に銀を被覆させた導電粉を用いることもできる。
 カーボン量は1重量%から10重量%である。カーボン量がこれより少なければ、導電性が低くなり第2の上面電極層34の抵抗値が高くなる。カーボン量がこれより多ければ、銀とカーボンを含んだ電極材料の粘度が高くなり、印刷性が悪くなる。
 なおカーボンとしては、ストラクチャー構造を持ち導電性のあるカーボンが好ましい。第2の上面電極層34の電極材料の作成方法は次の通りである。まず、銀、カーボン、エポキシ樹脂をそれぞれの配合量で採取する。次に、それらを、混練機(シンキー製AR-250)で混練する。その後、混練したものを、三本ロール混練機(EXAKT製M50)で3回通し混練し、銀とカーボンを充分に分散させる。
 また、第2の上面電極層34の電極材料については、第1の上面電極層32の電極材料との密着性を上げるために、カップリング剤などを添加しても良い。
 なお図3のチップ抵抗器100においては、第2の上面電極層34が形成された後で、第1の上面電極層32の一部を覆うように、抵抗層33が形成されている。この構成に限らず、第1の上面電極層32が形成された後で、抵抗層33を形成し、その後で、抵抗層33の一部を覆うように第2の上面電極層34を設けても良い。
 次に、本実施形態のチップ抵抗器の製造方法の一例を図4A~図4C、図5A、5B、図6A~図6Cを用いて説明する。
 まず、図4Aに示すように、縦方向、横方向の分割溝41a、41bを有するアルミナ基板等からなるシート状の基板42を準備する。基板42の上面に、横方向の分割溝41bを跨ぐように金とガラスの混合ペースト材料をスクリーン印刷して乾燥させる。そしてベルト式連続焼成炉により、約850℃の温度で約45分間焼成することにより、複数対の第1の上面電極層43を形成する。
 次に、図4Bに示すように、第1の上面電極層43間に電気的接続する抵抗層44を形成する。抵抗層として、酸化ルテニウムとガラスの混合ペースト材料を第1の上面電極層43の一部に重畳するようにスクリーン印刷して乾燥させる。そしてベルト式連続焼成炉により、約850℃の温度で約45分間焼成することにより、複数の抵抗層44を形成する。
 次に、図4Cに示すように、複数の抵抗層44の抵抗値を修正するために、レーザー等によりトリミングしてトリミング溝45を形成する。この場合、トリミングする前にガラス等により抵抗層44をプリコート(図示せず)した後、このプリコートおよび抵抗層44をトリミングし、トリミング溝45を形成しても良い。
 次に、図5Aに示すように、複数対の第1の上面電極層43の上面に第2の上面電極層の材料をスクリーン印刷して乾燥させる。そして、約200℃の温度で約30分硬化させることにより、複数対の第2の上面電極層46を形成する。
 次に、図5Bに示すように、複数の抵抗層44と複数対の第2の上面電極層46の一部を覆うようにホウケイ酸鉛系ガラスペーストをスクリーン印刷して乾燥させる。そしてベルト式連続焼成炉により、約600℃の温度で45分間焼成することにより、複数の保護層47を形成する。
 次に、図6Aに示すように、複数対の第1の上面電極層43と第2の上面電極層46が基板側から露出するように、シート状の基板42に設けた横方向の分割溝41bに沿って分割することにより、短冊状基板48を形成する。
 次に、図6Bに示すように、複数対の第1、第2の上面電極層43,46と電気的に接続されるように、複数対の側面電極層49を形成する。短冊状基板48の側面に銀系樹脂ペースト材料をローラー転写により印刷し乾燥させる。そして、約165℃の温度で約45分間硬化させることにより、複数対の側面電極層49を形成する。
 次に、図6Cに示すように、複数対の側面電極層49を形成した短冊状基板48を縦方向の分割溝41aに沿って分割することにより、個片状基板50を形成する。
 最後に第2の上面電極層46および側面電極層49を覆うようにニッケルめっき等からなる第1のめっき層(図示せず)を形成する。次に、この第1めっき層を覆うように、錫と鉛の合金めっきである第2のめっき層(図示せず)を形成して、チップ抵抗器を製造する。
 次に、具体的に本発明のチップ抵抗器を製作し、その特性を評価した結果について説明する。
 (実施例1)
 本実施例のチップ抵抗器は、図3において、基板31として、アルミナ基板を用い、第1の上面電極層32は、金とガラス混合材料から形成されている。抵抗層33は酸化ルテニウムとガラスの混合材料から形成されている。第2の上面電極層34は、球状粉で平均粒径が1μmの銀粒子、カーボン、エポキシ系樹脂材料で構成されている。組成は、銀粒子78重量%、カーボン5重量%である。保護層35は、ホウケイ酸鉛系ガラス材料である。側面電極層36は、銀とエポキシ系の樹脂材料である。また、この抵抗器100には、ニッケルめっき層37、錫と鉛の合金めっき層38が設けられている。
 そして、第2の上面電極層34の電極材料の製造方法は、次の通りである。
 原料としては、銀粉(フェロー製:S7000-14、平均粒径が1μm)45g、カーボン(ライオン製:EC600JD)2.9g、エポキシ系樹脂(三菱化学製:JER1010ブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、硬化剤(三菱化学製:Dicy7)0.7g、硬化触媒(サンアプロ製:Ucat-3502T)0.2gを用いた。この原料を、まず、混練機(シンキー製AR-250)で混練する。その後、三本ロール混練機(EXAKT製M50)で3回通し、混練し、銀とカーボンを充分に分散させた。
 なお、チップ抵抗器全体の製造方法は、前記実施形態で説明したとおりである。
 (実施例2)
 実施例2のチップ抵抗器の構成は、基本的に実施例1と同じである。ただし、第2の上面電極層34の組成と、保護層35、めっき層38の材料のみが異なる。本実施例の第2の上面電極層34の組成は、銀粒子83重量%、カーボン2.5重量%である。また、実施例1では、保護層35はホウケイ酸鉛系ガラスペーストが使われているが、本実施例ではエポキシ系樹脂ペーストが用いられている。さらに、実施例1ではめっき層38として錫と鉛の合金が使われているが、本実施例では、錫のみが用いられている。
 第2の電極材料の製造方法についても、原料を除いて製造工程は実施例1と同じである。原料は、銀粉(フェロー製:S7000-14、平均粒径が1μm)61g、カーボン(ライオン製:ECP)1.8g、エポキシ系樹脂(インケム製:PKHHをブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、カップリング剤(東レダウ製:SH6040)0.5gである。
 チップ抵抗器全体の製造方法についても、基本的に実施例1と同様である。ただし、エポキシ系樹脂ペーストを用いているので、ベルト式連続焼成炉の温度は200℃であり、硬化時間は30分である。
 (参考例1)
 参考例1のチップ抵抗器の構成は、基本的に実施例2と同じである。ただし、第2の上面電極層34の組成のみが実施例2と異なる。本実施例の第2の上面電極層34の組成は、銀粒子73重量%、カーボン2.5重量%である。
 第2の上面電極層34の電極材料の製造方法についても、原料を除いて製造工程は実施例1と同じである。原料は、銀粉(フェロー製:S7000-14、平均粒径が1μm)29.5g、カーボン(ライオン製:EC600JD)1g、エポキシ系樹脂(三菱化学製:JER1010をブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、硬化剤(三菱化学製:Dicy7)0.7g、硬化触媒(サンアプロ製:Ucat-3502T)0.2gである。
 チップ抵抗器全体の製造方法についても、実施例2と同様である。
 (参考例2)
 参考例2のチップ抵抗器の構成は、基本的に実施例2と同じである。ただし、第2の上面電極層34の組成のみが実施例2と異なる。本実施例の第2の上面電極層34の組成は、銀粒子75重量%、カーボン0.5重量%である。
 第2の上面電極層34の電極材料の製造方法についても、原料を除いて製造工程は実施例1と同じである。原料は、銀粉(フェロー製:S7000-14、平均粒径が1μm)30.3g、カーボン(ライオン製:EC600JD)0.2g、エポキシ系樹脂(三菱化学製:JER1010をブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、硬化剤(三菱化学製:Dicy7)0.7g、硬化触媒(サンアプロ製:Ucat-3502T)0.2gである。
 チップ抵抗器全体の製造方法についても、実施例2と同様である。
 (参考例3)
 参考例3のチップ抵抗器の構成は、基本的に実施例2と同じである。ただし、第2の上面電極層34の組成のみが実施例2と異なる。本実施例の第2の上面電極層34の組成は、銀粒子87重量%、カーボン2重量%である。
 第2の上面電極層34の電極材料の製造方法についても、原料を除いて製造工程は実施例1と同じである。原料は、銀粉(フェロー製:S7000-14、平均粒径が1μm)78.3g、カーボン(ライオン製:EC600JD)1.8g、エポキシ系樹脂(三菱化学製:JER1010をブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、硬化剤(三菱化学製:Dicy7)0.7g、硬化触媒(サンアプロ製:Ucat-3502T)0.2gである。
 チップ抵抗器全体の製造方法についても、実施例2と同様である。
 (参考例4)
 参考例4のチップ抵抗器の構成は、第2の上面電極層34の銀の粒径をのぞいて、実施例2と同じである。実施例2と異なり、第2の上面電極層34の銀の粒径は、5μmである。
 第2の上面電極層34の電極材料の製造方法についても、原料を除いて製造工程は実施例1と同じである。原料は、銀粉(福田金属製:HWQ-5μm、平均粒径が5μm)61g、カーボン(ライオン製:ECP)1.8g、エポキシ系樹脂(インケム製:PKHHをブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、カップリング剤(東レダウ製:SH6040)0.5gである。
 チップ抵抗器全体の製造方法についても、実施例2と同様である。
 (参考例5)
 参考例5のチップ抵抗器の構成は、第2の上面電極層34の銀粒子を除いて、実施例2と同じである。実施例2と異なり、第2の上面電極層34の銀粒子はフレーク状の粉であり、粒径は、約7μmである。
 第2の上面電極層34の電極材料の製造方法についても、原料を除いて製造工程は実施例1と同じである。原料は、銀粉(徳力本店製:TC-25A、フレーク粒径が7μm)61g、カーボン(ライオン製:ECP)1.8g、エポキシ系樹脂(インケム製:PKHHをブチルカルビトールアセテートで固形分33wt%に溶解した樹脂)30g、カップリング剤(東レダウ製:SH6040)0.5gである。
 チップ抵抗器全体の製造方法についても、実施例2と同様である。
 (試料の評価)
 本実施例で作成した試料について、硫化ガス試験、めっき密着試験、導電性評価を行った。
 硫化ガス試験は次の通り行った。試料は、各実施例のチップ抵抗器を、プリント基板にフローはんだ付けしたものを用いた。この試料を硫化ガスにさらした。硫化ガス試験の条件は、40℃、95%RH、硫化ガス濃度3ppm雰囲気中に2000時間放置というものである。この条件に試料を保持した後、保護層35とめっき層の表面に硫化銀が析出してくるかを確かめた。
 めっき密着性試験では、試料として、各実施例のチップ抵抗器自体を用いた。チップ抵抗器のめっき部分にセロハンテープを貼り付け、引きはがした。このときにめっき層が第2の上面電極層34と剥離するかを評価した。
 第2の上面電極層34の導電性評価は、試料として、チップ抵抗器自体は用いず、その代わりに、ガラス基板に3mmX70mm幅で各実施例の第2の上面電極層34の材料を印刷し、硬化させたものを用いた。この試料を10μm厚みに換算したシート抵抗の抵抗値を計算した。
Figure JPOXMLDOC01-appb-T000001
 上記試料の評価結果をまとめて表1に示す。表1より次のことが分かる。
 参考例4のように銀粒子の大きさが5μm以上と大きすぎると、硫化ガス試験において、硫化銀が発生しやすくなる。同様に、参考例3のように、銀の濃度が87重量%以上と大きすぎる場合にも、硫化銀が発生しやすくなる。
 一方、参考例1のように、銀の濃度が73重量%以下と小さすぎる場合には、めっきとの密着性が悪くなり、剥離が発生する。
 一方、参考例2のごとく、銀粒子に1μmの球状粉を75重量%のものを用いても、カーボンが0.5%では、導電性が不十分である。
 本発明は、硫化ガス雰囲気中でも断線することが無く、硫化銀が表面に析出することがないチップ抵抗器として有用である。
  1  絶縁基板
  2  上面電極層
  3  抵抗層
  4  トリミング溝
  5  保護層
  6  側面電極層
  7  ニッケルめっき層
  8  はんだめっき層
  31  基板
  32  第1の上面電極層
  33  抵抗層
  34  第2の上面電極層
  35  保護層
  36  側面電極層
  37  ニッケルめっき層
  38  はんだめっき層
  39  トリミング溝
  41a  分割溝
  41b  分割溝
  42  基板
  43  第1の上面電極層
  44  抵抗層
  45  トリミング溝
  46  第2の上面電極層
  47  保護層
  48  短冊状基板
  49  側面電極層
  50  個片状基板
  101  銀粒子
  102  硫化銀
  103  カーボン粒子

Claims (4)

  1. 上面を有する基板と、
     前記基板の上面に設けられた抵抗層と、
     前記基板の上面であって、前記抵抗層の両端部に、前記抵抗層と電気的に接続して設けられた第1の上面電極層と、
     前記第1の上面電極層の上に設けられ、75重量%以上85重量%以下で、かつ、平均粒径が0.3μmから2μmの間の銀粒子と、1重量%以上10重量%以下のカーボンと、樹脂とを含む、第2の上面電極層と、
     を備えたチップ抵抗器。
  2. 前記抵抗層と、前記第2の上面電極層の一部とを覆うように設けられた保護層と、
     前記基板の側面に設けられ、かつ前記第2の上面電極層に電気的に接続される側面電極層と、
     をさらに備えた、請求項1に記載のチップ抵抗器。
  3. 前記第2の上面電極層および前記側面電極層36の表面に設けられためっき層を、
    さらに備えた、請求項2に記載のチップ抵抗器。
  4. 基板の上面に第1の電極層を設けるステップと、
    前記第1の電極層の上に、両端部において電気的に接続した抵抗層を設けるステップと、
     前記第1の上面電極層の上に、75重量%以上85重量%以下で、かつ、平均粒径が0.3μmから2μmの間の銀粒子と、1重量%以上10重量%以下のカーボンと、樹脂とを含む、第2の上面電極層を設けるステップと、
    前記抵抗層と、前記第2の上面電極層の一部とを覆うように保護層を設けるステップと、
    を備えたチップ抵抗器の製造方法。
PCT/JP2012/000951 2011-02-24 2012-02-14 チップ抵抗器およびその製造方法 WO2012114673A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280010156.7A CN103392212B (zh) 2011-02-24 2012-02-14 片式电阻器及其制造方法
JP2013500865A JP5360330B2 (ja) 2011-02-24 2012-02-14 チップ抵抗器およびその製造方法
US13/960,749 US9245672B2 (en) 2011-02-24 2013-08-06 Chip resistor and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011038062 2011-02-24
JP2011-038062 2011-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/960,749 Continuation US9245672B2 (en) 2011-02-24 2013-08-06 Chip resistor and method of producing same

Publications (1)

Publication Number Publication Date
WO2012114673A1 true WO2012114673A1 (ja) 2012-08-30

Family

ID=46720469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000951 WO2012114673A1 (ja) 2011-02-24 2012-02-14 チップ抵抗器およびその製造方法

Country Status (4)

Country Link
US (1) US9245672B2 (ja)
JP (1) JP5360330B2 (ja)
CN (1) CN103392212B (ja)
WO (1) WO2012114673A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087670A1 (ja) * 2013-12-11 2015-06-18 コーア株式会社 抵抗素子及びその製造方法
CN105393316A (zh) * 2013-07-17 2016-03-09 兴亚株式会社 芯片电阻器的制造方法
WO2020059514A1 (ja) * 2018-09-18 2020-03-26 パナソニックIpマネジメント株式会社 チップ抵抗器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114673A1 (ja) * 2011-02-24 2012-08-30 パナソニック株式会社 チップ抵抗器およびその製造方法
US9552908B2 (en) * 2015-06-16 2017-01-24 National Cheng Kung University Chip resistor device having terminal electrodes
KR20170075423A (ko) * 2015-12-23 2017-07-03 삼성전기주식회사 저항 소자 및 그 실장 기판
KR101883040B1 (ko) 2016-01-08 2018-07-27 삼성전기주식회사 칩 저항 소자
KR102527724B1 (ko) * 2016-11-15 2023-05-02 삼성전기주식회사 칩 저항 소자 및 칩 저항 소자 어셈블리
DE112017006585T5 (de) * 2016-12-27 2019-09-12 Rohm Co., Ltd. Chip-widerstand und verfahren zu seiner herstellung
US9928947B1 (en) * 2017-07-19 2018-03-27 National Cheng Kung University Method of fabricating highly conductive low-ohmic chip resistor having electrodes of base metal or base-metal alloy
TWI707366B (zh) * 2020-03-25 2020-10-11 光頡科技股份有限公司 電阻元件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346872U (ja) * 1986-09-10 1988-03-30
JPH01159905A (ja) * 1987-12-15 1989-06-22 Toyobo Co Ltd 導電性ペースト
JP2002324428A (ja) * 2001-04-25 2002-11-08 Alps Electric Co Ltd 導電性樹脂組成物及びこれを用いた接点基板
JP2004259864A (ja) * 2003-02-25 2004-09-16 Rohm Co Ltd チップ抵抗器
JP2004288956A (ja) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd チップ状電子部品
WO2007032201A1 (ja) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. チップ状電子部品
JP2008244211A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 薄膜チップ抵抗器の製造方法
JP2009194129A (ja) * 2008-02-14 2009-08-27 Panasonic Corp 薄膜チップ抵抗器の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810843B2 (ja) 1980-04-22 1983-02-28 松下電器産業株式会社 チップ抵抗器の製造法
CN1160742C (zh) * 1997-07-03 2004-08-04 松下电器产业株式会社 电阻器及其制造方法
TW424245B (en) * 1998-01-08 2001-03-01 Matsushita Electric Ind Co Ltd Resistor and its manufacturing method
JP4384787B2 (ja) 2000-06-05 2009-12-16 ローム株式会社 チップ抵抗器
JP2002025802A (ja) * 2000-07-10 2002-01-25 Rohm Co Ltd チップ抵抗器
JP2002184602A (ja) 2000-12-13 2002-06-28 Matsushita Electric Ind Co Ltd 角形チップ抵抗器
JP2002222701A (ja) * 2001-01-25 2002-08-09 Matsushita Electric Ind Co Ltd チップ状電子部品およびチップ抵抗器
JP2002222702A (ja) 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd チップ状電子部品およびチップ抵抗器
EP1460649A4 (en) 2001-11-28 2008-10-01 Rohm Co Ltd RESISITF PAVE AND METHOD OF MANUFACTURING THE SAME
JP2004253467A (ja) 2003-02-18 2004-09-09 Rohm Co Ltd チップ抵抗器
JP4198133B2 (ja) 2005-06-30 2008-12-17 ローム株式会社 チップ抵抗器とその製造方法
KR100908345B1 (ko) 2005-03-02 2009-07-20 로무 가부시키가이샤 칩 저항기와 그 제조 방법
JP4841914B2 (ja) * 2005-09-21 2011-12-21 コーア株式会社 チップ抵抗器
DE102006060784A1 (de) * 2005-12-28 2007-07-05 Tdk Corp. PTC Element
JP5261947B2 (ja) 2007-03-02 2013-08-14 パナソニック株式会社 低抵抗チップ抵抗器およびその製造方法
WO2012114673A1 (ja) * 2011-02-24 2012-08-30 パナソニック株式会社 チップ抵抗器およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346872U (ja) * 1986-09-10 1988-03-30
JPH01159905A (ja) * 1987-12-15 1989-06-22 Toyobo Co Ltd 導電性ペースト
JP2002324428A (ja) * 2001-04-25 2002-11-08 Alps Electric Co Ltd 導電性樹脂組成物及びこれを用いた接点基板
JP2004259864A (ja) * 2003-02-25 2004-09-16 Rohm Co Ltd チップ抵抗器
JP2004288956A (ja) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd チップ状電子部品
WO2007032201A1 (ja) * 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. チップ状電子部品
JP2008244211A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 薄膜チップ抵抗器の製造方法
JP2009194129A (ja) * 2008-02-14 2009-08-27 Panasonic Corp 薄膜チップ抵抗器の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393316A (zh) * 2013-07-17 2016-03-09 兴亚株式会社 芯片电阻器的制造方法
WO2015087670A1 (ja) * 2013-12-11 2015-06-18 コーア株式会社 抵抗素子及びその製造方法
WO2020059514A1 (ja) * 2018-09-18 2020-03-26 パナソニックIpマネジメント株式会社 チップ抵抗器
JPWO2020059514A1 (ja) * 2018-09-18 2021-08-30 パナソニックIpマネジメント株式会社 チップ抵抗器
JP7340745B2 (ja) 2018-09-18 2023-09-08 パナソニックIpマネジメント株式会社 チップ抵抗器

Also Published As

Publication number Publication date
JP5360330B2 (ja) 2013-12-04
US20130321121A1 (en) 2013-12-05
US9245672B2 (en) 2016-01-26
JPWO2012114673A1 (ja) 2014-07-07
CN103392212A (zh) 2013-11-13
CN103392212B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5360330B2 (ja) チップ抵抗器およびその製造方法
TWI429609B (zh) 厚膜導體形成用組成物、使用該組成物形成的厚膜導體及使用該厚膜導體的晶片電阻器
US10104776B2 (en) Chip resistor element
JP5668837B2 (ja) 電子部品の実装構造
JP2007123832A (ja) チップ状電気部品の端子構造
KR101883039B1 (ko) 칩 저항 소자
JP4431052B2 (ja) 抵抗器の製造方法
US11136257B2 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP2006269588A (ja) 厚膜抵抗体ペースト、厚膜抵抗器およびその製造方法
WO2016186185A1 (ja) 厚膜導体形成用Cuペースト組成物および厚膜導体
JP3731803B2 (ja) 厚膜抵抗体
JP6569545B2 (ja) 厚膜銅電極または配線とその形成方法
KR20150123725A (ko) 후막 도체 형성용 조성물 및 그것을 사용하여 얻어지는 후막 도체
JP6769208B2 (ja) 鉛フリー導電ペースト
KR20190072424A (ko) 후막 도체 형성용 분말 조성물 및 후막 도체 형성용 페이스트
KR101148259B1 (ko) 칩 저항기 및 그 제조방법
JP7322534B2 (ja) 厚膜導体形成用粉末組成物および厚膜導体形成用ペースト
JP5685138B2 (ja) 導電性組成物
JP6836184B2 (ja) 厚膜導体形成用組成物および厚膜導体の製造方法
US10174210B2 (en) Method of fabricating high-conductivity thick-film aluminum paste
JPH04211101A (ja) 電圧非直線性抵抗素子
JP2005347038A (ja) 細線形成用金属ペースト
JP2011114187A (ja) 過電圧保護部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749933

Country of ref document: EP

Kind code of ref document: A1