WO2012091076A1 - 電池の劣化度の検出方法 - Google Patents

電池の劣化度の検出方法 Download PDF

Info

Publication number
WO2012091076A1
WO2012091076A1 PCT/JP2011/080349 JP2011080349W WO2012091076A1 WO 2012091076 A1 WO2012091076 A1 WO 2012091076A1 JP 2011080349 W JP2011080349 W JP 2011080349W WO 2012091076 A1 WO2012091076 A1 WO 2012091076A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
deterioration
degree
detected
current
Prior art date
Application number
PCT/JP2011/080349
Other languages
English (en)
French (fr)
Inventor
礼造 前田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP11852347.1A priority Critical patent/EP2660615B1/en
Priority to US13/976,667 priority patent/US20130278221A1/en
Priority to JP2012551030A priority patent/JP6073686B2/ja
Publication of WO2012091076A1 publication Critical patent/WO2012091076A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a method for detecting the degree of deterioration of a battery, and in particular, detection of the degree of deterioration that is optimal for detecting the degree of deterioration of a battery that is used in a power supply device that runs an electric vehicle or that is used for a power source that stores the power of a solar battery. Regarding the method.
  • the battery that can be charged will deteriorate as charging and discharging are repeated, and the chargeable capacity will decrease. Batteries are greatly deteriorated due to overcharge and overdischarge. Therefore, overcharge and overdischarge are prevented, and charge / discharge is limited in areas close to overcharge and overdischarge. By reducing the allowable current to be reduced, the voltage to be charged low, or by narrowing the temperature range to be used, deterioration can be reduced and the life can be extended. In order to prevent overcharge, overdischarge, or deterioration due to approaching the region, a battery that is mounted on a hybrid car or the like and runs the vehicle has a specific remaining capacity [SOC (%)] range, for example, SOC.
  • SOC Specific remaining capacity
  • the full charge capacity of the battery can be detected from the accumulated value of the discharge current completely discharged from the fully charged state, or can be detected from the accumulated value of the charge current after fully discharging the fully discharged battery.
  • the full charge capacity cannot be detected by the integrated value of the current. Must be detected in a different way. If the full charge capacity cannot be accurately detected, the remaining capacity [SOC (%)] is controlled within a predetermined range, and charging / discharging cannot be performed. Therefore, it is required to accurately detect the full charge capacity in this use state. Since the battery has a property that the full charge capacity changes as it deteriorates, the full charge capacity can be detected by accurately detecting the degree of deterioration of the battery.
  • the degree of deterioration of the battery is 100% when the output power is the specified power, and 0% when the output power is the minimum output power.
  • the allowable current is reduced, the voltage that can be charged is lowered, and the temperature range that allows charging and discharging is further narrowed to reduce the deterioration of the battery.
  • a battery having a large capacity such as a battery that is mounted on a vehicle and runs the vehicle, or a battery for storing and using the power of a solar cell, in order to extend the life as much as possible, How accurately the degree of deterioration can be detected is extremely important.
  • Patent Document 1 a method for detecting the degree of deterioration of a battery by charge / discharge current and temperature has been developed.
  • a deterioration degree SOH obtained from current and temperature is calculated by the following expression to detect a battery deterioration degree.
  • Deterioration degree SOH previous deterioration degree SOH1- ⁇ (coefficient specified by current value) - ⁇ (coefficient specified by temperature)
  • the above method detects the degree of deterioration based on the magnitude and temperature of the current.
  • the degree of deterioration of a battery is not specified only by the magnitude of the current. Is not constant.
  • the degree of deterioration with respect to the same current changes between a state where a constant current continuously flows and a state where a constant current flows for a short time. Therefore, the method of detecting the degree of deterioration from the magnitude of the current and the integrated value has a drawback that the degree of deterioration of the battery cannot always be accurately detected.
  • An important object of the present invention is to provide a method for detecting the degree of deterioration of a battery that can more accurately detect the degree of deterioration from the current of the battery.
  • the method for detecting the degree of deterioration of the battery according to the present invention detects ⁇ SOC, which is the amount of change in the remaining capacity after one charge or discharge of the battery 1 to be charged / discharged, and further, the deterioration corresponding to the value of ⁇ SOC.
  • a weight for specifying the degree is stored in advance, the weight is specified from the detected ⁇ SOC based on the stored data, and the deterioration degree of the battery 1 is detected from the specified weight.
  • the above-described method for detecting the degree of deterioration has a feature that the degree of deterioration can be detected more accurately. This is because not only the current but also ⁇ SOC, which is a change in remaining capacity due to one charge or one discharge, is detected, and the degree of deterioration of the battery is detected from this ⁇ SOC.
  • the battery degradation level detection method of the present invention detects the storage temperature and energization temperature of the battery 1, stores the weight corresponding to the storage temperature and the energization temperature in advance, and detects based on the stored data.
  • the deterioration degree of the battery 1 can be detected from the weight specified from the storage temperature and the weight specified from the detected energization temperature.
  • the degree of deterioration of the battery is detected from the storage temperature and the energization temperature of the battery, so that the degree of deterioration can be accurately detected in both the storage state and the energization state.
  • the battery deterioration level detection method of the present invention detects the energization temperature and current of the battery 1, stores in advance weights corresponding to the energization temperature and current, and detects the energization temperature detected based on the stored data.
  • the weight can be specified from the current and the deterioration degree of the battery 1 can be detected from the specified weight.
  • the degree of deterioration of the battery is detected from both the energization temperature and the current. Therefore, the degree of deterioration can be detected more accurately when the battery is energized.
  • the method for detecting the degree of deterioration of the battery according to the present invention can detect the degree of deterioration of the battery 1 by storing the limit current allowed for the battery 1 and detecting the accumulated time exceeding the limit current.
  • the degree of deterioration is detected not only by ⁇ SOC but also by the accumulated time exceeding the limit current, so that the degree of deterioration can be detected more accurately.
  • the battery deterioration degree detection method of the present invention can store the upper limit / lower limit voltage of the battery 1 and detect the accumulated time exceeding the upper limit / lower limit voltage to detect the deterioration degree of the battery 1.
  • the degree of deterioration is detected in consideration of the cumulative time exceeding the upper limit / lower limit voltage in addition to ⁇ SOC, so that the degree of deterioration can be detected more accurately.
  • the battery deterioration degree detection method of the present invention can store the accumulated time for each storage temperature range of the battery and detect the battery deterioration degree based on the stored data.
  • the battery deterioration degree detection method of the present invention can store the accumulated time for each battery energization temperature range and detect the battery deterioration degree based on the stored data.
  • the method for detecting the degree of deterioration of the battery according to the present invention can store the cumulative number for each ⁇ SOC range of the battery and detect the degree of deterioration of the battery based on the stored data.
  • the method for detecting the degree of deterioration of the battery of the present invention can be used for applications in which the battery 1 is charged and discharged while being controlled within a preset remaining capacity [SOC (%)] range.
  • SOC (%) remaining capacity
  • the above-described detection method for the degree of deterioration accurately detects the full charge capacity from the degree of deterioration of the battery, and accurately controls the battery within a certain remaining capacity range from the detected full charge capacity, thereby overcharging the battery. It has a feature that can reliably prevent overdischarge and prolong the service life.
  • the battery 1 can be a battery that supplies power to the motor 12 that drives the vehicle.
  • the above detection method detects the full charge capacity of the battery that supplies power to the motor from the degree of deterioration, prevents battery overcharge and over discharge from the detected full charge capacity, prevents deterioration, and is expensive.
  • the battery can be used for a long life.
  • the battery 1 can be used as a power source for storing the power of the solar battery 20.
  • the above detection method accurately detects the full charge capacity of a battery charged by a solar battery from the degree of deterioration, prevents overcharge and overdischarge of the battery from the detected full charge capacity, prevents deterioration, and is expensive. It has a feature that can use a long battery life.
  • FIG. 1 and FIG. 2 are block diagrams of a power supply apparatus used in the method for detecting the degree of battery deterioration according to the present invention.
  • FIG. 1 is a block diagram for determining the degree of deterioration of the battery 1 mounted in the hybrid car 10A
  • FIG. 2 is a block diagram for determining the degree of deterioration of the battery 1 charged by the solar battery 20.
  • the present invention does not specify the use of the battery for detecting the degree of deterioration as a battery that is charged by an electric vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle, or a solar battery.
  • the battery 1 used for the electric vehicle 10 such as the hybrid car 10A or the solar battery 20 detects the full charge capacity (Ah) from the degree of deterioration, and the detected full charge capacity (Ah) and the actual dischargeable capacity (Ah). ) And the remaining capacity [SOC (%)] is calculated, and the charge / discharge current is controlled so that the remaining capacity [SOC (%)] is within a predetermined range, for example, 50% ⁇ 20%.
  • the battery 1 of FIG. 1 used in the hybrid car 10A is discharged by supplying electric power to the motor 12 for driving the vehicle, and is charged by the generator 13 so that the remaining capacity is maintained at about 50%. Is done.
  • the deterioration degree SOH (State of Health) of the battery 1 is detected by the determination circuit 2.
  • the vehicle side includes a bidirectional power conversion device 11 that supplies electric power supplied from the battery 1 to the motor 12 and supplies electric power from the generator 13 to the battery 1.
  • the bidirectional power converter 11 converts the DC power of the battery 1 into three-phase AC power and supplies it to the motor 12.
  • the AC output from the generator 13 is converted into DC and supplied to the battery 1.
  • the bidirectional power converter 11 is controlled by the control circuit 14 to control the power supplied from the battery 1 to the motor 12 and the charging power from the generator 13 to the battery 1.
  • the control circuit 14 controls the bidirectional power converter 11 in consideration of the deterioration degree SOH of the battery 1 transmitted from the determination circuit 2 on the power supply device side via the communication line 9.
  • the control circuit 14 controls the bidirectional power converter 11 in the normal mode.
  • the control circuit 14 controls the bidirectional power converter 11 in the limit mode in which the charge / discharge power is smaller than in the normal mode.
  • the control circuit 14 sets the bidirectional power converter 11 in the acceleration mode in which the charge / discharge power is larger than in the normal mode, or in the normal mode. To control. In this manner, the control circuit 14 controls the output of the motor 12 and the generator 13 via the bidirectional power converter 11, whereby the life of the battery 1 can be brought close to the target useful life.
  • the determination circuit 2 includes a current detection circuit 3 that detects a charge / discharge current flowing in the battery 1, a temperature detection circuit 4 that detects the temperature of the battery 1, A voltage detection circuit 5 that detects a voltage and an arithmetic circuit 6 that detects a deterioration degree SOH of the battery 1 from detection values detected by these circuits are provided.
  • the determination circuit 2 incorporates an EEPROM as the memory 7, stores the deterioration degree SOH in the EEPROM, and transmits the stored deterioration degree SOH to the control circuit 14 on the vehicle side via the communication line 9.
  • the current detection circuit 3 and the voltage detection circuit 5 include an A / D converter (not shown) that converts the current value and voltage value of the analog signal to be detected into a digital signal at a constant sampling period.
  • the current detection circuit 3 and the voltage detection circuit 5 detect the charge / discharge current and voltage value of the battery 1 at a constant sampling period, convert them into digital signals, and output them to the arithmetic circuit 6.
  • the current detection circuit 3 and the voltage detection circuit 5 detect the current and voltage of the battery 1 with a sampling period of 100 msec. However, the sampling period at which the current detection circuit or voltage detection circuit detects the current or voltage changes in the current and voltage flowing through the battery, that is, changes rapidly in a short time, or changes slowly over time.
  • the sampling period is specified as an optimum value, and can be set to 1 msec to 1 sec, for example.
  • the sampling period By shortening the sampling period, it is possible to more accurately detect rapidly changing currents and voltages.
  • an A / D converter that converts to a digital signal is required to perform high-speed processing, resulting in a high component cost, and the arithmetic circuit 6 also performs high-speed processing of detected current and voltage signals. The cost of parts increases.
  • the sampling period is too long, the changing current and voltage cannot be detected accurately. Therefore, the sampling cycle for detecting the current and voltage is specified as a cycle in which the changing current and voltage can be accurately detected.
  • the temperature detection circuit 4 converts the analog signal of the temperature detected by the temperature sensor 8 into a digital signal at a constant sampling period.
  • the temperature detection circuit 4 detects the temperature of the battery 1 at a constant sampling period, converts it into a digital signal, and outputs it to the arithmetic circuit 6.
  • the temperature detection circuit 4 detects the temperature of the battery 1 at a sampling period of 1 sec.
  • the sampling period at which the temperature detection circuit 4 detects the temperature is specified as an optimum value depending on whether the temperature of the battery 1 changes, that is, whether it changes rapidly in a short time or slowly changes over time. For example, it may be 10 msec to 10 sec. By shortening the sampling period, it is possible to detect a rapidly changing temperature more accurately.
  • the determination circuit 2 detects the deterioration degree SOH from the detected current value and voltage value, and further from the battery temperature.
  • the arithmetic circuit 6 that detects the degree of deterioration SOH from the current value detects ⁇ SOC of the change value of the remaining capacity in one discharge and ⁇ SOC of the change value of the remaining capacity in one charge from the detected current value.
  • ⁇ SOC in one discharge is a change value (%) of the remaining capacity until the discharge is started and ended (%)
  • ⁇ SOC in one charge is a change value (%) of the remaining capacity until the charge is started and ended. ).
  • FIG. 3 shows a state in which a battery mounted on the vehicle is discharged when it is accelerated after being charged by regenerative braking.
  • the battery is charged and the remaining capacity changes from the start to the end of regenerative braking.
  • This change in remaining capacity is ⁇ SOC1.
  • the battery is discharged and the remaining capacity changes after the acceleration is started and before the discharge is stopped.
  • the change value of the remaining capacity at this time is ⁇ SOC2.
  • the arithmetic circuit 6 stores, as a look-up table or a function, a weight W that specifies the deterioration degree SOH of the battery 1 with respect to ⁇ SOC that changes by charging and discharging, and the deterioration degree SOH of the battery 1 from the weight W with respect to the stored ⁇ SOC. Is detected.
  • the degree of deterioration SOH of the battery 1 increases as ⁇ SOC increases. Therefore, the weight W (%) for ⁇ SOC is set as shown in Table 1, for example, and increases as ⁇ SOC increases.
  • the determination circuit 2 detects the single ⁇ SOC of the battery 1 to be charged / discharged, and the weights W1 (%) to W8 (%) for specifying the deterioration degree SOH from the detected ⁇ SOC value are stored in the memory 7.
  • the weight W is specified from the values in Table 1, and the actual battery deterioration degree SOH is detected from the following equation.
  • Current deterioration degree SOH (%) previous deterioration degree SOH (%) -W ⁇ weight specified by ⁇ SOC (%) ⁇
  • the weight W indicating the degree of deterioration SOH (%) is 1.56 ⁇ 10 ⁇ 3 %. Therefore, every time the battery 1 is charged or discharged once so that ⁇ SOC becomes 1%, the degradation degree SOH of the battery 1 decreases by 1.56 ⁇ 10 ⁇ 3 %.
  • Battery 1 has a different weight W for specifying the degree of deterioration SOH with respect to ⁇ SOC depending on the type. Therefore, the value of the weight W is calculated by detecting the ⁇ SOC for one charge or discharge by actually charging / discharging the battery 1 and measuring the weight W for specifying the degree of deterioration SOH for one ⁇ SOC.
  • the value of the weight W is calculated by detecting the ⁇ SOC for one charge or discharge by actually charging / discharging the battery 1 and measuring the weight W for specifying the degree of deterioration SOH for one ⁇ SOC.
  • the determination circuit 2 that detects the degree of deterioration SOH by current detects the degree of deterioration from the effective value (Irms) of the current, and detects the degree of deterioration SOH by both ⁇ SOC and the effective value (Irms).
  • the determination circuit 2 calculates the root mean square from the current value of the digital signal input from the current detection circuit 3 by the arithmetic circuit 6 and detects the effective value (Irms) of the current.
  • the effective value (Irms) of the current is calculated from a plurality of detected current values detected in order. For example, the current is detected at a sampling period of 10 msec, and the effective values (I 1 , I 2 , I 3 , I 4 ,... I 100 ) of the current in the period of 1 sec are calculated as shown in FIG. .
  • the degree of deterioration of the battery is detected from each effective value (Irms) of the detected current.
  • the arithmetic circuit 6 stores the weight W that specifies the degree of deterioration of the battery 1 with respect to the effective value (Irms) of the current in the memory 7 as a lookup table or as a function.
  • the determination circuit 2 that detects the effective value (Irms) at a cycle of 1 sec stores a weight W that specifies the degree of deterioration that the battery 1 deteriorates every 1 sec from the effective value (Irms) that flows through the battery 1 during 1 sec. ing.
  • the arithmetic circuit 6 detects the degree of deterioration from the weight W stored in the memory 7 for the effective value (Irms), and detects the current degree of deterioration SOH of the battery 1.
  • the arithmetic circuit 6 may detect the degree of deterioration from the cumulative value of the current effective value (Irms) without detecting the degree of deterioration of the battery 1 every time the effective value (Irms) of the current flowing through the battery 1 is detected. it can. For example, a one-minute cumulative value of the effective value (Irms) can be detected from the product of the effective value (Irms) of current and time, and the degree of deterioration can be detected from this cumulative value.
  • the arithmetic circuit 6 stores a weight W that specifies the degree of deterioration of the battery 1 with respect to the accumulated value as a lookup table or a function, and detects the degree of deterioration of the battery 1 from the weight W with respect to the stored accumulated value.
  • the arithmetic circuit 6 can also specify the accumulated time of the effective value (Irms) of the current at the charge / discharge timing and detect the degree of deterioration from the accumulated value. For example, as shown in FIG. 5, the arithmetic circuit 6 accumulates effective values (Irms) during the discharge time (T 2 ) and the charge time (t 1 , t 3 ) of the battery 1, and the battery 1 Detects the degree of degradation. The arithmetic circuit 6 stores in the memory 7 a cumulative value of the effective value (Irms) of the discharge current of the battery 1 and a weight W that specifies the degree of deterioration with respect to the cumulative value of the effective value (Irms) of the charging current.
  • the degree of deterioration of the battery 1 is detected from the weight W for the accumulated value stored in the memory 7.
  • the weight W that specifies the cumulative value of the effective value (Irms) of the discharge current of the battery 1 and the deterioration value of the battery 1 with respect to the cumulative value of the effective value (Irms) of the charging current is used to actually set the battery 1 to a predetermined effective value ( (Irms) is charged and discharged, and the actual weight W is detected from the accumulated value and stored in the memory 7.
  • the arithmetic circuit 6 can average the current values of the digital signals detected by the current detection circuit 3 to detect an average value, and can calculate an effective value (Irms) from the average value. For example, the arithmetic circuit 6 calculates an average current by adding and averaging a plurality of current values, and calculates an effective value (Irms) from the calculated average current. Further, the arithmetic circuit 6 detects the average current by adding and averaging the current values excluding the maximum current and the minimum current from the plurality of detected current values, and calculates the effective value (Irms) from the average current. You can also. The arithmetic circuit 6 can accurately detect the current of the battery 1 except for a current value that is not accurately detected due to, for example, noise.
  • the determination circuit 2 can detect the degree of deterioration of the battery 1 from the effective value (Irms) of the charge / discharge current flowing through the battery 1 and the accumulated time exceeding the preset current limit.
  • the determination circuit 2 stores a weight W for specifying the degree of deterioration of the battery 1 with respect to the accumulated time exceeding the limit current in the memory 7, and the deterioration of the battery 1 from the weight W with respect to the accumulated time stored in the memory 7. Specify the degree.
  • the determination circuit 2 passes a current exceeding a preset limit current to the battery 1, detects a weight W for specifying the degree of deterioration of the battery 1 from the accumulated time, and uses the memory 7 as a weight W for the accumulated value. I remember it.
  • the determination circuit 2 adds the deterioration degree due to ⁇ SOC to be charged / discharged, the deterioration degree due to the effective value (Irms) of the charging / discharging current of the battery 1, and the deterioration degree detected from the limiting current of the battery 1.
  • the degree of degradation SOH can be detected more accurately.
  • the determination circuit 2 can also detect the degree of deterioration of the battery 1 from the root mean square of the charge / discharge current flowing through the battery 1 and the accumulated time exceeding the preset upper and lower limit voltages.
  • the determination circuit 2 stores a weight W for specifying the degree of deterioration of the battery 1 with respect to the accumulated time exceeding the upper limit / lower limit voltage in the memory 7.
  • the weight W for specifying the degree of deterioration of the battery 1 with respect to the accumulated time exceeding the upper limit / lower limit voltage is detected by detecting the weight W for specifying the degree of deterioration with the battery 1 actually exceeding the upper limit / lower limit voltage. I remember it.
  • the degree of deterioration of the battery 1 is specified from the weight W with respect to the accumulated time stored in the memory 7.
  • the determination circuit 2 includes a degree of deterioration detected from ⁇ SOC, a degree of deterioration detected from the effective value (Irms) of the charge / discharge current of the battery 1, a degree of deterioration detected from the accumulated time exceeding the limit current,
  • the total deterioration degree SOH of the battery 1 can be accurately detected by adding the deterioration degree detected from the accumulated value of the upper limit / lower limit voltage of the battery 1.
  • the determination circuit 2 can detect the degree of deterioration due to the temperature of the battery 1 and can detect the degree of deterioration SOH in consideration of the deterioration due to temperature.
  • the determination circuit 2 that detects the deterioration degree SOH based on the temperature detects the storage temperature and the energization temperature, stores a weight W that specifies the deterioration degree corresponding to the storage temperature and the energization temperature in the memory 7 in advance, and stores the data in the stored data. Based on the weight W specified from the detected storage temperature and the weight W specified from the detected energization temperature, the degree of deterioration of the battery 1 is detected.
  • Table 2 illustrates weights W10 to W17 with respect to the storage temperature
  • Table 3 illustrates weights W20 to W27 with respect to the energization temperature.
  • the deterioration degree of the battery 1 increases as the storage temperature and the energization temperature increase. Accordingly, the weight W (%) for the storage temperature and the energization temperature is set as shown in Tables 2 and 3, for example, and is increased as the temperature increases.
  • the determination circuit 2 detects the storage temperature and energization temperature of the battery 1 to be charged / discharged, and determines the deterioration degree from the weights W10 (%) to W17 (%) for specifying the deterioration degree from the detected storage temperature and the energization temperature.
  • the specified weights W20 (%) to W27 (%) are detected from the values stored in the memory 7, for example, the weight W is specified from the values in Table 2 or Table 3, and the actual deterioration degree SOH of the battery 1 is determined. Is detected.
  • Battery 1 has a different weight W for specifying the degree of deterioration with respect to storage temperature and energization temperature depending on the type. Therefore, the value of the weight W with respect to the temperature is stored in the memory 7 by actually storing the battery 1 at a specific temperature, energizing, measuring the weight W with respect to that temperature.
  • the determination circuit 2 can detect the deterioration degree SOH by detecting the internal resistance of the battery 1.
  • the determination circuit 2 that detects the deterioration degree SOH of the battery 1 by the internal resistance detects the deterioration degree SOH from both the deterioration degree SOH1 detected from the detection value other than the internal resistance and the deterioration degree SOH2 detected from the internal resistance. .
  • This determination circuit 2 does not detect the deterioration degree SOH by adding the deterioration degree SOH1 and the deterioration degree SOH2, but uses the deterioration degree SOH1 and the deterioration degree SOH2 as a predetermined ratio, and the total deterioration of the battery 1 by the following formula:
  • the weight 1 and the weight 2 are specified by the internal resistance of the battery 1 as shown in the graph of FIG.
  • the horizontal axis represents the relative value of the internal resistance of the battery 1
  • the vertical axis represents weight 1 and weight 2.
  • the internal resistance of the battery 1 whose lifetime has been exhausted is set to 100 in a state where the degradation degree SOH of the battery 1 is 0%.
  • the weight 1 is decreased and the weight 2 is increased. This is because, in the battery 1, the internal resistance accurately specifies the deterioration degree SOH in a state where the internal resistance is large and the deterioration is advanced.
  • the weight 1 and the weight 2 are specified from the internal resistance of the battery 1.
  • weight 1 and weight 2 are specified from deterioration degree SOH2 specified from the internal resistance of battery 1, or weight 1 and weight 2 are specified from deterioration degree SOH determined from deterioration degree SOH1 and deterioration degree SOH2. You can also. Also in this case, the deterioration degree SOH2 is reduced or the deterioration degree SOH is reduced. In other words, the weight 1 is reduced and the weight 2 is increased as the end of life is approached.
  • the internal resistance of the battery 1 is detected by the determination circuit 2.
  • the determination circuit 2 detects the internal resistance of the battery 1 and detects the deterioration degree SOH2 from the internal resistance.
  • An equivalent circuit of the battery 1 having internal resistance is shown in FIG.
  • the deterioration degree SOH2 of the battery 1 with respect to the internal resistance of the battery 1 is measured in advance and stored in the lookup table of the determination circuit 2, or the determination circuit 2 stores the deterioration degree SOH1 with respect to the internal resistance as a function.
  • FIG. 9 illustrates the deterioration degree SOH2 with respect to the internal resistance, which is stored in the lookup table or stored as a function. In the battery having the characteristics shown in this figure, when the internal resistance is 300 m ⁇ , the deterioration degree SOH2 is 60%.
  • the determination circuit 2 that detects the deterioration degree SOH from the deterioration degree SOH1 and the deterioration degree SOH2 specifies the weight 1 and the weight 2 from the detected deterioration degree SOH1 and deterioration degree SOH2, and determines the deterioration degree SOH of the battery 1.
  • the filtering by temperature detects the battery temperature when detecting the internal resistance of the battery 1 and converts the detected internal resistance into an internal resistance at a set temperature as a function of temperature.
  • the determination circuit 2 that filters the internal resistance stores the change of the internal resistance with respect to the temperature as a function or in a lookup table. From this stored value, the internal resistance is filtered and corrected to the internal resistance at the set temperature.
  • Step n 3] The current at which the battery 1 is charged and discharged, the battery temperature, and the internal resistance are measured and filtered.
  • Step n 6] In this step, the determination circuit 2 calculates the deterioration degree SOH1 from the effective value (Irms) of the current for 1 sec and the average temperature of the battery.
  • Step n 7] Further, the determination circuit 2 calculates the deterioration degree SOH2 from the internal resistance based on the stored lookup table and function.
  • the determination circuit 2 determines the deterioration degree SOH of the battery 1 as described above, and transmits the determined deterioration degree SOH to the control circuit on the vehicle side or the solar cell side via the communication line 9.
  • the life of the battery 1 can be known. Further, various characteristics in each deterioration degree SOH (for example, the relationship between the voltage in the deterioration degree SOH and the remaining capacity [SOC (%)] of the battery, the full charge capacity in the deterioration degree SOH, etc.) are stored in advance. Such stored characteristics can be used in accordance with the degree of degradation SOH at the time point determined and detected.
  • the determination circuit 2 stores the full charge capacity (Ah) with respect to the deterioration degree SOH of the battery 1 in a lookup table or as a function.
  • the full charge capacity (Ah) is detected from the degree of deterioration SOH, the battery 1 charged by the electric vehicle 10 or the solar battery 20 has a remaining capacity [Ah] from the ratio of the dischargeable capacity (Ah) to the full charge capacity (Ah). SOC (%)] is calculated.
  • the dischargeable capacity (Ah) is calculated from the integrated value of the charge / discharge current of the battery 1.
  • the dischargeable capacity (Ah) is detected by adding the integrated value of the charging current of the battery 1 and subtracting the integrated value of the discharging current.
  • the remaining capacity [SOC (%)] is detected, for example, the remaining capacity [SOC (%)] is set to 30% to 70%, or 20 so that the remaining capacity [SOC (%)] is within a predetermined range.
  • the charging / discharging current so as to be in the range of from 80% to 80%, or from 10% to 90%, the deterioration of the battery 1 can be reduced and the life can be extended.
  • the maximum current flowing through the battery 1 is controlled to be small or the maximum voltage when charging is lowered corresponding to the degradation degree SOH of the battery 1 to It can also be charged and discharged while protecting.
  • the determination circuit 2 is a state in which the ignition switch of the vehicle is turned on, that is, in the traveling state of the vehicle, that is, the ⁇ SOC of the battery 1 to be charged / discharged, and the effective current value (Irms). Then, the temperature of the battery 1, the accumulated time exceeding the allowable current, the accumulated time exceeding the upper limit / lower limit voltage, and the like are detected, and the deterioration degree SOH is detected every predetermined time.
  • the battery 1 charged by the solar battery 20 always detects the deterioration degree SOH of the battery 1 at a constant cycle, for example, every 1 sec to 1 minute.
  • the deterioration degree SOH of the battery 1 increases as ⁇ SOC increases.
  • the actual deterioration degree SOH of the battery 1 can be detected by specifying the weight W from the values in Table 1.
  • the deterioration degree SOH of the battery 1 increases as the storage temperature and the energization temperature increase.
  • the weight W is specified from the values in Table 2 or Table 3, and the actual deterioration degree SOH of the battery 1 is detected. Can do.
  • the number of uses for each range of ⁇ SOC shown in Table 1 and the usage time of each temperature range shown in Table 2 or 3 are accumulated and stored in the memory 7, and the stored data is read during maintenance and service.
  • it is possible to specify the degree of deterioration of the battery 1 by checking whether the battery is used in a predetermined condition or more.
  • it can be used to determine whether it is a paid exchange or a free exchange by checking whether it is used more than a predetermined condition.
  • the method for detecting the degree of deterioration of the battery according to the present invention can be suitably used as a power supply device for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode.
  • a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】電池の電流からより正確に劣化度を検出する。 【解決手段】電池の劣化度の検出方法は、充放電される電池1の1回の充電と1回の放電における残容量の変化量であるΔSOCを検出し、さらに、ΔSOCの値に対応する劣化度を特定するウェイトをあらかじめ記憶しており、記憶されるデータに基づいて、検出されるΔSOCからウェイトを特定し、特定されるウェイトから電池1の劣化度を検出する。 【効果】電池の劣化度の検出方法は、電流のみでなく、1回に充電し、あるいは1回に放電する残容量の変化であるΔSOCを検出し、このΔSOCから電池の劣化度を検出して、より正確に劣化度を検出できる。

Description

電池の劣化度の検出方法
 本発明は、電池の劣化度の検出方法に関し、とくに電動車両を走行させる電源装置に使用され、あるいは太陽電池の電力を蓄える電源に使用される電池の劣化度の検出に最適な劣化度の検出方法に関する。
 充電できる電池は、充放電を繰り返すにしたがって劣化して、充電できる容量が減少する。電池は、過充電や過放電によって劣化が大きくなるので、過充電や過放電を防止し、さらに過充電や過放電に近い領域での充放電を制限し、さらにまた、劣化するにしたがって充放電する許容電流を小さく、あるいは充電する電圧を低く、あるいはまた、使用する温度範囲を狭くすることで劣化を少なくして寿命を長くできる。過充電や過放電、あるいはその領域に接近することによる劣化を防止するために、ハイブリッドカー等に搭載されて車両を走行させる電池は、特定の残容量[SOC(%)]の範囲、たとえばSOCを50%±20%の範囲で充放電して劣化を少なくして寿命を長くしている。電池の残容量[SOC(%)]を特定範囲に制御して充放電するには、電池の満充電容量を検出する必要がある。残容量[SOC(%)]が満充電容量(Ah)に対する放電できる容量(Ah)の比率で表されるからである。電池の満充電容量は、満充電した状態から完全に放電して、その放電電流の積算値で検出され、あるいは完全に放電した電池を満充電して充電電流の積算値で検出できる。ただ、この方法で満充電容量を検出するには、電池を完全に放電する状態から満充電する状態に充電し、あるいは満充電した電池を完全に放電する必要がある。電池を完全に放電し、また満充電することなく使用される使用環境では、放電電流や充電電流の積算値から満充電容量を検出できない。たとえば、ハイブリッドカーは、完全に放電すると電池で車両を走行できず、また満充電するとブレーキによる回生制動で電池を充電できなくなる。さらに、太陽電池で充電される電池も、太陽電池の出力が天候に左右され、また、電池の放電が負荷に左右されることから、満充電状態や完全な放電状態での使用が難しくなることがある。
 電池の劣化を少なくするために、所定の残容量[SOC(%)]の範囲にコントロールして充放電する用途においては、電流の積算値で満充電容量を検出できないので、電池の満充電容量を別の方法で検出する必要がある。満充電容量を正確に検出できないと、残容量[SOC(%)]を所定の範囲にコントロールして充放電できなくなるので、この使用状態で満充電容量を正確に検出することが要求される。電池は劣化するにしたがって満充電容量が変化する性質があるので、電池の劣化度を正確に検出することで満充電容量を検出することができる。したがって、所定の残容量範囲に制限して充放電される電池は、劣化度の正確な検出が特に大切である。電池の劣化度は、出力電力が規定電力となる状態を100%、出力電力が最低出力電力となる状態を0%とする。
 電池は、劣化するにしたがって、すなわち累積ストレスが増加するにしたがって、許容電流を小さくし、充電できる電圧を低くし、さらに充放電を許容する温度範囲を狭くすることで、電池の劣化を少なくして寿命を長くできる。このため、車両に搭載されて車両を走行させる電池や太陽電池の電力を蓄えて使用するための電池のような大容量の電池は、できるかぎり寿命を長くするために、電池の累積ストレス、すなわち劣化度をいかに正確に検出できるかが極めて大切である。
 ところで、電池の劣化度を充放電の電流や温度で検出する方法は開発されている。(特許文献1参照)
特開2008-122165号公報
 特許文献1は、電流と温度から得られる劣化度SOHを以下の式で演算して、電池の劣化度を検出する。
 劣化度SOH=前回の劣化度SOH1-α(電流値により特定される係数)
                  -β(温度により特定される係数)
 以上の方法は、電流の大きさや温度で劣化度を検出するが、電池は、電流の大きさのみによっては劣化度が特定されず、同じ電流が流れる状態にあっても、流れる状態によって劣化度は一定とならない。たとえば、一定の電流が連続して流れる状態と、短時間流れる状態とでは、同じ電流に対する劣化度が変化する。したがって、電流の大きさと積算値から劣化度を検出する方法は、つねに正確に電池の劣化度を検出できない欠点がある。
 本発明は、さらに以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池の電流からより正確に劣化度を検出できる電池の劣化度の検出方法を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の電池の劣化度の検出方法は、充放電される電池1の1回の充電あるいは1回の放電における残容量の変化量であるΔSOCを検出し、さらに、ΔSOCの値に対応する劣化度を特定するウェイトをあらかじめ記憶しており、記憶されるデータに基づいて、検出されるΔSOCからウェイトを特定し、特定されるウェイトから電池1の劣化度を検出する。
 以上の劣化度の検出方法は、より正確に劣化度を検出できる特徴がある。それは、電流のみでなく、1回分の充電あるいは1回分の放電による残容量の変化であるΔSOCを検出し、このΔSOCから電池の劣化度の検出するからである。
 本発明の電池の劣化度の検出方法は、電池1の保存温度と通電温度とを検出し、保存温度と通電温度に対応するウェイトをあらかじめ記憶し、記憶されるデータに基づいて、検出される保存温度から特定されるウェイトと、検出される通電温度から特定されるウェイトから電池1の劣化度を検出することができる。
 以上の劣化度の検出方法は、電池の保存温度と通電温度から電池の劣化度を検出するので、保存状態と通電状態の両方で正確に劣化度を検出できる。
 本発明の電池の劣化度の検出方法は、電池1の通電温度と電流とを検出し、通電温度と電流に対応するウェイトをあらかじめ記憶し、記憶されるデータに基づいて、検出される通電温度と電流からウェイトを特定し、特定されるウェイトから電池1の劣化度を検出することができる。
 以上の劣化度の検出方法は、通電温度と電流の両方から電池の劣化度を検出するので、電池の通電においては、より正確に劣化度を検出できる。
 本発明の電池の劣化度の検出方法は、電池1に許容される制限電流を記憶し、この制限電流を越えた累積時間を検出して電池1の劣化度を検出することができる。
 以上の劣化度の検出方法は、ΔSOCのみでなく、制限電流を越えた累積時間の両方で劣化度を検出するので、より正確に劣化度を検出できる。
 本発明の電池の劣化度の検出方法は、電池1の上限・下限電圧を記憶し、この上限・下限電圧を越えた累積時間を検出して電池1の劣化度を検出することができる。
 以上の劣化度の検出方法は、ΔSOCに加えて、上限・下限電圧を越えた累積時間をも考慮して劣化度を検出するので、より正確に劣化度を検出できる。
 本発明の電池の劣化度の検出方法は、電池の保存温度範囲ごとに累積時間を記憶し、記憶されたデータに基づいて電池の劣化度を検出することができる。
 本発明の電池の劣化度の検出方法は、電池の通電温度範囲ごとに累積時間を記憶し、記憶されたデータに基づいて電池の劣化度を検出することができる。
 本発明の電池の劣化度の検出方法は、電池のΔSOC範囲ごとに累積回数を記憶し、記憶されたデータに基づいて電池の劣化度を検出することができる。
 本発明の電池の劣化度の検出方法は、電池1を、あらかじめ設定している残容量[SOC(%)]の範囲に制御して充放電される用途に使用することができる。
 以上の劣化度の検出方法は、電池の劣化度から満充電容量を正確に検出し、検出される満充電容量から電池を正確に一定の残容量範囲にコントロールし、このことによって電池の過充電や過放電を確実に防止して寿命を長くできる特徴がある。
 本発明の電池の劣化度の検出方法は、電池1を、車両を走行させるモータ12に電力を供給する電池とすることができる。
 以上の検出方法は、モータに電力を供給する電池の満充電容量を劣化度から検出し、検出される満充電容量から電池の過充電や過放電を防止して劣化を防止して、高価な電池を長寿命に使用できる特徴がある。
 本発明の電池の劣化度の検出方法は、電池1を、太陽電池20の電力を蓄える電源に使用することができる。
 以上の検出方法は、太陽電池で充電される電池の満充電容量を劣化度から正確に検出し、検出される満充電容量から電池の過充電や過放電を防止して劣化を防止し、高価な電池を長寿命に使用できる特徴がある。
本発明の一実施例にかかる電池の劣化度の検出方法に使用する電源装置を電動車両に搭載する状態を示すブロック図である。 本発明の一実施例にかかる電池の劣化度の検出方法に使用する電源装置を太陽電池で充電する状態を示すブロック図である。 車両に搭載される電池が充放電される状態におけるΔSOCを示す図である。 複数の検出電流値から電流の実効値(Irms)を演算する一例を示す図である。 複数の検出電流値から電流の実効値(Irms)を演算する他の一例を示す図である。 ウェイト1とウェイト2を示すグラフである。 内部抵抗を有する電池の等価回路を示す図である。 電池の充放電時における電流-電圧特性を示すグラフである。 内部抵抗に対する劣化度SOH2を示すグラフである。 判定回路が劣化度SOHを演算するフローチャートである。
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の劣化度の検出方法を例示するものであって、本発明は劣化度の検出方法を以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
 図1と図2は、本発明の電池の劣化度の検出方法に使用する電源装置のブロック図である。図1は、ハイブリッドカー10Aに搭載される電池1の劣化度を判定するブロック図を示し、図2は、太陽電池20で充電される電池1の劣化度を判定するブロック図を示している。ただし、本発明は、劣化度を検出する電池の用途を、ハイブリッドカー、プラグインハイブリッドカー、電気自動車などの電動車両や太陽電池で充電されるものには特定しない。ハイブリッドカー10A等の電動車両10や太陽電池20に使用される電池1は、劣化度から満充電容量(Ah)を検出し、検出される満充電容量(Ah)と現実の放電可能容量(Ah)との比率から残容量[SOC(%)]を演算し、残容量[SOC(%)]が所定の範囲、たとえば50%±20%となるように、充放電の電流をコントロールする。
 ハイブリッドカー10Aに使用される図1の電池1は、車両の走行用のモータ12に電力を供給して放電され、また、発電機13で充電されて、残容量が約50%の付近に保持される。電池1の劣化度SOH(State of Health)は、判定回路2で検出される。
 車両側は、電池1から供給される電力をモータ12に供給し、また発電機13の電力を電池1に供給する双方向電力変換装置11を備える。双方向電力変換装置11は、電池1の直流電力を三相の交流電力に変換してモータ12に供給し、発電機13から出力される交流を直流に変換して電池1に供給する。この双方向電力変換装置11は、制御回路14で制御されて、電池1からモータ12への供給電力と、発電機13から電池1への充電電力をコントロールする。制御回路14は、電源装置側の判定回路2から通信回線9を介して伝送される電池1の劣化度SOHを考慮して、双方向電力変換装置11をコントロールする。電池1の劣化度SOHが予想される正常状態にあるとき、制御回路14は双方向電力変換装置11を正常モードでコントロールする。ただ、電池1の劣化度SOHが予想される正常状態よりも小さいとき、制御回路14は双方向電力変換装置11を正常モードよりも充放電の電力を小さくする制限モードでコントロールする。反対に、電池1の劣化度SOHが予想される正常状態よりも大きいときは、制御回路14は双方向電力変換装置11を正常モードよりも充放電の電力を大きくする加速モード、あるいは正常モードでコントロールする。このように、制御回路14が双方向電力変換装置11を介して、モータ12や発電機13の出力をコントロールすることで、電池1の寿命を目標の耐用年数に近づけることができる。
 判定回路2は、電池1の劣化度SOHを検出するために、電池1に流れる充放電の電流を検出する電流検出回路3と、電池1の温度を検出する温度検出回路4と、電池1の電圧を検出する電圧検出回路5と、これらの回路で検出される検出値から電池1の劣化度SOHを検出する演算回路6を備えている。
 さらに、判定回路2は、メモリ7としてEEPROMを内蔵しており、このEEPROMに劣化度SOHを記憶し、記憶する劣化度SOHを通信回線9を介して車両側の制御回路14に伝送する。
 電流検出回路3と電圧検出回路5は、検出するアナログ信号の電流値や電圧値を、一定のサンプリング周期でデジタル信号に変換するA/Dコンバータ(図示せず)を備えている。この電流検出回路3と電圧検出回路5は、一定のサンプリング周期で電池1の充放電電流と電圧値を検出してデジタル信号に変換して演算回路6に出力する。電流検出回路3と電圧検出回路5は、100msecのサンプリング周期で電池1の電流や電圧を検出する。ただし、電流検出回路や電圧検出回路が電流や電圧を検出するサンプリング周期は、電池に流れる電流や電圧の変化する状態、すなわち短時間で急激に変化するか、あるいは時間をかけてゆっくり変化するかで、最適な値に特定され、たとえば1msecないし1secとすることもできる。サンプリング周期を短くして、急激に変化する電流や電圧をより正確に検出できる。ただ、サンプリング周期を短くすると、デジタル信号に変換するA/Dコンバータに高速処理するものが要求されて部品コストが高くなり、また演算回路6も検出される電流信号や電圧信号を高速処理するので部品コストが高くなる。反対に、サンプリング周期が長すぎると、変化する電流や電圧を正確に検出できなくなる。したがって、電流や電圧を検出するサンプリング周期は、変化する電流や電圧を正確に検出できる周期に特定される。
 温度検出回路4は、温度センサ8で検出される温度のアナログ信号を、一定のサンプリング周期でデジタル信号に変換する。この温度検出回路4は、一定のサンプリング周期で電池1の温度を検出してデジタル信号に変換して演算回路6に出力する。温度検出回路4は、1secのサンプリング周期で電池1の温度を検出する。ただし、温度検出回路4が温度を検出するサンプリング周期は、電池1の温度が変化する状態、すなわち短時間で急激に変化するか、あるいは時間をかけてゆっくり変化するかで、最適な値に特定され、たとえば10msecないし10secとすることもできる。サンプリング周期を短くして、急激に変化する温度をより正確に検出できる。
 判定回路2は、検出される電流値や電圧値、さらに電池温度から劣化度SOHを検出する。電流値から劣化度SOHを検出する演算回路6は、検出される電流値から1回の放電における残容量の変化値のΔSOCと、1回の充電における残容量の変化値のΔSOCを検出する。1回の放電におけるΔSOCは、放電が開始されて終了するまでの残容量の変化値(%)、1回の充電におけるΔSOCは、充電が開始されて終了するまでの残容量の変化値(%)である。図3は、車両に搭載される電池が、回生制動で充電された後、加速するときに放電される状態を示している。この図において、回生制動が開始されてから終了するまでに電池が充電されて残容量が変化する。この残容量の変化がΔSOC1となる。また、加速を開始してから放電が停止されるまでに電池が放電されて残容量が変化する。このときの残容量の変化値がΔSOC2となる。
 演算回路6は、充放電して変化するΔSOCに対する電池1の劣化度SOHを特定するウェイトWをルックアップテーブルや関数として記憶しており、記憶されるΔSOCに対するウェイトWから電池1の劣化度SOHを検出する。電池1の劣化度SOHは、ΔSOCが大きくなるほど大きくなる。したがって、ΔSOCに対するウェイトW(%)は、たとえば表1に示すように設定して、ΔSOCが増加するにしたがって大きくする。判定回路2は、充放電される電池1の1回のΔSOCを検出し、検出されたΔSOCの値から劣化度SOHを特定するウェイトW1(%)~W8(%)を、メモリ7に記憶される値から検出し、たとえば、表1の値からウェイトWを特定して、現実の電池の劣化度SOHを以下の式から検出する。
 現在の劣化度SOH(%)=前回の劣化度SOH(%)
              -W{ΔSOCにより特定されるウェイト(%)}
Figure JPOXMLDOC01-appb-T000001
 以上の式から、たとえば、充電または放電1回分のΔSOCが1%であると、劣化度SOH(%)を示すウェイトWは1.56×10-3%となる。したがって、ΔSOCが1%となるように電池1が1回充電、又は放電される毎に、電池1の劣化度SOHは1.56×10-3%減少する。
 電池1は、種類によりΔSOCに対する劣化度SOHを特定するウェイトWが異なる。したがって、前記のウェイトWの値は、電池1を現実に充放電して1回の充電や放電に対するΔSOCを検出し、1回のΔSOCに対する劣化度SOHを特定するウェイトWを測定してメモリ7に記憶させる。
 さらに、電流によって劣化度SOHを検出する判定回路2は、電流の実効値(Irms)から劣化度を検出し、ΔSOCと実効値(Irms)の両方で劣化度SOHを検出する。この判定回路2は、演算回路6でもって、電流検出回路3から入力されるデジタル信号の電流値から二乗平均平方根を演算して電流の実効値(Irms)を検出する。演算回路6は、以下の式で、電流値の二乗平均平方根を演算して電流の実効値(Irms)を検出する。
 実効値(Irms)=[(I +I +I +・・・・+I )/n]1/2
 電流の実効値(Irms)は、順番に検出される複数の検出電流値から演算される。たとえば、10msecのサンプリング周期で電流を検出して、図4に示すように、1secの周期における電流の実効値(I1、I、I、I、・・・I100)を演算する。検出される電流の各々の実効値(Irms)から電池の劣化度を検出する。演算回路6は、電流の実効値(Irms)に対する電池1の劣化度を特定するウェイトWをルックアップテーブルとして、あるい関数としてメモリ7に記憶している。実効値(Irms)を1sec毎の周期で検出する判定回路2は、1sec間に電池1に流れる実効値(Irms)から、電池1が1sec毎に劣化する劣化度を特定するウェイトWを記憶している。演算回路6は、実効値(Irms)に対するメモリ7に記憶されるウェイトWから劣化度を検出して、現在の電池1の劣化度SOHを検出する。
 演算回路6は、電池1に流れる電流の実効値(Irms)を検出する毎に電池1の劣化度を検出することなく、電流の実効値(Irms)の累積値から劣化度を検出することもできる。たとえば、電流の実効値(Irms)と時間の積から実効値(Irms)の1分間の累積値を検出し、この累積値から劣化度を検出することができる。この演算回路6は、累積値に対する電池1の劣化度を特定するウェイトWをルックアップテーブルや関数として記憶しており、記憶される累積値に対するウェイトWから電池1の劣化度を検出する。
 さらに、演算回路6は、電流の実効値(Irms)の累積する時間を、充放電のタイミングで特定して、その累積値から劣化度を検出することもできる。この演算回路6は、たとえば、図5に示すように、電池1の放電時間(T)と充電時間(t1、t)において実効値(Irms)を累積し、その累積値から電池1の劣化度を検出する。この演算回路6は、電池1の放電電流の実効値(Irms)の累積値と、充電電流の実効値(Irms)の累積値に対する劣化度を特定するウェイトWをメモリ7に記憶している。メモリ7に記憶される累積値に対するウェイトWから、電池1の劣化度を検出する。電池1の放電電流の実効値(Irms)の累積値と、充電電流の実効値(Irms)の累積値に対する電池1の劣化度を特定するウェイトWは、現実に電池1を所定の実効値(Irms)で充電し、また、放電してその累積値から現実のウェイトWを検出して、メモリ7に記憶する。
 演算回路6は、電流検出回路3で検出されるデジタル信号の電流値を平均して平均値を検出し、この平均値から実効値(Irms)を演算することもできる。この演算回路6は、たとえば、複数回の電流値を加算平均して平均電流を演算し、演算される平均電流から実効値(Irms)を演算する。さらに、演算回路6は、検出される複数の電流値から、最大電流と最小電流を除いた電流値を加算平均して平均電流を検出し、この平均電流から実効値(Irms)を演算することもできる。この演算回路6は、たとえばノイズの影響で正確に検出されない電流値を除いて正確に電池1の電流を検出することができる。
 さらに、判定回路2は、電池1に流れる充放電電流の実効値(Irms)と、あらかじめ設定している制限電流を越えた累積時間とから電池1の劣化度を検出することができる。この判定回路2は、制限電流を越えた累積時間に対する電池1の劣化度を特定するウェイトWをメモリ7に記憶しており、メモリ7に記憶している累積時間に対するウェイトWから電池1の劣化度を特定する。この判定回路2は、あらかじめ設定している制限電流を越えた電流を電池1に流し、その累積時間から電池1の劣化度を特定するウェイトWを検出して、累積値に対するウェイトWとしてメモリ7に記憶している。この判定回路2は、充放電するΔSOCによる劣化度と、電池1の充放電電流の実効値(Irms)による劣化度と、電池1の制限電流から検出される劣化度とを加算して電池1の劣化度SOHをより正確に検出できる。
 さらに、判定回路2は、電池1に流れる充放電電流の二乗平均平方根と、あらかじめ設定している上限・下限電圧を越えた累積時間とから電池1の劣化度を検出することもできる。この判定回路2は、上限・下限電圧を越えた累積時間に対する電池1の劣化度を特定するウェイトWをメモリ7に記憶している。上限・下限電圧を越えた累積時間に対する電池1の劣化度を特定するウェイトWは、現実に電池1を上限・下限電圧を越えた状態として、劣化度を特定するウェイトWを検出してメモリ7に記憶している。メモリ7に記憶される累積時間に対するウェイトWから、電池1の劣化度を特定する。この判定回路2は、ΔSOCから検出される劣化度と、電池1の充放電電流の実効値(Irms)から検出される劣化度と、制限電流を越えた累積時間から検出される劣化度と、電池1の上限・下限電圧の累積値から検出される劣化度とを加算して、電池1のトータルの劣化度SOHを正確に検出できる。
 さらに、判定回路2は、電池1の温度による劣化度を検出して、温度による劣化も考慮して劣化度SOHを検出することができる。温度によって劣化度SOHを検出する判定回路2は、保存温度と通電温度を検出し、保存温度と通電温度に対応する劣化度を特定するウェイトWをあらかじめメモリ7に記憶し、記憶されるデータに基づいて、検出される保存温度から特定されるウェイトWと、検出される通電温度から特定されるウェイトWから電池1の劣化度を検出する。
 表2は、保存温度に対するウェイトW10~W17を例示し、表3は通電温度に対するウェイトW20~W27を例示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 電池1の劣化度は、保存温度や通電温度が高くなるほど大きくなる。したがって、保存温度や通電温度に対するウェイトW(%)は、たとえば表2と表3に示すように設定して、温度が高くなるにしたがって大きくする。判定回路2は、充放電される電池1の保存温度や通電温度を検出し、検出された保存温度から劣化度を特定するウェイトW10(%)~W17(%)、及び通電温度から劣化度を特定するウェイトW20(%)~W27(%)を、メモリ7に記憶される値から検出し、たとえば表2、又は表3の値からウェイトWを特定して、現実の電池1の劣化度SOHを検出する。
 電池1は、種類により保存温度や通電温度に対する劣化度を特定するウェイトWが異なる。したがって、温度に対するウェイトWの値は、電池1を現実に特定の温度で保存し、また通電して、その温度に対するウェイトWを測定してメモリ7に記憶させる。
 さらにまた、判定回路2は電池1の内部抵抗を検出して劣化度SOHを検出することができる。電池1の劣化度SOHを内部抵抗によって検出する判定回路2は、内部抵抗以外の検出値から検出される劣化度SOH1と、内部抵抗から検出される劣化度SOH2の両方から劣化度SOHを検出する。この判定回路2は、劣化度SOH1と劣化度SOH2を加算して劣化度SOHを検出するのではなく、劣化度SOH1と劣化度SOH2を所定の比率として、以下の式で電池1のトータルの劣化度SOHを演算する。
 劣化度SOH=ウェイト1×劣化度SOH1+ウェイト2×劣化度SOH2
 ただし、ウェイト1+ウェイト2=1である。
 ウェイト1とウェイト2は、図6のグラフに示すように、電池1の内部抵抗によって特定する。この図は、横軸を電池1の内部抵抗の相対値として、縦軸にウェイト1とウェイト2を示している。ただし、この図は、電池1の劣化度SOHを0%とする状態、いいかえると寿命の尽きた電池1の内部抵抗を100としている。この図に示すように、電池1の劣化が進んで劣化度SOHが小さくなるにしたがって、ウェイト1を小さく、ウェイト2を大きくする。電池1は、内部抵抗が大きくなって劣化が進んだ状態では、内部抵抗が劣化度SOHを正確に特定するからである。この方法は、電池1の内部抵抗からウェイト1とウェイト2を特定する。ただし、電池1の内部抵抗から特定される劣化度SOH2から、ウェイト1とウェイト2を特定し、あるいは劣化度SOH1と劣化度SOH2から判定される劣化度SOHからウェイト1とウェイト2を特定することもできる。この場合も、劣化度SOH2が小さくなり、あるいは劣化度SOHが小さくなる、いいかえると寿命末期に近づくにしたがって、ウェイト1を小さくしてウェイト2を大きくする。
 電池1の内部抵抗は判定回路2に検出される。判定回路2は、電池1の内部抵抗を検出し、内部抵抗から劣化度SOH2を検出する。内部抵抗を有する電池1の等価回路を図7に示す。この等価回路の電池1を充放電して、電流Iと出力電圧VLを検出すると図8に示すようになる。図8において、電池1の電流-電圧特性を示すラインAの傾きから内部抵抗R0が演算される。
 電池1の開放電圧をVoとし、電流Iのときに電圧をVLとすれば、
  VL=Vo-R0×I
 この式から、
  R0=(Vo-VL)/I で演算される。
 電池1の内部抵抗に対する電池1の劣化度SOH2はあらかじめ測定されて、判定回路2のルックアップテーブルに記憶され、あるいは判定回路2は、内部抵抗に対する劣化度SOH1を関数として記憶している。ルックアップテーブルに記憶され、あるいは関数として記憶される、内部抵抗に対する劣化度SOH2を図9に例示する。この図の特性の電池は、内部抵抗を300mΩとするとき、劣化度SOH2は60%とする。
 劣化度SOH1と劣化度SOH2から劣化度SOHを検出する判定回路2は、検出される劣化度SOH1と劣化度SOH2からウェイト1とウェイト2を特定して、電池1の劣化度SOHを判定する。判定回路2が、劣化度SOHを演算するフローチャートを図10に示す。
[n=1のステップ]
 このステップで、判定回路2は内蔵するメモリ7のデータから、劣化度SOH1、劣化度SOH2、劣化度SOHを初期化する。
[n=2のステップ]
 このステップで、判定回路2は電池1の電流と電圧から内部抵抗を演算する。このとき、温度によるフィルタリングをして、測定精度を高くする。内部抵抗が温度により変化するからである。温度によるフィルタリングは、電池1の内部抵抗を検出するときの電池温度を検出し、検出される内部抵抗を温度を関数として設定温度における内部抵抗に変換する。内部抵抗をフィルタリングする判定回路2は、温度に対する内部抵抗の変化を、関数として、あるいはルックアップテーブルに記憶している。この記憶値から、内部抵抗を設定温度の内部抵抗にフィルタリングして補正する。
[n=3のステップ]
 電池1が充放電される電流と電池温度と、さらに内部抵抗を測定し、これをフィルタリングする。
[n=4のステップ]
 1sec経過するまで、n=2~4のステップをループする。
[n=5のステップ]
 1sec経過すると、このステップにおいて、1sec間における電流の実効値(Irms)、平均温度、内部抵抗を演算する。
[n=6のステップ]
 このステップで、判定回路2は、1sec間における電流の実効値(Irms)と電池の平均温度から劣化度SOH1を計算する。
[n=7のステップ]
 さらに、判定回路2は、記憶しているルックアップテーブルや関数に基づいて、内部抵抗から劣化度SOH2を演算する。
[n=8のステップ]
 このステップで、判定回路2は、劣化度SOH1と劣化度SOH2のウェイト1とウェイト2を特定する。ウェイト1とウェイト2は、図6から特定する。
[n=9のステップ]
 判定回路2は、ウェイト1及び劣化度SOH1と、ウェイト2及び劣化度SOH2から劣化度SOHを演算する。
[n=10のステップ]
 劣化度SOH1を劣化度SOHに近づけるために、演算された劣化度SOHから劣化度SOH1を補正する。
 判定回路2は、以上のようにして電池1の劣化度SOHを判定し、判定された劣化度SOHを通信回線9を介して車両側や太陽電池側の制御回路に伝送する。
 以上のようにして劣化度SOHを検出することにより、電池1の寿命を知ることができる。また、各劣化度SOHにおける各種の特性(たとえば、その劣化度SOHにおける電圧と電池の残容量[SOC(%)]との関係、その劣化度SOHにおける満充電容量等)を予め保存しておき、判定、検出されたその時点における劣化度SOHに応じて、このような保存された特性を利用することができる。
 判定回路2は、電池1の劣化度SOHに対する満充電容量(Ah)をルックアップテーブルに記憶し、あるいは関数として記憶している。劣化度SOHから満充電容量(Ah)が検出されると、電動車両10や太陽電池20で充電される電池1は、満充電容量(Ah)に対する放電可能容量(Ah)の比率から残容量[SOC(%)]が演算される。放電可能容量(Ah)は、電池1の充放電電流の積算値から演算する。放電可能容量(Ah)は、電池1の充電電流の積算値を加算し、放電電流の積算値を減算して検出される。残容量[SOC(%)]が検出されると、残容量[SOC(%)]を所定の範囲とするように、たとえば、残容量[SOC(%)]を30%~70%、あるいは20%~80%、あるいはまた10%~90%の範囲となるように充放電の電流をコントロールして、電池1の劣化を少なく、寿命を長くできる。
 さらに、電池1の劣化度SOHが検出されると、電池1の劣化度SOHに対応して、電池1に流す最大電流を小さく制御し、あるいは充電するときの最大電圧を低くして、電池を保護しながら充放電することもできる。
 判定回路2は、車両に搭載される電池1にあっては、車両のイグニッションスイッチをオンとする状態、すなわち車両の走行状態において、充放電される電池1のΔSOC、電流の実効値(Irms)、電池1の温度、許容電流を越えた累積時間、上限・下限電圧を越えた累積時間などを検出して、所定の時間毎に劣化度SOHを検出する。
 太陽電池20で充電される電池1は、つねに一定の周期で、たとえば1sec~1分毎に電池1の劣化度SOHを検出する。
 上述のごとく、電池1の劣化度SOHは、ΔSOCが大きくなるほど大きくなり、たとえば表1の値からウェイトWを特定して、現実の電池1の劣化度SOHを検出することができる。また、電池1の劣化度SOHは、保存温度や通電温度が高くなるほど大きくなり、たとえば表2、又は表3の値からウェイトWを特定して、現実の電池1の劣化度SOHを検出することができる。一方、表1に示したΔSOCの範囲ごとの使用回数や表2、又は表3に示した各温度範囲の使用時間を累積してメモリ7に記憶させ、メンテナンスやサービス時に、記憶したデータを読み出して、所定の条件以上の使われ方をしていないか調べることによって、電池1の劣化度を特定することができる。
 また、所定の条件以上の使われ方をしていないか調べることによって、有償交換か無償交換かの判定に利用することもできる。
 本発明に係る電池の劣化度の検出方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
  1…電池
  2…判定回路
  3…電流検出回路
  4…温度検出回路
  5…電圧検出回路
  6…演算回路
  7…メモリ
  8…温度センサ
  9…通信回線
 10…電動車両           10A…ハイブリッドカー
 11…双方向電力変換装置
 12…モータ
 13…発電機
 14…制御回路
 20…太陽電池

Claims (11)

  1.  充放電される電池の1回の充電又は1回の放電における残容量の変化量であるΔSOCを検出し、
     さらに、ΔSOCの値に対応する劣化度を特定するウェイトをあらかじめ記憶しており、記憶されるデータに基づいて、検出されるΔSOCからウェイトを特定し、特定されるウェイトから電池の劣化度を検出することを特徴とする電池の劣化度の検出方法。
  2.  電池の保存温度と通電温度とを検出し、保存温度と通電温度に対応するウェイトをあらかじめ記憶し、記憶されるデータに基づいて、検出される保存温度から特定されるウェイトと、検出される通電温度から特定されるウェイトから電池の劣化度を検出する請求項1に記載される電池の劣化度の検出方法。
  3.  電池の通電温度と電流とを検出し、通電温度と電流に対応するウェイトをあらかじめ記憶し、記憶されるデータに基づいて、検出される通電温度と電流からウェイトを特定し、特定されるウェイトから電池の劣化度を検出することを特徴とする請求項1又は2に記載される電池の劣化度の検出方法。
  4.  電池に許容される制限電流を記憶し、この制限電流を越えた累積時間を検出して電池の劣化度を検出する請求項1ないし3のいずれかに記載される電池の劣化度の検出方法。
  5.  電池の上限・下限電圧を記憶し、この上限・下限電圧を越えた累積時間を検出して電池の劣化度を検出する請求項1ないし4のいずれかに記載される電池の劣化度の検出方法。
  6.  電池の保存温度範囲ごとに累積時間を記憶し、記憶されたデータに基づいて電池の劣化度を検出する請求項1ないし5のいずれかに記載される電池の劣化度の検出方法。
  7.  電池の通電温度範囲ごとに累積時間を記憶し、記憶されたデータに基づいて電池の劣化度を検出する請求項1ないし6のいずれかに記載される電池の劣化度の検出方法。
  8.  電池のΔSOC範囲ごとに累積回数を記憶し、記憶されたデータに基づいて電池の劣化度を検出する請求項1ないし7のいずれかに記載される電池の劣化度の検出方法。
  9.  電池が、あらかじめ設定している残容量[SOC(%)]の範囲に制御して充放電される用途に使用される請求項1ないし8のいずれかに記載される電池の劣化度の検出方法。
  10.  電池が、車両を走行させるモータに電力を供給する電池である請求項9に記載される電池の劣化度の検出方法。
  11.  電池が、太陽電池の電力を蓄える電源に使用される請求項9に記載される電池の劣化度の検出方法。
PCT/JP2011/080349 2010-12-28 2011-12-27 電池の劣化度の検出方法 WO2012091076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11852347.1A EP2660615B1 (en) 2010-12-28 2011-12-27 Battery degradation level detection method
US13/976,667 US20130278221A1 (en) 2010-12-28 2011-12-27 Method of detecting battery degradation level
JP2012551030A JP6073686B2 (ja) 2010-12-28 2011-12-27 電池の劣化度の検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010294054 2010-12-28
JP2010-294054 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091076A1 true WO2012091076A1 (ja) 2012-07-05

Family

ID=46383164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080349 WO2012091076A1 (ja) 2010-12-28 2011-12-27 電池の劣化度の検出方法

Country Status (4)

Country Link
US (1) US20130278221A1 (ja)
EP (1) EP2660615B1 (ja)
JP (1) JP6073686B2 (ja)
WO (1) WO2012091076A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025753A (ja) * 2012-07-25 2014-02-06 Toshiba Industrial Products Manufacturing Corp 車載回転電機の劣化診断装置および劣化診断方法
JP2014059227A (ja) * 2012-09-18 2014-04-03 Calsonic Kansei Corp バッテリの健全度算出装置および健全度算出方法
FR3009093A1 (fr) * 2013-07-29 2015-01-30 Renault Sa Estimation de l'etat de vieillissement d'une batterie electrique
JP2015059816A (ja) * 2013-09-18 2015-03-30 カヤバ工業株式会社 電池容量推定装置及び電池容量推定方法
JP2015061445A (ja) * 2013-09-19 2015-03-30 株式会社東芝 充電装置およびその方法、ならびに放電装置およびその方法
EP2796888A4 (en) * 2012-11-30 2015-08-26 Lg Chemical Ltd APPARATUS AND METHOD FOR ENVIRONMENTAL USE MANAGEMENT AND BATTERY USE HISTORY
WO2015141500A1 (ja) * 2014-03-18 2015-09-24 株式会社 東芝 劣化推定方法、劣化推定システム、及び劣化推定プログラム
JP2019023995A (ja) * 2017-05-03 2019-02-14 株式会社半導体エネルギー研究所 蓄電装置、半導体装置、icチップ、電子機器
JP2019053074A (ja) * 2017-03-29 2019-04-04 株式会社Gsユアサ 劣化推定装置、劣化推定方法およびコンピュータプログラム
US11009556B2 (en) * 2018-08-30 2021-05-18 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012091077A1 (ja) * 2010-12-28 2014-06-05 三洋電機株式会社 電池の劣化度の検出方法
CN103608994B (zh) * 2011-06-10 2016-08-03 日立汽车系统株式会社 电池控制装置、电池系统
DE102012212380A1 (de) * 2012-07-16 2014-01-16 Robert Bosch Gmbh Verfahren zur Bereitstellung von Kennzahlen für den Gefährdungszustand einer Batterie
KR20150029204A (ko) * 2013-09-09 2015-03-18 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 장치, 및 배터리 팩의 관리 방법
CN103738195B (zh) * 2013-11-12 2016-08-17 浙江师范大学 一种复合能源电动车能量控制方法
US9547045B2 (en) * 2014-02-04 2017-01-17 Gm Global Technology Operations, Llc Methods and systems for determining a characteristic of a vehicle energy source
KR102211363B1 (ko) * 2014-02-11 2021-02-03 삼성에스디아이 주식회사 에너지 저장 시스템과 그의 구동방법
JP6179440B2 (ja) * 2014-03-28 2017-08-16 トヨタ自動車株式会社 車両制御装置
EP3128601B1 (en) * 2014-03-31 2020-03-25 Kabushiki Kaisha Toshiba Backup power source system and method thereof
JP6413311B2 (ja) * 2014-04-11 2018-10-31 株式会社村田製作所 蓄電装置、制御方法、制御装置、蓄電システム、電動車両および電子機器
KR20150128160A (ko) * 2014-05-08 2015-11-18 삼성에스디아이 주식회사 배터리 관리 장치
DE102014210197A1 (de) * 2014-05-28 2015-12-03 Robert Bosch Gmbh Verfahren zum Batteriemanagement und Batteriemanagementsystem
CN104210378B (zh) * 2014-09-17 2016-03-09 武汉理工大学 一种应用于定线路的纯电动汽车车辆配比计算方法
US10095297B2 (en) * 2015-04-13 2018-10-09 Semiconductor Components Industries, Llc Variable-frequency sampling of battery voltage to determine fuel gauge power mode
JP6245224B2 (ja) 2015-06-09 2017-12-13 トヨタ自動車株式会社 ハイブリッド車両
TWI609271B (zh) * 2015-10-23 2017-12-21 群光電能科技股份有限公司 具識別碼更新功能之供電系統
EP3410876B1 (en) 2016-02-01 2020-04-01 Philip Morris Products S.a.s. Aerosol-generating device having multiple power supplies
KR102572647B1 (ko) * 2016-02-25 2023-08-31 삼성에스디아이 주식회사 배터리 팩
US10097014B2 (en) * 2016-06-03 2018-10-09 Nidec Motor Corporation Battery charger monitor with charge balancing between batteries in a battery supply
JP6555212B2 (ja) * 2016-08-15 2019-08-07 トヨタ自動車株式会社 バッテリパックの製造方法
WO2018051613A1 (ja) * 2016-09-16 2018-03-22 パナソニックIpマネジメント株式会社 電池の診断方法、電池の診断プログラム、電池管理装置、及び蓄電システム
GB2551081B (en) 2017-08-18 2018-12-19 O2Micro Inc Fault detection for battery management systems
KR102359585B1 (ko) * 2017-10-20 2022-02-07 현대자동차주식회사 차량의 배터리 운용 방법
KR102542958B1 (ko) * 2017-12-12 2023-06-14 현대자동차주식회사 차량 배터리 열화판단 제어방법 및 시스템
CN110893794B (zh) * 2018-08-24 2023-01-24 上海汽车集团股份有限公司 一种车用电池衰减系数确定方法及装置
JP7018853B2 (ja) * 2018-09-05 2022-02-14 本田技研工業株式会社 情報提供装置、情報提供方法、及びプログラム
KR102351637B1 (ko) * 2018-09-12 2022-01-14 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
US11157055B2 (en) * 2018-10-05 2021-10-26 Toyota Motor North America, Inc. Apparatus, methods, and systems for tracking vehicle battery usage with a blockchain
US11313912B2 (en) 2020-01-28 2022-04-26 Karma Automotive Llc Battery power limits estimation based on RC model
EP4024654B1 (en) * 2021-01-04 2023-03-08 Volvo Car Corporation Method for operating a battery system
US11742681B2 (en) 2021-07-12 2023-08-29 Geotab Inc. Methods for analysis of vehicle battery health
US11639117B2 (en) 2021-07-12 2023-05-02 Geotab Inc. Devices for analysis of vehicle battery health
US11654791B2 (en) 2021-07-12 2023-05-23 Geotab Inc. Devices for analysis of vehicle battery health
US11485250B1 (en) * 2021-07-12 2022-11-01 Geotab Inc. Systems for analysis of vehicle battery health

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342045A (ja) * 1993-05-31 1994-12-13 Omron Corp バッテリーの寿命計測装置
JP2004022183A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 電池の劣化度算出装置および劣化度算出方法
JP2007533979A (ja) * 2004-04-06 2007-11-22 コバシス, エルエルシー バッテリ充電状態推定器
JP2008039526A (ja) * 2006-08-03 2008-02-21 Auto Network Gijutsu Kenkyusho:Kk 電池劣化診断方法、電池劣化診断装置及びコンピュータプログラム
JP2008122165A (ja) 2006-11-09 2008-05-29 Sanyo Electric Co Ltd 電池の劣化度の検出方法

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775675A (en) * 1972-06-15 1973-11-27 Westinghouse Electric Corp Apparatus for indicating when current exceeds a predetermined level and when said level is exceeded for a predetermined period of time
US3789293A (en) * 1972-06-15 1974-01-29 Westinghouse Electric Corp Electrical current monitor which separately indicates individual and sustained current pulses
US3940679A (en) * 1974-06-18 1976-02-24 Textron, Inc. Nickel-cadmium battery monitor
US4744430A (en) * 1987-08-14 1988-05-17 Mccoy Thomas R Solar powered golf cart
JP2878953B2 (ja) * 1993-12-27 1999-04-05 本田技研工業株式会社 電気自動車用バッテリの残容量検出方法
JP3285720B2 (ja) * 1994-11-08 2002-05-27 松下電器産業株式会社 組電池の劣化検出方法及び劣化検出装置
US5602457A (en) * 1995-01-03 1997-02-11 Exide Corporation Photovoltaic solar cell laminated in vehicle windshield
JPH08289407A (ja) * 1995-02-13 1996-11-01 Nippon Soken Inc ハイブリッド車の発電制御装置
JP3540437B2 (ja) * 1995-06-05 2004-07-07 本田技研工業株式会社 電池状態判別装置
US5637789A (en) * 1995-09-29 1997-06-10 Lawson; William J. Fluid leak detector
US5808422A (en) * 1996-05-10 1998-09-15 Philips Electronics North America Lamp ballast with lamp rectification detection circuitry
JP3716619B2 (ja) * 1998-05-14 2005-11-16 日産自動車株式会社 電池の残容量計
JP4186092B2 (ja) * 1999-08-18 2008-11-26 ソニー株式会社 バッテリー機器及びバッテリーの管理方法
JP4049959B2 (ja) * 1999-11-11 2008-02-20 本田技研工業株式会社 バッテリ充電方法
JP2001224138A (ja) * 2000-02-07 2001-08-17 Hitachi Ltd 蓄電装置及び蓄電器の電圧検出方法
DE10008354A1 (de) * 2000-02-23 2001-08-30 Vb Autobatterie Gmbh Verfahren zur Ermittlung des Ladezustands von Bleiakkumulatoren
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
US6356057B1 (en) * 2000-09-15 2002-03-12 Emc Corporation Methods and apparatus for testing a powerability characteristic of a backup power supply
JP2002199614A (ja) * 2000-12-28 2002-07-12 Nec Corp 太陽光電力充電装置
TWI235514B (en) * 2001-05-29 2005-07-01 Canon Kk Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting a
JP3964635B2 (ja) * 2001-06-20 2007-08-22 松下電器産業株式会社 メモリー効果の検出方法およびその解消方法
DE10235008B4 (de) * 2001-08-03 2005-02-24 Yazaki Corp. Verfahren und Einheit zum Berechnen des Degradationsgrades für eine Batterie
JP3867581B2 (ja) * 2002-01-17 2007-01-10 松下電器産業株式会社 組電池システム
US6549014B1 (en) * 2002-02-15 2003-04-15 Power Designers, Llc Battery monitoring method and apparatus
DE10321720A1 (de) * 2002-05-14 2003-12-04 Yazaki Corp Verfahren zum Abschätzen des Ladezustandes und der Leerlaufspannung einer Batterie, sowie Verfahren und Vorrichtung zum Berechnen des Degradationsgrades einer Batterie
US7190171B2 (en) * 2002-10-11 2007-03-13 Canon Kabushiki Kaisha Detecting method and detecting apparatus for detecting internal of rechargeable battery, rechargeable battery pack having said detecting apparatus therein, apparatus having said detecting apparatus therein, program in which said detecting method is incorporated, and medium in which said program is stored
WO2004051785A1 (ja) * 2002-12-05 2004-06-17 Matsushita Electric Industrial Co., Ltd. 電池パックとその充放電方法
EP1450173A3 (de) * 2003-02-24 2009-07-22 Daimler AG Verfahren zur Ermittlung der Alterung einer Batterie
JP3986992B2 (ja) * 2003-03-31 2007-10-03 矢崎総業株式会社 バッテリの放電可能容量推定方法及び装置
GB0312303D0 (en) * 2003-05-29 2003-07-02 Yuasa Battery Uk Ltd Battery life monitor and battery state of charge monitor
EP2613165B1 (en) * 2003-06-27 2014-09-24 The Furukawa Electric Co., Ltd. Method and device for measuring secondary cell internal impedance
JP4193639B2 (ja) * 2003-08-28 2008-12-10 日産自動車株式会社 燃料電池搭載車両の制御装置
US7429849B2 (en) * 2003-11-26 2008-09-30 Toyo System Co., Ltd. Method and apparatus for confirming the charge amount and degradation state of a battery, a storage medium, an information processing apparatus, and an electronic apparatus
US8355230B2 (en) * 2003-12-08 2013-01-15 Siemens Industry, Inc. Extended instantaneous protection
JP2005261034A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 蓄電機構の制御装置
JP4275078B2 (ja) * 2005-01-13 2009-06-10 三洋電機株式会社 電池の制限電流制御方法
JP4638251B2 (ja) * 2005-02-07 2011-02-23 富士重工業株式会社 バッテリの管理装置
US7570022B2 (en) * 2005-02-09 2009-08-04 Gm Global Technology Operations, Inc. Variable battery refresh charging cycles
US8482258B2 (en) * 2005-03-04 2013-07-09 Philadelphia Scientific Llc Device and method for monitoring life history and controlling maintenance of industrial batteries
JP4367374B2 (ja) * 2005-05-16 2009-11-18 パナソニック株式会社 蓄電装置
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
WO2007032382A1 (ja) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd 二次電池劣化判定方法、二次電池劣化判定装置、及び電源システム
US8140280B2 (en) * 2005-11-09 2012-03-20 Toyota Jidosha Kabushiki Kaisha Battery condition diagnosis apparatus
JP4692246B2 (ja) * 2005-11-29 2011-06-01 日産自動車株式会社 二次電池の入出力可能電力推定装置
TW200740089A (en) * 2006-03-07 2007-10-16 Rohm Co Ltd Capacitor charging apparatus
US7576545B2 (en) * 2006-10-18 2009-08-18 Honeywell International Inc. Lithium-ion battery prognostic testing and process
JP2008151526A (ja) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd 二次電池の劣化判定装置及びバックアップ電源
JP5322395B2 (ja) * 2007-02-27 2013-10-23 三洋電機株式会社 組電池の充電方法
JP2008241358A (ja) * 2007-03-26 2008-10-09 Sanyo Electric Co Ltd 電池の満充電容量検出方法
JP5393956B2 (ja) * 2007-04-10 2014-01-22 三洋電機株式会社 電池の満充電容量検出方法
US20080258686A1 (en) * 2007-04-17 2008-10-23 Advanced Analogic Technologies, Inc. Method for Detecting Removal of a Battery from a Battery Charger
JP4544273B2 (ja) * 2007-06-20 2010-09-15 トヨタ自動車株式会社 車両用電源装置および車両用電源装置における蓄電装置の充電状態推定方法
AU2008348343B2 (en) * 2008-01-25 2013-01-31 Energizer Brands, Llc Battery end of life determination
US8078918B2 (en) * 2008-02-07 2011-12-13 Siliconsystems, Inc. Solid state storage subsystem that maintains and provides access to data reflective of a failure risk
US8283891B2 (en) * 2008-03-21 2012-10-09 Rochester Institute Of Technology Power source health assessment methods and systems thereof
JP4702859B2 (ja) * 2008-04-11 2011-06-15 古河電気工業株式会社 蓄電池の状態検知方法
US8084996B2 (en) * 2008-06-27 2011-12-27 GM Global Technology Operations LLC Method for battery capacity estimation
JP5106272B2 (ja) * 2008-06-30 2012-12-26 パナソニック株式会社 劣化判定回路、電源装置、及び二次電池の劣化判定方法
WO2010001605A1 (ja) * 2008-07-02 2010-01-07 パナソニック株式会社 鉛蓄電池の寿命推定方法および電源システム
KR100970841B1 (ko) * 2008-08-08 2010-07-16 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
US8116998B2 (en) * 2009-01-30 2012-02-14 Bae Systems Controls, Inc. Battery health assessment estimator
FR2943794B1 (fr) * 2009-03-24 2011-05-06 Saft Groupe Sa Procede de determination de l'etat de sante d'une batterie
EP2457107A4 (en) * 2009-07-23 2014-07-02 Texas Instruments Inc SYSTEMS AND METHOD FOR DETERMINING THE CHARGING CONDITION OF A BATTERY
JP2011050143A (ja) * 2009-08-26 2011-03-10 Panasonic Corp 過充電保護回路、電池パック、及び充電システム
EP2290387A3 (en) * 2009-08-31 2016-11-16 Kabushiki Kaisha Toshiba Apparatus and method for establishing battery value index
US8519674B2 (en) * 2009-11-12 2013-08-27 GM Global Technology Operations LLC Method for estimating battery degradation in a vehicle battery pack
US8773366B2 (en) * 2009-11-16 2014-07-08 3M Innovative Properties Company Touch sensitive device using threshold voltage signal
US8228038B2 (en) * 2009-12-23 2012-07-24 Intel Corporation Power management control system and method
JP5537992B2 (ja) * 2010-02-24 2014-07-02 三洋電機株式会社 二次電池の充電方法、二次電池の充電制御装置及びパック電池
JP5499872B2 (ja) * 2010-04-21 2014-05-21 ソニー株式会社 バッテリー制御装置、バッテリー制御方法及びプログラム
BR112012031266B1 (pt) * 2010-06-11 2020-02-27 Provenance Asset Group Llc Método, aparelho e sistema
JP5558941B2 (ja) * 2010-06-30 2014-07-23 三洋電機株式会社 電池の内部抵抗の検出方法
JP5070319B2 (ja) * 2010-07-16 2012-11-14 ビステオン グローバル テクノロジーズ インコーポレイテッド 残存容量均一化装置及び方法、及び残存容量均一化装置セット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342045A (ja) * 1993-05-31 1994-12-13 Omron Corp バッテリーの寿命計測装置
JP2004022183A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 電池の劣化度算出装置および劣化度算出方法
JP2007533979A (ja) * 2004-04-06 2007-11-22 コバシス, エルエルシー バッテリ充電状態推定器
JP2008039526A (ja) * 2006-08-03 2008-02-21 Auto Network Gijutsu Kenkyusho:Kk 電池劣化診断方法、電池劣化診断装置及びコンピュータプログラム
JP2008122165A (ja) 2006-11-09 2008-05-29 Sanyo Electric Co Ltd 電池の劣化度の検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660615A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025753A (ja) * 2012-07-25 2014-02-06 Toshiba Industrial Products Manufacturing Corp 車載回転電機の劣化診断装置および劣化診断方法
JP2014059227A (ja) * 2012-09-18 2014-04-03 Calsonic Kansei Corp バッテリの健全度算出装置および健全度算出方法
EP2796888A4 (en) * 2012-11-30 2015-08-26 Lg Chemical Ltd APPARATUS AND METHOD FOR ENVIRONMENTAL USE MANAGEMENT AND BATTERY USE HISTORY
US9176196B2 (en) 2012-11-30 2015-11-03 Lg Chem, Ltd. Apparatus and method for managing battery application environment and usage history
US10180464B2 (en) 2013-07-29 2019-01-15 Renault S.A.S. Estimation of the state of deterioration of an electric battery
FR3009093A1 (fr) * 2013-07-29 2015-01-30 Renault Sa Estimation de l'etat de vieillissement d'une batterie electrique
WO2015015083A1 (fr) * 2013-07-29 2015-02-05 Renault S.A.S Estimation de l'etat de vieillissement d'une batterie électrique
KR102009734B1 (ko) * 2013-07-29 2019-08-12 르노 에스.아.에스. 전기 배터리의 열화 상태 추정
KR20160039663A (ko) * 2013-07-29 2016-04-11 르노 에스.아.에스. 전기 배터리의 열화 상태 추정
CN105556325A (zh) * 2013-07-29 2016-05-04 雷诺两合公司 估算电力电池的劣化状态
JP2016532866A (ja) * 2013-07-29 2016-10-20 ルノー エス.ア.エス. 電気バッテリーの劣化状態の推定
JP2015059816A (ja) * 2013-09-18 2015-03-30 カヤバ工業株式会社 電池容量推定装置及び電池容量推定方法
JP2015061445A (ja) * 2013-09-19 2015-03-30 株式会社東芝 充電装置およびその方法、ならびに放電装置およびその方法
JPWO2015141500A1 (ja) * 2014-03-18 2017-04-06 株式会社東芝 劣化推定方法、劣化推定システム、及び劣化推定プログラム
WO2015141500A1 (ja) * 2014-03-18 2015-09-24 株式会社 東芝 劣化推定方法、劣化推定システム、及び劣化推定プログラム
JP2019053074A (ja) * 2017-03-29 2019-04-04 株式会社Gsユアサ 劣化推定装置、劣化推定方法およびコンピュータプログラム
JP7087923B2 (ja) 2017-03-29 2022-06-21 株式会社Gsユアサ 劣化推定装置、劣化推定方法およびコンピュータプログラム
JP2019023995A (ja) * 2017-05-03 2019-02-14 株式会社半導体エネルギー研究所 蓄電装置、半導体装置、icチップ、電子機器
US11594770B2 (en) 2017-05-03 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Neural network, power storage system, vehicle, and electronic device
US11955612B2 (en) 2017-05-03 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Neural network, power storage system, vehicle, and electronic device
US11009556B2 (en) * 2018-08-30 2021-05-18 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system

Also Published As

Publication number Publication date
US20130278221A1 (en) 2013-10-24
JP6073686B2 (ja) 2017-02-01
JPWO2012091076A1 (ja) 2014-06-05
EP2660615A4 (en) 2017-01-04
EP2660615A1 (en) 2013-11-06
EP2660615B1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6073686B2 (ja) 電池の劣化度の検出方法
WO2012091077A1 (ja) 電池の劣化度の検出方法
JP5496612B2 (ja) 電池の充放電可能電流演算方法及び電源装置並びにこれを備える車両
JP5348987B2 (ja) 電池の劣化度の検出方法
US7944178B2 (en) Fully-charged battery capacity detection method
US7652449B2 (en) Battery management system and driving method thereof
JP4884945B2 (ja) 充電状態予測プログラム、架線レス交通システム及びその充電方法
JP4275078B2 (ja) 電池の制限電流制御方法
US10124789B2 (en) In-range current sensor fault detection
JP6132314B2 (ja) 電源装置、電源装置を備える車両並びに蓄電装置、及び電池の残容量の検出方法
US20130311119A1 (en) Method of detecting battery full-charge capacity
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP5389425B2 (ja) ハイブリッドカーの充放電制御方法
JP5397013B2 (ja) 組電池の制御装置
JP2007513594A (ja) リチウムイオンまたはリチウムポリマーのバッテリをバランス充電するための方法
KR20100085791A (ko) 축전지팩의 제어 관리 장치 및 그 방법
US9148031B2 (en) Apparatus and method for varying usable band range of battery
CN102565716A (zh) 用于计算二次电池的残余容量的设备
JP2010098866A (ja) 不均衡判定回路、不均衡低減回路、電池電源装置、及び不均衡判定方法
WO2012140776A1 (ja) 充電制御装置
JP2010217070A (ja) 容量推定装置および車両
JP5772615B2 (ja) 蓄電システム
CN109884544A (zh) 一种电池soc控制算法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551030

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976667

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011852347

Country of ref document: EP