WO2004051785A1 - 電池パックとその充放電方法 - Google Patents

電池パックとその充放電方法 Download PDF

Info

Publication number
WO2004051785A1
WO2004051785A1 PCT/JP2003/015534 JP0315534W WO2004051785A1 WO 2004051785 A1 WO2004051785 A1 WO 2004051785A1 JP 0315534 W JP0315534 W JP 0315534W WO 2004051785 A1 WO2004051785 A1 WO 2004051785A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
voltage
discharging
control circuit
Prior art date
Application number
PCT/JP2003/015534
Other languages
English (en)
French (fr)
Inventor
Takuma Iida
Naoyoshi Shibuya
Hiroki Saito
Hiroki Takeshima
Kiyoto Watanabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2004556907A priority Critical patent/JP4134986B2/ja
Priority to US10/506,295 priority patent/US7135839B2/en
Publication of WO2004051785A1 publication Critical patent/WO2004051785A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack composed of a secondary battery such as an alkaline storage battery and a battery control method such as a charge / discharge method for effectively using the battery pack, and particularly to a nickel battery used in such a battery pack. Efficiently use the battery capacity of the secondary batteries that make up the battery pack, as well as the battery control method when charging and discharging a battery pack composed of a secondary battery such as a monolithic storage battery. It is about the method. Background art
  • the battery capacity is reduced due to the inactivation of the battery during repeated charging / discharging. If the battery is left for a long time, the battery voltage tends to decrease due to self-discharge of the battery.
  • the cause of the inactivation of these batteries is that the oxides are reduced at the positive electrode and hydrides are oxidized at the negative electrode by repeated charge and discharge. In order to eliminate the inactive state of the battery due to these factors, refresh charge / discharge is necessary.
  • FIG. 3 is a block diagram of a battery pack for explaining an example of a method of displaying the capacity of a secondary battery used for such conventional refresh charge / discharge.
  • the battery pack (or battery pack) 101 used in the capacity display method is a secondary battery of the type whose capacity that can be discharged decreases due to the memory effect when charging and discharging are repeated.
  • 103 a remaining capacity indicator that displays the remaining capacity of the pack battery by the number of lighting of multiple pilot lamps, liquid crystal display, etc., and a current detection circuit that detects the charge current and discharge current of the battery 1 14 and a temperature sensor 104 disposed in contact with the secondary battery 103 to detect the temperature of the secondary battery 103, and a semiconductor switching element such as an FET or a transistor.
  • the control circuit 1 07 and the rechargeable battery 103 In order to eliminate the re-effect, a refresh circuit 108 for deeply discharging the secondary battery 103 and a refresh indicator 109 for displaying refresh are provided.
  • the temperature sensor 104 of the battery pack 101 detects the temperature of the secondary battery 103 and inputs a temperature signal to the control circuit 107.
  • the switch 106 is controlled by the control circuit 107 and is turned on when the secondary battery 103 is charged. When the battery is fully charged, the switch 106 is turned off and the secondary battery 106 is turned off. Prevent overcharge of battery 103. Further, the switch 106 is controlled by the control circuit 107 so as to be turned on when the secondary battery 103 is discharged, but when the secondary battery 103 is completely discharged, the switch 106 is turned on.
  • the control circuit 107 includes a counter 110 for counting the number of times of charging the secondary battery 103 and an arithmetic circuit 111.
  • the arithmetic circuit 1 1 1 calculates the refresh time by comparing the count value of the counter 1 1, 1 with the set value, and detects the charge state and the discharge state of the secondary battery 103 to switch 1. Then, the remaining capacity is calculated from the charging current and the discharging current.
  • the counter 110 counts the number of times of charging by adding 1 to the count value when charging, and resets the count value to 0 when the secondary battery 103 is refreshed.
  • the counter 110 When charging by connecting a charger (not shown) or the like, the counter 110 detects a change in the voltage of the output terminal 105 to detect the charging state.
  • a current detection circuit 114 is connected between the secondary battery 103 and the output terminal 105, and a charge current and a discharge current are detected by voltages generated at both ends of the current detection circuit 114.
  • the arithmetic circuit 111 compares the number of times the battery pack 101 has been charged, that is, the count value of the counter 110 with the set value, and when the count value exceeds the set value, determines that it is time to refresh. Inform.
  • the memory effect of the rechargeable battery 103 tends to occur when the temperature is high, and the memory effect is unlikely to occur when the temperature is low. Is not directly compared with the set value, but is programmed and controlled so that the count value is corrected according to the battery temperature to determine the refresh time.
  • the present invention has been made to solve the problems in the conventional method of refreshing and charging a secondary battery as described above, which constitutes a battery pack. Even if the secondary battery is left inactive for a long time and becomes inactive, it is refreshed.
  • An object of the present invention is to provide a technology that enables charging and discharging and that allows a secondary battery to be used effectively.
  • a battery pack of the present invention includes a battery group in which a plurality of secondary batteries as unit batteries are connected, a plurality of sensors for detecting temperature and voltage, and a display for displaying a state of the battery group.
  • the battery pack of the present invention includes: a battery group in which a plurality of secondary batteries as unit batteries are connected; a plurality of sensors for detecting temperature and voltage; display means for displaying a state of the battery group; A battery pack comprising a switch for controlling charging and discharging, and an arithmetic and control circuit for displaying a state of a battery group on a display means based on signals from a plurality of sensors and generating a signal for operating the switch. For another predetermined time from the start of charging, a non-detection timer that controls the sensor not to detect voltage is provided in the control circuit. The control circuit counts the number of times the voltage has risen above the predetermined set voltage.
  • the battery pack of the present invention includes a battery group in which a plurality of secondary batteries as unit batteries are connected, a plurality of sensors for detecting temperature and voltage, a display means for displaying a state of the battery group, and a charging of the battery group.
  • a battery pack comprising: a switch for controlling discharge; and a calculation and control circuit for displaying a state of a battery group on a display means based on signals from a plurality of sensors and generating a signal for operating the switch.
  • a non-detection timer that controls the sensor not to detect the voltage is provided in the control circuit, and the battery voltage is set within another predetermined time.
  • the control circuit counts the number of times that the voltage has exceeded the specified voltage.
  • the control circuit counts the number of times, or the recovery voltage after a lapse of a specified time after the battery reaches the discharge end voltage. If it becomes lower, and has a configuration with a refresh request display means for displaying the refresh discharge is required.
  • the battery pack of the present invention indicates that refresh charging / discharging is necessary if the recovery voltage after the passage of 1 or more from the secondary battery reaches the discharge end voltage is 1.15 V or less.
  • the secondary battery is composed of a positive electrode mainly composed of nickel oxide, a negative electrode, a storage battery provided with a separator and an alkaline electrolyte, and the negative electrode is hydrogen.
  • the sensor for detecting the temperature detects the temperature of the secondary battery, and the arithmetic and control circuit calculates the temperature change rate based on the detected temperature. When the frequency exceeds the range, a switch for controlling charging and discharging of the battery group is used to generate a signal for stopping charging.
  • a battery charging / discharging method of the present invention displays a battery group in which a plurality of secondary batteries serving as unit batteries are connected, a plurality of sensors for detecting temperature and voltage, and a state of the battery group.
  • the secondary battery is configured to perform refresh charging / discharging when a recovery voltage after a lapse of a predetermined time from reaching the discharge end voltage is equal to or lower than a predetermined voltage.
  • the battery charging / discharging method of the present invention displays a battery group in which a plurality of secondary batteries as unit batteries are connected, a plurality of sensors for detecting temperature and voltage, and a state of the battery group.
  • Display means a switch for controlling charging and discharging of the battery group, and an arithmetic and control circuit for displaying a state of the battery group on the display means based on signals from the plurality of sensors and generating a signal for operating the switch.
  • a non-detection timer equipped with a calculation and control circuit controls the sensor so that it does not detect the voltage, and the battery voltage is set to a predetermined voltage within another predetermined time from the start of charging.
  • the arithmetic and control circuit counts the number of times that the above occurs, and performs a refresh charge / discharge when the number of times reaches a predetermined number or more.
  • the method for charging and discharging a battery includes a battery group in which a plurality of secondary batteries as unit batteries are connected, a plurality of sensors for detecting temperature and voltage, a display means for displaying a state of the battery group, A switch for controlling charging and discharging of the battery group, and an arithmetic and control circuit for displaying a state of the battery group on a display means based on signals from a plurality of sensors and generating a signal for operating the switch.
  • a non-detection timer provided in the calculation and control circuit controls the sensor to not detect the voltage, and the battery voltage becomes higher than the predetermined voltage within another predetermined time from the start of charging.
  • the control circuit counts the number of times the battery has reached the predetermined number of times, or the recovery voltage after a predetermined period of time has elapsed since the secondary battery reached the discharge termination voltage. What In such a case, a refresh charge / discharge operation is performed in the event of a failure.
  • the method for charging and discharging a battery according to the present invention includes the steps of: performing refresh charging and discharging when the recovery voltage after one day or more has been reduced to 1.15 V or less from the discharge end voltage of the secondary battery. It has a configuration.
  • the method for charging and discharging a battery according to the present invention is characterized in that, during refresh charge / discharge, the value representing the rated capacity of the battery is defined as It, and the charge is performed up to 90 to 120% of the initial capacity at 5.0 It or less. Further, the operation is performed from 150 to 200% .
  • the timer function provided in the control circuit allows time-controlled charging at 2.01 t or less.
  • the sensor detects the temperature of the rechargeable battery and performs the operation.
  • the control circuit calculates the temperature change rate based on the detected temperature, and if it exceeds a predetermined range set as the temperature change rate, controls to send a signal to stop charge to the switch that manages charging and discharging of the battery group.
  • the configuration in which the temperature change rate is set to 0.5 to 4.0 ° C / min the configuration in which the temperature change rate is set to 1.0 to 3.0 ° C / min, the constant current charging and discharging method, Constant voltage charge / discharge method, or constant current charge / discharge method and constant power.
  • charging / discharging is performed by any one of the methods using the pressure charging / discharging method together.
  • FIG. 1 is a block diagram of a battery pack shown for explaining a capacity display method used for refresh charge / discharge of a secondary battery according to the present invention.
  • FIG. 2 (a) is a cross-sectional view cut in the vertical direction on a plane passing through the center of the positive electrode terminal of the alkaline storage battery included in the battery pack according to the present invention.
  • FIG. 2 (b) is a cross-sectional view of the battery pack included in the battery pack according to the present invention shown in FIG. 2 (a), taken along line AA ′.
  • FIG. 3 shows an example of a conventional capacity display method for a secondary battery used for refresh charging and discharging.
  • FIG. 3 is a block diagram of a battery pack shown for explaining the following. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram of a battery pack shown to explain a capacity display method used for refresh charge / discharge of a secondary battery according to the present invention.
  • a battery pack also referred to as a battery pack
  • a battery voltage detection unit 1 for reading the voltage of a secondary battery 12 constituting the battery pack 101 and a secondary battery 12.
  • the detection signals from these sensor groups are input to an arithmetic and control circuit 4 using semiconductor elements such as microcomputer ICs, and the arithmetic and control circuit 4 sends the signals to a charge cutoff control unit 5 composed of switch elements such as FETs.
  • a signal is sent, and the charging current is controlled by the charging current cut-off means 6, which also comprises a switch element such as an FET.
  • the arithmetic / control circuit 4 also displays the temperature abnormality based on information from the temperature sensor 13 for temperature detection, such as the battery temperature and the rate of change of the temperature, when the temperature abnormality is detected.
  • a signal is output to the abnormality display means 7 composed of, for example, an LED.
  • the arithmetic and control circuit 4 compares the battery voltage read by the battery voltage detection unit 1 with a predetermined battery voltage, and when it is lower than the set value, indicates that refresh charging / discharging is necessary.
  • a signal is output to the refresh request display means 13 constituted by, for example, an LED. Then, based on this display, the refresh switch 15 is turned on, a signal from the arithmetic and control circuit 4 is sent to the charge cutoff control section 5, and refresh charging is performed by switching control of the charge current cutoff means 6.
  • a refresh discharge circuit 14 for performing a refresh discharge and a discharge circuit interrupting means 8 composed of a switching element for interrupting the discharge by a signal from the arithmetic and control circuit 4 are packed.
  • the battery 101 is provided.
  • the pack battery 101 used for refresh charging / discharging of the secondary battery is capable of measuring the voltage and the rate of voltage change when such a rapid voltage rise occurs at the beginning of charging.
  • the voltage detected by the voltage detector 1 is calculated.
  • the voltage of the rechargeable battery at the start of charging for a certain period of time non-detection time
  • the calculation and control circuit 4 has a non-detection timer (not shown) for preventing the detection of a rise in the pressure.
  • the battery voltage read by the battery voltage detector 1 is compared with a predetermined battery voltage. If the battery voltage is lower than the set value, the battery voltage lower than the set value is read by the battery voltage detector 1.
  • the control circuit 4 counts the number of times the refresh operation has been performed. If the number of times exceeds a set value, the refresh request display means 13 constituted by an LED or the like for indicating that refresh charging / discharging is necessary 13 Output the signal. Also in this case, refresh discharge is performed by the refresh discharge circuit 14 and the discharge circuit cutoff means 8 based on the display of the refresh request display means 13.
  • a signal is sent to the remaining amount display means 9 and the deterioration detection means 10 constituted by LEDs to perform various display processes. It is also possible to use a semiconductor element such as FET or a relay as a switching element constituting the charge cutoff control unit 5, the charge current cutoff means 6, and the discharge circuit cutoff means 8.
  • the method for refreshing and discharging a battery pack composed of a secondary battery such as a rechargeable battery in the present invention is a method for managing an inactivated secondary battery using a charge / discharge control circuit having a refresh function. It is.
  • the management method is described below in detail.
  • FIG. 2A is a cross-sectional view of the alkaline storage battery included in the battery pack according to the present invention, which is cut in a vertical direction along a plane passing through the center of the positive electrode terminal.
  • a strip-shaped positive electrode plate 23 mainly composed of nickel oxide and a strip-shaped negative electrode are shown.
  • a plate group 20 is formed by sandwiching the plate 24 with a strip-shaped separator 25 interposed therebetween and electrically insulating the plate 24, and the plate group 20 is spirally wound with a core having a predetermined diameter. After forming the coil, it is wound around the electrode plate group 20 with insulating tape and fixed, and a substantially circular metal current collector is mounted on the projections 27 of the positive and negative electrode plates with a copper welding rod. Welded.
  • the structure of the secondary battery included as a unit battery in the battery pack according to the present invention is not limited to the alkaline storage battery shown in FIG. 2, but includes a negative electrode plate 4 in which a hydrogen storage alloy powder is applied to a core material.
  • the used nickel-hydrogen storage battery may be used.
  • the battery voltage detection unit 1 constantly monitors the entire voltage obtained by adding up all the secondary batteries included in the battery pack 101.
  • the battery voltage gradually rises from the end-of-discharge voltage after the end of discharge and recovers to the recovery voltage.
  • the time required for recovery is about two to three hours at the earliest, and may take one day or more depending on the condition of the secondary battery.
  • the battery voltage of the unit battery constituting the secondary battery 12 included in the battery pack 101 that is, the recovery voltage becomes inactive at 1.15 V or less after a lapse of a predetermined time from the end of discharge. In this case, the battery voltage decreases and the internal resistance increases.
  • the electrode plate can be activated and the generation of oxygen and hydrogen gas can be suppressed, thereby making it possible to extend the life of the battery.
  • the battery voltage (recovery voltage) of this unit battery has been discharged, If the voltage drops below 1.15 V / ce 11 after the elapse, a signal is sent from the battery voltage detection unit 1 to the arithmetic and control circuit 4 composed of a microcomputer, etc., and the arithmetic and control circuit 4 displays a refresh request. A signal is sent to means 13 and displayed.
  • the refresh switch 15 connected to the arithmetic and control circuit 4 is pressed after seeing the display indicating that the battery capacity has decreased and the refresh charge is required, the arithmetic and control circuit 4 starts the refresh charge.
  • the signal is transmitted to the charge cutoff control unit 5 including a switch element such as an FET.
  • the charge cutoff control section 5 turns on the switch of the charging current cutoff means 6, which is also a switch element such as an FET, and starts charging.
  • the battery be charged to 90 to 120% of the initial capacity at 5.0 It or less and further charged to 150 to 200% at a low current of 2.01 t or less. It is desirable to discharge.
  • the electrode plate can be activated while suppressing gas generation, and the service life can be extended.
  • It is a value representing the rated capacity of the battery, and the charge / discharge current is generally expressed by a multiple of this. For example, when the battery capacity is 1 Ah, 1 A is equal to 1.0 It. And 2 A becomes 2.0 It.
  • FIG. 1 does not show a charging power supply connected to the terminal 16 of the battery pack 101
  • the type of the input charging power supply is It is possible to use either constant current charging, constant voltage charging, or a method using both constant current and constant voltage.
  • a sensor 3 for detecting the temperature of, for example, thermistor provided at the periphery of the battery constantly monitors the temperature of the battery.
  • the temperature detecting sensor 3 is usually a thermistor of NTC (Neighbor Temperature Coefficient) type.
  • a signal is sent from the battery voltage detection unit 1 to the arithmetic and control circuit 4 configured by a microcomputer IC or the like, and the arithmetic and control circuit 4 is charged.
  • the stop is transmitted to the charge cutoff control unit 5 including a switch element such as an FET.
  • the switch of the charging current cutoff means 6, which is also composed of a switch element such as an FET, is cut off, and charging is stopped.
  • the temperature change rate ⁇ of the battery temperature at which charging is stopped is less than 0.5 ° C / min, it will take a long time to charge and discharge, and if it is greater than 4.0 ° CZmin, the battery will deteriorate extremely. Therefore, the temperature is preferably 0.5 to 4.0 ° C / min. More preferably, the temperature change rate ⁇ of the battery temperature at which charging is stopped is 1.0 to 3.0 ° C./min in consideration of appropriate charging / discharging work time and battery life. When the temperature change rate ⁇ of the battery temperature at which charging is stopped is equal to or greater than this value, that is, charging and discharging are performed at 5.0 It or more, the relationship between overcharging and the increase in gas generation has been described above.
  • the charging current is changed to 2.0 It, and an arithmetic and control circuit 4 configured with a microcomputer to 150 to 200% of the initial capacity is provided.
  • Time management charging also called timer charging
  • the calculation and control circuit 4 counts the charging time.
  • the charging time is set to 30 minutes
  • the calculation configured by a microcomputer or the like after 30 minutes has elapsed.
  • a signal is sent again from the control circuit 4 to the charge cutoff control unit 5 composed of a switch element such as an FET, and the switch of the charging current cutoff means 6 also composed of a switch element such as an FET is cut off to stop charging. .
  • the remaining capacity display means 9 constituted by an LED in FIG. 1 includes, for example, a remaining capacity meter for displaying the remaining capacity with five-stage LEDs. It can be used.
  • various secondary batteries including alkaline storage batteries such as nickel-hydrogen storage batteries can be eliminated, and the batteries can be used effectively.
  • the nature of the power source for charging inputted to the battery pack can be constant current charging, constant voltage charging, or a method using both constant current and constant voltage.
  • the charging / discharging method can be applied to various devices including a secondary battery such as an alkaline storage battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

ニッケル−水素蓄電池をはじめとする二次電池をリフレッシュし、電池の不活性化を抑制することが可能な電池パックおよびその充放電方法である。具体的には、単位電池となる二次電池を複数接続した電池群と、温度および電圧を検出する複数のセンサーと、電池群の状態を表示する表示手段と、電池群の充放電を制御するスイッチと、複数のセンサーの信号に基づき、電池群の状態を表示手段に表示させ、且つ、スイッチを動作させる信号を発生する演算・制御回路(4)とを備えた電池パック(101)において、リフレッシュ充放電が必要であることを表示するためのリフレッシュ要求表示手段(13)を備え、二次電池が放電終止電圧に至ってから、所定時間経過後の回復電圧が所定電圧以下の場合、自動的にリフレッシュ充放電を行なう方法を利用する。これにより、長期間放置され、不活性になった二次電池の場合でもリフレッシュ充放電することが可能となる。

Description

明 細書
電池パックとその充放電方法 技術分野
本発明は、 アル力リ蓄電池等の二次電池で構成される電池パックと電池パック を有効に使用するための充放電方法等の電池制御方法に関し、 特にこのような電 池パックに用いられるニッケル一水素蓄電池等のアル力リ蓄電池からなる二次電 池で構成される電池パックの充放電時の電池制御方法ならぴに、 電池パックを構 成する二次電池の電池容量を有効に活用させる方法に関するものである。 背景技術
近年、 エレク トロニクス技術の目覚しい発展により、 電子機器の小型、 軽量化 が可能となり、 コードレス化、 ポータブノレ化が急速に進展した。 これらの機器の 進展に伴い、 電子機器用電源も小型、 軽量で高エネルギー密度の電池 (蓄電池: 二次電池) への要望が増大してきている。 そして、 この電池は、 電動工具を中心 とするパワー用途や、 バックアップ用途などを始めとして、 多くの用途の電源に 使われてきている。 これらの電源に用いる (二次) 電池としては、 これまでニッ ケル一カドミウム蓄電池が幅広く使われてきた。 し力 しながら、 高まる高容量化 要望と世界的な環境問題への高まりにより、 最近ではニッケル一力ドミゥム蓄電 池に代る商品として、 ニッケル一水素蓄電池が開発され、 市場に浸透してきてい る。
従来、 これらの二次電池を用いて構成した電池パックでは、 充放電を繰り返す うちに電池が不活性化することにより電池容量が減少し、 +分な電池容量を得る ことができなくなることに加え、 電池が長期放置されると電池の自己放電等によ り電池電圧が低下する傾向があった。 これらの電池の不活性化の原因は、 充放電 の繰り返しにより、 正極では酸化物が還元され、 負極では逆に水素化物が酸ィ匕さ れるためであり、 これらの要因による電池の不活性状態を解消するには、 リフレ ッシュ充放電が 、要である。
このリフレッシュ充放電をするための各種の方法が考えられている。 例を挙げ ると、 充電回数、 または放電回数をカウントすることによってリフレッシュ放電 を必要とする表示をさせたり、 また、 電池温度が高くなると電池のメモリ効果が 発生しやすくなつたりするため、 温度によってカウント数を増やし、 リフレツシ ュする充電回数を少なくする方法が提案されている (例えば、 日本公開特許公報 特開 2 0 0 1— 1 2 6 7 7 6号参照)。
図 3は、 このような従来のリフレツシュ充放電に使用される二次電池の容量表 示方法の一例を説明するために示したパック電池のブロック図である。 図 3にお いて、 容量表示方法に使用されるパック電池 (または、 電池パック) 1 0 1は、 充電と放電を繰り返すと、 メモリ効果によって、 放電できる容量が少なくなる夕 ィプの二次電池 1 0 3と、 複数パイロットランプの点灯個数や液晶表示等でパッ ク電池の残存容量を表示する残存容量表示器 1 1 3と、 電池の充電電流と放電電 流とを検出する電流検出回路 1 1 4と、 二次電池 1 0 3に接触するように配設さ れて二次電池 1 0 3の温度を検出する温度センサー 1 0 4と、 F E Tやトランジ ス夕一等の半導体スイッチング素子からなって、 二次電池 1 0 3と出力端子 1 0 5との間に接続されたスィッチ 1 0 6と、 このスィッチ 1 0 6を制御するととも に、 残存容量を演算し、 さらに、 リフレッシュの時期を演算する制御回路 1 0 7 と、 二次電池 1 0 3のメモリ効果を解消するために二次電池 1 0 3を深く放電さ せるリフレッシュ回路 1 0 8と、 リフレッシュを表示するリフレッシュ表示器 1 0 9とを備えている。
パック電池 1 0 1の温度センサー 1 0 4は、二次電池 1 0 3の温度を検出して、 温度信号を制御回路 1 0 7に入力する。 スィッチ 1 0 6は、 制御回路 1 0 7に制 御されて、 二次電池 1 0 3を充電するときにオンに切り換えられ、 満充電になる とスィッチ 1 0 6はオフに切り換えられて二次電池 1 0 3の過充電を防止する。 また、 スィッチ 1 0 6は、 制御回路 1 0 7に制御されて、 二次電池 1 0 3を放電 するときにもオンに切り換えられるが、 二次電池 1 0 3が完全に放電されると、
0.6は再びオフに切り換えられて二次電池 1 0 3の過放電を防止する。 制御回路 1 0 7は、 二次電池 1 0 3の充電回数をカウントするカウンター 1 1 0と演算回路 1 1 1とを備えている。 演算回路 1 1 1はカウン夕一 1 1 ,0のカウ ント値を設定値と比較してリフレッシュする時期を演算するとともに、 二次電池 1 0 3の充電状態と放電状態を検出してスィッチ 1 0 6を制御し、 さらに、 充電 電流と放電電流から残存容量を演算する。 カウンター 1 1 0は、 充電するときに カウント値に 1をプラスして充電回数をカウン卜し、 二次電池 1 0 3をリフレツ シュするときはカウント値を 0にリセットする。 また、 カウン夕一 1 1 0は、 充 電器.(図示せず) 等を接続して充電するときは、 出力端子 1 0 5の電圧変化を検 出して充電状態を検出する。 二次電池 1 0 3と出力端子 1 0 5との間に電流検出 回路 1 1 4を接続し、 この電流検出回路 1 1 4の両端に発生する電圧で充電電流 と放電電流を検出する。演算回路 1 1 1は、パック電池 1 0 1の充電回数、即ち、 カウンター 1 1 0のカウント値を設定値と比較して、 カウン卜値が設定値以上に なると、 リフレッシュの時期であることを知らせる。 ただし、 二次電池 1 0 3は 一般に、 温度が高くなるとメモリ効果が発生しやすく、 温度が低くなるとメモリ 効果は発生し難くなるので、 演算回路 1 1 1がカウン夕一 1 1 0のカウント値を 直接には設定値と比較せず、 電池温度によってカウント値を補正してリフレツシ ュ時期を判定するようにプログラムして制御される。
このような従来の二次電池の容量表示方法では、 リフレッシュ放電の間におい て、 二次電池が満充電された状態から放電停止電圧まで放電されるときには、 放 電電流の積算値から満充電容量を演算し、 演算された満充電容量から残存容量を 補正し、 その後カウント値で残存容量を補正している。 また、 二次電池の充電回 数をカウントし、 充電回数が所定の回数になると二次電池のリフレッシュ表示を している。 さらに、 電池の温度を検出して、 電池温度が高くなると、 二次電池を リフレッシュする充電回数を少なくしている。
しかしながらこのような充電回数をカウントする方法では、 電池の真の充放電 状態に関係なく、 充 ·放電の回数によりリフレッシュ充 ·放電するため、 長期放 置され、 電池が不活性になった場合には、 リフレッシュ充 *放電の表示がなされ ないという課題があった。 少し具体的に説明すると、 充*放電回数が 5 0回でリ フレツシュ充 ·放電される充放電システムの場合、 例えば、 2 5回充 ·放電した 後に、 充電も放電もされない状態のままで長期間放置されて電池が不活性になつ た場合には、 充電回数が 5 0回に満たないため、 リフレッシュ充 '放電されずに 通常の充'放電がされることにより、 電池がメモリ効果を起こしたり、 電池が不 活性な状態であったりするために内部抵抗が高くなつて大電流放電が十分にでき ずに電池を有効に活用できないという解決すべき課題である。
本発明は、 電池パックを構成する上記のような従来の二次電池のリフレツシュ 充放電の方法における課題を解決するためになされ、 長期間放置され、 不活性に なつた二次電池の場合でもリフレツシュ充放電することが可能となり、 二次電池 を有効活用できるようにするための技術を提供することを目的とする。
- 発明の開示
上記目的を達成するために、 本発明の電池パックは、 単位電池となる二次電池 を複数接続した電池群と、 温度および電圧を検出する複数のセンサ一と、 電池群 の状態を表示する表示手段と、 電池群の充放電を制御するスィッチと、 複数のセ ンサ一の信号に基づき、 電池群の状態を表示手段に表示させ、 且つ、 スィッチを 動作させる信号を発生する演算 ·制御回路とを備えた電池パックであって、 二次 電池が放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定電圧以下の 場合、 リフレッシュ充放電が必要であることを表示するためのリフレッシュ要求 表示手段を備えた構成を有している。
また、 本発明の電池パックは、 単位電池となる二次電池を複数接続した電池群 と、 温度および電圧を検出する複数のセンサ一と、 電池群の状態を表示する表示 手段と、電池群の充放電を制御するスィッチと、複数のセンサ一の信号に基づき、 電池群の状態を表示手段に表示させ、 且つ、 スィッチを動作させる信号を発生す る演算 ·制御回路とを備えた電池パックであって、 充電開始時から、 別の所定の 時間の間は、 センサーが電圧を検知しないように制御する不検知タイマ一を演 算 ·制御回路に備え、 且つ、 別の所定の時間内に電池電圧が所定の設定電圧以上 になった回数を演算 ·制御回路がカウン卜し、 回数が所定の回数以上になると、 リフレツシュ充放電が必要であることを表示するためのリフレツシュ要求表示手 段を備えた構成を有している。 また、 本発明の電池パックは、 単位電池となる二次電池を複数接続した電池群 と、 温度および電圧を検出する複数のセンサーと、 電池群の状態を表示する表示 手段と、電池群の充放電を制御するスィッチと、複数のセンサ一の信号に基づき、 電池群の状態を表示手段に表示させ、 且つ、 スィッチを動作させる信号を発生す る演算 ·制御回路とを備えた電池パックであって、 充電開始時から、 別の所定の 時間の間は、 センサーが電圧を検知しないように制御する不検知タイマーを演 算 ·制御回路に備え、 且つ、 別の所定の時間内に電池電圧が所定の設定電圧以上 になった回数を演算 ·制御回路がカウントし、 回数が所定の回数以上になるか、 または、 電池が、 放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定 電圧以下になった場合に、 リフレッシュ充放電が必要であることを表示するため のリフレッシュ要求表示手段を備えた構成を有している。
さらに、 本発明の電池パックは、 二次電池が放電終止電圧に至ってから、 1曰 以上経過した後の回復電圧が 1 . 1 5 V以下の場合、 リフレッシュ充放電が必要 であると表示するためのリフレッシュ要求表示手段を備えた構成、 二次電池が、 ニッケル酸化物を主体とする正極と、 負極と、 セパレ一夕、 およびアルカリ電解 液を備えたアル力リ蓄電池である構成、 負極が水素吸蔵合金からなる構成ととも に、温度を検知するセンサーは、二次電池の温度を検出し、且つ演算制御回路は、 検出された温度により温度変化率を演算し、 温度変化率が設定した所定の範囲を 越えると、 電池群の充放電を制御するスィッチにより充電を停止させる信号を生 成する構成をも有している。
上記目的を達成するために、 本発明の電池の充放電方法は、 単位電池となる二 次電池を複数接続した電池群と、 温度および電圧を検出する複数のセンサーと、 電池群の状態を表示する表示手段と、 電池群の充放電を制御するスィッチと、 複 数のセンサ一の信号に基づき、 電池群の状態を表示手段に表示させ、 且つ、 スィ ツチを動作させる信号を発生する演算 ·制御回路とを備えた電池パックにおいて、 二次電池が、 放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定電圧 以下の場合、 リフレッシュ充放電を行なう構成を有している。
また、 本発明の電池の充放電方法は、 単位電池となる二次電池を複数接続した 電池群と、 温度および電圧を検出する複数のセンサ一と、 電池群の状態を表示す る表示手段と、 電池群の充放電を制御するスィッチと、 複数のセンサーの信号に 基づき、 電池群の状態を表示手段に表示させ、 且つ、 スィッチを動作させる信号 を発生する演算 ·制御回路とを備えた電池パックにおいて、 演算 ·制御回路が備 える不検知タイマーにより、 センサーが電圧を検知しないように制御し、 充電開 始時から、 別の所定の時間内に電池電圧が所定の設定電圧以上になった回数を演 算 ·制御回路にカウントさせ、 回数が所定の回数以上になると、 リフレッシュ充 放電を行なう構成を有している。
また、 本発明の電池の充放電方法は、 単位電池となる二次電池を複数接続した 電池群と、 温度および電圧を検出する複数のセンサーと、 電池群の状態を表示す る表示手段と,、 電池群の充放電を制御するスィッチと、 複数のセンサ一の信号に 基づき、 電池群の状態を表示手段に表示させ、 且つ、 スィッチを動作させる信号 を発生する演算 ·制御回路とを備えた電池パックにおいて、 演算 ·制御回路が備 える不検知タイマーにより、 センサ一が電圧を検知しないように制御し、 充電開 始時から、 別の所定の時間内に電池電圧が所定の設定電圧以上になった回数を演 算 ·制御回路にカウントさせ、 回数が所定の回数以上になるか、 または、 二次電 池が、 放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定電圧以下に なった場合に、 リフレッシュ充放電を行なう構成を有している。
また、 本発明の電池の充放電方法は、 二次電池が放電終止電圧に至ってから、 1日以上経過した後の回復電圧が 1 . 1 5 V以下になった場合に、 リフレッシュ 充放電を行なう構成を有している。
また、 本発明の電池の充放電方法は、 リフレッシュ充放電のとき、 電池の定格 容量を表す値を I tとして、 5 . 0 I t以下で初期容量の 9 0〜1 2 0 %まで充 電し、さらに 1 5 0〜2 0 0 %まで演算 ·制御回路が備えるタイマー機能により、 2 . 0 1 t以下で時間管理充電する構成、 二次電池の温度をセンサ一が検出し、 且つ演算 ·制御回路が検出された温度により温度変化率を演算し、 温度変化率に て設定した所定の範囲を越えると、 電池群の充放電を管理するスィッチに充電を 停止させる信号を送るように制御する構成、 温度変化率を 0 . 5〜4. 0 °C/m i nに設定した構成、 温度変化率を 1 . 0〜3 . 0 °C/m i nに設定した構成に 加え、 定電流充放電方法、 定電圧充放電方法、 あるいは定電流充放電方法と定電. 圧充放電方法を併用する方法の内のいずれかの方法により充放電を行なう構成も 有している。
これらの構成により、 電池パックに含まれる二次電池を構成する単位電池の電 池電圧が 1 . 1 5 V以下で不活性状態の場合、 電池電圧が低下したり、 内部抵抗 が増加する。 これは極板の反応性が低下したり、 電池内の液分布が均一でなくな つたりするため生ずる現象であり、 本来の充放電反応の他に副反応として、 水の 分解反応が生じ、酸素や水素ガスが発生し、このガスにより電池の劣化が加速し、 短寿命になってしまう。 このとき、 リフレッシュ充放電を実施することにより、 極板の活性化が図れ、 酸素、 水素ガスの発生を抑制できるため、 電池を長寿命化 することが可能になる。
また、 充電初期に急激な電圧上昇をしたときや、 急激に放電させたとき等のよ うに、大電流で充放電されると電池内部で副反応が促進され、ガス発生量が増え、 電池の劣化が加速されることになり、二次電池はさらに短寿命となる。このため、 当初は 5 . 0 1 t以下で初期容量の 9 0〜1 2 0 %まで充電し、 その後さらに、 2 . 0 I t以下の低電流で 1 5 0〜2 0 0 %まで充電してから放電することによ り、 ガス発生を抑制でき、 極板を活性化できるため、 二次電池の長寿命化が可能 となる。
さらに、 二次電池のリフレッシュ充放電をする毎に、 残存容量をリセットする ことにより、 極板の不活性化による電池パックの充電効率の低下が要因となる容 量低下を補正することができ、 効率のよい充放電が可能となる。 図面の簡単な説明
図 1は本発明の二次電池のリフレッシュ充放電に使用される容量表示方法を説 明するために示したパック電池のブロック図である。
図 2 ( a ) は本発明における電池パックに含まれるアルカリ蓄電池の正極端子 の中心を通る平面で縦方向に切断した断面図は図である。
図 2 ( b ) は図 2 ( a ) に示した本発明における電池パックに含まれるアル力 リ蓄電池を A— A '線で切断した断面図である。
図 3は従来のリフレツシュ充放電に使用される二次電池の容量表示方法の一例 を説明するために示したパック電池のブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施形態における二次電池を用いた電池パックおよびそのリフ レッシュ充放電方法について図面を参照しながら説明する。
図 1に本発明の二次電池のリフレッシュ充放電に使用される容量表示方法を説 明するために示したパック電池のブロック図を示す。図 1においてパック電池 (電 池パックとも称する) 1 0 1には、 パック電池 1 0 1を構成する二次電池 1 2の 電圧を読み取る電池電圧検知部 1と、 二次電池 1 2に接続されるシャント抵抗 1 1により、 電流を検知して電池が充放電されたかどうかの判定をする充放電電流 検知部 2と、 例えばサーミス夕等の温度検知用の温度センサ一 3等のセンサ一群 が含まれている。 これらのセンサー群からの検知信号をマイコン I C等の半導体 素子を用いて構成される演算 ·制御回路 4に入力してこの演算 ·制御回路 4から F E T等のスィッチ素子からなる充電遮断制御部 5に信号を送り、 やはり、 F E T等のスィッチ素子からなる充電電流遮断手段 6により充電電流を制御する。 ま た、 演算 ·制御回路 4は温度検知用の温度センサ一 3からの電池温度やその温度 の変化率などの情報に基づき、 温度異常などが検出されたときに、 この異常を表 示するため、 例えば L E D等で構成される異常表示手段 7に信号を出力する。 また、 演算 ·制御回路 4は、 電池電圧検知部 1で読み取った電池電圧と所定の 電池電圧とを比較し、 設定値より低い場合には、 リフレッシュ充放電が必要であ ることを表示するため、 例えば L E D等で構成されたリフレツシュ要求表示手段 1 3に信号を出力する。 そしてこの表示に基づき、 リフレッシュスィッチ 1 5を オンさせて演算 ·制御回路 4からの信号を充電遮断制御部 5に送り、 充電電流遮 断手段 6のスイッチング制御により、 リフレッシュ充電を行なう。 この他に、 リ フレツシュ放電を行なぅリフレツシュ放電回路 1 4と演算 ·制御回路 4からの信 号により、 放電を遮断するためのスィツチング素子で構成される放電回路遮断手 段 8とを、 パック電池 1 0 1は備えている。
さらに、二次電池が不活性の場合、充電開始直後は、急激な電圧上昇が発生し、 充電が進むとこの急激な上昇は解消され、 緩やかな電圧上昇になるのであるが、 本発明の実施の形態における二次電池のリフレツシュ充放電に使用されるパック 電池 1 0 1は、 このような充電初期に急激な電圧上昇が起こった時に、 電圧およ び電圧変化率などを電池電圧検知部 1が検知して演算 ·制御回路 4の電圧制御に よって充電が停止するのを防ぐために、 一定時間 (不検知時間) の間は、 充電開 始時の二次電池の急激な電圧の上昇を検知しないようにする不検知タイマー (図 示せず) を演算 ·制御回路 4に備えている。
この不検知時間の間に電池電圧検知部 1で読み取った電池電圧と所定の電池電 圧を比較し、 設定値より低い場合には、 この設定値より低い電池電圧を電池電圧 検知部 1で読み取った回数を演算 ·制御回路 4でカウントし、 その回数が設定値 以上になつた場合には、 リフレッシュ充放電が必要であることを表示するための L E D等で構成されたリフレッシュ要求表示手段 1 3に信号を出力する。 そして この場合にも、 リフレッシュ要求表示手段 1 3の表示に基づき、 リフレッシュ放 電回路 1 4および放電回路遮断手段 8により、 リフレッシュ放電を行なう。 また必要に応じ、 L E Dで構成した残量表示手段 9や劣化検知手段 1 0に信号 を送り、 各種の表示処理を行なう。 なお、 充電遮断制御部 5、 充電電流遮断手段 6や放電回路遮断手段 8を構成するスィツチング素子には F E T等の半導体素子 あるいはリレ一を使うことも可能である。
本発明におけるアル力リ蓄電池等の二次電池で構成される電池パックのリフレ ッシュ充放電の方法は、 不活性化した二次電池を、 リフレッシュ機能を有する充 放電制御回路を用いて管理するものである。 以下に、 その管理方法について、 具 体的に説明する。
ここでは、 アルカリ蓄電池等の二次電池 1 2として容量 3 . 5 A h , 電圧 1 . 2 Vの単位電池を 1 0本直列にして、 容量 3 . 5 A , 全電池定格電圧が 1 2 V となるように構成した電池パック 1 0 1を例に挙げる。 この電池パック 1 0 1に 含まれる二次電池 1 2の単位電池としては、 図 2に示す構造のアルカリ蓄電池を 用いた。 図 2 ( a ) は本発明における電池パックに含まれるアルカリ蓄電池の正 極端子の中心を通る平面で縦方向に切断した断面図、 図 2 ( b ) は図 2 ( a ) に おける A— A '線で切断した断面図である。
図 2において、 ニッケル酸化物を主体とする帯状の正極板 2 3と、 帯状の負極 板 2 4とを、 この両者間に介在して電気的に絶縁する帯状のセパレー夕 2 5で挟 み極板群 2 0を構成し、 極板群 2 0を所定の直径の巻芯で渦巻状に巻回して形成 後、 絶縁性のテープで極板群 2 0の周囲を巻いて固定し、 正 ·負極板の突起部 2 7に略円形状の金属集電体を銅製溶接棒で抵抗溶接した。 金属ケース 2 6に金属 集電体を溶接、 接合した極板群 2 0を挿入後、 卷芯を抜いた極板群 2 0の空孔部 から銅製溶接棒を挿入して負極板 2 4下部にある突起部 2 7に溶接した底部金属 集電体 2 8と金属ケース 2 6の底部を電気的に接合し、 金属ケース 2 6の上部開 口部からアルカリ電解液が所定量注入される。 その後、 キャップ状の正極端子 3 1を備えた金属製の封口板 2 2を金属ケース 2 6の上部開口部から挿入し、 集電 タブであるリード 3 0と金属製の封口板 2 2の下面が接合され、 最後に、 金属ケ —ス 2 6の上部開口部と金属製の封口板 2 2の周縁部がガスケット 3 3を介して 密閉され、 本発明の実施の形態における図 2に示した構造のアルカリ蓄電池とな る。 なお、 本発明における電池パックに単位電池として含まれる二次電池の構造 は、 図 2に示したアルカリ蓄電池に限定されるものではなく、 水素吸蔵合金粉末 を芯材に塗着した負極板 4を用いたニッケル一水素蓄電池としてもよい。
再び図 1に戻ると、 電池電圧検知部 1は常に電池パッグ 1 0 1に含まれる全二 次電池を加算した電圧全体を監視している。 電池パック 1 0 1に含まれる 次電 池が放電終止に至ると、 電池電圧は放電終了後に放電終止電圧から緩やかに上昇 して回復電圧まで回復する。 回復に要する時間は早い場合は 2〜 3時間程度であ り、 二次電池の状態によっては 1日以上かかる場合もある。 今、 電池パック 1 0 1に含まれる二次電池 1 2を構成する単位電池の電池電圧、 即ち、 回復電圧が放 電終了して所定時間経過した後に 1 . 1 5 V以下で不活性状態の場合、 電池電圧 が低下し、 内部抵抗が増加する。 これは極板の反応性が低下し、 電池内の液分布 が均一でなくなるため、 本来の充放電反応の他に副反応として、 水の分解反応が 生じ、 酸素や水素ガスが発生し、 このガスにより電池の劣化が加速し、 短寿命に なってしまう。 このため、 リフレッシュ充放電を実施することにより、 極板の活 性化が図れ、 酸素、 水素ガスの発生を抑制できるため、 電池を長寿命化すること を可能にならしめるのである。
具体的には、 この単位電池の電池電圧 (回復電圧) が放電終了して、 1日以上 経過した後に仮に 1 . 1 5 V/ c e 1 1以下になると、 電池電圧検知部 1からマ ィコン等で構成された演算 ·制御回路 4に信号が送られ、 演算 ·制御回路 4から リフレッシュ要求表示手段 1 3に信号を送り表示させる。 この電池容量が低下し てリフレッシュ充電が必要であることを示す表示を見て、 演算制御回路 4に接続 したリフレッシュスィッチ 1 5が押されると、 演算制御回路 4はリフレッシュ充 電の開始のための信号を F E T等のスィッチ素子からなる充電遮断制御部 5に伝 える。 これにより充電遮断制御部 5がやはり F E T等のスィツチ素子からなる充 電電流遮断手段 6のスィツチをオンとし充電を開始する。
また、 充電初期に急激な電圧上昇をしたときや、 急激に放電させたとき等のよ うに、 大電流で充放電されると電池内で副反応が促進され、 ガス発生量が増え、 二次電池の劣化が加速されることになり、 二次電池はさらに短寿命となる。 換言 すると、 電池は過充電になるとガス発生量が急激に増大し、 また、 この増大量は 充電電流の大きさにも影響することになる。 一般的に、 1 2 0 %までは大電流で 充電し、 それ以上 (1 2 0 %以上) については、 充電の電流を下げて充電を続け ることが行なわれる。電池設計にもよるが、通常大電流充電できるのは、 1 2 0 % 以下までである。 過充電量が少ない場合は、 極板の活性を十分に図ることが難し くなる。 特に、 負極は正極容量の 1 . 5倍あるので、 充電電気量を正極の 1 . 5 倍(1 5 0 %)以上充電しないと、極板の活性を図るのが難しい。 2倍(2 0 0 %) 以上充電すると、 電池の劣化が著しくなるので避ける。
このため、好ましくは 5 . 0 I t以下で初期容量の 9 0〜1 2 0 %まで充電し、 さらに 2 . 0 1 t以下の低電流で 1 5 0〜2 0 0 %まで充電してから放電するこ とが望ましい。 この方法により、 ガス発生を抑制しながら、 極板を活性化でき、 長寿命化が可能となる。 ここで、 I tとは、 電池の定格容量を表す値であり、 一 般に充放電電流はこの倍数で表され、 例えば、 電池容量が 1 A hの場合、 1 Aが 1 . 0 I tとなり、 2 Aが、 2 . 0 I tとなる。
なお、 図 1には電池パック 1 0 1の端子 1 6に接続する充電用の電源を示して いないが、 本発明の電池パック 1 0 1においては、 入力される充電用の電源の性 質種類としては定電流充電でも、 定電圧充電でも、 また定電流と定電圧を併用す る方法でも可能である。 電池周辺部に設けられた例えばサーミス夕等の温度検知用センサー 3は電池の 温度を常に監視している。 この温度検知用センサー 3には通常、 NTC (Ne g a t i ve Temp e r a t u r e Co e f i c i e n t) タイフのサーミ ス夕が使用される。 本発明においては、 電池温度の温度変化率が、 ある一定値を 超えると電池電圧検知部 1からマイコン I C等で構成した演算 ·制御回路 4に信 号が送られ、 演算 ·制御回路 4は充電停止を FET等のスィッチ素子からなる充 電遮断制御部 5に伝える。 これによりやはり FET等のスィッチ素子からなる充 電電流遮断手段 6のスィッチが遮断され、 充電が停止される。 充電を停止する電 池温度の温度変化率 ΔΤは、 0. 5 °C /m i nより小さいと充放電に長時間を要 することにつながり、 4. 0°CZm i nより大きいと電池の劣化を極端に早める ので、 0. 5〜4. 0°C/m i nであることが好ましい。 さらに好ましくは、 適 切な充放電の作業時間と電池寿命を考慮して、 充電を停止する電池温度の温度変 化率 ΔΤが 1. 0〜3. 0°C/m i nであることが望ましい。 充電を停止する電 池温度の温度変化率 ΔΤがこの値以上の場合、 即ち、 5. 0 I t以上で充放電す ることになり、 上記で過充電とガス発生量増加の関係を説明したように充電容量 が初期容量の 120%を超え過充電するため、 二次電池内のガス発生が大きくな り、 二次電池が劣化し、 寿命特性が低下する恐れがある。 このため、 前述の過充 電とガス発生量の関係の説明のように充電電流を 2. 0 I tに変え、 初期容量の 150〜200 %までマイコン等で構成した演算 ·制御回路 4が備えるタイマー 機能を利用して時間管理充電 (タイマー充電とも称する) を行なう。 夕イマ一充 電により、 不活性になった電池に過充電を行つて電池の活性を図ることが可能に なる。 実際に、 図 1に示した電池パック 101においては、 演算 ·制御回路 4は 充電時間をカウントしており、 例えば充電時間を 30分に設定すれば、 30分経 過するとマイコン等で構成した演算 ·制御回路 4より再度信号が FET等のスィ ツチ素子からなる充電遮断制御部 5に送られ、 やはり FET等のスィツチ素子か らなる充電電流遮断手段 6のスィツチが遮断され、 充電が停止される。
またマイコン等で構成した演算 ·制御回路 4でリフレツシュ放電回路 14を操 作することによって自動的にリフレッシュ充放電を行なわせるリフレッシュ機能 を利用することにより、 製造工程における作業工数の軽減を図ることが可能であ る。
残存容量検知については、 残存容量には放電途中の閉路電圧で見る方法と、 時 間と充放電時の電流の積算による電流積算方式の 2種類の方法があるが、 前者の 閉路電圧で検知する方法ではメモリ効果と同様の現象が発生しやすく、 電池の容 量が継続して正しく得られないことから、 本発明における二次電池の充放電方法 においては、 電流積算方式を採用することが好ましい。
電池が不活性化した状態で充電を行なう場合、 電池の内部抵抗が上昇し、 電池 の温度上昇が大きくなるため、 充電効率が低下し、 みかけの容量 (残存容量) が 低下して、 充電制御が早く作動し、 満充電にならないうちに充電が終了する。 こ のため実際の容量と、 みかけの容量 (残存容量〉 の差が大きくなる。 このような 場合には、 極板の不活性ィヒによる電池パックの充電効率の低下が要因となる容量 低下を補正するため、 リフレッシュをした後に残存容量をリセットして、 再度容 量表示を行なう必要があり、 注意を要する。 即ち、 電池を活性ィヒ (リフレッシュ 充放電 リセット) することにより、 充電制御を正常に作動させ、 満充電した時 点で充電を終了させればよい。 そこで、 本発明における二次電池の充放電方法に おいては、 パック電池 1 0 1に備わる各種の表示手段を利用することにより容易 に管理することが可能である。 表示手段として、 図 1における、 L E Dで構成し た残量表示手段 9に、 例えば、 残容量を 5段階の L E Dで表示する残容量メータ 等を用いることができる。
産業上の利用可能性 ,
本発明における二次電池のリフレッシュ充放電方法によれば、 マイコン等で構 成した演算 ·制御回路を用いてリフレッシュ要求表示手段等の各種表示手段ゃス ィッチ素子等からなるリフレツシュ充放電を行なう機能を用いることにより、 二 ッケルー水素蓄電池等のアルカリ蓄電池を含めて各種二次電池の不活性化を解消 し、 電池を有効に活用できる。 また電池パックに入力される充電用の電源の性質 種類としては定電流充電でも、 定電圧充電でも、 また定電流と定電圧を併用する 方法でも可能であるので、 本発明における二次電池のリフレッシュ充放電方法は アル力リ蓄電池等の二次電池を備えるさまざまな機器への適用が可能となる。

Claims

請求 の 範 囲
1 .
単位電池となる二次電池を複数接続した電池群と、 温度および電圧を検出する 複数のセンサ一と、 前記電池群の状態を表示する表示手段と、 前記電池群の充放 電を制御するスィッチと、 複数の前記センサ一の信号に基づき、 電池群の状態を 前記表示手段に表示させ、且つ、前記スィツチを動作させる信号を発生する演算 · 制御回路とを備えた電池パックであって、
前記二次電池が放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定 電圧以下の場合、 リフレツシュ充放電が必要であることを表示するためのリフレ ッシュ要求表示手段を備えていることを特徴とする電池パック。
2 .
単位電池となる二次電池を複数接続した電池群と、 温度および電圧を検出する 複数のセンサーと、 前記電池群の状態を表示する表示手段と、 前記電池群の充放 電を制御するスィッチと、 複数の前記センサーの信号に基づき、 電池群の状態を 前記表示手段に表示させ、且つ、前記スィツチを動作させる信号を発生する演算 · 制御回路とを備えた電池パックであって、
充電開始時から、 別の所定の時間の間は、 前記センサーが電圧を検知しないよ うに制御する不検知タイマーを前記演算 ·制御回路に備え、 且つ、
前記、 別の所定の時間内に電池電圧が所定の設定電圧以上になった回数を前記 演算 ·制御回路がカウントし、 前記回数が所定の回数以上になると、 リフレツシ ュ充放電が必要であることを表示するためのリフレッシュ要求表示手段を備えて いることを特徴とする電池パック。
3 .
単位電池となる二次電池を複数接続した電池群と、 温度および電圧を検出する 複数のセンサ一と、 前記電池群の状態を表示する表示手段と、 前記電池群の充放 電を制御するスィッチと、 複数の前記センサーの信号に基づき、 電池群の状態を 前記表示手段に表示させ、且つ、前記スィツチを動作させる信号を発生する演算 · 制御回路とを備えた電池パックであって、
充電開始時から、 別の所定の時間の間は、 前記センサーが電圧を検知しないよ うに制御する不検知タイマーを前記演算 ·制御回路に備え、 且つ、
前記、 別の所定の時間内に電池電圧が所定の設定電圧以上になった回数を前記 演算 ·制御回路がカウントし、 前記回数が所定の回数以上になるか、 または、 前 記電池が、 放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定電圧以 下になつた場合に、 リフレツシュ充放電が必要であることを表示するためのリフ レッシュ要求表示手段を備えていることを特徴とする電池パック。
4 .
前記二次電池が前記放電終止電圧に至ってから、 1日以上経過した後の前記回 復電圧が 1 . 1 5 V以下の場合、 リフレツシュ充放電が必要であると表示するた めのリフレツシュ要求表示手段を備えていることを特徴とする請求項 1または請 求項 3に記載の電池パック。
5 .
前記二次電池が、 ニッケル酸化物を主体とする正極と、 負極と、 セパレー夕、 およびアル力リ電解液を備えたアル力リ蓄電池であることを特徴とする請求項 1 から請求項 4のいずれか 1項に記載の電池パック。
6 .
前記負極が水素吸蔵合金からなることを特徴とする請求項 5に記載の電池パッ ク。
7 .
温度を検知する前記センサーは、 二次電池の温度を検出し、 且つ
前記演算制御回路は、 検出された前記温度により温度変化率を演算し、 前記温 度変化率が設定した所定の範囲を越えると、 前記電池群の充放電を制御する前記 スィッチにより充電を停止させる信号を生成することを特徴とする請求項 1から 請求項 3のいずれか 1項に記載の電池パック。
8 .
単位電池となる二次電池を複数接続した電池群と、 温度および電圧を検出する 複数のセンサーと、 前記電池群の状態を表示する表示手段と、 前記電池群の充放 電を制御するスィッチと、 複数の前記センサーの信号に基づき、 電池群の状態を 前記表示手段に表示させ、且つ、前記スィツチを動作させる信号を発生する演算 · 制御回路とを備えた電池パックにおいて、
前記二次電池が、 放電終止電圧に至ってから、 所定時間経過後の回復電圧が所 定電圧以下の場合、 リフレツシュ充放電を行なうことを特徴とする電池の充放電 方法。
9 .
単位電池となる二次電池を複数接続した電池群と、 温度および電圧を検出する 複数のセンサーと、 前記電池群の状態を表示する表示手段と、 前記電池群の充放 電を制御するスィッチと、 複数の前記センサーの信号に基づき、 電池群の状態を 前記表示手段に表示させ、且つ、前記スィツチを動作させる信号を発生する演算 · 制御回路とを備えた電池パックにおいて、
前記演算 ·制御回路が備える不検知タイマーにより、 前記センサーが電圧を検 知しないように制御し、 充電開始時から、 別の所定の時間内に電池電圧が所定の 設定電圧以上になった回数を前記演算 ·制御回路にカウントさせ、 前記回数が所 定の回数以上になると、 リフレツシュ充放電を行なうことを特徴とする電池の充 放電方法。
1 0 . - 単位電池となる二次電池を複数接続した電池群と、 温度および電圧を検出する 複数のセンサ一と、 前記電池群の状態を表示する表示手段と、 前記電池群の充放 電を制御するスィッチと、 複数の前記センサーの信号に基づき、 電池群の状態を 前記表示手段に表示させ、且つ、前記スィツチを動作させる信号を発生する演算 · 制御回路とを備えた電池パックにおいて、
前記演算 ·制御回路が備える不検知夕イマ一により、 前記センサ一が電圧を検 知しないように制御し、 充電開始時から、 別の所定の時間内に電池電圧が所定の 設定電圧以上になった回数を前記演算 ·制御回路にカウン卜させ、 前記回数が所 定の回数以上になるか、 または、 前記二次電池が、 放電終止電圧に至ってから、 所定時間経過後の回復電圧が所定電圧以下になった場合に、 リフレッシュ充放電 を行なうことを特徴とする電池の充放電方法。 1 1 .
前記二次電池が前記放電終止電圧に至ってから、 1日以上経過した後の前記回 復電圧が 1 . 1 5 V以下になつた場合に、 リフレッシュ充放電を行なうことを特 徵とする請求項 8または請求項 1 0に記載の電池の充放電方法。 1 2 .
リフレッシュ充放電のとき、 電池の定格容量を表す値を I tとして、 5 . 0 I t以下で初期容量の 9 0〜1 2 0 %まで充電し、 さらに 1 5 0〜 2 0 0 %まで前 記演算.制御回路が備えるタイマー機能により、 2 . 0 I t以下で時間管理充電 することを特徴とする請求項 8から請求項 1 1のいずれか 1項に記載の電池の充 放電方法。
1 3 .
二次電池の温度を前記センサ一が検出し、 且つ
前記演算 ·制御回路が検出された前記温度により温度変化率を演算し、 前記温 度変化率にて設定した所定の範囲を越えると、 前記電池群の充放電を管理する前 記スィッチに充電を停止させる信号を送るように制御することを特徴とする請求 項 8から請求項 1 1のいずれか 1項に記載の電池の充放電方法。
4 前記温度変化率を 0. 5〜4. 0°CZmi nに設定したことを特徴とする請求 項 13に記載の電池の充放電方法。
15.
前記温度変化率を 1. 0〜3. 0°C/mi nに設定したことを特徴とする請求 項 14に記載の電池の充放電方法。
16.
定電流充放電方法、 定電圧充放電方法、 あるいは定電流充放電方法と定電圧充 放電方法を併用する方法の内のいずれかの方法により充放電を行なうことを特徴 とする請求項 8から請求項 11のいずれか 1項に記載の電池の充放電方法。
PCT/JP2003/015534 2002-12-05 2003-12-04 電池パックとその充放電方法 WO2004051785A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004556907A JP4134986B2 (ja) 2002-12-05 2003-12-04 電池パックとその充放電方法
US10/506,295 US7135839B2 (en) 2002-12-05 2003-12-04 Battery pack and method of charging and discharging the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-354092 2002-12-05
JP2002-354091 2002-12-05
JP2002354091 2002-12-05
JP2002354092 2002-12-05

Publications (1)

Publication Number Publication Date
WO2004051785A1 true WO2004051785A1 (ja) 2004-06-17

Family

ID=32473701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015534 WO2004051785A1 (ja) 2002-12-05 2003-12-04 電池パックとその充放電方法

Country Status (3)

Country Link
US (1) US7135839B2 (ja)
JP (2) JP4134986B2 (ja)
WO (1) WO2004051785A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135839B2 (en) * 2002-12-05 2006-11-14 Matsushita Electric Industrial Co., Ltd. Battery pack and method of charging and discharging the same
JP2008306782A (ja) * 2007-06-05 2008-12-18 Sanyo Electric Co Ltd 電池パック
JP2018028967A (ja) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 バッテリパックの製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3920263B2 (ja) * 2003-12-22 2007-05-30 インターナショナル・ビジネス・マシーンズ・コーポレーション 情報処理装置、制御方法、プログラム、及び記録媒体
JP5118637B2 (ja) * 2005-07-14 2013-01-16 ボストン−パワー,インコーポレイテッド Liイオン電池用制御電子回路
JP2007200758A (ja) * 2006-01-27 2007-08-09 Toshiba Corp 電池パック
US8148994B2 (en) * 2006-04-25 2012-04-03 Nippon Telegraph And Telephone Corporation Device and method for determining replacement of storage battery
US7808212B2 (en) * 2006-07-24 2010-10-05 Research In Motion Limited Temperature-based charge and discharge control for a battery
US8431263B2 (en) * 2007-05-02 2013-04-30 Gary Stephen Shuster Automated composite battery
JP4577413B2 (ja) * 2008-06-20 2010-11-10 トヨタ自動車株式会社 車両
JP5815195B2 (ja) * 2008-09-11 2015-11-17 ミツミ電機株式会社 電池状態検知装置及びそれを内蔵する電池パック
JP2011024347A (ja) * 2009-07-15 2011-02-03 Nikon Corp 電子機器
US20130200700A1 (en) * 2010-02-24 2013-08-08 Sanyo Electric Co., Ltd. Battery module, battery system, electric vehicle, movable body, power storage device, power supply device, and electrical equipment
JP5537992B2 (ja) * 2010-02-24 2014-07-02 三洋電機株式会社 二次電池の充電方法、二次電池の充電制御装置及びパック電池
JP2012124474A (ja) * 2010-11-15 2012-06-28 Denso Corp 横型素子を有する半導体装置
EP2660615B1 (en) * 2010-12-28 2018-11-21 Sanyo Electric Co., Ltd. Battery degradation level detection method
WO2014016900A1 (ja) * 2012-07-24 2014-01-30 株式会社日本マイクロニクス 充放電装置
JP5954144B2 (ja) * 2012-11-30 2016-07-20 ソニー株式会社 制御装置、制御方法、制御システムおよび電動車両
KR102318789B1 (ko) * 2014-09-02 2021-10-28 삼성전자 주식회사 배터리 충전 관리 방법 및 이를 구현하는 전자 장치
KR101641264B1 (ko) * 2014-12-26 2016-07-29 엘지전자 주식회사 배터리 방전 제어 시스템, 이의 제어 방법 및 이를 포함한 청소기
JP6603888B2 (ja) * 2015-02-12 2019-11-13 パナソニックIpマネジメント株式会社 バッテリ種別判定装置およびバッテリ種別判定方法
US10099567B2 (en) * 2015-10-05 2018-10-16 Ford Global Technologies, Llc Vehicle auxiliary battery charging system
CN106655351A (zh) * 2016-11-24 2017-05-10 珠海许继电气有限公司 一种配电终端的铅酸电池充放电管理装置
JP6960488B2 (ja) * 2020-03-03 2021-11-05 本田技研工業株式会社 電動車両、表示方法
KR102549349B1 (ko) * 2021-09-28 2023-06-30 (주)이투솔루션즈 배터리의 상태 정보를 획득하는 방법 및 디바이스

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223812A (ja) * 1994-12-14 1996-08-30 Matsushita Electric Works Ltd 充電式電気機器
JPH11122827A (ja) * 1997-10-09 1999-04-30 Yamaha Motor Co Ltd 充電器
JP2000050521A (ja) * 1998-08-03 2000-02-18 Honda Motor Co Ltd バッテリの充電方法
JP2001095167A (ja) * 1999-09-20 2001-04-06 Sanyo Electric Co Ltd 二次電池のリフレッシュ検出方法
JP2001128313A (ja) * 1999-10-25 2001-05-11 Yamaha Motor Co Ltd 電動車両用電源装置
JP2001126766A (ja) * 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
EP1160953A2 (en) * 2000-05-29 2001-12-05 Matsushita Electric Industrial Co., Ltd. Method for charging battery
JP2002223529A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd 充電装置
JP2002238177A (ja) * 2001-02-06 2002-08-23 Makita Corp 複数電池充電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569059B1 (fr) * 1984-08-10 1992-08-07 Sanyo Electric Co Accumulateur alcalin metal/hydrogene
US5321627A (en) * 1992-03-11 1994-06-14 Globe-Union, Inc. Battery monitor and method for providing operating parameters
US5557188A (en) * 1994-02-01 1996-09-17 Sun Microsystems, Inc. Smart battery system and interface
DE4409736A1 (de) * 1994-03-22 1995-09-28 Braun Ag Verfahren und Vorrichtung zur Pflege von in einem Gerät fest eingebauten Akkus
US5600231A (en) * 1995-04-05 1997-02-04 Avery Dennison Corporation Device for testing and refreshing batteries
TWI233416B (en) * 1998-10-15 2005-06-01 Yamaha Motor Co Ltd Battery power system for electrical vehicle
EP1059190A4 (en) * 1998-12-28 2004-06-09 Yamaha Motor Co Ltd POWER SUPPLY SYSTEM FOR A VEHICLE
US6011380A (en) * 1999-03-31 2000-01-04 Honda Giken Kogyo Kabushiki Kaisha Refreshing charge control method and apparatus to extend the life of batteries
JP3890168B2 (ja) * 1999-08-03 2007-03-07 株式会社東京アールアンドデー 電動装置及びその電池ユニットの充放電方法
JP4330228B2 (ja) 1999-10-28 2009-09-16 三洋電機株式会社 二次電池の容量表示方法
JP3772765B2 (ja) * 2001-05-11 2006-05-10 トヨタ自動車株式会社 リフレッシュ充電制御装置
WO2004051785A1 (ja) * 2002-12-05 2004-06-17 Matsushita Electric Industrial Co., Ltd. 電池パックとその充放電方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223812A (ja) * 1994-12-14 1996-08-30 Matsushita Electric Works Ltd 充電式電気機器
JPH11122827A (ja) * 1997-10-09 1999-04-30 Yamaha Motor Co Ltd 充電器
JP2000050521A (ja) * 1998-08-03 2000-02-18 Honda Motor Co Ltd バッテリの充電方法
JP2001095167A (ja) * 1999-09-20 2001-04-06 Sanyo Electric Co Ltd 二次電池のリフレッシュ検出方法
JP2001126766A (ja) * 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
JP2001128313A (ja) * 1999-10-25 2001-05-11 Yamaha Motor Co Ltd 電動車両用電源装置
EP1160953A2 (en) * 2000-05-29 2001-12-05 Matsushita Electric Industrial Co., Ltd. Method for charging battery
JP2002223529A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd 充電装置
JP2002238177A (ja) * 2001-02-06 2002-08-23 Makita Corp 複数電池充電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135839B2 (en) * 2002-12-05 2006-11-14 Matsushita Electric Industrial Co., Ltd. Battery pack and method of charging and discharging the same
JP2008306782A (ja) * 2007-06-05 2008-12-18 Sanyo Electric Co Ltd 電池パック
JP2018028967A (ja) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 バッテリパックの製造方法

Also Published As

Publication number Publication date
US7135839B2 (en) 2006-11-14
JP4135037B1 (ja) 2008-08-20
JP4134986B2 (ja) 2008-08-20
US20050225289A1 (en) 2005-10-13
JP2008226851A (ja) 2008-09-25
JPWO2004051785A1 (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4135037B1 (ja) 電池パックおよび電池パックの充放電方法
JP4629012B2 (ja) リチウムイオン電池及びリチウムイオン電池の長期保存方法
US20240230784A9 (en) Battery Diagnosis Apparatus, Battery Pack, Electric Vehicle, And Battery Diagnosis Method
JP2008005693A (ja) 電池装置
CN103493329A (zh) 具有内部蓄电池的低成本快速充电器以及方法
JP3311505B2 (ja) 複数の二次電池を内蔵するパック電池の充電方法
JPH10248175A (ja) 二次電池の充電方法及び充電装置
JP2001289924A (ja) リチウムイオン電池の容量推定方法、劣化判定方法および劣化判定装置ならびにリチウムイオン電池パック
JP3157687B2 (ja) 蓄電池の充電制御装置
JP5474438B2 (ja) 二次電池装置
CN100438204C (zh) 电池组及其充放电方法
JP3796918B2 (ja) バッテリ装置
EP0921620B1 (en) Method for temperature dependent charging of a back-up power source which is subject to self-discharging
JPH0974610A (ja) 電気自動車用バッテリの過充電防止装置
JPH10201121A (ja) 組電池の充電装置および充電方法
JPH03173323A (ja) 二次電池の充電装置
JP3133534B2 (ja) 電池の過充電過放電防止方法
JP2000150000A (ja) バックアップ電源の管理方法
JPH04267078A (ja) 組電池の充電方法
JP2004166364A (ja) 充電器および充電方法
EP4123868A2 (en) Battery pack
JPH08182211A (ja) 組電池の充電装置
JP4013289B2 (ja) 非水系二次電池の充電方法およびその充電装置
Barsukov Battery selection, safety, and monitoring in mobile applications
JPH03291866A (ja) 蓄電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004556907

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

WWE Wipo information: entry into national phase

Ref document number: 20038A02894

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10506295

Country of ref document: US