WO2016129260A1 - バッテリ種別判定装置およびバッテリ種別判定方法 - Google Patents

バッテリ種別判定装置およびバッテリ種別判定方法 Download PDF

Info

Publication number
WO2016129260A1
WO2016129260A1 PCT/JP2016/000600 JP2016000600W WO2016129260A1 WO 2016129260 A1 WO2016129260 A1 WO 2016129260A1 JP 2016000600 W JP2016000600 W JP 2016000600W WO 2016129260 A1 WO2016129260 A1 WO 2016129260A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal resistance
storage battery
lead storage
battery
period
Prior art date
Application number
PCT/JP2016/000600
Other languages
English (en)
French (fr)
Inventor
琢磨 飯田
裕行 神保
杉江 一宏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016574664A priority Critical patent/JP6603888B2/ja
Priority to CN201680009039.7A priority patent/CN107210498B/zh
Priority to US15/547,716 priority patent/US10145899B2/en
Publication of WO2016129260A1 publication Critical patent/WO2016129260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4221Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells with battery type recognition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery type determination device and a battery type determination method for determining the type of battery.
  • Vehicles that use the engine as the main power source are equipped with a battery as the power source for the starter motor that starts the engine.
  • a lead storage battery is generally used.
  • the charge / discharge characteristics of lead-acid batteries have been improved. For this reason, lead-acid batteries are becoming popular as power sources for special electric vehicles such as electric carts or forklifts that are not profitable with expensive lithium ion secondary batteries.
  • the largest number of troubles with private cars (specifically, the number of times the Japan Automobile Federation has been dispatched) is battery exhaustion and battery performance degradation.
  • an idling stop system has been adopted in order to reduce exhaust gas from vehicles using an engine as a main power source.
  • the idling stop system may not function normally.
  • Patent Document 1 An apparatus for identifying the type of battery mounted on the vehicle has been proposed (see, for example, Patent Document 1).
  • the conventional technology has a problem that good determination accuracy cannot be obtained when determining the type of battery.
  • a current waveform is acquired after a predetermined voltage is applied to the battery, and the battery type is identified based on the current waveform.
  • the current waveform differs depending on the battery temperature or the amount of charge (SOC: State of Charge), and good determination accuracy cannot be obtained.
  • An object of the present invention is to provide a battery type determination device and a battery type determination method capable of determining the type of a lead storage battery with high accuracy.
  • the battery type determination device has the following configuration. That is, a sensor unit that detects the terminal voltage and charge / discharge current of the lead storage battery, an internal resistance calculation unit that calculates the DC internal resistance of the lead storage battery based on the terminal voltage and charge / discharge current detected by the sensor unit, and calculation A type determining unit that determines the type of the lead storage battery based on the direct current internal resistance.
  • the internal resistance calculation unit when switching from discharge control to charge control of the lead storage battery, or when switching from charge control to discharge control of the lead storage battery, the direct current internal resistance of the lead storage battery in the first period before switching, The direct-current internal resistance of the lead storage battery after the switching and in the second period within the predetermined time from the first period is calculated.
  • the type determination unit determines the type of the lead storage battery based on the DC internal resistance in the first period before switching and the DC internal resistance in the second period after switching.
  • a battery type determination method includes a step of detecting a terminal voltage and a charge / discharge current of a lead storage battery, and calculating a DC internal resistance of the lead storage battery based on the detected terminal voltage and the charge / discharge current. And a step of determining the type of the lead storage battery based on the calculated direct current internal resistance.
  • the step of calculating the DC internal resistance when switching from discharge control to charge control of the lead storage battery, or switching from charge control to discharge control of the lead storage battery, the DC internal of the lead storage battery in the first period before switching The resistance and the direct current internal resistance of the lead storage battery in the second period after the switching and within a predetermined time from the first period are calculated.
  • the type of the lead storage battery is determined based on the DC internal resistance in the first period before switching and the DC internal resistance in the second period after switching.
  • the type of the lead storage battery can be determined with high accuracy.
  • 3 is a graph showing an example of a period during which the DC internal resistance of a lead storage battery is measured in the battery type determination device according to Embodiment 1. It is a figure which shows the equivalent circuit model of a lead acid battery. It is a figure which represents typically the resistance component at the time of charge and discharge. It is a block diagram which shows a part of vehicle containing the battery classification determination apparatus which concerns on Embodiment 2 of this invention. It is a block diagram which shows a part of vehicle containing the battery classification determination apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 10 is a graph showing a period during which the DC internal resistance of an auxiliary battery is measured in the battery type determination device according to Embodiment 4.
  • 14 is a graph showing a modification of a period in which the DC internal resistance of the auxiliary battery is measured in the battery type determination device according to Embodiment 4.
  • FIG. 1 is a block diagram showing a part of a vehicle including a battery type determination device according to Embodiment 1 of the present invention.
  • the battery type determination device 10 has an idling stop system and is mounted on a vehicle that travels mainly with engine power.
  • the vehicle includes a battery type determination device 10, a lead storage battery 20, an ECU (Electronic Control Unit) 30, a load 31, an alternator 32, and a starter motor 33. Although illustration is omitted, the vehicle has an engine and driving wheels.
  • the starter motor 33 is a motor that starts the engine.
  • the crankshaft is rotated by driving the starter motor 33, and the engine starts when the engine stroke starts. Rotating the crankshaft of the engine by driving the starter motor 33 is called cranking.
  • the starter motor 33 is operated by the electric power of the lead storage battery 20 based on an operation control signal from the ECU 30.
  • the alternator 32 generates power using the rotational power of the crankshaft.
  • the alternator 32 may generate power using the rotational power of the drive wheels.
  • the alternator 32 rectifies the generated power and adjusts the voltage based on the voltage control signal of the ECU 30.
  • the load 31 is an electrical auxiliary machine necessary for operating the engine, for example, and includes, for example, a fuel injection device, a spark plug, and the like.
  • Auxiliary equipment means peripheral equipment necessary for operating the engine in addition to the engine body.
  • the load 31 may include various electric devices mounted on the vehicle such as an interior lighting, a meter panel, and a lighting device.
  • the lead storage battery 20 is a battery that can be charged and discharged.
  • the lead storage battery 20 is charged by the electric power of the alternator 32.
  • the lead storage battery 20 supplies power to the starter motor 33, the load 31, the ECU 30, and the battery type determination device 10.
  • the ECU 30 controls the engine. Specifically, the control of the ECU 30 includes the operation control of the starter motor 33, the control of the generated voltage of the alternator 32, and the control of the auxiliary machine.
  • the ECU 30 sends charge / discharge control information to the battery type determination device 10. Furthermore, ECU30 receives the information of the classification determination result of the lead storage battery 20 from the battery classification determination apparatus 10, and performs control according to the determination result. For example, the ECU 30 controls the idling stop system if the battery type is a lead storage battery for an idling stop system, and does not control the idling stop system if the battery type is a lead storage battery for a non-idling stop system. Moreover, if the battery type is a low-grade product, which will be described later, the ECU 30 may perform control for giving a warning.
  • the battery type determination device 10 determines the type of the lead storage battery 20. In addition, the battery type determination device 10 may monitor the SOC (state of charge) of the lead storage battery 20 and the degree of deterioration.
  • the battery type determination device 10 includes a timing determination unit 11, an internal resistance calculation unit 12, a type determination unit 13, and a sensor unit 14.
  • the plurality of elements of the battery type determination device 10 may be configured as a one-chip semiconductor integrated circuit, except for the elements of the sensor unit 14 (such as current detection resistors). Further, the battery type determination device 10 may be configured by a plurality of semiconductor integrated circuits except for the elements of the sensor unit 14. Further, a part of the battery type determination device 10 or the whole except the elements of the sensor unit 14 may be configured by one semiconductor integrated circuit together with the ECU 30 or another ECU mounted on the vehicle.
  • the sensor unit 14 detects the charge / discharge current and voltage of the lead storage battery 20 and outputs a detection signal to the internal resistance calculation unit 12.
  • the detected voltage is the voltage between the terminals of the lead storage battery 20 at the time of charging, discharging, and when the terminal is opened.
  • the timing determination unit 11 determines the timing for switching from the discharge control of the lead storage battery 20 to the charge control based on the charge / discharge control information sent from the ECU 30.
  • the timing determination unit 11 sends a signal to the internal resistance calculation unit 12 during a predetermined period before and after the switching timing to notify that it is this period.
  • the internal resistance calculation unit 12 calculates the DC internal resistance of the lead storage battery 20 from the charge / discharge current and voltage detected by the sensor unit 14. A method for calculating the DC internal resistance will be described later.
  • the type determination unit 13 determines the type of the lead storage battery 20 based on the DC internal resistance of the two periods calculated by the internal resistance calculation unit 12. Details of the type determination will be described later.
  • the type determination unit 13 notifies the ECU 30 of the type determination result.
  • the type determination unit 13 may output the type determination result to another control unit.
  • the battery type determination device 10 may perform a result display output or a warning output based on the result based on the type determination result.
  • FIG. 2 is a graph illustrating an example of a period during which the direct current internal resistance of the battery is measured in the battery type determination device according to the first embodiment. In the graph, the time change of the charging / discharging current of the lead storage battery 20 and the voltage between the terminals of the lead storage battery 20 is shown.
  • the timing determination unit 11 performs charge for the first time after the discharge control at the time of starting the engine at the time of switching from the discharge control at the time of starting the engine to the charge control that changes to charge for the first time. It is determined that the period is changing. In the first embodiment, based on the charge / discharge control information from ECU 30, it is determined that it is a period when the discharge control at the time of starting the engine is changed to the charge for the first time thereafter. Furthermore, the timing determination unit 11 notifies the internal resistance calculation unit 12 of the discharge start period T1 in the discharge control and the charge start period T2 in the charge control at the time of this switching.
  • the discharge start period T1 is a period in which the starter motor 33 starts from a state where the engine is stopped. In the discharge start period T1, a large discharge current is output from the lead storage battery 20 to drive the stopped starter motor 33 and the crankshaft.
  • a period T3 in FIG. 2 indicates a period from when the rotation of the crankshaft by the starter motor 33 is continued, the engine is started, and before the charging by the alternator 32 is started.
  • the charging start period T2 is a period in which power generation of the alternator 32 is started by starting the engine and charging of the lead storage battery 20 is started.
  • the charge start period T2 includes a zero-cross timing at which the charge / discharge current of the lead storage battery 20 intersects the zero point. Since the load 31 is connected to the power line L10 of the lead storage battery 20 and power is consumed, the lead storage battery 20 is still discharged immediately after the start of power generation by the alternator 32, and the power generation amount of the alternator 32 is Charging of the lead storage battery 20 is started after the power consumption of the load 31 is exceeded.
  • the start of charge control means the start of power generation by the alternator 32. Therefore, in a short period immediately after the start of the charge control, the lead storage battery 20 may be discharged, but thereafter, the lead storage battery 20 is immediately charged.
  • the time length from the discharge start period T1 to the charge start period T2 varies depending on the vehicle, but the change is relatively small in the same vehicle.
  • the time from the discharge start period T1 to the charge start period T2 may be, for example, within 10 seconds, preferably within 5 seconds, and more preferably within 1 second.
  • the accuracy of the type determination of the storage battery 20 is increased.
  • the internal resistance calculation unit 12 calculates the DC internal resistance of the lead storage battery 20 in the discharge start period T1 based on the charge / discharge current and voltage detected by the sensor unit 14 in the discharge start period T1. In addition, the internal resistance calculation unit 12 calculates the DC internal resistance of the lead storage battery 20 in the charge start period T2 based on the charge / discharge current and voltage detected by the sensor unit 14 in the charge start period T2.
  • FIG. 3 is a diagram showing an equivalent circuit model of the lead storage battery.
  • the internal resistance calculation unit 12 includes, for example, an equivalent circuit model of a lead storage battery shown in FIG. 3 and a known filter such as a Kalman filter.
  • the internal resistance calculation unit 12 sequentially estimates the parameters of the equalization circuit model based on the discharge current values at a plurality of timings within the discharge start period T1 detected by the sensor unit 14 and the voltage values at the plurality of timings. Then, the DC internal resistance of the lead storage battery 20 in the discharge start period T1 is calculated.
  • the internal resistance calculation unit 12 determines the parameters of the equalization circuit model based on the discharge current values at a plurality of timings within the charging start period T2 detected by the sensor unit 14 and the voltage values at the plurality of timings. Perform sequential estimation. Thereby, the internal resistance calculation unit 12 calculates the DC internal resistance of the lead storage battery 20 in the charging start period T2.
  • the equivalent circuit model of the lead storage battery is not limited to the example of FIG.
  • the example of FIG. 3 is an equalization circuit model in which a fast response capacitance component is omitted from a parallel circuit of a fast response resistance component and a fast response capacitance component, and is represented only by a fast response resistance component.
  • the equivalent circuit model in FIG. 3 can perform highly accurate estimation by using, for example, a current value and a voltage value obtained by cutting a fast response component of a signal obtained from the sensor unit 14 by an LPF (low pass filter). it can.
  • an equalization circuit model including a fast response capacity component may be adopted to calculate the DC internal resistance.
  • FIG. 4 is a diagram schematically illustrating respective resistance components during charging and discharging.
  • the ohmic resistance R 0 — chg during charging corresponds to the AC internal resistance (ACIR) during charging
  • the ohmic resistance R 0 — dis during discharging corresponds to the AC internal resistance (ACIR) during discharging
  • the reaction resistance by the sum of the ohmic resistance R 0 — chg at the time of charging and the charge transfer resistance R 1 — chg of the positive and negative electrodes is the DC internal resistance (DCIR) at the time of charging
  • the reaction resistance based on the sum of the movement resistance R 1 _dis corresponds to the direct current internal resistance (DCIR) during discharge.
  • R 2 _chg showing a diffusion resistance polarization during charging
  • R 2 _d is showing a diffusion resistance polarization during discharge is the resistance component of the slow component, not contained in DCIR by short reaction time.
  • the fast response resistance component of the equivalent circuit model can be easily calculated as a DC internal resistance incorporating an ohmic resistance and a positive and negative charge transfer resistance.
  • Types of the lead storage battery 20 to be determined include a lead storage battery for an idling stop system (ISS), a lead storage battery for a non-idling stop system, and a low-grade lead storage battery.
  • the lead acid battery for the non-idling stop system is a normal lead acid battery
  • the low grade lead acid battery is a lead acid battery whose performance is inferior to that of the normal lead acid battery.
  • the battery performance here mainly means the life of the battery. The battery life is affected by the magnitude of the DC internal resistance during charging. For example, if the direct current internal resistance (DCIR) during charging is large, the battery life is shortened.
  • DCIR direct current internal resistance
  • Lead storage batteries for idling stop systems are generally required to have durability of several years when used in vehicles for idling stop systems. For example, in the Battery Industry Association Standard (SBA S 0101), more than 30,000 cycles Durability is required (approx. 3 years or more).
  • SBA S 0101 Battery Industry Association Standard
  • more than 30,000 cycles Durability is required (approx. 3 years or more).
  • ⁇ Lead-acid batteries for non-idling stop systems have a shorter life than lead-acid batteries for idling stop systems when they are the same size.
  • a normal lead-acid battery (ordinary product) used for a normal engine start has a life of about 1.5 years.
  • Low-grade lead-acid batteries include, for example, capacity-oriented lead-acid batteries that have been reduced in weight by reducing the active material content compared to normal products for rationalization.
  • One year when used for normal engine start (For example, about 0.5 years).
  • lead-acid batteries for non-idle-stop systems or low-grade lead-acid batteries are mistakenly installed in a vehicle with an idling stop system, there is a high possibility that it will not be possible to respond to service inspections such as annual vehicle inspections. . Therefore, in the vehicle of the idling stop system, it is desired to determine the type of the lead storage battery installed.
  • the DC internal resistance during charging and the DC internal resistance during discharging differ depending on the battery. Since lead storage batteries for non-idling stop systems have poor charge acceptance, the DC internal resistance during charging is higher than the DC internal resistance during discharging when the state of charge SOC is high. In low-grade lead-acid batteries, charge acceptability is even worse. This is affected by R 1 —chg indicating the reaction resistance of the fast response component. On the other hand, in the lead storage battery for the idling stop system (ISS), the charge acceptance is improved compared to the general lead storage battery, so the direct current internal resistance during charging is the direct current during charging of the lead storage battery for the non-idling stop system. Lower than internal resistance. As a result, R 1 —chg, which indicates the reaction resistance of the fast response component, is also small compared to the lead-acid battery for non-idling stop systems or the low-grade lead-acid battery.
  • the internal resistance calculation unit 12 sends the value of the DC internal resistance during the discharge start period T1 and the value of the DC internal resistance during the charge start period T2 to the type determination unit 13.
  • the type determination unit 13 calculates, for example, the difference between the value of the DC internal resistance in the discharge start period T1 and the value of the DC internal resistance in the charge start period T2, and calculates the difference from the first threshold value and the second threshold value. Are compared to determine the type of the lead storage battery 20.
  • the ohmic resistance changes little between charging and discharging (R 0 _chg ⁇ R 0 _dis)
  • the effect of the ohmic resistance is eliminated by taking the difference between the DCIR during charging and the DCIR during discharging. It can be specified as a difference (R 1 —chg ⁇ R 1 —dis) between the reaction resistance at the time and the reaction resistance at the time of discharge. Therefore, when the difference between the reaction resistance at the time of charging and the reaction resistance at the time of discharging (R 1 —chg ⁇ R 1 —dis) is greater than a predetermined first threshold, the type determining unit 13 determines the reaction resistance at the time of charging R 1 —chg.
  • the lead acid battery is for a non-idling stop system or a low grade lead acid battery.
  • the type determining unit 13 performs the reaction resistance at the time of charging R 1 —chg. Therefore, it is determined that the battery is a lead-acid battery for an idling stop system.
  • the type determination unit 13 determines that the difference between the reaction resistance at the time of charging and the reaction resistance at the time of discharging (R 1 _chg ⁇ R 1 _dis) is larger than the first threshold and further larger than the predetermined second threshold. It is determined that the reaction resistance R 1 —chg at the time of charging is further larger, and therefore, it is a low-grade lead storage battery.
  • the type determining unit 13 When the difference between the reaction resistance at the time of charging and the reaction resistance at the time of discharging (R 1 _chg ⁇ R 1 _dis) is less than or equal to a predetermined second threshold value and greater than the first threshold value, the type determining unit 13 The reaction resistance R 1 —chg of the battery is medium, and therefore, it is determined that the lead-acid battery is for a non-idling stop system.
  • the second threshold value is set as a value larger than the first threshold value.
  • the type determination unit 13 is not limited to comparing the difference between the value of the DC internal resistance in the discharge start period T1 and the value of the DC internal resistance in the charge start period T2 with a threshold value for the type determination.
  • the type determination unit 13 may be configured to compare the ratio of the value of the DC internal resistance in the discharge start period T1 and the value of the DC internal resistance in the charge start period T2 with a threshold value for type determination. That is, it is determined whether the value of the DC internal resistance in the discharge start period T1 and the value of the DC internal resistance in the charge start period T2 are close or far. Can be determined.
  • the performance of the lead storage battery decreases in descending order of the lead storage battery for the idling stop system, the lead storage battery for the non-idling stop system, and the low-grade lead storage battery.
  • the battery type determination device 10 of the first embodiment when switching from discharge control to charge control, the DC internal resistance of the lead storage battery 20 in the discharge start period T1 before switching and after switching.
  • the DC internal resistance of the lead storage battery 20 in the second period within a predetermined time from the first period is calculated.
  • the type of the lead storage battery 20 is determined by comparing the DC internal resistance during the discharge start period T1 with the DC internal resistance during the charge start period T2.
  • the direct current internal resistance of the lead storage battery 20 is reduced at the start of discharge for starting the starter motor 33 when starting the engine and at the start of charging immediately after the engine is started. measure. Therefore, in various situations, even when the DC internal resistance is measured and the type is determined, the change in the environment of the lead storage battery that affects the measurement of the DC internal resistance is unlikely to occur. Therefore, the type of the lead storage battery 20 can be determined with higher accuracy by determining the type of the lead storage battery 20 using the DC internal resistance measured with the timing regulated in this way.
  • FIG. 5 is a block diagram illustrating a part of the vehicle including the battery type determination device according to the second embodiment.
  • the battery type determination device 10A of the second embodiment is the same as the configuration of the first embodiment except that the input of the timing determination unit 11A is different.
  • symbol is attached
  • the timing determination unit 11A receives a signal from the sensor unit 14 as an input.
  • 11 A of timing judgments mainly monitor the detection signal of charging / discharging electric current of the sensor part 14, and discriminate
  • the predetermined time is preferably within 10 seconds, more preferably within 5 seconds, and even more preferably within 1 second.
  • the internal resistance calculation part 12 is made to calculate the direct current
  • the timing determination unit 11A of the second embodiment monitors the charge / discharge current waveform and the voltage waveform, thereby changing from the discharge control at the time of engine start (during cranking) shown in FIG. 2 to the charge control. The period of switching can be determined. Therefore, also in the battery type determination device 10A of the second embodiment, the direct current internal resistance of the lead storage battery 20 between the discharge start period T1 at the time of engine start in FIG. 2 and the charge start period T2 immediately after that is calculated, Type determination can be performed.
  • the timing determination unit 11A can determine the above timing from at least one of the charge / discharge current and voltage of the lead storage battery 20. For example, when the charge / discharge current is used, the timing determination unit 11A can determine the switching between the discharge control and the charge control by detecting a zero cross where the charge / discharge current intersects the zero point. In addition, the timing determination unit 11A determines switching between the discharge control and the charge control when the voltage change rate indicating the amount of change in voltage per unit time is equal to or higher than a predetermined threshold (for example, 1 V / s or higher). Also good.
  • a predetermined threshold for example, 1 V / s or higher.
  • the calculation of the internal resistance of the internal resistance calculation unit 12 and the operation of the type determination unit 13 based on the calculation result are the same as in the first embodiment.
  • the same type determination as that of the first embodiment can be performed without receiving the charge / discharge control information from the ECU 30 of the vehicle.
  • FIG. 6 is a block diagram illustrating a part of a vehicle including the battery type determination device according to the third embodiment.
  • the battery type determination device 10B of the third embodiment uses not only the DC internal resistance of the lead storage battery 20 but also the temperature of the lead storage battery 20 and the SOC (charge amount: State of Charge) to determine the type of the lead storage battery 20. Information is also used. Other configurations are the same as those of the first embodiment. About the same structure as Embodiment 1, the same code
  • the battery type determination device 10B of the third embodiment further includes a thermometer 15 that measures the temperature of the lead storage battery 20, and And an SOC calculation unit 16 for calculating the SOC.
  • the type determination unit 13B switches from the internal resistance calculation unit 12 to the value of the DC internal resistance of the lead storage battery 20 in the discharge control period T1 before switching when switching from discharge control to charge control.
  • the value of the DC internal resistance of the lead storage battery 20 in the subsequent charge control period T2 is input. This is the same as in the first embodiment.
  • the type determination unit 13B inputs the detection signal of the thermometer 15 and the calculation result of the SOC calculation unit 16 when performing the type determination.
  • the type determination unit 13B performs the type determination described in the first embodiment. However, for example, when the temperature of the lead storage battery is abnormally high or abnormally low, the type determination is not performed. In addition, when the SOC is not within the predetermined range, the type determination is not performed.
  • the type determination unit 13B does not perform the type determination when the temperature or SOC of the lead storage battery is outside the predetermined range and the determination accuracy decreases, and as a result, the type determination accuracy is improved. Can be higher.
  • the type determination unit 13B may use lead-acid battery OCV (Open ⁇ CircuitSOVoltage) instead of SOC. Alternatively, all or any of SOC, OCV, and temperature may be used.
  • OCV Open ⁇ CircuitSOVoltage
  • the type determination unit 13B is configured not to perform the type determination when the temperature, SOC, or OCV is out of a predetermined range, and determines the value of the DC internal resistance by the temperature, SOC, or OCV. The type may be determined after correction.
  • the battery type determination device 10B of the third embodiment the battery type can be determined with higher accuracy.
  • FIG. 7 is a block diagram illustrating a part of a vehicle including the battery type determination device according to the fourth embodiment.
  • a battery type determination device 10 similar to that in the first embodiment is replaced with a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), or an electric vehicle (EV).
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • EV electric vehicle
  • the vehicle has a main power supply battery 41, a DC-DC converter 42, a motor peripheral auxiliary machine 43, a traveling motor 44, and an auxiliary battery 20C.
  • the main power supply battery 41 is, for example, a lithium ion battery or the like, and supplies large electric power used for traveling to the traveling motor 44.
  • the DC-DC converter 42 lowers the voltage of the main power supply battery 41 and outputs the power of the main power supply battery 41 to the power supply line L10. As a result, the DC-DC converter 42 can supply power to the load 31 and charge the auxiliary battery 20C.
  • the DC-DC converter 42 is controlled by the ECU 30, for example.
  • the motor peripheral auxiliary machine 43 is an auxiliary machine necessary for driving the traveling motor 44.
  • the motor peripheral accessory 43 includes, for example, a relay switch that opens and closes the connection between the power line of the main power supply battery 41 and the power line of the traveling motor 44 (eg, its inverter circuit).
  • the motor peripheral auxiliary machine 43 is driven by the electric power of the auxiliary battery 20C based on the control of the ECU 30.
  • the auxiliary battery 20C is a lead storage battery, and is a target of type determination by the battery type determination device 10.
  • FIG. 8 is a graph showing a first example of a period for measuring the DC internal resistance of the battery in the battery type determination device according to the fourth embodiment.
  • the graph shows the time change of the charge / discharge current of the auxiliary battery 20C and the voltage between the terminals of the auxiliary battery 20C.
  • the graph line of FIG. 8 does not show the actual measurement value, but shows the estimated typical value.
  • the motor peripheral accessory 43 when starting the vehicle, first, as shown in the period T1a, the motor peripheral accessory 43 is driven by the power of the accessory battery 20C. As a result, power can be supplied from the main power supply battery 41 to the traveling motor 44.
  • the traveling motor 44 is driven by the power of the main power supply battery 41 in the subsequent period T3a, the auxiliary battery 20C is charged from the main power supply battery 41 via the DC-DC converter 42 in the subsequent period T2a. Done.
  • cranking A series of operations when the vehicle is started by the traveling motor 44 may be referred to as cranking.
  • the ECU 30 stores information on discharge control of the auxiliary battery 20C (drive control of the motor peripheral auxiliary machine 43) and information on charge control of the auxiliary battery 20C when starting the vehicle by the traveling motor 44.
  • the data is sent to the timing determination unit 11 of the type determination device 10.
  • the timing determination unit 11 performs the discharge start period T1a in the discharge control and the charge in the charge control when switching from the discharge control of the auxiliary battery 20C at the start of the vehicle to the charge control that changes to the charge for the first time.
  • the internal resistance calculation unit 12 is notified of the start period T2a.
  • the operation of the internal resistance calculation unit 12 based on the notification of the periods T1a and T2a is the same as that in the first embodiment.
  • the time length of the period T3a from the period T1a to the period T2a may be, for example, within 10 seconds, preferably within 5 seconds, and more preferably within 1 second.
  • the accuracy of the type determination of the battery 20C is increased.
  • the determination process of the type determination unit 13 based on the two DC internal resistances before and after the calculated switching is the same as that in the first embodiment.
  • the type of the auxiliary battery 20C can be determined with high accuracy even in a vehicle that can be driven by the driving motor 44.
  • FIG. 9 is a graph showing a modification of the period in which the direct current internal resistance of the battery is measured in the battery type determination device according to the fourth embodiment.
  • the graph shows the time change of the charge / discharge current of the auxiliary battery 20C and the voltage between the terminals of the auxiliary battery 20C.
  • the graph line of FIG. 9 does not show the actual measurement value, but shows the estimated typical value.
  • This modification is an example in which a period when switching from charge control to discharge control is applied as a period for measuring the DC internal resistance of the auxiliary battery (lead storage battery) 20C.
  • the auxiliary battery 20C is subjected to constant voltage charging (referred to as CV charging) from the main power supply battery 41, and a discharge test of the auxiliary battery 20C is performed during or at the end of the constant voltage charging. May be performed.
  • a period T1b in FIG. 9 indicates a part of the constant voltage charging period.
  • a period T2b in FIG. 9 indicates a period of a discharge test.
  • the timing determination unit 11 notifies the internal resistance calculation unit 12 of the constant voltage charging period T1b and the discharge test period T2b of the auxiliary battery 20C.
  • the operations of the internal resistance calculation unit 12 and the type determination unit 13 based on the notification of the periods T1b and T2b are the same as those in the first embodiment.
  • the time length of the period T3b from the period T1b to the period T2b may be, for example, within 10 seconds, preferably within 5 seconds, and more preferably within 1 second.
  • the accuracy of the type determination of the battery 20C is increased.
  • the timing for measuring two DC internal resistances is defined as the period T1b before switching and the period T2b after switching when switching from charge control to discharge control. ing.
  • the type determination process using the period during which the charge control is switched to the discharge control is not limited to a vehicle having the traveling motor 44, and may be applied to an engine vehicle.
  • the present invention can be used, for example, in an apparatus for determining the type of a lead storage battery mounted on a vehicle.
  • Thermometer 16 SOC calculation unit 20 Lead storage battery 20C Auxiliary battery T1, T1a Discharge start period (First period) T2, T2a Charging start period (second period) T1b constant voltage charging period (first period) T2b discharge test period (second period) 32 Alternator 33 Starter motor 41 Main power battery 42 DC-DC converter 43 Motor peripheral accessories

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 高い精度で鉛蓄電池の種別を判定できるバッテリ種別判定装置およびバッテリ種別判定方法を提供する。このバッテリ種別判定装置は、鉛蓄電池の端子電圧と充放電電流とを検出するセンサ部と、センサ部が検出した端子電圧と充放電電流とに基づいて鉛蓄電池の直流内部抵抗を算出する内部抵抗算出部と、算出された直流内部抵抗に基づいて鉛蓄電池の種別を判定する種別判定部と、を備える。そして、内部抵抗算出部は、鉛蓄電池の放電制御から充電制御への切り替わり、或いは、鉛蓄電池の充電制御から放電制御への切り替わりの際、切り替わりの前の第1期間(T1)における鉛蓄電池の直流内部抵抗と、切り替わりの後の第2期間(T2)における鉛蓄電池の直流内部抵抗とを算出し、種別判定部は、切り替わりの前の第1期間の直流内部抵抗と切り替わり後の2期間の直流内部抵抗とに基づいて鉛蓄電池の種別を判定する。

Description

バッテリ種別判定装置およびバッテリ種別判定方法
 本発明は、バッテリの種別を判定するバッテリ種別判定装置及びバッテリ種別判定方法に関する。
 エンジンを主たる動力源とする車両は、エンジンを始動するためのスタータモータの電源としてバッテリを搭載している。このバッテリとしては、一般に鉛蓄電池が使用される。また、近年、鉛蓄電池の充放電特性は改良されている。そのため、鉛蓄電池は、高価なリチウムイオン二次電池では採算が合わない電動カート又はフォークリフトなどの特殊電動車両の電源としても普及しつつある。
 自家用車のトラブル回数(具体的には日本自動車連盟の出動回数)で最も多いものはバッテリ上がり及びバッテリの性能低下である。また、近年、エンジンを主たる動力源とする車両の排ガスを削減するために、アイドリングストップシステムが採用されている。しかし、アイドリングストップシステムに非アイドリングストップシステム用の鉛蓄電池、或いは、性能の劣る低グレードの鉛蓄電池が使用されると、アイドリングストップシステムが正常に機能しなくなる場合がある。
 このようなバッテリのトラブルを未然に防ぐために、車両に搭載されている電池の種類を識別する装置が提案されている(例えば特許文献1を参照)。
特開2009-54373号公報
 しかしながら、従来の技術では、バッテリの種別を判定する場合に、良好な判定精度が得られないという問題がある。例えば、特許文献1の電池種類の識別方法では、電池に所定電圧を印加した後に電流波形を取得して、電流波形により電池の種類の識別を行う。しかし、この方法では、電池の温度または充電量(SOC:State of Charge)によって電流波形が異なり、良好な判定精度が得られない。
 本発明の目的は、鉛蓄電池の種別を高い精度で判定できるバッテリ種別判定装置およびバッテリ種別判定方法を提供することである。
 本発明の一態様に係るバッテリ種別判定装置は、以下の構成を採る。すなわち、鉛蓄電池の端子電圧と充放電電流とを検出するセンサ部と、センサ部が検出した端子電圧と充放電電流とに基づいて鉛蓄電池の直流内部抵抗を算出する内部抵抗算出部と、算出された直流内部抵抗に基づいて鉛蓄電池の種別を判定する種別判定部と、を備える。内部抵抗算出部は、鉛蓄電池の放電制御から充電制御への切り替わり、或いは、鉛蓄電池の充電制御から放電制御への切り替わりの際、切り替わりの前の第1期間における鉛蓄電池の直流内部抵抗と、切り替わりの後で且つ第1期間から所定時間内の第2期間における鉛蓄電池の直流内部抵抗とを算出する。種別判定部は、切り替わりの前の第1期間の直流内部抵抗と切り替わり後の第2期間の直流内部抵抗とに基づいて鉛蓄電池の種別を判定する。
 本発明の一態様に係るバッテリ種別判定方法は、鉛蓄電池の端子電圧と充放電電流とを検出するステップと、検出された端子電圧と充放電電流とに基づいて鉛蓄電池の直流内部抵抗を算出するステップと、算出された直流内部抵抗に基づいて前記鉛蓄電池の種別を判定するステップと、を備える。直流内部抵抗を算出するステップでは、鉛蓄電池の放電制御から充電制御への切り替わり、或いは、鉛蓄電池の充電制御から放電制御への切り替わりの際、切り替わりの前の第1期間における鉛蓄電池の直流内部抵抗と、切り替わりの後で且つ第1期間から所定時間内の第2期間における鉛蓄電池の直流内部抵抗とを算出する。種別を判定するステップでは、切り替わりの前の第1期間の直流内部抵抗と切り替わり後の第2期間の前記直流内部抵抗とに基づいて鉛蓄電池の種別を判定する。
 本発明によれば、鉛蓄電池の種別を高い精度で判定することができる。
本発明の実施の形態1に係るバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。 実施の形態1に係るバッテリ種別判定装置において鉛蓄電池の直流内部抵抗を計測する期間の一例を示すグラフである。 鉛蓄電池の等価回路モデルを示す図である。 充電時と放電時の抵抗成分を模式的に表す図である。 本発明の実施形態2に係るバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。 本発明の実施形態3に係るバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。 本発明の実施形態4に係るバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。 実施の形態4に係るバッテリ種別判定装置において補機用バッテリの直流内部抵抗を計測する期間を示すグラフである。 実施の形態4に係るバッテリ種別判定装置において補機用バッテリの直流内部抵抗を計測する期間の変形例を示すグラフである。
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。
 実施の形態1では、本発明の実施の形態1に係るバッテリ種別判定装置10が、アイドリングストップシステムを有し、主にエンジンの動力で走行する車両に搭載される。
 車両は、バッテリ種別判定装置10と、鉛蓄電池20と、ECU(Electronic Control Unit)30と、負荷31と、オルタネータ32と、スタータモータ33とを備えている。図示は省略するが、車両は、エンジンおよび駆動輪を有する。
 スタータモータ33は、エンジンを始動させるモータである。スタータモータ33の駆動によりクランク軸が回転し、エンジン行程が開始することでエンジンが始動する。スタータモータ33の駆動によりエンジンのクランク軸を回転させることをクランキングと呼ぶ。スタータモータ33は、ECU30からの作動制御信号に基づき、鉛蓄電池20の電力によって作動する。
 オルタネータ32は、クランク軸の回転動力により発電を行う。オルタネータ32は、駆動輪の回転動力により発電を行ってもよい。加えて、オルタネータ32は、発電電力の整流と、ECU30の電圧制御信号に基づいて電圧の調整とを行う。
 負荷31は、例えばエンジンを作動させるために必要な電気的な補機であり、例えば、燃料噴射装置、点火プラグなどを含む。補機とは、エンジンを稼動させるためにエンジン本体以外に必要な周辺機器を意味する。負荷31は、車内照明、メータパネル、灯火器などの車両に搭載される様々な電気機器を含んでいてもよい。
 鉛蓄電池20は、充電と放電とが可能な電池である。鉛蓄電池20は、オルタネータ32の電力により充電を行う。鉛蓄電池20は、スタータモータ33、負荷31、ECU30、および、バッテリ種別判定装置10に電力を供給する。
 ECU30は、エンジンの制御を行う。具体的には、ECU30の制御には、スタータモータ33の作動制御、オルタネータ32の発電電圧の制御、補機の制御が含まれる。
 本実施の形態では、ECU30は、充放電制御情報を、バッテリ種別判定装置10へ送る。さらに、ECU30は、バッテリ種別判定装置10から鉛蓄電池20の種別判定結果の情報を受けて、判定結果に応じた制御を行う。例えば、ECU30は、バッテリ種別が、アイドリングストップシステム用の鉛蓄電池であれば、アイドリングストップシステムの制御を行い、非アイドリングストップ用の鉛蓄電池であれば、アイドリングストップシステムの制御を行わない。また、ECU30は、バッテリ種別が、後述する低グレード品であれば、警告を行う制御を行ってもよい。
 バッテリ種別判定装置10は、鉛蓄電池20の種別判定を行う。加えて、バッテリ種別判定装置10は、鉛蓄電池20のSOC(充電量:state of charge)の監視および劣化度の監視などを行ってもよい。
 バッテリ種別判定装置10は、タイミング判断部11、内部抵抗算出部12、種別判定部13、センサ部14を有する。
 バッテリ種別判定装置10の複数の要素は、センサ部14の素子(電流検出用抵抗など)を除いて、ワンチップの半導体集積回路として構成してもよい。また、バッテリ種別判定装置10は、センサ部14の素子を除いて、複数の半導体集積回路により構成してもよい。また、バッテリ種別判定装置10の一部またはセンサ部14の素子を除いた全部を、ECU30或いは車両に搭載される他のECUと一緒に1つの半導体集積回路により構成してもよい。
 センサ部14は、鉛蓄電池20の充放電電流と電圧とを検出し、検出信号を内部抵抗算出部12に出力する。検出される電圧は、充電時、放電時、および、端子開放時における鉛蓄電池20の端子間電圧である。
 タイミング判断部11は、ECU30から送られた充放電制御情報に基づいて、鉛蓄電池20の放電制御から充電制御に切り替わるタイミングを判断する。タイミング判断部11は、上記の切り替わるタイミングの前後の所定期間に内部抵抗算出部12に信号を送って、この期間であることを通知する。
 内部抵抗算出部12は、センサ部14が検出した充放電電流と電圧とから、鉛蓄電池20の直流内部抵抗を算出する。直流内部抵抗の算出方法については、後述する。
 種別判定部13は、内部抵抗算出部12が算出した、2つの期間の直流内部抵抗に基づいて、鉛蓄電池20の種別を判定する。種別判定の詳細は後述する。種別判定部13は、種別判定結果をECU30に通知する。種別判定部13は、種別判定結果を、他の制御部に出力してもよい。或いは、バッテリ種別判定装置10が、種別判定結果に基づき、結果の表示出力、又は、結果に基づく警告出力などを行ってもよい。
 [内部抵抗の計測タイミング]
 図2は、実施の形態1に係るバッテリ種別判定装置においてバッテリの直流内部抵抗を計測する期間の一例を示すグラフである。グラフには、鉛蓄電池20の充放電電流と、鉛蓄電池20の端子間電圧との時間変化を示している。
 タイミング判断部11は、図2に示すように、エンジン始動時の放電制御から、その後に初めて充電へと変化する充電制御への切り替わりの際に、エンジン始動時の放電制御から、その後に初めて充電へと変化する期間であることを判断する。実施の形態1では、ECU30からの充放電制御情報に基づいて、エンジン始動時の放電制御から、その後に初めて充電へと変化する期間であることを判断する。さらに、タイミング判断部11は、この切り替わりの際に、放電制御における放電開始期間T1と、充電制御における充電開始期間T2とを、内部抵抗算出部12へ通知する。
 放電開始期間T1は、エンジン停止の状態からスタータモータ33が始動する期間である。放電開始期間T1には、停止したスタータモータ33およびクランク軸を駆動するため、鉛蓄電池20から大きな放電電流が出力される。
 その後、クランク軸が回転し、エンジンが始動する。図2の期間T3は、スタータモータ33によるクランク軸の回転が継続され、エンジンが始動して、オルタネータ32による充電が開始される前までの期間を示している。
 充電開始期間T2は、エンジンの始動によりオルタネータ32の発電が開始され、鉛蓄電池20に充電が開始される期間である。充電開始期間T2には、鉛蓄電池20の充放電電流がゼロ点と交差するゼロクロスのタイミングが含まれる。鉛蓄電池20の電源ラインL10には負荷31が接続されて電力が消費されているため、オルタネータ32の発電の開始直後には、未だ、鉛蓄電池20は放電しており、オルタネータ32の発電量が負荷31の消費電力を超えてから鉛蓄電池20の充電が開始される。充電制御の開始とは、オルタネータ32の発電開始を意味する。よって、充電制御の開始直後の短い期間には、鉛蓄電池20からは放電が行われている場合があるが、その後、すぐに鉛蓄電池20の充電が行われる。
 放電開始期間T1から充電開始期間T2までの時間長は、車両によって変化するが、同一車両では比較的に変化が少ない。放電開始期間T1から充電開始期間T2までの時間は、例えば、10秒以内、好ましくは、5秒以内、より好ましくは1秒以内であるとよく、このような時間であることで、後述する鉛蓄電池20の種別判定の精度が高くなる。
 内部抵抗算出部12は、放電開始期間T1にセンサ部14が検出した充放電電流と電圧とに基づいて、放電開始期間T1の鉛蓄電池20の直流内部抵抗を算出する。加えて、内部抵抗算出部12は、充電開始期間T2にセンサ部14が検出した充放電電流と電圧とに基づいて、充電開始期間T2の鉛蓄電池20の直流内部抵抗を算出する。
 [内部抵抗の算出方法]
 図3は、鉛蓄電池の等価回路モデルを示す図である。
 内部抵抗算出部12は、例えば図3で示される鉛蓄電池の等価回路モデルとカルマンフィルタ等の周知のフィルタを有する。
 図3の鉛蓄電池の等価回路モデルは、オーミック抵抗Rと正負極の電荷移動抵抗Rの和である反応抵抗と、拡散抵抗分極を示す1次の等価回路の抵抗成分Rとコンデンサ成分Cのパラメータで構成される。
 内部抵抗算出部12は、センサ部14により検出された放電開始期間T1内の複数のタイミングの放電電流値と、複数のタイミングの電圧値とに基づいて、等化回路モデルのパラメータの逐次推定を行って、放電開始期間T1の鉛蓄電池20の直流内部抵抗を算出する。
 同様に、内部抵抗算出部12は、センサ部14により検出された充電開始期間T2内の複数のタイミングの放電電流値と、複数のタイミングの電圧値とに基づいて、等化回路モデルのパラメータの逐次推定を行う。これにより、内部抵抗算出部12は、充電開始期間T2の鉛蓄電池20の直流内部抵抗を算出する。
 なお、鉛蓄電池の等価回路モデルは、図3の例に限られない。図3の例は、速い応答の抵抗成分と速い応答の容量成分との並列回路のうち、速い応答の容量成分を省略し、速い応答の抵抗成分のみで表わした等化回路モデルである。図3の等価回路モデルは、例えば、センサ部14から得られる信号の速い応答成分をLPF(ローパスフィルタ)によりカットした電流値と電圧値とを使用することで、精度の高い推定を行うことができる。鉛蓄電池の等価回路モデルとしては、速い応答の容量成分を含めた等化回路モデルを採用して、直流内部抵抗を算出してもよい。
 次に、図3で示される鉛蓄電池の等価回路モデルと、内部抵抗算出部12が算出した直流内部抵抗との対応関係について説明する。図4は、充電時と放電時のそれぞれの抵抗成分を模式的に表す図である。
 図4に示すように、充電時のオーミック抵抗R_chgが充電時の交流内部抵抗(ACIR)、放電時のオーミック抵抗R_disが放電時の交流内部抵抗(ACIR)に対応する。また、充電時のオーミック抵抗R_chgと正負極の電荷移動抵抗R_chgとの和による反応抵抗が充電時の直流内部抵抗(DCIR)、放電時のオーミック抵抗R_disと正負極の電荷移動抵抗R_disとの和による反応抵抗が放電時の直流内部抵抗(DCIR)に対応する。充電時の拡散抵抗分極を示すR_chg、放電時の拡散抵抗分極を示すR_disは遅い成分の抵抗成分であるため、短時間の反応によるDCIRに含まれない。このように、等価回路モデルの速い応答の抵抗成分を、オーミック抵抗と正負極の電荷移動抵抗を組み込んだ直流内部抵抗として容易に算出できる。
 [種別判定]
 判定対象の鉛蓄電池20の種別には、アイドリングストップシステム(ISS)用の鉛蓄電池、非アイドリングストップシステム用の鉛蓄電池、低グレードの鉛蓄電池がある。言い換えれば、非アイドリングストップシステム用の鉛蓄電池は、通常の鉛蓄電池であり、低グレードの鉛蓄電池は、通常の鉛蓄電池より性能が劣る鉛蓄電池である。ここでいう電池の性能は、主として電池の寿命を意味する。電池の寿命は充電時の直流内部抵抗の大きさに影響を受ける。例えば、充電時の直流内部抵抗(DCIR)が大きいと電池の寿命は短くなる。
 アイドリングストップシステム用の鉛蓄電池は、一般にアイドリングストップシステム用の車両で使用して数年程度の耐久性を有することが要求され、例えば電池工業会規格(SBA S 0101)では、30,000サイクル以上(実力約3年以上)程度の耐久性が要求される。
 非アイドリングストップシステム用の鉛蓄電池は、同サイズの場合に、アイドリングストップシステム用の鉛蓄電池よりも寿命が短い。例えば通常のエンジンスタートに用いられる通常の鉛蓄電池(通常品)では1.5年程度の寿命である。
 低グレードの鉛蓄電池は、例えば合理化のために通常品に対して活物質の含有量を低くして軽量化した容量重視タイプの鉛蓄電池などがあり、通常のエンジンスタートに用いた場合に1年も持たない(例えば0.5年程度の)寿命である。
 アイドリングストップシステムの車両に、非アイドリングストップシステム用の鉛蓄電池、或いは、低グレードの鉛蓄電池が、誤って搭載されると、年単位で行われる車検等のサービス点検で対応できなくなる可能性が高まる。よって、アイドリングストップシステムの車両では、搭載されている鉛蓄電池の種別を判定することが要望される。
 充電時の直流内部抵抗と放電時の直流内部抵抗とは、電池によって異なる。非アイドリングストップシステム用の鉛蓄電池は充電受入れ性が悪いため、充電状態SOCが高い状態では充電時の直流内部抵抗が放電時の直流内部抵抗に比べて高くなる。低グレードの鉛蓄電池では、充電受け入れ性が更に悪くなる。これは、速い応答成分の反応抵抗を示すR_chgが影響している。一方、アイドリングストップシステム(ISS)用の鉛蓄電池では、充電受入れ性が一般的な鉛蓄電池より改良されているため、充電時の直流内部抵抗が非アイドリングストップシステム用の鉛蓄電池の充電時の直流内部抵抗よりも低い。この結果、速い応答成分の反応抵抗を示すR_chgも、非アイドリングストップシステム用の鉛蓄電池、或いは、低グレードの鉛蓄電池に比べて小さい。
 内部抵抗算出部12は、種別判定部13へ、放電開始期間T1の直流内部抵抗の値と、充電開始期間T2の直流内部抵抗の値とを送る。種別判定部13は、例えば、放電開始期間T1の直流内部抵抗の値と、充電開始期間T2の直流内部抵抗の値との差を演算し、この差と第1の閾値および第2の閾値とを比較して、鉛蓄電池20の種別を判定する。
 オーミック抵抗は充電時と放電時とで変化が小さいため(R_chg≒R_dis)、充電時のDCIRと放電時のDCIRとの差分をとることによってオーミック抵抗の影響を消去して、充電時の反応抵抗と放電時の反応抵抗との差分(R_chg-R_dis)として特定することができる。そこで、種別判定部13は、充電時の反応抵抗と放電時の反応抵抗との差分(R_chg-R_dis)が所定の第1の閾値より大きい場合、充電時の反応抵抗R_chgが大きく、したがって非アイドリングストップシステム用の鉛蓄電池、或いは低グレードの鉛蓄電池であると判定する。一方、種別判定部13は、充電時の反応抵抗と放電時の反応抵抗との差分(R_chg-R_dis)が所定の第1の閾値以下の場合、充電時の反応抵抗R_chgが小さく、したがってアイドリングストップシステム用の鉛蓄電池であると判定する。
 さらに、種別判定部13は、充電時の反応抵抗と放電時の反応抵抗との差分(R_chg-R_dis)が、第1の閾値より大きくさらに所定の第2の閾値より大きい場合、充電時の反応抵抗R_chgがさらに大きく、したがって低グレードの鉛蓄電池であると判定する。一方、種別判定部13は、充電時の反応抵抗と放電時の反応抵抗との差分(R_chg-R_dis)が所定の第2の閾値以下且つ第1の閾値より大きい場合、充電時の反応抵抗R_chgが中程度であり、したがって非アイドリングストップシステム用の鉛蓄電池であると判定する。ここで、第2の閾値は、第1の閾値より大きい値として設定されている。
 なお、種別判定部13は、種別判定のために、放電開始期間T1の直流内部抵抗の値と充電開始期間T2の直流内部抵抗の値との差を、閾値とを比較することに制限されない。例えば、種別判定部13は、種別判定のために、放電開始期間T1の直流内部抵抗の値と充電開始期間T2の直流内部抵抗の値との比を、閾値とを比較する構成としてもよい。すなわち、放電開始期間T1の直流内部抵抗の値と、充電開始期間T2の直流内部抵抗の値とが近いか遠いかを判別し、近ければ性能が優れる鉛蓄電池、遠ければ性能が劣る鉛蓄電池と判定することができる。鉛蓄電池の性能は、高い方から、アイドリングストップシステム用の鉛蓄電池、非アイドリングストップシステム用の鉛蓄電池、低グレードの鉛蓄電池の順で低くなる。
 以上のように、実施の形態1のバッテリ種別判定装置10によれば、放電制御から充電制御への切り替わりの際、切り替わり前の放電開始期間T1における鉛蓄電池20の直流内部抵抗と、切り替わりの後で且つ第1期間から所定時間内(例えば1秒以内、なお、10秒以内であればよい)の第2期間における鉛蓄電池20の直流内部抵抗とを算出している。そして、放電開始期間T1の直流内部抵抗と充電開始期間T2の直流内部抵抗とを比較して、鉛蓄電池20の種別を判定している。このように、2つの直流内部抵抗を計測するタイミングを規定したことで、他の要因により大きな誤差が付加されるような状況を排除でき、鉛蓄電池20の種別を高い精度で判定できる。
 さらに、実施の形態1のバッテリ種別判定装置10によれば、エンジン始動の際にスタータモータ33を始動させる放電開始時と、エンジンが始動した直後の充電開始時に、鉛蓄電池20の直流内部抵抗を計測する。よって、様々な状況で、直流内部抵抗を計測して種別判定を行う際にも、その都度、直流内部抵抗の計測に影響を与えるような鉛蓄電池の環境の変化が生じにくい。よって、このようにタイミングが規定されて計測された直流内部抵抗を使用して、鉛蓄電池20の種別判定を行うことで、鉛蓄電池20の種別をより高い精度で判定することができる。
 (実施の形態2)
 図5は、実施の形態2のバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。
 実施の形態2のバッテリ種別判定装置10Aは、タイミング判断部11Aの入力が異なるだけで、他の構成は、実施の形態1の構成と同様である。同一の構成については、同一符号を付して、詳細な説明を省略する。
 実施の形態2のタイミング判断部11Aは、センサ部14の信号を入力とする。タイミング判断部11Aは、センサ部14の主に充放電電流の検出信号を監視し、鉛蓄電池20から大きな放電が行われた後、所定時間内に、鉛蓄電池20の充電が行われる期間を判別する。所定時間内とは、好ましくは10秒以内、より好ましくは5秒以内、さらに好ましくは1秒以内である。そして、放電時の期間T1と、充電時の期間T2に、内部抵抗算出部12に、鉛蓄電池20の直流内部抵抗を算出させる。なお、センサ部14の信号を一定時間分記憶するメモリ部が設けられるとよい。記憶されたデータを使用することで、放電制御から充電制御への切り替わりを検出した後に、切り替わり前の放電制御の期間およびその後の充電制御の期間の直流内部抵抗を算出することができる。
 さらに、実施の形態2のタイミング判断部11Aは、充放電電流の波形と電圧の波形とを監視することで、図2に示したエンジン始動時(クランキング時)の放電制御から充電制御への切り替わりの期間を判別することができる。よって、実施の形態2のバッテリ種別判定装置10Aにおいても、図2のエンジン始動時の放電開始期間T1と、その直後の充電開始期間T2との、鉛蓄電池20の直流内部抵抗を算出して、種別判定を行うことができる。
 タイミング判断部11Aは、鉛蓄電池20の充放電電流、電圧の少なくとも1つから、上記のタイミングを判断することができる。例えば、充放電電流を用いた場合、タイミング判断部11Aは、充放電電流がゼロ点と交わるゼロクロスの検出により、放電制御と充電制御との切り替わりを判定できる。また、タイミング判断部11Aは、単位時間当たりの電圧の変化量を示す電圧変化率が所定の閾値以上(例えば、1V/s以上)のときに、放電制御と充電制御との切り替わりを判断してもよい。
 内部抵抗算出部12の内部抵抗の算出および算出結果に基づく種別判定部13の動作は、実施の形態1と同様である。
 以上のように、実施の形態2のバッテリ種別判定装置10Aによれば、車両のECU30から充放電制御の情報を受けなくても、実施の形態1と同様の種別判定を行うことができる。
 (実施の形態3)
 図6は、実施の形態3のバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。
 実施の形態3のバッテリ種別判定装置10Bは、鉛蓄電池20の種別の判定に、鉛蓄電池20の直流内部抵抗だけでなく、鉛蓄電池20の温度、および、SOC(充電量:State of Charge)の情報も使用するようにしたものである。その他の構成は、実施の形態1のものと同様である。実施の形態1と同一の構成については、同一符号を付して、詳細な説明を省略する。
 実施の形態3のバッテリ種別判定装置10Bは、タイミング判断部11、内部抵抗算出部12、種別判定部13B、センサ部14に加えて、さらに、鉛蓄電池20の温度を計測する温度計15と、SOCを算出するSOC算出部16とを有する。
 実施の形態3の種別判定部13Bは、内部抵抗算出部12から、放電制御から充電制御へ切り替わる際に、切り換わり前の放電制御期間T1の鉛蓄電池20の直流内部抵抗の値と、切り換わり後の充電制御期間T2の鉛蓄電池20の直流内部抵抗の値とを入力する。この点は、実施の形態1と同様である。さらに、種別判定部13Bは、種別判定を行う際に、温度計15の検出信号と、SOC算出部16の算出結果を入力する。
 種別判定部13Bは、実施の形態1で説明した種別の判定を行うが、例えば、鉛蓄電池の温度が異常に高い場合、或いは、異常に低い場合には、種別判定を行わない。加えて、SOCが所定の範囲にない場合には、種別判定を行わない。
 このように、種別判定部13Bは、鉛蓄電池の温度またはSOCが所定の範囲外にあって判定精度が低下するような場合に、種別判定を行わないことで、結果として、種別の判定精度をより高くできる。
 なお、種別判定部13Bは、SOCの替わりに、鉛蓄電池のOCV(Open Circuit Voltage)を用いてもよい。或いは、SOCとOCVと温度の、全部または何れかを用いてもよい。
 さらに、種別判定部13Bは、温度、SOC又はOCVが、所定の範囲外になった場合に、種別判定を行わないように構成されるほか、温度、SOC又はOCVにより、直流内部抵抗の値を補正して、種別の判定を行うようにしてもよい。
 以上のように、実施の形態3のバッテリ種別判定装置10Bによれば、バッテリ種別をより高い精度で判定できる。
 (実施の形態4)
 図7は、実施の形態4のバッテリ種別判定装置を含んだ車両の一部を示すブロック図である。
 実施の形態4は、実施の形態1と同様のバッテリ種別判定装置10を、ハイブリッド自動車(HEV:hybrid electric vehicle)、プラグインハイブリッド自動車(PHEV:Plug-in Hybrid Electric Vehicle)、または電気自動車(EV: electric vehicle)などの電動車両に搭載した例を示す。
 車両は、主電源用バッテリ41と、DC-DCコンバータ42と、モータ周辺補機43と、走行用モータ44と、補機用バッテリ20Cとを有している。
 主電源用バッテリ41は、例えば、リチウムイオン電池などであり、走行に使用する大きな電力を走行用モータ44に供給する。
 DC-DCコンバータ42は、主電源用バッテリ41の電圧を下げて、主電源用バッテリ41の電力を電源ラインL10に出力する。これにより、DC-DCコンバータ42は、負荷31への電力供給、並びに、補機用バッテリ20Cの充電を行うことができる。DC-DCコンバータ42は、例えばECU30により制御される。
 モータ周辺補機43は、走行用モータ44を駆動するために必要な補機である。モータ周辺補機43は、例えば、主電源用バッテリ41の電力線と、走行用モータ44(そのインバータ回路など)の電力線との接続を開閉するリレースイッチなどを含む。モータ周辺補機43は、ECU30の制御に基づき、補機用バッテリ20Cの電力により駆動される。
 補機用バッテリ20Cは、鉛蓄電池であり、バッテリ種別判定装置10による種別判定の対象である。
 図8は、実施の形態4に係るバッテリ種別判定装置においてバッテリの直流内部抵抗を計測する期間の第1例を示すグラフである。グラフには、補機用バッテリ20Cの充放電電流と、補機用バッテリ20Cの端子間電圧との時間変化を示している。なお、図8のグラフ線は、実測値を示すものでなく、推測される模式的な値を示している。
 実施の形態4の車両においては、車両を始動する際、先ず、期間T1aに示すように、補機用バッテリ20Cの電力によりモータ周辺補機43が駆動される。これにより主電源用バッテリ41から走行用モータ44に電力が供給可能となる。その後の期間T3aにて、主電源用バッテリ41の電力により走行用モータ44が駆動したら、続く期間T2aにおいて、主電源用バッテリ41からDC-DCコンバータ42を介して補機用バッテリ20Cに充電が行われる。
 このように、走行用モータ44により車両を始動する際にも、補機用バッテリ20Cの放電制御から充電制御への切り替わりが生じる。走行用モータ44により車両を始動する際の一連の動作のことをクランキングと呼ぶこともある。
 ECU30は、走行用モータ44により車両を始動する際の補機用バッテリ20Cの放電制御(モータ周辺補機43の駆動制御)の情報と、補機用バッテリ20Cの充電制御の情報とを、バッテリ種別判定装置10のタイミング判断部11に送る。
 タイミング判断部11は、車両始動時の補機用バッテリ20Cの放電制御から、その後に初めて充電へと変化する充電制御への切り替わりの際に、放電制御における放電開始期間T1aと、充電制御における充電開始期間T2aとを、内部抵抗算出部12へと通知する。
 期間T1a、T2aの通知に基づく内部抵抗算出部12の動作は、実施の形態1と同様である。期間T1aから期間T2aまでの期間T3aの時間長は、例えば、10秒以内、好ましくは、5秒以内、より好ましくは1秒以内であるとよく、このような時間であることで、補機用バッテリ20Cの種別判定の精度が高くなる。また、算出された切り替わり前後2つの直流内部抵抗に基づく種別判定部13の判定処理は、実施の形態1と同様である。
 以上のように、実施の形態4のバッテリ種別判定装置10によれば、走行用モータ44により走行できる車両においても、補機用バッテリ20Cの種別を高い精度で判定できる。
 (変形例)
 図9は、実施の形態4に係るバッテリ種別判定装置においてバッテリの直流内部抵抗を計測する期間の変形例を示すグラフである。グラフには、補機用バッテリ20Cの充放電電流と、補機用バッテリ20Cの端子間電圧との時間変化を示している。なお、図9のグラフ線は、実測値を示すものでなく、推測される模式的な値を示している。
 この変形例は、補機用バッテリ(鉛蓄電池)20Cの直流内部抵抗を計測する期間として、充電制御から放電制御へ切り替わる際の期間を適用した例である。
 走行用モータ44を有する車両では、主電源用バッテリ41から補機用バッテリ20Cに定電圧充電(CV充電と言う)を行い、定電圧充電の途中または最後に、補機用バッテリ20Cの放電テストを行ってもよい。図9の期間T1bは、定電圧充電の期間の一部を示す。図9の期間T2bは、放電テストの期間を示す。
 この変形例では、タイミング判断部11は、補機用バッテリ20Cの定電圧充電の期間T1bと、放電テストの期間T2bとを、内部抵抗算出部12へと通知する。
 期間T1b、T2bの通知に基づく内部抵抗算出部12および種別判定部13の動作は、実施の形態1と同様である。期間T1bから期間T2bまでの期間T3bの時間長は、例えば、10秒以内、好ましくは、5秒以内、より好ましくは1秒以内であるとよく、このような時間であることで、補機用バッテリ20Cの種別判定の精度が高くなる。
 以上のように、この変形例によれば、2つの直流内部抵抗を計測するタイミングを、充電制御から放電制御へ切り替わる際における、切り替わりの前の期間T1bと、切り替わり後の期間T2bとに規定している。これにより、直流内部抵抗の計測値に、他の要因により大きな誤差が付加されてしまうことが回避され、補機用バッテリ(鉛蓄電池)20Cの種別を高い精度で判定できる。
 なお、充電制御から放電制御へ切り替わる期間を利用した種別の判定処理は、走行用モータ44を有する車両に限られず、エンジン車において適用してもよい。
 以上、本発明の各実施の形態について説明した。
 なお、本発明は、上記実施の形態で説明された具体的な構成および方法に限られるものでなく、発明の趣旨を逸脱しない範囲で適宜変更が可能である。
 本発明は、例えば車両に搭載される鉛蓄電池の種別を判定する装置に利用できる。
 10,10A,10B バッテリ種別判定装置
 11,11A タイミング判断部
 12 内部抵抗算出部
 13,13B 種別判定部
 14 センサ部
 15 温度計
 16 SOC算出部
 20 鉛蓄電池
 20C 補機用バッテリ
 T1,T1a 放電開始期間(第1の期間)
 T2,T2a 充電開始期間(第2の期間)
 T1b 定電圧充電の期間(第1の期間)
 T2b 放電テストの期間(第2の期間)
 32 オルタネータ
 33 スタータモータ
 41 主電源用バッテリ
 42 DC-DCコンバータ
 43 モータ周辺補機

Claims (10)

  1.  鉛蓄電池の端子電圧と充放電電流とを検出するセンサ部と、
     前記センサ部が検知した端子電圧と充放電電流とに基づいて前記鉛蓄電池の直流内部抵抗を算出する内部抵抗算出部と、
     算出された前記直流内部抵抗に基づいて前記鉛蓄電池の種別を判定する種別判定部と、
     を備え、
     前記内部抵抗算出部は、
     前記鉛蓄電池の放電制御から充電制御への切り替わり、或いは、前記鉛蓄電池の充電制御から放電制御への切り替わりの際、前記切り替わりの前の第1期間における前記鉛蓄電池の直流内部抵抗と、前記切り替わりの後で且つ前記第1期間から所定時間内の第2期間における前記鉛蓄電池の直流内部抵抗とを算出し、
     前記種別判定部は、
     前記切り替わりの前の前記第1期間の前記直流内部抵抗と前記切り替わり後の前記第2期間の前記直流内部抵抗とに基づいて前記鉛蓄電池の種別を判定する、
     バッテリ種別判定装置。
  2.  前記鉛蓄電池の充電制御および放電制御を行う制御装置から制御情報を入力する情報入力部と、
     前記情報入力部に入力された制御情報に基づいて、前記鉛蓄電池の放電制御から充電制御への切り替わり、或いは、前記鉛蓄電池の充電制御から放電制御への切り替わりを判断するタイミング判断部と、
     を更に備え、
     前記内部抵抗算出部は、前記タイミング判断部の判断に基づいて、前記第1期間の前記直流内部抵抗と前記第2期間の前記直流内部抵抗とを算出する、
     請求項1記載のバッテリ種別判定装置。
  3.  前記センサ部が検知した前記鉛蓄電池の前記充放電電流および前記電圧の少なくとも1つに基づいて、前記鉛蓄電池の放電制御から充電制御への切り替わり、或いは、前記鉛蓄電池の充電制御から放電制御への切り替わりを判断するタイミング判断部、
     を更に備え、
     前記内部抵抗算出部は、前記タイミング判断部の判断に基づいて、前記第1期間の前記直流内部抵抗と前記第2期間の前記直流内部抵抗とを算出する、
     請求項1記載のバッテリ種別判定装置。
  4.  前記鉛蓄電池は、
     車両の補機を駆動する電力を供給し、
     前記内部抵抗算出部は、
     前記車両の始動時における前記鉛蓄電池の放電制御から充電制御への切り替わりの際に、前記第1期間の前記直流内部抵抗と前記第2期間の前記直流内部抵抗とを算出する、
     請求項1記載のバッテリ種別判定装置。
  5.  前記鉛蓄電池は、
     スタータモータの駆動によりエンジンが始動する車両における前記スタータモータの駆動電力を供給し、
     前記内部抵抗算出部は、
     前記エンジンの始動時の前記鉛蓄電池の放電制御から充電制御の切り替わりの際に、前記第1期間の前記直流内部抵抗と前記第2期間の前記直流内部抵抗とを算出する、
     請求項4記載のバッテリ種別判定装置。
  6.  前記鉛蓄電池は、
     前記補機の駆動により主電源用バッテリの電力が供給可能となって走行用モータが始動する電動車両における前記補機の電力を供給し、
     前記内部抵抗算出部は、
     前記走行用モータの始動時の前記鉛蓄電池の放電制御から充電制御の切り替わりの際に、前記第1期間の前記直流内部抵抗と前記第2期間の前記直流内部抵抗とを算出する、
     請求項4記載のバッテリ種別判定装置。
  7.  前記鉛蓄電池の充電量、開放電圧、および、温度の何れか1つ又は複数を検出する追加検出部を更に備え、
     前記種別判定部は、さらに、前記追加検出部の検出結果を含めた情報に基づいて、前記鉛蓄電池の種別を判定する、
     請求項1記載のバッテリ種別判定装置。
  8.  前記種別判定部は、
     前記鉛蓄電池の種別として、アイドリングストップシステム用の鉛蓄電池、アイドリングストップシステム用でない鉛蓄電池、および、前記アイドリングストップシステム用でない鉛蓄電池より性能が劣る低性能鉛蓄電池の判定を行う、
     請求項1記載のバッテリ種別判定装置。
  9.  前記種別判定部は、
     前記第1期間の前記直流内部抵抗と前記第2期間の前記直流内部抵抗との差が小さいほど、性能が優れる種別と判定する、
     請求項1記載のバッテリ種別判定装置。
  10.  鉛蓄電池の端子電圧と充放電電流とを検出するステップと、
     検知された端子電圧と充放電電流とに基づいて前記鉛蓄電池の直流内部抵抗を算出するステップと、
     算出された前記直流内部抵抗に基づいて前記鉛蓄電池の種別を判定するステップと、
     を備え、
     前記直流内部抵抗を算出するステップでは、
     前記鉛蓄電池の放電制御から充電制御への切り替わり、或いは、前記鉛蓄電池の充電制御から放電制御への切り替わりの際、前記切り替わりの前の第1期間における前記鉛蓄電池の直流内部抵抗と、前記切り替わりの後で且つ前記第1期間から所定時間内の第2期間における前記鉛蓄電池の直流内部抵抗とを算出し、
     前記種別を判定するステップでは、
     前記切り替わりの前の前記第1期間の前記直流内部抵抗と前記切り替わり後の前記第2期間の前記直流内部抵抗とに基づいて前記鉛蓄電池の種別を判定する、
     バッテリ種別判定方法。
PCT/JP2016/000600 2015-02-12 2016-02-05 バッテリ種別判定装置およびバッテリ種別判定方法 WO2016129260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016574664A JP6603888B2 (ja) 2015-02-12 2016-02-05 バッテリ種別判定装置およびバッテリ種別判定方法
CN201680009039.7A CN107210498B (zh) 2015-02-12 2016-02-05 电池类型判定装置和电池类型判定方法
US15/547,716 US10145899B2 (en) 2015-02-12 2016-02-05 Battery class determination device and battery class determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015025639 2015-02-12
JP2015-025639 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016129260A1 true WO2016129260A1 (ja) 2016-08-18

Family

ID=56614303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000600 WO2016129260A1 (ja) 2015-02-12 2016-02-05 バッテリ種別判定装置およびバッテリ種別判定方法

Country Status (4)

Country Link
US (1) US10145899B2 (ja)
JP (1) JP6603888B2 (ja)
CN (1) CN107210498B (ja)
WO (1) WO2016129260A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164969A (ja) * 2018-03-20 2019-09-26 古河電気工業株式会社 充電可能電池状態検出装置および充電可能電池状態検出方法
JP2019211248A (ja) * 2018-05-31 2019-12-12 住友電気工業株式会社 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム
CN111788493A (zh) * 2018-03-06 2020-10-16 丰田自动车株式会社 电池种类判别装置以及电池种类的判别方法
JP2023519273A (ja) * 2020-09-29 2023-05-10 エルジー エナジー ソリューション リミテッド 二次電池性能推定装置、システムおよびその方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411906B2 (ja) * 2019-11-15 2024-01-12 パナソニックIpマネジメント株式会社 点灯システム
FR3118677B1 (fr) * 2021-01-07 2024-03-22 Psa Automobiles Sa Surveillance de l’état d’une batterie de servitude d’un véhicule à gmp électrique
KR102652460B1 (ko) * 2021-12-28 2024-03-28 주식회사 유라코퍼레이션 빌트인캠용 배터리 매니지먼트 시스템 및 이를 이용한 배터리 타입 보정 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070629A (ja) * 2012-10-02 2014-04-21 Toyota Motor Corp 制御装置、車両、および、制御方法
JP2014178213A (ja) * 2013-03-14 2014-09-25 Furukawa Electric Co Ltd:The 二次電池状態検出装置および二次電池状態検出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736268B2 (ja) * 2000-03-21 2006-01-18 日産自動車株式会社 ハイブリッド車両の制御装置
WO2004051785A1 (ja) * 2002-12-05 2004-06-17 Matsushita Electric Industrial Co., Ltd. 電池パックとその充放電方法
JP4038174B2 (ja) * 2003-12-22 2008-01-23 インターナショナル・ビジネス・マシーンズ・コーポレーション 情報処理装置、制御方法、プログラム、及び記録媒体
KR100669476B1 (ko) * 2005-12-21 2007-01-16 삼성에스디아이 주식회사 배터리의 soc보정 방법 및 이를 이용한 배터리 관리시스템
JP4785627B2 (ja) * 2006-06-08 2011-10-05 三洋電機株式会社 電動車両用漏電検出回路および電動車両用漏電検出方法
CN101349713B (zh) * 2007-07-20 2011-07-13 奇瑞汽车股份有限公司 混合动力汽车电池内阻检测方法
JP5082677B2 (ja) 2007-08-24 2012-11-28 トヨタ自動車株式会社 電池識別方法及び電池識別装置
CN102792549A (zh) * 2010-03-08 2012-11-21 三洋电机株式会社 电池控制装置、电池系统、电动车辆、移动体、电力储存装置及电源装置
KR101191624B1 (ko) * 2010-10-13 2012-10-17 삼성에스디아이 주식회사 배터리 관리 시스템 및 이를 이용한 배터리 soc 추정 방법
JP5677362B2 (ja) * 2012-04-27 2015-02-25 本田技研工業株式会社 電源劣化判定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070629A (ja) * 2012-10-02 2014-04-21 Toyota Motor Corp 制御装置、車両、および、制御方法
JP2014178213A (ja) * 2013-03-14 2014-09-25 Furukawa Electric Co Ltd:The 二次電池状態検出装置および二次電池状態検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788493A (zh) * 2018-03-06 2020-10-16 丰田自动车株式会社 电池种类判别装置以及电池种类的判别方法
EP3764113A4 (en) * 2018-03-06 2021-02-17 Toyota Jidosha Kabushiki Kaisha BATTERY TYPE IDENTIFICATION DEVICE AND BATTERY TYPE IDENTIFICATION METHOD
US11740292B2 (en) 2018-03-06 2023-08-29 Toyota Jidosha Kabushiki Kaisha Battery type identifying device, and method for identifying battery type
JP2019164969A (ja) * 2018-03-20 2019-09-26 古河電気工業株式会社 充電可能電池状態検出装置および充電可能電池状態検出方法
JP7072414B2 (ja) 2018-03-20 2022-05-20 古河電気工業株式会社 充電可能電池状態検出装置および充電可能電池状態検出方法
JP2019211248A (ja) * 2018-05-31 2019-12-12 住友電気工業株式会社 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム
JP7183576B2 (ja) 2018-05-31 2022-12-06 住友電気工業株式会社 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム
JP2023519273A (ja) * 2020-09-29 2023-05-10 エルジー エナジー ソリューション リミテッド 二次電池性能推定装置、システムおよびその方法
JP7443646B2 (ja) 2020-09-29 2024-03-06 エルジー エナジー ソリューション リミテッド 二次電池性能推定装置、システムおよびその方法

Also Published As

Publication number Publication date
US20180267107A1 (en) 2018-09-20
US10145899B2 (en) 2018-12-04
CN107210498A (zh) 2017-09-26
JPWO2016129260A1 (ja) 2017-11-24
CN107210498B (zh) 2019-11-05
JP6603888B2 (ja) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6603888B2 (ja) バッテリ種別判定装置およびバッテリ種別判定方法
US10553896B2 (en) Battery capacity degradation resolution methods and systems
US9855854B2 (en) Charge control device and charge control method
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
US7800345B2 (en) Battery management system and method of operating same
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US7902829B2 (en) Battery management system and driving method thereof
JP5159498B2 (ja) ハイブリッドカーの電源装置における電池の充放電制御方法
US20170145977A1 (en) Vehicular control apparatus
US20140100803A1 (en) Power estimation device for estimating chargeable/dischargeable power of electric storage device, electric storage apparatus, and method of estimating chargeable/dischargeable power
JP2010249797A (ja) 二次電池の状態判定装置及び制御装置
WO2016157731A1 (ja) 二次電池の状態推定装置および状態推定方法
KR20210046548A (ko) 배터리의 에너지 함량 및 전력의 지원을 결정하는 방법 및 검출 시스템
JP2009241646A (ja) 電池状態判定システムおよび該システムを備えた自動車
KR101498764B1 (ko) 배터리의 저항측정방법 및 장치, 이를 이용한 배터리 관리 시스템
KR100906872B1 (ko) 하이브리드 차량의 배터리 성능 보상 및 soc 초기화방법
JPWO2009118904A1 (ja) 電池状態検知システムおよびこれを備えた自動車
US10106037B2 (en) Battery control device
JP6135898B2 (ja) 蓄電素子の充電制御装置、蓄電装置および充電制御方法
JP2003319503A (ja) 車両用電源管理方法、車両用電源管理装置、車両用電源管理プログラム
JP2004325263A (ja) 電池の自己放電量検出装置
JP2016162729A (ja) バッテリ種別判定装置およびバッテリ種別判定方法
JP2016162728A (ja) バッテリ種別判定装置およびバッテリ種別判定方法
CN113016099A (zh) 电池控制装置
JP2015052461A (ja) 蓄電システムおよび充電率推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574664

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547716

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748906

Country of ref document: EP

Kind code of ref document: A1